1
|
Pan Y, Li L, Cao N, Liao J, Chen H, Zhang M. Advanced nano delivery system for stem cell therapy for Alzheimer's disease. Biomaterials 2025; 314:122852. [PMID: 39357149 DOI: 10.1016/j.biomaterials.2024.122852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Alzheimer's Disease (AD) represents one of the most significant neurodegenerative challenges of our time, with its increasing prevalence and the lack of curative treatments underscoring an urgent need for innovative therapeutic strategies. Stem cells (SCs) therapy emerges as a promising frontier, offering potential mechanisms for neuroregeneration, neuroprotection, and disease modification in AD. This article provides a comprehensive overview of the current landscape and future directions of stem cell therapy in AD treatment, addressing key aspects such as stem cell migration, differentiation, paracrine effects, and mitochondrial translocation. Despite the promising therapeutic mechanisms of SCs, translating these findings into clinical applications faces substantial hurdles, including production scalability, quality control, ethical concerns, immunogenicity, and regulatory challenges. Furthermore, we delve into emerging trends in stem cell modification and application, highlighting the roles of genetic engineering, biomaterials, and advanced delivery systems. Potential solutions to overcome translational barriers are discussed, emphasizing the importance of interdisciplinary collaboration, regulatory harmonization, and adaptive clinical trial designs. The article concludes with reflections on the future of stem cell therapy in AD, balancing optimism with a pragmatic recognition of the challenges ahead. As we navigate these complexities, the ultimate goal remains to translate stem cell research into safe, effective, and accessible treatments for AD, heralding a new era in the fight against this devastating disease.
Collapse
Affiliation(s)
- Yilong Pan
- Department of Cardiology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.
| | - Long Li
- Department of Neurosurgery, First Hospital of China Medical University, Liaoning, 110001, China.
| | - Ning Cao
- Army Medical University, Chongqing, 400000, China
| | - Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Huiyue Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110001, China.
| | - Meng Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Liaoning, 110004, China.
| |
Collapse
|
2
|
Ma HH, Zheng JY, Qiu YH, Su S, Lu FM, Wu GL, Zhang SJ, Cai YF. Dengzhan Shengmai capsule ameliorates cognitive impairment via inhibiting ER stress in APP/PS1 mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119016. [PMID: 39505222 DOI: 10.1016/j.jep.2024.119016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) is a common type of neurodegenerative disease with the β-amyloid plaques (Aβ) deposition. Previously, Dengzhan Shengmai capsule (DZSM) has been shown to reduce the pathology associated with AD, but the underlying mechanism is unclear. AIM OF STUDY This study investigated the potential mechanisms of DZSM against AD. MATERIALS AND METHODS The six-month-old wild-type male mice and APP/PS1 double transgenic male mice were administered 0.9 % saline or DZSM for 8 weeks by gavage. Open field test, new object recognition test, and Morris Water maze test were used to assess spatial learning and memory. Aβ plaques in brains were visualized using ThT staining. Nissl staining, TUNEL staining, and Western blot analyses were used to detect the neuronal function and apoptosis level. The superoxide dismutase (SOD), glutathione peroxidase assay kit (GSH-Px), and malondialdehyde (MDA) kits were performed to assess oxidative stress levels. Then, immunofluorescence and Western blot analysis were applied to evaluate ER stress pathway protein levels. Finally, HT22 cells were treated by Aβ1-42 with or without DZSM medicated serum. Cell viability was assessed using the CCK-8 assay, and Western blot analysis was applied to evaluate ER stress pathway protein levels. RESULTS Open filed test, new object recognition test and Morris Water maze test showed that DZSM restored cognitive disorders in APP/PS1 mice. Immunohistochemistry and Thioflavin T staining results indicated that DZSM reduced Aβ plaques in the brain. Deeper and denser Nissl bodies were found in APP/PS1 mice after DZSM administration. Besides, APP/PS1 mice treated with DZSM showed a lower level of TUNEL and Bax/Bcl-2 ratio. DZSM improved the acetylcholine (ACh), choline acetyltransferase (ChAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activity while reducing acetylcholinesterase (AChE) and malondialdehyde (MDA) activity. In addition, the levels of ER stress pathway containing Phospho-PKR-like ER kinase (P-PERK), phosphorylate eukaryotic initiation factor 2 (P-eIF2α), activating transcription factor 4 (ATF4), glutamine-rich protein 1 (QRICH1), phosphorylate inositol-requiring protein 1α (P-IRE1α), the spliced form of X-box binding protein 1 (XBP1s), activating transcription factor-6 (ATF6) and C/EBP homologous binding protein (CHOP) were decreased by DZSM. CCK-8 results indicated that DZSM medicated serum played cytoprotective effects on Aβ1-42-induced HT22 cells. Western blot results suggested DZSM possibly inhibited ER stress pathways in Aβ1-42-induced HT22 cells. CONCLUSION The potential protective mechanism of DZSM on cognitive impairment in AD might be related to ER stress pathways.
Collapse
Affiliation(s)
- Hui-Han Ma
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Jia-Yi Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Yu-Hui Qiu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Shan Su
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Fang-Mei Lu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Guang-Liang Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Ye-Feng Cai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Samani EK, Hasan SMN, Waas M, Keszei AFA, Xu X, Heydari M, Hill ME, McLaurin J, Kislinger T, Mazhab-Jafari MT. Unveiling the structural proteome of an Alzheimer's disease rat brain model. Structure 2025; 33:51-61.e3. [PMID: 39615488 DOI: 10.1016/j.str.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 12/08/2024]
Abstract
Studying native protein structures at near-atomic resolution in a crowded environment presents challenges. Consequently, understanding the structural intricacies of proteins within pathologically affected tissues often relies on mass spectrometry and proteomic analysis. Here, we utilized cryoelectron microscopy (cryo-EM) and the Build and Retrieve (BaR) method to investigate protein complexes' structural characteristics such as post-translational modification, active site occupancy, and arrested conformational state in Alzheimer's disease (AD) using brain lysate from a rat model (TgF344-AD). Our findings reveal novel insights into the architecture of these complexes, corroborated through mass spectrometry analysis. Interestingly, it has been shown that the dysfunction of these protein complexes extends beyond AD, implicating them in cancer, as well as other neurodegenerative disorders such as Parkinson's disease, Huntington's disease, and schizophrenia. By elucidating these structural details, our work not only enhances our understanding of disease pathology but also suggests new avenues for future approaches in therapeutic intervention.
Collapse
Affiliation(s)
- Elnaz Khalili Samani
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - S M Naimul Hasan
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Matthew Waas
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Alexander F A Keszei
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Xiaoxiao Xu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mahtab Heydari
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Mary Elizabeth Hill
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - JoAnne McLaurin
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Mohammad T Mazhab-Jafari
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Qin G, Song R, Sun J, Chen B, Liu Z, Han L, Sun B, Li C. Investigating the therapeutic effects of Shenzhiling oral liquid on Alzheimer's disease: a network pharmacology and experimental approach. 3 Biotech 2025; 15:14. [PMID: 39703418 PMCID: PMC11652558 DOI: 10.1007/s13205-024-04181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
There is currently no effective treatment for Alzheimer's disease (AD). This research explored Shenzhiling Oral Liquid (SZLD) against AD by pinpointing crucial elements and understanding its molecular mechanisms through network pharmacology and in vitro experiment. First, we used network pharmacology to screen the main targets and mechanisms of SZLD to improve AD. Then we conducted experiments with Aβ42-induced SH-SY5Y cells to assess SZLD's impact, focusing particularly on apoptotic pathways, thereby uncovering its mechanism of action in AD. Through our analysis, we discovered a notable link between SZLD's effect on AD and apoptosis processes. Specifically, the critical proteins Casapse3 and BCL-2 showed strong correlations in this context. Through systematic data analysis and experimental verification, we unveiled the healing advantages and the foundational molecular mechanisms of SZLD in AD. These findings underscore the promising and compelling potential of targeting the PI3K/Akt signaling pathway and apoptosis with SZLD as a therapeutic strategy to ameliorate AD.
Collapse
Affiliation(s)
- Gaofeng Qin
- Shandong University of Traditional Chinese Medicine, Jinan, Shangdong China
- Department of Traditional Chinese Medicine, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong China
| | - Rongqiang Song
- Department of Traditional Chinese Medicine, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Jingyi Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong China
| | - Bing Chen
- Department of Traditional Chinese Medicine, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Zhe Liu
- Department of Traditional Chinese Medicine, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Lei Han
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, Shandong China
| | - Baoliang Sun
- Shandong University of Traditional Chinese Medicine, Jinan, Shangdong China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Second Affiliated Hospital, Taian, 271000 Shandong China
| | - Chen Li
- Department of Traditional Chinese Medicine, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong China
| |
Collapse
|
5
|
Hou Y, Liu F, Lin N, Gao S. Systematic review and meta-analysis of repetitive transcranial magnetic stimulation (rTMS) for activities of daily living in Alzheimer's disease. Neurol Sci 2025; 46:63-77. [PMID: 39044102 DOI: 10.1007/s10072-024-07709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVE This systematic review of randomised controlled trials (RCTs) was conducted to assess the effect of repetitive transcranial magnetic stimulation (rTMS) on activities of daily living (ADLs) in Alzheimer's disease (AD) patients. DATA SOURCES Ten databases were retrieved for pertinent Chinese and English literatures published up until January 2024. REVIEW METHODS All RCTs of rTMS for ADLs in AD were included in this meta-analysis. Two researchers independently selected the literatures, retrieved the data of included literatures, accessed risk-of-bias of literatures with the Cochrane Collaboration's quality criteria and then cross-checked. Meta-analysis was carried out with Cochrane's Review Manager (RevMan, version 5.4). The PRISMA guidelines were followed in this systematic review. RESULTS The 37 literatures involving 2461 patients with AD were included in this study. Compared with the control groups received the interventions such as routine pharmacotherapy, cognitive training, ect., with/without sham-rTMS, the experiment groups received the interventions of the control groups and rTMS. The findings were as follows: ADL scale [mean difference (MD) = -3.92, 95%CI (-4.93, -2.91), P < 0.00001]; Barthel Index (BI) [MD = 9.75, 95% CI (6.66, 12.85), P < 0.00001]; Modified Barthel Index (MBI) [MD = 5.43, 95% CI (3.13, 7.73), P < 0.00001]. The differences were statistically significant for all indicators. In 29 studies, rTMS stimulation sites were located in the dorsolateral prefrontal cortex (DLPFC). CONCLUSION The rTMS could improve the ADLs in AD patients, and the DLPFC was a frequently used stimulation site of the rTMS for AD treatment.
Collapse
Affiliation(s)
- Yufei Hou
- College of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Fang Liu
- College of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.
| | - Nan Lin
- College of Acupuncture and Massage, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Shan Gao
- College of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| |
Collapse
|
6
|
Ohnishi H, Matsuoka K, Takahashi M, Yoshikawa H, Minami A, Ueda K, Fujimoto Y, Kiuchi K, Ochi T, Miyasaka T, Tanaka T, Matsumoto R, Makinodan M, Okada T. Associations of demyelination in the right middle temporal gyrus and right praecuneus with visuospatial cognitive dysfunction in Alzheimer's disease. Psychogeriatrics 2025; 25:e13223. [PMID: 39581748 DOI: 10.1111/psyg.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is associated with impairments in not only memory but also visuospatial cognitive function. Despite its adverse effects on the quality of life, patients with early-stage AD are often neglected. Emerging evidence suggests that patients with AD exhibit increased vulnerability of myelin, a crucial component for neuronal conduction and survival. To test our hypothesis that myelin damage was associated with cognitive deficits in AD, we examined correlations of myelin integrity, quantified by T1-weighted/T2-weighted (T1w/T2w) ratios, with visuospatial cognitive abilities and compared them between patients with AD and cognitively normal (CN) individuals. METHODS Fifty-seven patients with AD and 22 CN subjects were enrolled in this study. To assess subjects' visuo-constructive abilities, we employed the Rey-Osterrieth Complex Figure Copy Test (ROCFT-c) paired with analysis of T1- and T2-weighted magnetic resonance imaging brain images. Voxel-based associations between T1w/T2w ratios and ROCFT-c scores in the AD group were assessed, controlling for age and handedness (voxel threshold uncorrected P < 0.001, cluster threshold uncorrected P < 0.05). Additionally, we compared the T1w/T2w ratios of these identified brain regions between the AD and CN groups. RESULTS The voxel-based analysis demonstrated positive correlations between T1w/T2w ratios and ROCFT-c scores in the right middle temporal gyrus and right praecuneus in patients with AD who exhibited significantly lower T1w/T2w ratios in the right middle temporal gyrus (P = 0.038) and a trend toward lower T1w/T2w ratios in the right praecuneus (P = 0.055). CONCLUSIONS Our results demonstrated a strong association between reduced myelin integrity in the right middle temporal gyrus and right praecuneus and visuospatial cognitive dysfunction in patients with AD. These findings are believed to shed light on the neural basis of visuospatial processing in patients with AD, underlining the necessity for developing objective biomarkers for assessing patients' visuospatial cognitive function.
Collapse
Affiliation(s)
- Hiroki Ohnishi
- Department of Psychiatry, Nara Medical University, Nara, Japan
| | - Kiwamu Matsuoka
- Department of Psychiatry, Nara Medical University, Nara, Japan
| | | | | | - Akihiro Minami
- Department of Psychiatry, Nara Medical University, Nara, Japan
| | - Kazuya Ueda
- Department of Psychiatry, Nara Medical University, Nara, Japan
| | - Yuka Fujimoto
- Department of Psychiatry, Nara Medical University, Nara, Japan
| | - Kuniaki Kiuchi
- Department of Psychiatry, Higashiosaka City Medical Centre, Osaka, Japan
| | - Tomoko Ochi
- Department of Radiology, Nara Medical University, Nara, Japan
| | | | | | - Ryohei Matsumoto
- Department of Psychiatry, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Takashi Okada
- Department of Psychiatry, Nara Medical University, Nara, Japan
| |
Collapse
|
7
|
Ko YS, Ryu YK, Han S, Park HJ, Choi M, Kim BC, Jeong HS, Jang S, Jo J, Lee S, Choi WS, Cho HH. Hearing modulation affects Alzheimer's disease progression linked to brain inflammation: a study in mouse models. Mol Med 2024; 30:276. [PMID: 39725872 DOI: 10.1186/s10020-024-01040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Recent studies have identified hearing loss (HL) as a primary risk factor for Alzheimer's disease (AD) onset. However, the mechanisms linking HL to AD are not fully understood. This study explored the effects of drug-induced hearing loss (DIHL) on the expression of proteins associated with AD progression in mouse models. METHODS DIHL was induced in 5xFAD and Tg2576 mice aged 3 to 3.5 weeks using kanamycin (700 mg/kg, subcutaneous) and furosemide (600 mg/kg, intraperitoneal). The accumulation and expression of beta-amyloid (Aβ), ionized calcium-binding adaptor molecule 1 (Iba1), and glial fibrillary acidic protein (GFAP) were measured through immunohistochemistry and immunoblotting. Additionally, the expression of proteins involved in the mammalian target of rapamycin (mTOR) pathway, including downstream effectors p70 ribosomal S6 kinase (p70S6K) and S6, as well as proinflammatory cytokines, was analyzed. RESULTS Compared to control conditions, HL led to a significant increase in the accumulation of Aβ in the hippocampus and cortex. Elevated levels of neuroinflammatory markers, including Iba1 and GFAP, as well as proinflammatory cytokines such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α), were observed. Moreover, DIHL enhanced phosphorylation of mTOR, p70S6K, and S6, indicating activation of the mTOR pathway. CONCLUSIONS HL significantly increases Aβ accumulation in the brain. Furthermore, HL activates astrocytes and microglia, leading to increased neuroinflammation and thereby accelerating AD progression. These findings strongly suggest that HL contributes autonomously to neuroinflammation, highlighting the potential for early intervention in HL to reduce AD risk.
Collapse
Affiliation(s)
- Yoo-Seung Ko
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469, Republic of Korea
| | - Young-Kyoung Ryu
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469, Republic of Korea
| | - Sujin Han
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469, Republic of Korea
| | - Hyung Joon Park
- Department of Biochemistry, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Munyoung Choi
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School & Hospital, Gwangju, 61469, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea
| | - Jihoon Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sungsu Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469, Republic of Korea
| | - Won-Seok Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea.
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469, Republic of Korea.
| |
Collapse
|
8
|
Yin P, Su Z, Shu X, Dong Z, Tian Y. Role of TREM2 in immune and neurological diseases: Structure, function, and implications. Int Immunopharmacol 2024; 143:113286. [PMID: 39378652 DOI: 10.1016/j.intimp.2024.113286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024]
Abstract
Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), a transmembrane receptor initially linked to neurodegenerative diseases, has recently emerged as a key player in conditions such as obesity and cancer. This review explores the structure, function, and mechanisms of TREM2 across these diverse pathological contexts, with a particular focus on its critical roles in immune regulation and neuroprotection. TREM2 primarily modulates cellular activity by binding extracellular ligands, thereby activating downstream signaling pathways and exerting immunomodulatory effects. Additionally, the therapeutic potential of targeting TREM2 is discussed, emphasizing its promise as a future treatment strategy for various diseases.
Collapse
Affiliation(s)
- Peng Yin
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiaozheng Shu
- BioRegen Biomedical (Changzhou, Jiangsu) Co., Ltd, Changzhou, Jiangsu 213125, China
| | - Zhifeng Dong
- Department of Cardiovascular Medicine, Yancheng Third People's Hospital, 224000, China.
| | - Yu Tian
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Li X, Pan J, Liu X, Li M, Zhuang L, Jiang P, Wang S, Guan W, Xue S, Chen Q, Zhang L, Kuang H, Yang B, Liu Y. The total withanolides from the leaves of Datura stramonium L. Improves Alzheimer's disease pathology by restraining neuroinflammation through NLRP3/IL-1β/IL1R1/TOM 1 pathway. Int Immunopharmacol 2024; 146:113893. [PMID: 39721456 DOI: 10.1016/j.intimp.2024.113893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of beta-amyloid (Aβ) peptides. Microglia-mediated neuroinflammation is one of the primary contributors to the pathogenesis of AD. Withanolides, the main constituents in the leaves of Datura stramonium L., exhibit anti-neuroinflammatory activity. It is unknown if total withanolide from Datura stramonium L. leaves (TWD) reduces nerve inflammation and potentially mitigates the pathogenic elements of AD. This study examined the potential effects of TWD on neuroinflammation in triple transgenic AD (3 × Tg-AD) mice and LPS-induced BV-2, as well as associated signaling pathways. HPLC-Q-TOF-MS/MS was used in this study to examine the main chemical components of the TWD extract. 3 × Tg-AD as in vivo AD models and LPS induce BV-2 cells in vitro AD models. The molecular process was investigated by ELISA, WB, IHC, and IF. In 3 × Tg-AD mice, TWD dramatically ameliorates cognitive impairment. Treatment with TWD can counteract the increased activation of microglia and Aβ deposits observed in 3 × Tg-AD mice. Further research indicates that TWD can enhance TOM 1 and mitigate inflammatory responses by reducing the levels of IL-1β, TNF-α, IL-6, IL1R1, and IL-18. Additionally, TWD may inhibit neuroinflammation through the pathways of IL1R1/MyD88/NF-κB and NLRP3/IL-1β/IL1R1. In summary, this study reveals for the first time that TWD effectively improves cognitive deficits in 3 × Tg-AD mice by modulating the IL1R1/MyD88/NF-κB and NLRP3/IL-1β/IL1R1 pathways. It also alleviates excessive activation of microglia and suppresses Aβ accumulation. Therefore, TWD has the potential as a therapeutic agent for AD.
Collapse
Affiliation(s)
- Xinyuan Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Juan Pan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Xiang Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Mengmeng Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Leixin Zhuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Peng Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Shuping Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Siqi Xue
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Lili Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China.
| |
Collapse
|
10
|
Lee GB, Jeong YJ, Kang DY, Yun HJ, Yoon M. Multimodal feature fusion-based graph convolutional networks for Alzheimer's disease stage classification using F-18 florbetaben brain PET images and clinical indicators. PLoS One 2024; 19:e0315809. [PMID: 39715167 DOI: 10.1371/journal.pone.0315809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent degenerative brain disease associated with dementia, requires early diagnosis to alleviate worsening of symptoms through appropriate management and treatment. Recent studies on AD stage classification are increasingly using multimodal data. However, few studies have applied graph neural networks to multimodal data comprising F-18 florbetaben (FBB) amyloid brain positron emission tomography (PET) images and clinical indicators. The objective of this study was to demonstrate the effectiveness of graph convolutional network (GCN) for AD stage classification using multimodal data, specifically FBB PET images and clinical indicators, collected from Dong-A University Hospital (DAUH) and Alzheimer's Disease Neuroimaging Initiative (ADNI). The effectiveness of GCN was demonstrated through comparisons with the support vector machine, random forest, and multilayer perceptron across four classification tasks (normal control (NC) vs. AD, NC vs. mild cognitive impairment (MCI), MCI vs. AD, and NC vs. MCI vs. AD). As input, all models received the same combined feature vectors, created by concatenating the PET imaging feature vectors extracted by the 3D dense convolutional network and non-imaging feature vectors consisting of clinical indicators using multimodal feature fusion method. An adjacency matrix for the population graph was constructed using cosine similarity or the Euclidean distance between subjects' PET imaging feature vectors and/or non-imaging feature vectors. The usage ratio of these different modal data and edge assignment threshold were tuned by setting them as hyperparameters. In this study, GCN-CS-com and GCN-ED-com were the GCN models that received the adjacency matrix constructed using cosine similarity (CS) and the Euclidean distance (ED) between the subjects' PET imaging feature vectors and non-imaging feature vectors, respectively. In modified nested cross validation, GCN-CS-com and GCN-ED-com respectively achieved average test accuracies of 98.40%, 94.58%, 94.01%, 82.63% and 99.68%, 93.82%, 93.88%, 90.43% for the four aforementioned classification tasks using DAUH dataset, outperforming the other models. Furthermore, GCN-CS-com and GCN-ED-com respectively achieved average test accuracies of 76.16% and 90.11% for NC vs. MCI vs. AD classification using ADNI dataset, outperforming the other models. These results demonstrate that GCN could be an effective model for AD stage classification using multimodal data.
Collapse
Affiliation(s)
- Gyu-Bin Lee
- Department of Nuclear Medicine, Dong-A University College of Medicine and Medical Center, Busan, Korea
- Department of Applied Mathematics, Pukyong National University, Busan, Korea
| | - Young-Jin Jeong
- Department of Nuclear Medicine, Dong-A University College of Medicine and Medical Center, Busan, Korea
- Institute of Convergence Bio-Health, Dong-A University, Busan, Korea
| | - Do-Young Kang
- Department of Nuclear Medicine, Dong-A University College of Medicine and Medical Center, Busan, Korea
- Institute of Convergence Bio-Health, Dong-A University, Busan, Korea
| | - Hyun-Jin Yun
- Department of Nuclear Medicine, Dong-A University College of Medicine and Medical Center, Busan, Korea
| | - Min Yoon
- Department of Applied Mathematics, Pukyong National University, Busan, Korea
| |
Collapse
|
11
|
Kumar A, Yap KCH, BharathwajChetty B, Lyu J, Hegde M, Abbas M, Alqahtani MS, Khadlikar S, Zarrabi A, Khosravi A, Kumar AP, Kunnumakkara AB. Regulating the regulators: long non-coding RNAs as autophagic controllers in chronic disease management. J Biomed Sci 2024; 31:105. [PMID: 39716252 DOI: 10.1186/s12929-024-01092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/23/2024] [Indexed: 12/25/2024] Open
Abstract
The increasing prevalence of chronic diseases and their associated morbidities demands a deeper understanding of underlying mechanism and causative factors, with the hope of developing novel therapeutic strategies. Autophagy, a conserved biological process, involves the degradation of damaged organelles or protein aggregates to maintain cellular homeostasis. Disruption of this crucial process leads to increased genomic instability, accumulation of reactive oxygen species (ROS), decreased mitochondrial functions, and suppression of ubiquitination, leading to overall decline in quality of intracellular components. Such deregulation has been implicated in a wide range of pathological conditions such as cancer, cardiovascular, inflammatory, and neurological disorders. This review explores the role of long non-coding RNAs (lncRNAs) as modulators of transcriptional and post-transcriptional gene expression, regulating diverse physiological process like proliferation, development, immunity, and metabolism. Moreover, lncRNAs are known to sequester autophagy related microRNAs by functioning as competing endogenous RNAs (ceRNAs), thereby regulating this vital process. In the present review, we delineate the multitiered regulation of lncRNAs in the autophagic dysfunction of various pathological diseases. Moreover, by highlighting recent findings on the modulation of lncRNAs in different stages of autophagy, and the emerging clinical landscape that recognizes lncRNAs in disease diagnosis and therapy, this review highlights the potential of lncRNAs as biomarkers and therapeutic targets in clinical settings of different stages of autophagic process by regulating ATG and its target genes. This focus on lncRNAs could lead to breakthroughs in personalized medicine, offering new avenues for diagnosis and treatment of complex diseases.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Kenneth Chun-Hong Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Juncheng Lyu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Soham Khadlikar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, 34396, Istanbul, Türkiye
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, 34959, Istanbul, Türkiye
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
| |
Collapse
|
12
|
Haridevamuthu B, Bharti AK, Nayak SPRR, Narayanan D, Loganathan Sumathi D, Chagaleti BK, Saravanan V, Rajagopal R, Alfarhan A, Muthu Kumaradoss K, Arockiaraj J. Hydroxyl chalcone derivative DK02 as a multi-target-directed ligand for Alzheimer's disease: A preclinical study in zebrafish. Br J Pharmacol 2024. [PMID: 39710579 DOI: 10.1111/bph.17426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/05/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND AND PURPOSE Alzheimer's disease (AD) is a widespread neurodegenerative condition characterized by amyloid-beta (Aβ) plaques and tau protein aggregates, leading to significant cognitive decline. Existing treatments primarily offer symptomatic relief, underscoring the urgent need for novel therapies that address multiple AD pathways. This study evaluates the efficacy of DK02, a hydroxyl chalcone derivative, in a scopolamine-induced dementia model in zebrafish, hypothesizing that it targets several neurodegenerative mechanisms simultaneously. EXPERIMENTAL APPROACH We employed a blend of experiments, including in silico docking, in vitro enzyme inhibition assays and in vivo zebrafish models, to assess therapeutic effects of DK02. Methods included molecular docking to forecast interaction sites, acetylcholinesterase (AChE) inhibition testing, and various behavioural and histopathological analyses to gauge DK02's cognitive and neuroprotective impacts. KEY RESULTS DK02 emerged as a potent AChE inhibitor via virtual screening, and significantly enhanced cognitive functions in zebrafish, by improving memory retention and reducing anxiety-like behaviours. DK02 also displayed strong antioxidant properties, reducing oxidative stress-induced neuronal damage. Histopathological analysis confirmed its neuroprotective effects by showing decreased amyloid plaque burden and mitigated structural brain damage. CONCLUSION AND IMPLICATIONS DK02 shows promise as a multi-target-directed ligand for AD, offering a new therapeutic path by simultaneously addressing cholinergic, oxidative and amyloid pathways. Its potential to enhance cognitive functions and curtail neurodegeneration suggests advantages over current symptomatic treatments. Further research into DK02 mechanisms and long-term impacts is essential for its development in AD therapy.
Collapse
Affiliation(s)
- Balasubramanian Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ankit Kumar Bharti
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Santosh Pushpa Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Dhaareeshwar Narayanan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Dhivya Loganathan Sumathi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Dr. M.G.R. Educational and Research Institute, Chennai, Tamil Nadu, India
| | - Bharath Kumar Chagaleti
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Venkatesan Saravanan
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Kathiravan Muthu Kumaradoss
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
13
|
Kanemaru E, Ichinose F. Essential role of sulfide oxidation in brain health and neurological disorders. Pharmacol Ther 2024; 266:108787. [PMID: 39719173 DOI: 10.1016/j.pharmthera.2024.108787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/21/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Hydrogen sulfide (H2S) is an environmental hazard well known for its neurotoxicity. In mammalian cells, H2S is predominantly generated by transsulfuration pathway enzymes. In addition, H2S produced by gut microbiome significantly contributes to the total sulfide burden in the body. Although low levels of H2S is believed to exert various physiological functions such as neurotransmission and vasomotor control, elevated levels of H2S inhibit the activity of cytochrome c oxidase (i.e., mitochondrial complex IV), thereby impairing oxidative phosphorylation. To protect the electron transport chain from respiratory poisoning by H2S, the compound is actively oxidized to form persulfides and polysulfides by a mitochondrial resident sulfide oxidation pathway. The reaction, catalyzed by sulfide:quinone oxidoreductase (SQOR), is the initial and critical step in sulfide oxidation. The persulfide species are subsequently oxidized to sulfite, thiosulfate, and sulfate by persulfide dioxygenase (ETHE1 or SDO), thiosulfate sulfurtransferase (TST), and sulfite oxidase (SUOX). While SQOR is abundantly expressed in the colon, liver, lung, and skeletal muscle, its expression is notably low in the brains of most mammals. Consequently, the brain's limited capacity to oxidize H2S renders it particularly sensitive to the deleterious effects of H2S accumulation. Impaired sulfide oxidation can lead to fatal encephalopathy, and the overproduction of H2S has been implicated in the developmental delays observed in Down syndrome. Our recent findings indicate that the brain's limited capacity to oxidize sulfide exacerbates its sensitivity to oxygen deprivation. The beneficial effects of sulfide oxidation are likely to be mediated not only by the detoxification of H2S but also by the formation of persulfide, which exerts cytoprotective effects through multiple mechanisms. Therefore, pharmacological agents designed to scavenge H2S and/or enhance persulfide levels may offer therapeutic potential against neurological disorders characterized by impaired or insufficient sulfide oxidation or excessive H2S production.
Collapse
Affiliation(s)
- Eiki Kanemaru
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
14
|
Zhong F, Xiong L, Wu J, Chen Y, Song J, Yu W, Lü Y. The KEAP1/PGAM5/AIFM1-Mediated oxeiptosis pathway in Alzheimer's disease. Brain Res 2024; 1845:149173. [PMID: 39168265 DOI: 10.1016/j.brainres.2024.149173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/09/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Alzheimer's Disease (AD) is a neurodegenerative disease with mitochondrial dysfunction and oxidative stress. Oxeiptosis is a cell death pathway sensitive to reactive oxygen species (ROS). This study investigates the role of oxeiptosis pathway and mitochondrial damage in AD. METHODS An AD model was developed in C57BL/6 mice by injecting Aβ1-42 oligomers into the brain. Cognitive function was tested using the Morris water maze. Exposure of HT22 mouse hippocampal neurons to H2O2 induces oxidative stress. Protein levels of KEAP1, PGAM5 and AIFM1 were analyzed by western blot, and mitochondrial damage was observed with electron microscopy. Cell survival rates were using the CCK8 assay and flow cytometry after knocking down KEAP1, PGAM5 and AIFM1. RESULTS The protein concentrations of KEAP1, PGAM5 and AIFM1 were found to be elevated in the hippocampal tissues of AD mice compared to control group, accompanied by mitochondrial damage in the hippocampal neurons of the AD group. Similarly, in the HT22 oxidative stress model, there was an increase in the protein levels of KEAP1, PGAM5 and AIFM1, along with observed mitochondrial damage. Following individual and combined knockdown of KEAP1, PGAM5 and AIFM1, cell survival rates under oxidative stress conditions were higher compared to H2O2 group, with no significant difference in cell survival rates among the knockdown groups. CONCLUSION This research underscores the critical role of the KEAP1/PGAM5/AIFM1-mediated oxeiptosis pathway in neuronal cell death, offering insights into potential therapeutic targets for mitigating neurodegeneration in AD.
Collapse
Affiliation(s)
- Fuxin Zhong
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Lei Xiong
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Jiani Wu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Yingxi Chen
- Institute of Neuroscience, Department of Human Anatomy, Chongqing Medical University, Chongqing 400016, PR China
| | - Jiaqi Song
- Institute of Neuroscience, Department of Human Anatomy, Chongqing Medical University, Chongqing 400016, PR China
| | - Weihua Yu
- Institute of Neuroscience, Department of Human Anatomy, Chongqing Medical University, Chongqing 400016, PR China.
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
15
|
Lyu W, Gao T, Shi C, Lu D, Chen Y, Qin H, Yu R, Zhang H, Zhou X, Qiang B, Chen Q, Liu Y, Song S, Chen Q, Zhang L, Liu Z. Design, synthesis, and pharmacological characterization of sulfonylurea-based NLRP3 inhibitors: Towards an effective therapeutic strategy for Alzheimer's disease. Eur J Med Chem 2024; 280:116993. [PMID: 39471709 DOI: 10.1016/j.ejmech.2024.116993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 11/01/2024]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder that severely diminishes the quality of life for millions. The NLRP3 inflammasome, a critical mediator of inflammation, has emerged as a promising therapeutic target for AD. In this study, we report the development and optimization of a novel series of sulfonylurea-based NLRP3 inhibitors, with a focus on compound MC1 for the treatment of AD. Utilizing the co-crystal structure of MCC950 in complex with NLRP3 as a guide, we employed a hybrid approach of computer-aided drug design and traditional medicinal chemistry to perform two iterative optimization cycles. This strategy led to the synthesis and evaluation of 40 sulfonylurea derivatives, culminating in the identification of MC1 as the lead candidate. MC1 exhibited enhanced NLRP3 inhibitory activity and demonstrated high binding affinity to NLRP3, effectively blocking NLRP3 activation induced by diverse stimuli such as ATP and Nigericin, without perturbing upstream processes like reactive oxygen species (ROS) generation. In vivo experiments in AD mouse models revealed that MC1 significantly ameliorated cognitive deficits, surpassing the performance of MCC950. Importantly, MC1 showed no signs of hepatotoxicity or adverse effects on the central nervous system. These findings suggest that MC1 holds strong potential as a lead compound for further development in AD therapy, providing a new scaffold for NLRP3 inhibition with improved safety and efficacy profiles.
Collapse
Affiliation(s)
- Weiping Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Tongfei Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Cheng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Dehua Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yanming Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Haoming Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ruohan Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Huiying Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaonan Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Bo Qiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qixuan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yiqiao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qing Chen
- Apeloa Pharmaceutical Co., Ltd., Dongyang, Zhejiang, 322118, China.
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
16
|
Zhao W, Yang R, Meng X, Xu SQ, Li MM, Hao ZC, Wang SY, Jiang YK, Naseem A, Chen QS, Zhang LL, Kuang HX, Yang BY, Liu Y. Panax quinquefolium saponins protects neuronal activity by promoting mitophagy in both in vitro and in vivo models of Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 340:119250. [PMID: 39681202 DOI: 10.1016/j.jep.2024.119250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the realm of traditional Chinese medicine, Panax quinquefolius L. has garnered significant attention for its potential to treat various ailments associated with deficiencies, including qi, blood, and kidneys. As its primary bioactive constituent, Panax quinquefolius saponins (PQS) have the potential therapeutic role of Alzheimer's disease (AD) treatment, but with unclear mechanisms of action. Meanwhile, AD is considered as a common dementia disease with kidney insufficiency and deficiency by traditional medicine, and often accompanied by autophagy in modern medical research. AIM OF THE STUDY This study aimed to investigate the therapeutic effects of PQS on AD through the regulation of mitophagy. MATERIALS AND METHODS The chemical constituents of PQS were characterized using the UPLC-QTOF-MS technique. After that, the HT22 cell line was used to establish the D-galactose-induced cell model, and the SAMP8 mice model of AD was also employed. Cell viability was assessed using the CCK-8 assay, ROS detection, JC-1 staining, Mito-tracker Red and LC3 staining, and Mito-tracker Green and Lyso-tracker Red staining were used to assess levels of mitophagy. The Morris Water Maze (MWM) was used for the experimental evaluation of learning and memory abilities in mice. Subsequently, the mechanism was studied by pathological staining and western blotting. RESULTS Fifty-eight triterpenoid saponins were identified from PQS, and PQS alleviated D-galactose-induced HT22 cell death and increased intracellular levels of mitochondrial autophagy-related factors. In vivo, PQS significantly improved cognitive deficits and mitigated AD-like pathological features by activating the mitophagy mechanism. Furthermore, PQS may promote Pink1/Parkin-mediated mitophagy by activating the AMPK/mTOR/ULK1/DRP1 and SIRT1/PGC-1α pathways. CONCLUSION In conclusion, PQS have demonstrated the potential to mitigate mitochondrial dysfunction and enhance cognitive function in AD through the activation of mitophagy. This promising strategy holds great promise for the treatment of AD.
Collapse
Affiliation(s)
- Wei Zhao
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Rui Yang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Xin Meng
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Shi-Qi Xu
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Meng-Meng Li
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Zhi-Chao Hao
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Si-Yi Wang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Yi-Kai Jiang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Anam Naseem
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Qing-Shan Chen
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline), Heilongjiang, Harbin, 150040, People's Republic of China.
| | - Li-Li Zhang
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline), Heilongjiang, Harbin, 150040, People's Republic of China.
| | - Hai-Xue Kuang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Bing-You Yang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Yan Liu
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| |
Collapse
|
17
|
Liu L, Zhou M, Zhang Y, Chen Y, Wang H, Cao Y, Fang C, Wan X, Wang X, Liu H, Wang P. Causal relationships between Alzheimer's disease and metabolic dysfunction associated with fatty liver disease: insights from bidirectional network Mendelian Randomization analysis. Metabolomics 2024; 21:4. [PMID: 39673021 DOI: 10.1007/s11306-024-02193-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/23/2024] [Indexed: 12/15/2024]
Abstract
INTRODUCTION/OBJECTIVES Several observational investigations have observed the possible links between Alzheimer's disease (AD) and metabolic dysfunction associated with fatty liver disease (MAFLD), yet the underlying causal relationships remain undetermined. This study aimed to systemically infer the causal associations between AD and MAFLD by employing a bidirectional network two-sample Mendelian randomization (MR) analysis. METHODS Genome-wide significant (P < 5 × 10- 8) genetic variants associated with AD and MAFLD were selected as instrumental variables (IVs) from the consortium of FinnGen, MRC-IEU, UK biobank, and genome-wide association studies (GWAS), respectively. The study sample sizes range from 55,134 to 423,738 for AD and from 218,792 to 778,614 for MAFLD. In the forward analysis, AD was set as the exposure factor, and MAFLD was employed as the disease outcome. Causal relationships between AD and MAFLD were evaluated using inverse-variance weighted (IVW), MR Egger regression, the weighted median, and weighted mode. Additionally, the reverse MR analysis was conducted to infer causality between MAFLD and AD. Sensitivity analyses were performed to assess the robustness of causal estimates. RESULTS In the forward MR analysis, the genetically determined family history of AD was associated with a lower risk of MAFLD (mother's history: ORdiscovery=0.08, 95%CI: 0.03, 0.22, P = 7.91 × 10- 7; ORreplicate=0.83, 95%CI: 0.74, 0.94, P = 3.68 × 10- 3; father's history: ORdiscovery=0.01, 95%CI: 0.01, 0.08, P = 5.48 × 10- 5; ORreplicate=0.79, 95%CI: 0.68, 0.93, P = 4.07 × 10- 3; family history: ORdiscovery=0.84, 95%CI: 0.77, 0.91, P = 6.30 × 10- 5; ORreplicate=0.15, 95%CI: 0.05, 0.41, P = 2.51 × 10- 4) in the primary MAFLD cohort. Consistent findings were observed in an independent MAFLD cohort (all P < 0.05). However, the reverse MR analysis suggested that genetic susceptibility to MAFLD had no causal effects on developing AD. CONCLUSION Our study demonstrates a causal association between a family history of AD and a lower risk of MAFLD. It suggests that individuals with a history of AD may benefit from tailored metabolic assessments to better understand their risk of MAFLD, and inform the development of preventive strategies targeting high-risk populations.
Collapse
Affiliation(s)
- Lei Liu
- Department of Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Ming Zhou
- Department of Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yuanyuan Zhang
- Department of Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yang Chen
- Department of Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Huiru Wang
- Department of Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yuan Cao
- Department of Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Chao Fang
- Department of Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xiaoju Wan
- Department of Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xiaochen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Huilan Liu
- Department of Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Peng Wang
- Department of Health Promotion and Behavioral Sciences, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
18
|
Wang C, Wu B, Lin R, Cheng Y, Huang J, Chen Y, Bai J. Vagus nerve stimulation: a physical therapy with promising potential for central nervous system disorders. Front Neurol 2024; 15:1516242. [PMID: 39734634 PMCID: PMC11671402 DOI: 10.3389/fneur.2024.1516242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/29/2024] [Indexed: 12/31/2024] Open
Abstract
The diseases of the central nervous system (CNS) often cause irreversible damage to the human body and have a poor prognosis, posing a significant threat to human health. They have brought enormous burdens to society and healthcare systems. However, due to the complexity of their causes and mechanisms, effective treatment methods are still lacking. Vagus nerve stimulation (VNS), as a physical therapy, has been utilized in the treatment of various diseases. VNS has shown promising outcomes in some CNS diseases and has been approved by the Food and Drug Administration (FDA) in the United States for epilepsy and depression. Moreover, it has demonstrated significant potential in the treatment of stroke, consciousness disorders, and Alzheimer's disease. Nevertheless, the exact efficacy of VNS, its beneficiaries, and its mechanisms of action remain unclear. This article discusses the current clinical evidence supporting the efficacy of VNS in CNS diseases, providing updates on the progress, potential, and potential mechanisms of action of VNS in producing effects on CNS diseases.
Collapse
Affiliation(s)
- Chaoran Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bangqi Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ruolan Lin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yupei Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingjie Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuyan Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Bai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
19
|
Pan Q, Jiang L, Xiong Y, Chao FL, Liu S, Zhang SS, Zhu L, Luo YM, Xiao Q, Tang J, Liang X, Tang Y, Zhou CN, Zhang L. Voluntary running exercise promotes maturation differentiation and myelination of oligodendrocytes around Aβ plaques in the medial prefrontal cortex of APP/PS1 mice. Brain Res Bull 2024; 220:111170. [PMID: 39675487 DOI: 10.1016/j.brainresbull.2024.111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Previous studies have reported that running exercise could improves myelinization in hippocampus. However, the effects of running exercise on the differentiation and maturation of oligodendrocytes, and myelination surrounding Aβ plaques in the medial prefrontal cortex (mPFC) of the Alzheimer's disease (AD) brain have not been reported. METHODS Forty 10-month-old male APP/PS1 AD mice were randomly divided into the AD group and the AD running (AD+RUN) group, while 20 age-matched wild-type littermate mice were included in the WT group. The running group received three-month voluntary running exercise in a running cage, while the AD and WT groups were untreated. After the exercise intervention, all mice were given behavioral tests. The total number of mature oligodendrocytes (CC1+) in the mPFC of mice was precisely quantified using unbiased stereology. Myelin basic protein (MBP) and Aβ plaque, as well as the fluorescence area of MBP surrounding Aβ plaques, and the density and morphology of PDGFα+ cells in the mPFC were analyzed using immunofluorescence. RESULTS The levels of working memory, cognitive memory, spatial learning and memory ability were decreased significantly in the AD group compared to the WT group, while these functions were significantly improved in the AD+RUN group compared to the AD group. The Aβ plaques in the mPFC were significantly reduced in the AD+RUN group compared to the AD group. The total number of CC1+ cells and the percentage of MBP fluorescence area surrounding Aβ plaques in the mPFC were significantly lower in the AD group compared to the WT group, but they were significantly higher in the AD+RUN group compared to the AD group. The density and branching complexity of PDGFα+ cells surrounding Aβ plaques in the mPFC were significantly higher in the AD group than in the WT group, while the AD+RUN group showed significantly lower density and branching complexity than the AD group. Changes in MBP expression around Aβ plaques, cell density and cell branching complexity of PDGFα+ cells around Aβ plaques were closely related to the number of Aβ plaques in mPFC, and they were also closely related to behavioral changes in mice. CONCLUSIONS Voluntary running exercise could reduce Aβ plaque deposition and promote the maturation and myelination capacity of oligodendrocytes surrounding Aβ plaques in the mPFC of AD mice, thereby improving the learning and memory abilities of APP/PS1 transgenic AD mice.
Collapse
Affiliation(s)
- Qing Pan
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Yao Xiong
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Feng-Lei Chao
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Shan Liu
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Shan-Shan Zhang
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Zhu
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Yan-Min Luo
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Physiology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Qian Xiao
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Radioactive Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Tang
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Xin Liang
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Pathology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Yong Tang
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Chun-Ni Zhou
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China.
| | - Lei Zhang
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
20
|
Chatterjee C, Ghosh P, Singh R, Kumar A, Singh SK. Integrated application of target-based and ligand-based drug-designing approaches for the identification of novel caspase-6 inhibitors. J Biomol Struct Dyn 2024:1-15. [PMID: 39671711 DOI: 10.1080/07391102.2024.2440149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/10/2024] [Indexed: 12/15/2024]
Abstract
Caspase-6 (CASP6) is an effector caspase that has been marked to possess various pathological attributes associated with neurodegeneration. It is widely expressed in the neurodegenerative brain and peripheral tissues. It plays a vital role in apoptotic cell death and also performs non-apoptotic functions like axon pruning which contribute to the degeneration of neurons. Increment in active CASP6 levels in the cerebrospinal fluid has been observed during inflammation and has been linked to the early onset of Alzheimer's disease (AD). In the current study, a novel CASP6 inhibitor was identified with the help of integrated target-based and ligand-based drug-designing approaches. Various molecular features of US9 (PDB ID 8EG6) were used to generate models. The pharmacophore models were evaluated using the EF value, GH score, and percentage yield to select the best-suited model. The best model was used to screen the ZINC-15 database to obtain virtual hits. The undesirable compounds were eliminated using various nodes in KNIME workflow. The resulting compounds were further subjected to docking-based virtual screening (DBVS) to find the lead compounds. Further, the molecular docking studies were carried out in three stages, followed by pharmacokinetic property prediction and toxicity studies. The top two virtual hits, i.e. ZINC000012563650 and ZINC000069415222, were considered for molecular dynamics simulation studies. Compound ZINC000069415222 was found to possess better stability, drug-like properties, and lower toxicity under simulated conditions. Thus, ZINC000069415222 was identified as a potential CASP6 inhibitor that could be further explored experimentally as an anti-AD drug.
Collapse
Affiliation(s)
- Chayanika Chatterjee
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Powsali Ghosh
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
21
|
Lv R, Liu B, Jiang Z, Zhou R, Liu X, Lu T, Bao Y, Huang C, Zou G, Zhang Z, Lu L, Yin Q. Intermittent fasting and neurodegenerative diseases: Molecular mechanisms and therapeutic potential. Metabolism 2024; 164:156104. [PMID: 39674569 DOI: 10.1016/j.metabol.2024.156104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Neurodegenerative disorders are straining public health worldwide. During neurodegenerative disease progression, aberrant neuronal network activity, bioenergetic impairment, adaptive neural plasticity impairment, dysregulation of neuronal Ca2+ homeostasis, oxidative stress, and immune inflammation manifest as characteristic pathological changes in the cellular milieu of the brain. There is no drug for the treatment of neurodegenerative disorders, and therefore, strategies/treatments for the prevention or treatment of neurodegenerative disorders are urgently needed. Intermittent fasting (IF) is characterized as an eating pattern that alternates between periods of fasting and eating, requiring fasting durations that vary depending on the specific protocol implemented. During IF, depletion of liver glycogen stores leads to the production of ketone bodies from fatty acids derived from adipocytes, thereby inducing an altered metabolic state accompanied by cellular and molecular adaptive responses within neural networks in the brain. At the cellular level, adaptive responses can promote the generation of synapses and neurons. At the molecular level, IF triggers the activation of associated transcription factors, thereby eliciting the expression of protective proteins. Consequently, this regulatory process governs central and peripheral metabolism, oxidative stress, inflammation, mitochondrial function, autophagy, and the gut microbiota, all of which contribute to the amelioration of neurodegenerative disorders. Emerging evidence suggests that weight regulation significantly contributes to the neuroprotective effects of IF. By alleviating obesity-related factors such as blood-brain barrier dysfunction, neuroinflammation, and β-amyloid accumulation, IF enhances metabolic flexibility and insulin sensitivity, further supporting its potential in mitigating neurodegenerative disorders. The present review summarizes animal and human studies investigating the role and underlying mechanisms of IF in physiology and pathology, with an emphasis on its therapeutic potential. Furthermore, we provide an overview of the cellular and molecular mechanisms involved in regulating brain energy metabolism through IF, highlighting its potential applications in neurodegenerative disorders. Ultimately, our findings offer novel insights into the preventive and therapeutic applications of IF for neurodegenerative disorders.
Collapse
Affiliation(s)
- Renjun Lv
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Bin Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan 250014, China
| | - Ziying Jiang
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Runfa Zhou
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehlstr. 13-17, Mannheim 68167, Germany
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China
| | - Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Chunxia Huang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Guichang Zou
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Zongyong Zhang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871 Beijing, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
22
|
Cade S, Prestidge C, Zhou X, Bobrovskaya L. The effects of a bioavailable curcumin formulation on Alzheimer's disease pathologies: A potential risk for neuroinflammation. IBRAIN 2024; 10:500-518. [PMID: 39691427 PMCID: PMC11649387 DOI: 10.1002/ibra.12187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024]
Abstract
Alzheimer's disease (AD) is a common cause of dementia characterized by the presence of two proteinaceous deposits in the brain. These pathologies may be a consequence of complex interactions between neurons and glia before the onset of cognitive impairments. Curcumin, a bioactive compound found in turmeric, is a promising candidate for AD because it alleviates neuropathologies in mouse models of the disease. Although its clinical efficacy has been hindered by low oral bioavailability, the development of new formulations may overcome this limitation. The purpose of this study was to determine the effects of a bioavailable curcumin formulation in a mouse model of AD. The formulation was administered to mice in drinking water after encapsulation into micelles using a previously validated method. A neuropathological assessment was performed to determine if it slows or alters the course of the disease. Cognitive performance was not included because it had already been assessed by a previous study. The bioavailable curcumin formulation was unable to alter the size or number of amyloid plaques in a transgenic mouse model. In addition, mechanisms that regulate amyloid beta production were unchanged, suggesting that the disease had not been altered. The number of reactive astrocytes in the hippocampus and dentate gyrus was not altered by curcumin. However, protein levels of glial fibrillary acidic protein were increased overall in the brain, suggesting that it may have aggravated neuroinflammation. Therefore, a higher dosage, despite its enhanced oral bioavailability, may have a potential risk for neuroinflammation.
Collapse
Affiliation(s)
- Shaun Cade
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Clive Prestidge
- Center for Pharmaceutical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Xin‐Fu Zhou
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
23
|
Pang Z, Tang A, He Y, Fan J, Yang Q, Tong Y, Fan H. Neurological complications caused by SARS-CoV-2. Clin Microbiol Rev 2024; 37:e0013124. [PMID: 39291997 PMCID: PMC11629622 DOI: 10.1128/cmr.00131-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
SUMMARYSARS-CoV-2 can not only cause respiratory symptoms but also lead to neurological complications. Research has shown that more than 30% of SARS-CoV-2 patients present neurologic symptoms during COVID-19 (A. Pezzini and A. Padovani, Nat Rev Neurol 16:636-644, 2020, https://doi.org/10.1038/s41582-020-0398-3). Increasing evidence suggests that SARS-CoV-2 can invade both the central nervous system (CNS) (M.S. Xydakis, M.W. Albers, E.H. Holbrook, et al. Lancet Neurol 20: 753-761, 2021 https://doi.org/10.1016/S1474-4422(21)00182-4 ) and the peripheral nervous system (PNS) (M.N. Soares, M. Eggelbusch, E. Naddaf, et al. J Cachexia Sarcopenia Muscle 13:11-22, 2022, https://doi.org/10.1002/jcsm.12896), resulting in a variety of neurological disorders. This review summarized the CNS complications caused by SARS-CoV-2 infection, including encephalopathy, neurodegenerative diseases, and delirium. Additionally, some PNS disorders such as skeletal muscle damage and inflammation, anosmia, smell or taste impairment, myasthenia gravis, Guillain-Barré syndrome, ICU-acquired weakness, and post-acute sequelae of COVID-19 were described. Furthermore, the mechanisms underlying SARS-CoV-2-induced neurological disorders were also discussed, including entering the brain through retrograde neuronal or hematogenous routes, disrupting the normal function of the CNS through cytokine storms, inducing cerebral ischemia or hypoxia, thus leading to neurological complications. Moreover, an overview of long-COVID-19 symptoms is provided, along with some recommendations for care and therapeutic approaches of COVID-19 patients experiencing neurological complications.
Collapse
Affiliation(s)
- Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ao Tang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yujie He
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Junfen Fan
- Department of Neurology, Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qingmao Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
24
|
Bernardo AM, Marcotte M, Wong K, Sharmin D, Pandey KP, Cook JM, Sibille EL, Prevot TD. Procognitive and neurotrophic benefits of α5-GABA-A receptor positive allosteric modulation in a β-amyloid deposition mouse model of Alzheimer's disease pathology. Neurobiol Aging 2024; 147:49-59. [PMID: 39689527 DOI: 10.1016/j.neurobiolaging.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
Reduced somatostatin (SST) and SST-expressing GABAergic neurons are well-replicated findings in Alzheimer's disease (AD) and are associated with cognitive deficits. SST cells inhibit pyramidal cell dendrites through α5-GABA-A receptors (α5-GABAA-R). α5-GABAAR positive allosteric modulation (α5-PAM) has procognitive and neurotrophic effects in stress and aging models. We tested whether α5-PAM (GL-II-73) could prevent cognitive deficits and neuronal spine loss in early stages, and reverse them in late stages of β-amyloid deposition in the 5xFAD model (N = 48/study; 50 % female). Acute administration of GL-II-73 prevented spatial working memory deficits in 5xFAD mice at 2 months of age, while chronic administration reversed the deficits at 5 months of age. Chronic GL-II-73 treatment prevented 5xFAD-induced loss of spine density, spine count and dendritic length at both time points, despite β-amyloid accumulation. These results demonstrate procognitive and neurotrophic effects of GL-II-73 in early and late stages of Alzheimer-related β-amyloid deposition. This suggests α5-PAM as a novel β-amyloid-independent symptomatic therapeutic approach.
Collapse
Affiliation(s)
- Ashley M Bernardo
- Campbell Family Mental Health Research Institute of CAMH, 250 college street, Toronto, ON M5T 1R8, Canada
| | - Michael Marcotte
- Campbell Family Mental Health Research Institute of CAMH, 250 college street, Toronto, ON M5T 1R8, Canada
| | - Kayla Wong
- Campbell Family Mental Health Research Institute of CAMH, 250 college street, Toronto, ON M5T 1R8, Canada
| | - Dishary Sharmin
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N Cramer Street, WI 53211, USA
| | - Kamal P Pandey
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N Cramer Street, WI 53211, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N Cramer Street, WI 53211, USA
| | - Etienne L Sibille
- Campbell Family Mental Health Research Institute of CAMH, 250 college street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 college street, Toronto, ON M5T 1R8, Canada; Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King's College Cir Room 4207, Toronto, ON M5S 1A8, Canada.
| | - Thomas D Prevot
- Campbell Family Mental Health Research Institute of CAMH, 250 college street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 college street, Toronto, ON M5T 1R8, Canada; Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King's College Cir Room 4207, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
25
|
Silva BRD, Lima JMFA, Echeverry MB, Alberto-Silva C. Haloperidol-Induced Catalepsy and Its Correlations with Acetylcholinesterase Activity in Different Brain Structures of Mice. Neurol Int 2024; 16:1731-1741. [PMID: 39728751 DOI: 10.3390/neurolint16060125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Antipsychotic medicines are used to treat several psychological disorders and some symptoms caused by dementia and schizophrenia. Haloperidol (Hal) is a typical antipsychotic usually used to treat psychosis; however, its use causes motor or extrapyramidal symptoms (EPS) such as catalepsy. Hal blocks the function of presynaptic D2 receptors on cholinergic interneurons, leading to the release of acetylcholine (ACh), which is hydrolyzed by the enzyme acetylcholinesterase (AChE). METHODS This study was designed to investigate the Hal-inhibitory effects on AChE activity in regions representative of the cholinergic system of mice and potential associations between cataleptic effects generated by Hal using therapeutic doses and their inhibitory effects on AChE. RESULTS The distribution of the AChE activity in the different regions of the brain followed the order striatum > hippocampus > (prefrontal cortex/hypothalamus/ cerebellum) > brainstem > septo-hippocampal system. In ex vivo assays, Hal inhibited AChE activity obtained from homogenate tissue of the striatum, hippocampus, and septo-hippocampal system in a concentration-dependent manner. The inhibitory concentration of 50% of enzyme activity (IC50) indicated that the septo-hippocampal system required a higher concentration of Hal (IC50 = 202.5 µmol·L-1) to inhibit AChE activity compared to the striatum (IC50 = 162.5 µmol·L-1) and hippocampus (IC50 = 145 µmol·L-1). In in vivo assays, male Swiss mice treated with concentrations of Hal higher than 0.1 mg·kg-1 induced cataleptic effects. Positive correlations with Spearman's correlation were observed only between the lack of cataleptic effect and the decreased AChE activity of the hippocampus in the mice treated with 0.01 mg·kg-1 of Hal but not in the striatum and septo-hippocampal system. CONCLUSIONS Our results suggest that Hal could increase cholinergic effects via AChE inhibition, in addition to its dopamine antagonist effect, as an alternative approach to the treatment of behavioral disturbances associated with dementia.
Collapse
Affiliation(s)
- Brenda Rufino da Silva
- Natural and Humanities Sciences Center (CCNH), Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, Brazil
| | - Joyce Maria Ferreira Alexandre Lima
- Natural and Humanities Sciences Center (CCNH), Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, Brazil
| | - Marcela Bermudez Echeverry
- Center for Mathematics, Computation and Cognition (CMCC), Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, Brazil
| | - Carlos Alberto-Silva
- Natural and Humanities Sciences Center (CCNH), Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, Brazil
| |
Collapse
|
26
|
Sun S, Cui C, Li Y, Meng Y, Pan W, Li D. A Machine learning classification framework using fused fractal property feature vectors for Alzheimer's disease diagnosis. Brain Res 2024; 1850:149373. [PMID: 39638085 DOI: 10.1016/j.brainres.2024.149373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/18/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Alzheimer's disease (AD) profoundly affects brain tissue and network structures. Analyzing the topological properties of these networks helps to understand the progression of the disease. Most studies focus on single-scale brain networks, but few address multiscale brain networks. In this study, the renormalization group approach was applied to rescale the gray matter brain networks of AD patients and cognitively normal (CN) into three scales: the original, once-renormalized, and twice-renormalized networks. Based on the fractal property of these networks at different scales, a novel framework for classifying Alzheimer's disease using fractal and renormalization group was proposed. We integrated the fractal metrics across different scales to create fused feature vectors, which served as inputs for the classification framework aimed at diagnosing Alzheimer's disease. The experimental result indicates that the original and once-renormalized networks of both CN and AD exhibit the fractal property. The classification framework performed best when using the fused feature vector, including the average connection ratio of the original and once-renormalized networks. Using the fused feature vector of the average connection ratio, the One-Dimensional Convolution Neural Network model achieved an accuracy of 92.59% and an F1 score of 91.19%. This marks an improvement of approximately 10% in accuracy and 5% in F1 score compared to results using feature fusion of the average degree, average path length, and clustering coefficient.
Collapse
Affiliation(s)
- Sixiang Sun
- School of Railway Intelligent Engineering, Dalian Jiaotong University, Dalian 116028, PR China
| | - Can Cui
- School of Railway Intelligent Engineering, Dalian Jiaotong University, Dalian 116028, PR China
| | - Yuanyuan Li
- School of Railway Intelligent Engineering, Dalian Jiaotong University, Dalian 116028, PR China
| | - Yingjian Meng
- School of Railway Intelligent Engineering, Dalian Jiaotong University, Dalian 116028, PR China
| | - Wenxiang Pan
- School of Railway Intelligent Engineering, Dalian Jiaotong University, Dalian 116028, PR China
| | - Dongyan Li
- School of Railway Intelligent Engineering, Dalian Jiaotong University, Dalian 116028, PR China.
| |
Collapse
|
27
|
Breitling B, Bartels C, Lange C, Bouter C, Falk HS, Wiltfang J, Zilles-Wegner D, Besse M. Clinical Phenotype of Behavioral-Variant Frontotemporal Dementia Reversed by ECT: A Case Report. Neuropsychobiology 2024; 83:214-225. [PMID: 39622206 DOI: 10.1159/000541668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/04/2024] [Indexed: 12/18/2024]
Abstract
INTRODUCTION Diagnosis of frontotemporal dementia (FTD) remains difficult even in the presence of core clinical and imaging features. Furthermore, disease-modifying treatments are lacking. CASE PRESENTATION Here, we report a case of a patient with clinical and imaging features of FTD. Electroconvulsive therapy (ECT) was used to target affective and catatonic symptoms. After ECT, the patient showed improvements not only in affective symptoms but also in cognitive domains, leading to a marked improvement in the patient's level of functioning. CONCLUSION Against the background of diagnostic uncertainty and lack of disease-modifying treatments for FTD, we emphasize the importance of focusing on treatable symptoms. Thus, we recommend consideration of ECT as a viable option for multiple symptom domains. In this case of bvFTD, ECT was well-tolerated with relatively low side-effects.
Collapse
Affiliation(s)
- Benedict Breitling
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Claudia Lange
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Hannah Sönne Falk
- Department of Neuroradiology, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - David Zilles-Wegner
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Matthias Besse
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| |
Collapse
|
28
|
Scheinman SB, Dong H. The impact of sex on memory during aging and Alzheimer's disease progression: Epigenetic mechanisms. J Alzheimers Dis 2024; 102:562-576. [PMID: 39539121 DOI: 10.1177/13872877241288709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, disability, and death in the elderly. While the etiology of AD is unknown, there are several established risk factors for the disease including, aging, female sex, and genetics. However, specific genetic mutations only account for a small percentage (1-5%) of AD cases and the much more common sporadic form of the disease has no causative genetic basis, although certain risk factor genes have been identified. While the genetic code remains static throughout the lifetime, the activation and expression levels of genes change dynamically over time via epigenetics. Recent evidence has emerged linking changes in epigenetics to the pathogenesis of AD, and epigenetic alterations also modulate cognitive changes during physiological aging. Aging is the greatest risk factor for the development of AD and two-thirds of all AD patients are women, who experience an increased rate of symptom progression compared to men of the same age. In humans and other mammalian species, males and females experience aging differently, raising the important question of whether sex differences in epigenetic regulation during aging could provide an explanation for sex differences in neurodegenerative diseases such as AD. This review explores distinct epigenetic changes that impact memory function during aging and AD, with a specific focus on sexually divergent epigenetic alterations (in particular, histone modifications) as a potential mechanistic explanation for sex differences in AD.
Collapse
Affiliation(s)
- Sarah B Scheinman
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
29
|
Zhang R, Sun L, Jia AN, Wu SY, Wang Y, Wang SW, Guo Q, Meng YJ, Liang J, Huang W, Li YH, Wu J. Impact of ambient temperatures on Alzheimer's disease and other dementia mortality among elderly patients aged 60 years and older in China. ADVANCES IN CLIMATE CHANGE RESEARCH 2024. [DOI: 10.1016/j.accre.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Goyal A, Kumari A, Verma A, Chaudhary V, Agrawal V, Yadav HN. Silent Information Regulator 1/Peroxisome Proliferator-Activated Receptor-γ Coactivator-1α Axis: A Promising Target for Parkinson's and Alzheimer's Disease Therapies. J Biochem Mol Toxicol 2024; 38:e70078. [PMID: 39620434 DOI: 10.1002/jbt.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024]
Abstract
One of the key challenges in medical research is developing safe medications to treat neurodegenerative disorders. Increased oxidative stress, mitochondrial dysfunction, and neuroinflammation are common features of Alzheimer's disease (AD) and Parkinson's disease (PD). Silent information regulator 1 (SIRT-1), part of the sirtuin family, plays a critical role in various physiological processes by binding to histones and nonhistone proteins. SIRT-1 primarily mitigates oxidative stress and regulates mitochondrial activity by maintaining the deacetylated form of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), ensuring stable PGC-1α levels. Research has shown reduced SIRT-1/PGC-1α expression in AD and PD models. Targeting this pathway presents a promising therapeutic approach for managing AD and PD, potentially leading to disease-modifying treatments and improved outcomes. This review highlights the findings of various studies suggesting that the SIRT-1/PGC-1α pathway promotes mitochondrial biogenesis, synaptic plasticity, and cognitive function, as well as exerts antioxidant, anti-inflammatory, and anti-apoptotic effects, offering a potential method for AD and PD treatment.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anshika Kumari
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Vandana Chaudhary
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Vaibhav Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | | |
Collapse
|
31
|
Yu C, Liu X, Ma B, Xu J, Chen Y, Dai C, Peng H, Zha D. Novel anti-neuroinflammatory pyranone-carbamate derivatives as selective butyrylcholinesterase inhibitors for treating Alzheimer's disease. J Enzyme Inhib Med Chem 2024; 39:2313682. [PMID: 38362862 PMCID: PMC10878344 DOI: 10.1080/14756366.2024.2313682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
Butyrylcholinesterase (BuChE) and neuroinflammation have recently emerged as promising therapeutic directions for Alzheimer's disease (AD). Herein, we synthesised 19 novel pyranone-carbamate derivatives and evaluated their activities against cholinesterases and neuroinflammation. The optimal compound 7p exhibited balanced BuChE inhibitory activity (eqBuChE IC50 = 4.68 nM; huBuChE IC50 = 9.12 nM) and anti-neuroinflammatory activity (NO inhibition = 28.82% at 10 μM, comparable to hydrocortisone). Enzyme kinetic and docking studies confirmed compound 7p was a mix-type BuChE inhibitor. Additionally, compound 7p displayed favourable drug-likeness properties in silico prediction, and exhibited high BBB permeability in the PAMPA-BBB assay. Compound 7p had good safety in vivo as verified by an acute toxicity assay (LD50 > 1000 mg/kg). Most importantly, compound 7p effectively mitigated cognitive and memory impairments in the scopolamine-induced mouse model, showing comparable effects to Rivastigmine. Therefore, we envisioned that compound 7p could serve as a promising lead compound for treating AD.
Collapse
Affiliation(s)
- Chuanyu Yu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xueyan Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Bingxiang Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jiexin Xu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yiquan Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Chaoxian Dai
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Huaping Peng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Daijun Zha
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
32
|
Kushawaha SK, Ashawat MS, Baldi A. Auranofin-loaded PLGA nanoparticles alleviate cognitive deficit induced by streptozotocin in rats model: modulation of oxidative stress, neuroinflammatory markers, and neurotransmitters. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:10031-10047. [PMID: 38967827 DOI: 10.1007/s00210-024-03253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
Alzheimer's disease remains an unsolved neurological puzzle with no cure. Current therapies offer only symptomatic relief, hindered by limited uptake through the blood-brain barrier. Auranofin, an FDA-approved compound, exhibits potent antioxidative and anti-inflammatory properties targeting brain disorders. Yet, its oral bioavailability challenge prompts the exploration of nanoformulation-based solutions enhancing blood-brain barrier penetrability. The study aimed to investigate the neuroprotective potential of auranofin nanoparticles in streptozotocin-induced AD rats. Auranofin-containing polylactic-co-glycolic acid nanoparticles were formulated by the multiple emulsion solvent evaporation method. Characterization was done by determining entrapment efficiency, particle size distribution, surface charge, and morphology. An in vivo study was performed by administering streptozotocin (3 mg/kg/i.c.v., days 1 and 3), auranofin (5 and 10 mg/kg), auranofin nanoparticles (2.5 and 5 mg/kg), and donepezil (2 mg/kg) for 14 days orally. Behavioral deficits were evaluated using the open field test, Morris water maze, objective recognition test, change in oxidative stress levels, and AD markers in the brain. Following the decapitation of the rats, the brains were excised to isolate the hippocampus. Subsequent analyses included the quantification of biochemical and neuroinflammatory markers, as well as the assessment of neurotransmitter levels. The characterization of auranofin nanoparticles showed an entrapment efficiency of 98%, an average particle size of 101.5 ± 10.3 nm, a surface charge of 27.5 ± 5.10 mV, and a polydispersity index of 0.438 ± 0.12. In vivo, administration of auranofin and auranofin nanoparticles significantly reversed streptozotocin-induced cognitive deficits, biochemical alteration, neuroinflammatory markers, and neurotransmitter levels. The present finding suggests that auranofin nanoparticles have more significant neuroprotective potential than auranofin alone. The therapeutic efficacy may be attributed to its antioxidant and anti-inflammatory properties, as well as its positive neuromodulatory effects. Therefore, our findings suggest that it could be a promising candidate for Alzheimer's disease therapy.
Collapse
Affiliation(s)
- Shiv Kumar Kushawaha
- Pharma Innovation Lab, Department of Pharmaceutical Sciences &Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, India
| | - Mahendra Singh Ashawat
- Department of Pharmaceutics, Laureate Institute of Pharmacy, Distt. Kangra, Kathog, H.P., 176031, India
| | - Ashish Baldi
- Pharma Innovation Lab, Department of Pharmaceutical Sciences &Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, India.
| |
Collapse
|
33
|
Ozpak L, Bağca BG. Neuroprotective effects of resveratrol through modulation of PI3K/Akt/GSK-3β pathway and metalloproteases. IUBMB Life 2024; 76:1199-1208. [PMID: 39159067 DOI: 10.1002/iub.2902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/04/2024] [Indexed: 08/21/2024]
Abstract
To analyze the expressional changes in the PI3K/Akt/GSK-3β pathway and metalloprotease in the cellular Alzheimer's Disease (AD) model with the effect of antioxidant resveratrol. Neuron-like cells were obtained by a two-step method of neuronal differentiation by using a combination of retinoic acid (RA) and brain-derived factor (BDNF) exposure. Then, the application of the amyloid beta peptide 25-35 (Aβ25-35) to the cell culture mimicked the environmental toxicity observed in AD. Afterward, cell viability and apoptosis assays were performed to determine whether the resveratrol exerts a cytotoxic and apoptotic effect. Finally, the expressional changes in genes in the cellular AD model with the effect of resveratrol were analyzed by Real-Time PCR. The analysis in silico was assessed using the STRING V12.0 database in each group. Apoptosis data findings were decreased by 1.5-fold and 2.5-fold respectively by Differentiated+Resveratrol (RES) and RES when compared to control but no significant difference was observed between RES and AD model groups. Real-time PCR analysis results revealed PI3K (3.38-fold), AKT (3.95-fold), and RELN (1.99-fold) expressions were significantly higher (p < .001), and also GSK-3β, TAU, ADAMTS-4, ADAMTS-5, and TIMP-3 gene expression levels were significantly downregulated (2.53-, 1.79-, 2.85-, 4.09-, and 6.62-fold, respectively) in the Differentiated+Aβ + RES groups compared to the Differentiated+Aβ group (p < .001). Network analysis shows the functional enrichment of 23 Alzheimer-related GO terms in the Wnt signaling, proteolysis, and extracellular matrix organization pathways. Resveratrol has inhibited GSK-3β by activating the PI3K/Akt insulin pathway in a neurotoxic environment. In addition, TAU, RELN, metalloproteases, and their inhibitors associated with Alzheimer's pathology have been regulated supporting the neuroprotective effect of resveratrol.
Collapse
Affiliation(s)
- Lütfiye Ozpak
- Department of Medical Biology, Faculty of Medicine, Sutçu Imam University, Kahramanmaraş, Turkey
| | - Bakiye Göker Bağca
- Department of Medical Biology, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
34
|
Liu W, Chen S, Rao X, Chen X, Yu L, Zhang J, Chen J, Cui B. Exploring the role of miR-125b-5p as a pro-inflammatory factor in Alzheimer's disease pathology. J Alzheimers Dis 2024; 102:1224-1238. [PMID: 39584931 DOI: 10.1177/13872877241297178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a common neurodegenerative disease, where neuroinflammation significantly influences its pathophysiology by driving the disease's pathological cascade. As a pro-inflammatory regulator, miR-125b-5p contributes to AD progression, though its precise role and mechanisms remain unclear. OBJECTIVE We aims to identify mRNAs significantly regulated by pro-inflammatory miR-125b-5p in AD and uncover key neuroinflammatory pathways. METHODS Target mRNAs regulated by miR-125b-5p were predicted using online databases and analyzed with two mRNA datasets to identify differentially expressed mRNAs (DEmRNAs). Enrichment analysis was conducted to explore their biological functions and pathways. The significance of DEmRNAs expression in AD-related inflammatory pathways was verified by the Wilcoxon test, predictive accuracy was assessed via area under the curves (AUCs), and novel mRNAs were identified through positive control analysis. RESULTS A total of 613 miR-125b-5p target mRNAs were identified, and 44 DEmRNAs were detected to be regulated by miR-125b-5p in two datasets. The 44 target DEmRNAs associated with AD include three key pathways: insulin signaling (EXOC7, FLOT2, MKNK2), phosphatidylinositol signaling (IP6K1, MTMR3), and phospholipase D signaling (CYTH1, GAB2). Correlation analysis indicated strong correlations among 7 mRNAs, all showing significant differential expression, with AUCs above 0.5, confirming their predictive value. Three mRNAs (EXOC7, IP6K1, CYTH1) were identified as novel AD-related genes. MiR-125b-5p binding sites in the 3'-UTRs of these 7 mRNAs suggest their potential roles in AD-related inflammation and signaling pathways. CONCLUSIONS This study investigates the pro-inflammatory miR-125b-5p's role in the pathological processes of AD, highlighting its regulation of key target mRNAs and critical pathways.
Collapse
Affiliation(s)
- Wenjia Liu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| | - Sophia Chen
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Xin Rao
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| | - Xiaodong Chen
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| | - Liyang Yu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| | - Jiangtao Zhang
- Department of Geriatrics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jiong Chen
- Department of Geriatrics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Bohan Cui
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
35
|
Zou Y, Gao B, Lu J, Zhang K, Zhai M, Yuan Z, Aschner M, Chen J, Luo W, Wang L, Zhang J. Long non-coding RNA CASC15 enhances learning and memory in mice by promoting synaptic plasticity in hippocampal neurons. EXPLORATION (BEIJING, CHINA) 2024; 4:20230154. [PMID: 39713210 PMCID: PMC11655312 DOI: 10.1002/exp.20230154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/01/2024] [Indexed: 12/24/2024]
Abstract
Alzheimer's disease (AD) is a debilitating systemic disorder that has a detrimental impact on the overall well-being of individuals. Emerging research suggests that long non-coding RNAs play a role in neural development and function. Nevertheless, the precise relationship between lncRNAs and Alzheimer's disease remains uncertain. The authors' recent discoveries have uncovered an unconventional mechanism involving the regulation of synaptic plasticity and the functioning of the hippocampal fragile X mental retardation protein 1 (FMR1)-neurotrophin 3 (NTF3) pathway, which is mediated by cancer susceptibility candidate 15 (CASC15). Subsequently, functional rescue experiments were performed to illustrate the efficient delivery of exosomes harboring a significant amount of 2610307p16Rik transcripts, which is the murine equivalent of human CASC15, to the hippocampal region of mice. This resulted in significant improvements in synaptic morphological plasticity and cognitive function in APP/PS1 mice. Given the pivotal involvement of CASC15 in synaptic plasticity and the distinctive regulatory mechanisms of the CASC15-FMR1-NTF3 axis, CASC15 emerges as a promising biomarker for Alzheimer's disease and may even possess potential as a feasible therapeutic target.
Collapse
Affiliation(s)
- Yuankang Zou
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Bo Gao
- Institute of Orthopaedic SurgeryXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Jiaqiao Lu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Keying Zhang
- Department of UrologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Maodeng Zhai
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Ziyan Yuan
- Institute of Medical Information and LibraryChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Michael Aschner
- Department of Molecular PharmacologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Jingyuan Chen
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Wenjing Luo
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Lei Wang
- Department of Medical Research Center, Clinical Medical CollegeYangzhou UniversityYangzhouChina
| | - Jianbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| |
Collapse
|
36
|
Singh M, Ali H, Renuka Jyothi S, Kaur I, Kumar S, Sharma N, Siva Prasad GV, Pramanik A, Hassan Almalki W, Imran M. Tau proteins and senescent Cells: Targeting aging pathways in Alzheimer's disease. Brain Res 2024; 1844:149165. [PMID: 39155034 DOI: 10.1016/j.brainres.2024.149165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by abnormal accumulation of tau proteins and amyloid-β, leading to neuronal death and cognitive impairment. Recent studies have implicated aging pathways, including dysregulation of tau and cellular senescence in AD pathogenesis. In AD brains, tau protein, which normally stabilizes microtubules, becomes hyperphosphorylated and forms insoluble neurofibrillary tangles. These tau aggregates impair neuronal function and are propagated across the brain's neurocircuitry. Meanwhile, the number of senescent cells accumulating in the aging brain is rising, releasing a pro-inflammatory SASP responsible for neuroinflammation and neurodegeneration. This review explores potential therapeutic interventions for AD targeting tau protein and senescent cells, and tau -directed compounds, senolytics, eliminating senescent cells, and agents that modulate the SASP-senomodulators. Ultimately, a combined approach that incorporates tau-directed medications and targeted senescent cell-based therapies holds promise for reducing the harmful impact of AD's shared aging pathways.
Collapse
Affiliation(s)
- Mahaveer Singh
- School of Pharmacy and Technology Management, SVKMs NMIMS University, Shirpur campus, Maharastra India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali 140307, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
37
|
Rostamikia M, Sarbaz Y, Makouei S. EEG-based classification of Alzheimer's disease and frontotemporal dementia: a comprehensive analysis of discriminative features. Cogn Neurodyn 2024; 18:3447-3462. [PMID: 39712091 PMCID: PMC11655805 DOI: 10.1007/s11571-024-10152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 12/24/2024] Open
Abstract
Alzheimer's disease (AD) and frontotemporal dementia (FTD) are two main types of dementia. These diseases have similar symptoms, and they both may be considered as AD. Early detection of dementia and differential diagnosis between AD and FTD can lead to more effective management of the disease and contributes to the advancement of knowledge and potential treatments. In this approach, several features were extracted from electroencephalogram (EEG) signals of 36 subjects diagnosed with AD, 23 FTD subjects, and 29 healthy controls (HC). Mann-Whitney U-test and t-test methods were employed for the selection of the best discriminative features. The Fp1 channel for FTD patients exhibited the most significant differences compared to AD. In addition, connectivity features in the delta and alpha subbands indicated promising discrimination among these two groups. Moreover, for dementia diagnosis (AD + FTD vs. HC), central brain regions including Cz and Pz channels proved to be determining for the extracted features. Finally, four machine learning (ML) algorithms were utilized for the classification purpose. For differentiating between AD and FTD, and dementia diagnosis, an accuracy of 87.8% and 93.5% were achieved respectively, using the tenfold cross-validation technique and employing support vector machines (SVM) as the classifier.
Collapse
Affiliation(s)
- Mehran Rostamikia
- Biomedical System Modeling Lab, Biomedical Engineering Department, Electrical and Computer Engineering Faculty, University of Tabriz, Tabriz, Iran
| | - Yashar Sarbaz
- Biomedical System Modeling Lab, Biomedical Engineering Department, Electrical and Computer Engineering Faculty, University of Tabriz, Tabriz, Iran
| | - Somaye Makouei
- Biomedical System Modeling Lab, Biomedical Engineering Department, Electrical and Computer Engineering Faculty, University of Tabriz, Tabriz, Iran
| |
Collapse
|
38
|
Pajavand AM, Grothe MJ, De Schotten MT, Giorgi FS, Vergallo A, Hampel H. Structural white matter connectivity differences independent of gray matter loss in mild cognitive impairment with neuropsychiatric symptoms: Early indicators of Alzheimer's disease using network-based statistics. J Alzheimers Dis 2024; 102:1042-1056. [PMID: 39574327 DOI: 10.1177/13872877241288710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
BACKGROUND Depression and circadian rhythm disruptions are non-cognitive neuropsychiatric symptoms (NPS) that can appear at any stage of the Alzheimer's disease (AD) continuum. Evidence suggests that NPS are linked to AD pathophysiology and hippocampal dysfunction. OBJECTIVE To examine structural white matter (WM) connectivity and its association with gray matter (GM) atrophy and to identify specific AD-related neural networks linked to NPS in individuals with mild cognitive impairment (MCI). METHODS Ninety-six older adults participants were divided into three groups based on the Global Depression Scale, Neuropsychiatric Inventory, Clinical Dementia Rating, and Mini-Mental Status Examination. Twelve individuals with MCI and NPS (MCI+) and 49 without NPS (MCI-) were classified, along with 35 age and gender-matched healthy individuals. Voxel-based morphometry and tract-based spatial statistics were employed to identify structural and microstructural alterations. Network-based statistics analyzed structural WM connectivity differences between MCI groups and healthy controls. RESULTS Significant structural WM connectivity and GM loss were exclusively observed in MCI+ individuals compared to controls. The hippocampus, amygdala, and sensory cortex showed GM atrophy (p < 0.05), while the thalamus, pallidum, putamen, caudate, hippocampus, and sensory and frontal cortices exhibited structural WM connectivity loss (p < 0.01). These data indicate early limbic system involvement even without GM atrophy. CONCLUSIONS Structural WM connectivity loss within the Papez circuit may precede and potentially predict GM atrophy in the temporal lobe of individuals with MCI+. These findings highlight the importance of investigating structural WM alterations in the prodromal phase of AD, which may inform diagnostic and therapeutic strategies in early AD.
Collapse
Affiliation(s)
| | - Michel J Grothe
- Reina Sofia Alzheimer Center, CIEN Foundation-ISCIII, Madrid, Spain
| | - Michel Thiebaut De Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Roma 55, Pisa, 56126, Italy
- IRCCS Stella Maris Foundation, Pisa, Italy
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France
| |
Collapse
|
39
|
Zhu X, Xu JB, Gao F, Wan LX. Advances in the structural modification of Alzheimer's disease drug - Huperzine A. Bioorg Chem 2024; 154:108012. [PMID: 39637486 DOI: 10.1016/j.bioorg.2024.108012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Huperzine A is an alkaloid featuring a bicyclo [3.3.1] nonane scaffold with an integrated piperidine ring, which was firstly isolated from Huperzia selago in 1960. As a reversible acetylcholinesterase inhibitor, it was clinically approved in China for treatment of Alzheimer's disease in 1996. Although huperzine A shows therapeutic potential, it is often associated with adverse events, such as dizziness, nausea, and digestive disorders. To enhance the efficacy and therapeutic index of huperzine A, many structural modification efforts have been undertaken. This review comprehensively summarizes the structural modification investigations on huperzine A conducted over the past three decades, and the structure-activity relationships are also discussed. The insights from this review are expected to inspire more effective modification strategies in the future.
Collapse
Affiliation(s)
- Xiaoxin Zhu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Jin-Bu Xu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Yibin Institute of Southwest Jiaotong University, Yibin 644000, Sichuan, China
| | - Feng Gao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Yibin Institute of Southwest Jiaotong University, Yibin 644000, Sichuan, China.
| | - Lin-Xi Wan
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
40
|
Solano-Aguilar G, Matuszek G, Matthan NR, Lichtenstein AH, Wang X, Lakshman S, Barger K, Urban JF, Molokin A, Bennett RE, Hyman BT, Lamon-Fava S. Differential regulation of brain microvessel transcriptome and brain metabolome by western and heart-healthy dietary patterns in Ossabaw pigs. Sci Rep 2024; 14:29621. [PMID: 39609531 PMCID: PMC11604918 DOI: 10.1038/s41598-024-81321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024] Open
Abstract
Diet is a potentially modifiable neurodegenerative disease risk factor. We studied the effects of a typical Western diet (WD; high in refined carbohydrates, cholesterol and saturated fat), relative to a heart-healthy diet (HHD; high in unrefined carbohydrates, polyunsaturated fat and fiber, and low in cholesterol) on brain microvessel transcriptomics and brain metabolomics of the temporal region in Ossabaw minipigs. Thirty-two pigs (16 male and 16 females) were fed a WD or HHD starting at the age of 4 months for a period of 6 months. The WD and HHD were isocaloric and had a similar macronutrient content but differed in macronutrient quality. Within each dietary group, half of the pigs also received atorvastatin. Relative to HHD-fed pigs, WD-fed pigs had 175 genes differentially expressed (fold change > 1.3, FDR < 0.05) by diet, 46 upregulated and 129 downregulated. Gene Set Enrichment Analysis identified 22 gene sets enriched in WD-fed pigs, comprising pathways related to inflammation, angiogenesis, and apoptosis, and 53 gene sets enriched in the HHD-fed pigs, including cell energetics, neurotransmission, and inflammation resolution pathways. Metabolite analysis showed enrichment in arginine, tyrosine, and lysine in WD-fed pigs, and ergothioneine and S-adenosyl methionine in HHD-fed pigs. Atorvastatin treatment did not affect gene expression. These results suggest a likely contribution of diet to brain pathologies characterized by neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Gloria Solano-Aguilar
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA Northeast Area, Beltsville, MD, USA
| | - Gregory Matuszek
- Biostatistics Core Unit, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA, 02111, USA
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA, 02111, USA
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Xuedi Wang
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Sukla Lakshman
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA Northeast Area, Beltsville, MD, USA
| | - Kathryn Barger
- Biostatistics Core Unit, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Joseph F Urban
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA Northeast Area, Beltsville, MD, USA
| | - Aleksey Molokin
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA Northeast Area, Beltsville, MD, USA
| | - Rachel E Bennett
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA, 02111, USA.
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|
41
|
Wang S, Zhou Y, Wu Y, Lang Y, Mao Y, Pan G, Gao Z. Long-term aerobic exercise improves learning memory capacity and effects on oxidative stress levels and Keap1/Nrf2/GPX4 pathway in the hippocampus of APP/PS1 mice. Front Neurosci 2024; 18:1505650. [PMID: 39659881 PMCID: PMC11628528 DOI: 10.3389/fnins.2024.1505650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Objective To examine the effects of long-term aerobic exercise on oxidative stress and learning memory ability of APP/PS1 mice, focusing on the hippocampal Keap1, Nrf2, HO-1, and GPX4 proteins. Methods Thirty APP/PS1 double transgenic AD mice were randomly divided into three groups: model group, short-term exercise group, and long-term exercise group, with 10 mice in each group. Male non-transgenic mice of the same age served as the control group. The groups underwent swimming training for 6 weeks and 12 weeks, respectively. After the intervention, cognitive abilities were assessed using the Morris water maze test. Hippocampal tissue samples were analyzed for changes in superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. ROS expression was observed using dihydroethidium probe, and Keap1, Nrf2, HO-1, and GPX4 protein levels were detected by Western blot analysis. Results Aerobic exercise significantly reduced the escape latency and increased both the time spent in the target quadrant and the number crossing the platform compared to the model group (p < 0.05). In the hippocampus, aerobic exercise significantly reduced the MDA content, while significantly increased SOD activity (p < 0.05). The level of ROS in the hippocampal region was significantly reduced by aerobic exercise (p < 0.05), with decreased Keap1 protein expression of and increased Nrf2, HO-1, GPX4 protein expression (p < 0.05). Conclusion Aerobic exercise enhances memory and learning abilities, improves cognitive function, and reduces the oxidative stress levels in the hippocampus of AD mice, which involves in the activation of Keap1/Nrf2/GPX4 pathway.
Collapse
Affiliation(s)
- Shiyan Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Ye Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yucheng Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yali Lang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yajun Mao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Guoyuan Pan
- Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhenzhen Gao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
42
|
Ma K, An C, Li M, Zhang Y, Ren M, Wei Y, Xu W, Wang R, Bai Y, Zhang H, Liu X, Ji S, Chen X, Zhu K. Dexmedetomidine Attenuated Neuron Death, Cognitive Decline, and Anxiety-Like Behavior by Inhibiting CXCL2 in CA1 Region of AD Mice. Drug Des Devel Ther 2024; 18:5351-5365. [PMID: 39605963 PMCID: PMC11600949 DOI: 10.2147/dddt.s489860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Purpose β-amyloid overload-induced neuroinflammation and neuronal loss are key pathological changes that occur during the progression of Alzheimer's disease (AD). Dexmedetomidine (Dex) exhibits neuroprotective and anti-inflammatory effects on the nervous system. However, the effect of Dex in AD mice remains unclear, and its neuroprotective regulatory mechanism requires further investigation. This study aimed to reveal how Dex protects against Aβ induced neuropathological changes and behavior dysfunction in AD mice. Methods An AD mouse model was established by the injection of Aβ into the brains of mice, followed by intraperitoneal injection with Dex. CXCL2 overexpression and Yohimbine, a Dex inhibitor, were used to investigate the role of Dex and CXCL2 in the regulation of neuronal loss, cognitive decline, and anxiety-like behavior in AD mice. Behavioral tests were performed to evaluate the cognitive and anxiety status of the mice. Nissl staining and immunofluorescence experiments were conducted to evaluate the status of the hippocampal neurons and astrocytes. qRT-PCR was performed to detect the expression of CXCL2, IL-1β, INOS, SPHK1, Bcl2, IFN-γ, and Caspase 1. The malondialdehyde (MDA) level was detected using an ELISA kit. Terminal TUNEL and Fluoro-Jade C (FJC) staining were used to measure the cell apoptosis rate. Results In AD mice, cognitive decline and anxiety-like behaviors were significantly improved by the Dex treatment. The number of neurons was increased in mice in the Dex + AD group compared to those in the AD group, and the number of astrocytes was not significantly different between the two groups. CXCL2, IL-1β, iNOS, and SPHK1 levels were significantly lower in Dex-treated AD mice than those in AD mice. Overloading of CXCL2 or Yohimbine reversed the protective effect of Dex on neuron number and cognitive and anxiety symptoms in AD mice. Conclusion Our results suggest that Dex exerts neuroprotective effects by downregulating CXCL2. Dex shows potential as a therapeutic drug for AD.
Collapse
Affiliation(s)
- Kaige Ma
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Chanyuan An
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Mai Li
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Yuming Zhang
- Department of Anesthesiology, Shaanxi Provincial People’s Hospital, Xi’an, 710068, People’s Republic of China
| | - Minghe Ren
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Yuyang Wei
- School of Forensic Medicine, Southern Medical University, Guangdong, 510515, People’s Republic of China
| | - Wenting Xu
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Ruoxi Wang
- Department of Optometry, Fenyang College Shanxi Medical University, Fenyang, 032200, People’s Republic of China
| | - Yudan Bai
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Hanyue Zhang
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Xiyue Liu
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Shengfeng Ji
- Department of Optometry, Fenyang College Shanxi Medical University, Fenyang, 032200, People’s Republic of China
| | - Xinlin Chen
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, People’s Republic of China
| | - Kun Zhu
- Department of Neurology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| |
Collapse
|
43
|
Liu W, Rao X, Sun W, Chen X, Yu L, Zhang J, Chen J, Zheng X. The neuroinflammatory role of microRNAs in Alzheimer's disease: pathological insights to therapeutic potential. Mol Cell Biochem 2024:10.1007/s11010-024-05164-0. [PMID: 39567427 DOI: 10.1007/s11010-024-05164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the most common cause of dementia, contributing to around 60-80% of cases. The main pathophysiology of AD is characterized by an abnormal accumulation of protein aggregates extracellularly (beta-amyloid plaques) and intracellularly (neurofibrillary tangles of hyperphosphorylated tau). However, an increasing number of studies have also suggested neuroinflammation may have a crucial role in precipitating the cascade reactions that result in the development of AD neuropathology. In particular, several studies indicate microRNAs (miRNAs) can act as regulatory factors for neuroinflammation in AD, with potential to affect the occurrence and/or progression of AD inflammation by targeting the expression of multiple genes. Therefore, miRNAs may have potential as therapeutic targets for AD, which requires more research. This article will review the existing studies on miRNAs that have been identified to regulate neuroinflammation, aiming to gain further insights into the specific regulatory processes of miRNAs, highlight the diagnostic and therapeutic potential of miRNAs as biomarkers in AD, as well as current challenges, and suggest the further work to bridge the gap in knowledge to utilize miRNAs as therapeutic targets for AD.
Collapse
Affiliation(s)
- Wenjia Liu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xin Rao
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Wen Sun
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xiaodong Chen
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Liyang Yu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jiangtao Zhang
- Department of Geriatrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China.
| | - Jiong Chen
- Department of Geriatrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Xiaorong Zheng
- Blood Purification Center, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| |
Collapse
|
44
|
Wang F, Chen Z, Zhou Q, Sun Q, Zheng N, Chen Z, Lin J, Li B, Li L. Implications of liquid-liquid phase separation and ferroptosis in Alzheimer's disease. Neuropharmacology 2024; 259:110083. [PMID: 39043267 DOI: 10.1016/j.neuropharm.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Neuronal cell demise represents a prevalent occurrence throughout the advancement of Alzheimer's disease (AD). However, the mechanism of triggering the death of neuronal cells remains unclear. Its potential mechanisms include aggregation of soluble amyloid-beta (Aβ) to form insoluble amyloid plaques, abnormal phosphorylation of tau protein and formation of intracellular neurofibrillary tangles (NFTs), neuroinflammation, ferroptosis, oxidative stress, liquid-liquid phase separation (LLPS) and metal ion disorders. Among them, ferroptosis is an iron-dependent lipid peroxidation-driven cell death and emerging evidences have demonstrated the involvement of ferroptosis in the pathological process of AD. The sensitivity to ferroptosis is tightly linked to numerous biological processes. Moreover, emerging evidences indicate that LLPS has great impacts on regulating human health and diseases, especially AD. Soluble Aβ can undergo LLPS to form liquid-like droplets, which can lead to the formation of insoluble amyloid plaques. Meanwhile, tau has a high propensity to condensate via the mechanism of LLPS, which can lead to the formation of NFTs. In this review, we summarize the most recent advancements pertaining to LLPS and ferroptosis in AD. Our primary focus is on expounding the influence of Aβ, tau protein, iron ions, and lipid oxidation on the intricate mechanisms underlying ferroptosis and LLPS within the domain of AD pathology. Additionally, we delve into the intricate cross-interactions that occur between LLPS and ferroptosis in the context of AD. Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for AD.
Collapse
Affiliation(s)
- Fuwei Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiong Zhou
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiang Sun
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Nan Zheng
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Ziwen Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jiantao Lin
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Baohong Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
45
|
Faraji P, Parandavar E, Kuhn H, Habibi-Rezaei M, Borchert A, Zahedi E, Ahmadian S. Oral administration of butylated hydroxytoluene induces neuroprotection in a streptozotocin-induced rat Alzheimer's disease model via inhibition of neuronal ferroptosis. Mol Med 2024; 30:204. [PMID: 39511487 PMCID: PMC11545178 DOI: 10.1186/s10020-024-00980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common human neurodegenerative disorder worldwide. Owing to its chronic nature, our limited understanding of its pathophysiological mechanisms, and because of the lack of effective anti-AD drugs, AD represents a significant socio-economic challenge for all industrialized countries. Neuronal cell death is a key factor in AD pathogenesis and recent studies have suggested that neuronal ferroptosis may play a major patho-physiological role. Since ferroptosis involves free radical-mediated lipid peroxidation, we hypothesized that enteral administration of the radical scavenger butylated hydroxytoluene (BHT) might slow down or even prevent the development of AD-related symptoms in an in vivo animal AD model. MATERIAL AND METHODS To test this hypothesis, we employed the rat model of streptozotocin-induced AD and administered butylated hydroxytoluene orally at a dose of 120 mg/kg body weight. Following BHT treatment, neuronal cell death was induced by bilateral stereotactic intraventricular injection of streptozotocin at a dose of 3.0 mg/kg body weight. Three weeks after surgery, we assessed the learning capabilities and the short-term memory of three experimental groups using the conventional y-maze test: (i) streptozotocin-treated rats (BHT pre-treatment), (ii) streptozotocin-treated rats (no BHT pre-treatment), (iii) sham-operated rats (BHT pre-treatment but no streptozotocin administration). After the y-maze test, the animals were sacrificed, hippocampal tissue was prepared and several biochemical (malonyl dialdehyde formation, glutathione homeostasis, gene expression patterns) and histochemical (Congo-red staining, Nissl staining, Perls staining) readout parameters were quantified. RESULTS Intraventricular streptozotocin injection induced the development of AD-related symptoms, elevated the degree of lipid peroxidation and upregulated the expression of ferroptosis-related genes. Histochemical analysis indicated neuronal cell death and neuroinflammation, which were paralleled by aberrant intraneuronal iron deposition. The streptozotocin-induced alterations were significantly reduced and sometimes even abolished by oral BHT treatment. CONCLUSION Our data indicate that oral BHT treatment attenuated the development of AD-related symptoms in an in vivo rat model, most probably via inhibiting neuronal ferroptosis. These findings suggest that BHT might constitute a promising candidate as anti-AD drug. However, more work is needed to explore the potential applicability of BHT in other models of neurodegeneration and in additional ferroptosis-related disorders.
Collapse
Affiliation(s)
- Parisa Faraji
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Elham Parandavar
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hartmut Kuhn
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, D-10117, Berlin, Germany.
| | | | - Astrid Borchert
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Elham Zahedi
- Institute of Physiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
46
|
Gao L, Yang R, Zhang J, Sheng M, Sun Y, Han B, Kai G. Gas chromatography-ion mobility spectrometry for the detection of human disease: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7275-7293. [PMID: 39450646 DOI: 10.1039/d4ay01452a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Gas chromatography-ion mobility spectrometry (GC-IMS) is an advanced technique used for detecting trace compounds, due to its non-destructive, straightforward, and rapid analytical capabilities. However, the application of GC-IMS in human disease screening is barely reported. This review summarizes the application and related parameters of GC-IMS in human disease diagnosis. GC-IMS detects volatile organic compounds in human breath, feces, urine, bile, etc. It can be applied to diagnose diseases, such as respiratory diseases, cancer, enteropathy, Alzheimer's disease, bacterial infection, and metabolic diseases. Several potential disease markers have been identified by GC-IMS, including ethanal (COVID-19), 2-heptanone (lung cancer) and 3-pentanone (pulmonary cryptococcosis). In conclusion, GC-IMS offers a non-invasive approach to monitor and diagnose human diseases with broad applications.
Collapse
Affiliation(s)
- Li Gao
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, 310053, China.
| | - Ruiwen Yang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, 310053, China.
| | - Jizhou Zhang
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Jiaowei Road 9, Liuhongqiao, Wenzhou, 325000, China.
| | - Miaomiao Sheng
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, 310053, China.
| | - Yun Sun
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Jiaowei Road 9, Liuhongqiao, Wenzhou, 325000, China.
| | - Bing Han
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, 310053, China.
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, 310053, China.
| |
Collapse
|
47
|
Fagnen C, Giovannini J, Vignol T, Since M, Catto M, Voisin-Chiret AS, Sopkova-de Oliveira Santos J. Disruption of PHF6 Peptide Aggregation from Tau Protein: Mechanisms of Palmatine Chloride in Preventing Early PHF6 Aggregation. ACS Chem Neurosci 2024; 15:3981-3990. [PMID: 39404232 DOI: 10.1021/acschemneuro.4c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
The formation of neurofibrillary tangles (NFTs), composed of tau protein aggregates, is a hallmark of neurodegenerative diseases known as tauopathies, including Alzheimer's disease (AD). NFTs consist of paired helical filaments (PHFs) of tau protein with a dominant β-sheet secondary structure. Within these PHFs, the PHF6 hexapeptide (Val306-Gln-Ile-Val-Tyr-Lys311) has been commonly highlighted as a key site for tau protein nucleation. Palmatine chloride (PC) has been identified as an inhibitor of PHF6 aggregation, capable of reducing aggregation propensity at submicromolar concentrations. In pursuit of novel anti-AD drugs targeting early tau aggregation stages, we conducted an in silico study to elucidate PC's mechanism of action during PHF6 aggregation. Our observations suggest that while PHF6 can still initiate self-aggregation in the presence of PC, PC molecules subtly influence PHF6 aggregation dynamics, favoring smaller aggregates over larger complexes. The study underlined the key roles of aromatic rings in PC binding to different PHF6 aggregates by interacting through π-π stacking with the PHF6 Tyr310 side chain. The presence of aromatic rings in compounds to be able to inhibit the earlier complexation phase seems to be essential. These in silico findings lay a foundation for the design of compounds that could intervene in resolving the neurotoxicity of protein aggregates in AD.
Collapse
Affiliation(s)
- Charline Fagnen
- Université de Caen Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen F-14000, France
| | - Johanna Giovannini
- Université de Caen Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen F-14000, France
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, Bari I-70125, Italy
| | - Thomas Vignol
- Université de Caen Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen F-14000, France
| | - Marc Since
- Université de Caen Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen F-14000, France
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, Bari I-70125, Italy
| | - Anne Sophie Voisin-Chiret
- Université de Caen Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen F-14000, France
| | | |
Collapse
|
48
|
Shafieinouri M, Hong S, Schuh A, Makarious MB, Sandon R, Lee PS, Simmonds E, Iwaki H, Hill G, Blauwendraat C, Escott-Price V, Qi YA, Noyce AJ, Reyes-Palomares A, Leonard HL, Tansey M, Singleton A, Nalls MA, Levine KS, Bandres-Ciga S. Gut-Brain Nexus: Mapping Multi-Modal Links to Neurodegeneration at Biobank Scale. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.12.24313490. [PMID: 39371139 PMCID: PMC11451806 DOI: 10.1101/2024.09.12.24313490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are influenced by genetic and environmental factors. Using data from UK Biobank, SAIL Biobank, and FinnGen, we conducted an unbiased, population-scale study to: 1) Investigate how 155 endocrine, nutritional, metabolic, and digestive system disorders are associated with AD and PD risk prior to their diagnosis, considering known genetic influences; 2) Assess plasma biomarkers' specificity for AD or PD in individuals with these conditions; 3) Develop a multi-modal classification model integrating genetics, proteomics, and clinical data relevant to conditions affecting the gut-brain axis. Our findings show that certain disorders elevate AD and PD risk before AD and PD diagnosis including: insulin and non-insulin dependent diabetes mellitus, noninfective gastro-enteritis and colitis, functional intestinal disorders, and bacterial intestinal infections, among others. Polygenic risk scores revealed lower genetic predisposition to AD and PD in individuals with co-occurring disorders in the study categories, underscoring the importance of regulating the gut-brain axis to potentially prevent or delay the onset of neurodegenerative diseases. The proteomic profile of AD/PD cases was influenced by comorbid endocrine, nutritional, metabolic, and digestive systems conditions. Importantly, we developed multi-modal prediction models integrating clinical, genetic, proteomic and demographic data, the combination of which performs better than any single paradigm approach in disease classification. This work aims to illuminate the intricate interplay between various physiological factors involved in the gut-brain axis and the development of AD and PD, providing a multifactorial systemic understanding that goes beyond traditional approaches. Further, we have developed an interactive resource for the scientific community [https://gut-brain-nexus.streamlit.app/] where researchers can investigate components of the predictive model and can investigate feature effects on a sample level.
Collapse
Affiliation(s)
- Mohammad Shafieinouri
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
| | - Samantha Hong
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
| | - Artur Schuh
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Mary B Makarious
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Rodrigo Sandon
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
| | - Paul Suhwan Lee
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
| | - Emily Simmonds
- UK Dementia Research Institute (UK DRI) at Cardiff University, Cardiff, UK
| | - Hirotaka Iwaki
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Gracelyn Hill
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Valentina Escott-Price
- UK Dementia Research Institute (UK DRI) at Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Yue A Qi
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
| | - Alastair J Noyce
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Armando Reyes-Palomares
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Hampton L Leonard
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Malu Tansey
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Andrew Singleton
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Kristin S Levine
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
| |
Collapse
|
49
|
Zhu L, Xing Y, Jia H, Xu W, Wang X, Ding Y. Effects of telehealth interventions on the caregiver burden and mental health for caregivers of people with dementia: a systematic review and meta-analysis. Aging Ment Health 2024; 28:1427-1439. [PMID: 38946249 DOI: 10.1080/13607863.2024.2371480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
OBJECTIVES To systematically evaluate the effects of telehealth interventions on the caregiver burden and mental health of caregivers for people with dementia (PWD). METHOD Relevant randomized controlled trials (RCTs) of telehealth interventions on caregivers were extracted from nine electronic databases (PubMed, The Cochrane Library, Web of Science, Embase, CINAHL, SinoMed, CNKI, WanFang, and VIP). The retrieval time was from inception to 26 July 2023. RESULTS Twenty-two articles with 2132 subjects were included in the final analysis. The meta-analysis demonstrated that telehealth interventions exerted a significant effect in reducing caregiver burden (SMD: -0.14, 95 % CI: -0.25, -0.02, p = 0.02), depression (SMD = -0.17; 95%CI: -0.27, -0.07, p < 0.001) and stress (SMD = -0.20, 95%CI: -0.37, -0.04, p = 0.01). However, no statistically significant effect was observed on anxiety (SMD = -0.12, 95%CI: -0.27, 0.03, p = 0.12). Moreover, subgroup analysis showed that tailored interventions were associated with more evident reductions in depression (SMD = -0.26; 95%CI: -0.40, -0.13, p < 0.001) than standardized interventions (SMD = -0.08; 95%CI: -0.22, 0.06, p = 0.25). In addition, telehealth was effective in relieving depression in Internet-based (SMD = -0.17, 95%CI: -0.30, -0.03, p = 0.01) and Telephone-based group (SMD = -0.18, 95%CI: -0.34, -0.02, p = 0.03), while there was no significant difference in the Internet and Telephone-based group (SMD = -0.18, 95%CI: -0.54, 0.18, p = 0.32). CONCLUSION Telehealth could effectively reduce the burden and relieve the depression and stress of caregivers of PWD, while its effect on anxiety requires further research. Overall, telehealth has potential benefits in dementia care.
Collapse
Affiliation(s)
- Ling Zhu
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Yurong Xing
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Hongfei Jia
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Wenhui Xu
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Xiaoxiao Wang
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Yaping Ding
- School of Nursing, Nanjing Medical University, Nanjing, China
| |
Collapse
|
50
|
Zivko C, Sagar R, Xydia A, Lopez-Montes A, Mintzer J, Rosenberg PB, Shade DM, Porsteinsson AP, Lyketsos CG, Mahairaki V. iPSC-derived hindbrain organoids to evaluate escitalopram oxalate treatment responses targeting neuropsychiatric symptoms in Alzheimer's disease. Mol Psychiatry 2024; 29:3644-3652. [PMID: 38840027 PMCID: PMC11541203 DOI: 10.1038/s41380-024-02629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and the gradual deterioration of brain function eventually leads to death. Almost all AD patients suffer from neuropsychiatric symptoms (NPS), the emergence of which correlates with dysfunctional serotonergic systems. Our aim is to generate hindbrain organoids containing serotonergic neurons using human induced Pluripotent Stem Cells (iPSCs). Work presented here is laying the groundwork for the application of hindbrain organoids to evaluate individual differences in disease progression, NPS development, and pharmacological treatment response. Human peripheral blood mononuclear cells (PBMCs) from healthy volunteers (n = 3), an AD patient without NPS (n = 1), and AD patients with NPS (n = 2) were reprogrammed into iPSCs and subsequently differentiated into hindbrain organoids. The presence of serotonergic neurons was confirmed by quantitative reverse transcription PCR, flow cytometry, immunocytochemistry, and detection of released serotonin (5-HT). We successfully reprogrammed PBMCs into 6 iPSC lines, and subsequently generated hindbrain organoids from 6 individuals to study inter-patient variability using a precision medicine approach. To assess patient-specific treatment effects, organoids were treated with different concentrations of escitalopram oxalate, commonly prescribed for NPS. Changes in 5-HT levels before and after treatment with escitalopram were dose-dependent and variable across patients. Organoids from different people responded differently to the application of escitalopram in vitro. We propose that this 3D platform might be effectively used for drug screening purposes to predict patients with NPS most likely to respond to treatment in vivo and to understand the heterogeneity of treatment responses.
Collapse
Affiliation(s)
- Cristina Zivko
- Department of Genetic Medicine, Johns Hopkins School of Medicine, 21205, Baltimore, MD, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins School of Medicine, 21287, Baltimore, MD, USA
| | - Ram Sagar
- Department of Genetic Medicine, Johns Hopkins School of Medicine, 21205, Baltimore, MD, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins School of Medicine, 21287, Baltimore, MD, USA
| | - Ariadni Xydia
- Department of Genetic Medicine, Johns Hopkins School of Medicine, 21205, Baltimore, MD, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins School of Medicine, 21287, Baltimore, MD, USA
| | - Alejandro Lopez-Montes
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, 21205, Baltimore, MD, USA
| | - Jacobo Mintzer
- Department of Health Sciences, Medical University of South Carolina, 29425, Charleston, SC, USA
- Ralph H. Johnson VA Healthcare System, 29401, Charleston, SC, USA
| | - Paul B Rosenberg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 21287, Baltimore, MD, USA
| | - David M Shade
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 21205, Baltimore, MD, USA
| | - Anton P Porsteinsson
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry, 14642, Rochester, NY, USA
| | - Constantine G Lyketsos
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins School of Medicine, 21287, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 21287, Baltimore, MD, USA
- Johns Hopkins Alzheimer's Disease Research Center, Johns Hopkins School of Medicine, 21205, Baltimore, MD, USA
| | - Vasiliki Mahairaki
- Department of Genetic Medicine, Johns Hopkins School of Medicine, 21205, Baltimore, MD, USA.
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins School of Medicine, 21287, Baltimore, MD, USA.
| |
Collapse
|