1
|
Qing Y, Zheng J, Luo Y, Li S, Liu X, Yang S, Du J, Li Y. The impact of metals on cognitive impairment in the elderly and the mediating role of oxidative stress: A cross-sectional study in Shanghai, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117152. [PMID: 39383823 DOI: 10.1016/j.ecoenv.2024.117152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Cognitive impairment (CI) is a prodrome of many neurodegenerative diseases with complex and unclear pathogenesis. Metal exposure has been found to be associated with CI, but existing population studies are scarce and have the limitations of single outcome and ignoring mixed exposures. This cross-sectional study was conducted in Shanghai, China, enrolling 836 seniors aged over 60 years to investigate the relationship between combined metal exposure (Lead (Pb), cadmium (Cd), and mercury (Hg)) and CI in the elderly and the mediating effect of oxidative stress. It was found that there were significant differences in urinary Pb, Cd, Hg and blood Pb levels between the CI and normal groups. Urinary Pb and Cd levels were significantly negatively correlated with Montreal Cognitive Assessment (MoCA) score, amyloid β42 (Aβ42), and Aβ42/40, while urinary Cd, Hg and blood Hg were significantly positively correlated with phosphorylated tau protein (P-tau). Weighted quantile sum (WQS) regression indicated that combined metal exposure had a more significant effect on CI than individual exposure. Mediation modeling revealed that plasma superoxide dismutase (SOD) was involved in the effects of urinary Cd on Aβ42/40 and P-tau, with mediation effects accounting for 20 % of the total effect. This study emphasized the combined exposure to metals, and the results can help to properly understand the association between mixed metals exposure and CI in the elderly, as well as provide population data and theoretical basis for identifying early environmental risk factors and discovering potential mechanisms of CI.
Collapse
Affiliation(s)
- Ying Qing
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201300, China; Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | | | - Yingyi Luo
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Shichun Li
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Xiufen Liu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Shuyu Yang
- Nutrilite Health Institute, Shanghai 201203, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai 201203, China.
| | - Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201300, China.
| |
Collapse
|
2
|
dos Santos JVL, de Melo ISV, Costa CACB, de Almeida LC, Silva DR, Ferro DC, Paula DTC, Macena MDL, Bueno NB. Association Between Ultra-Processed Food Consumption and Cognitive Performance Among Adolescent Students From Underdeveloped Cities in Brazil: A Cross-Sectional Study. Int J Public Health 2024; 69:1607658. [PMID: 39439747 PMCID: PMC11493626 DOI: 10.3389/ijph.2024.1607658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Objectives The association between ultra-processed foods (UPF) consumption and cognitive performance needs to be better characterized in adolescents, especially in low-income settings, where the cost of human capital is high. This study investigated the association between cognitive performance and UPF in adolescents from the countryside of the Brazilian Northeast. Methods Adolescents (15-18 years old) from three public high schools were included. Food intake was assessed using three 24-hour dietary recalls. The classification of foods as UPF was determined according to the Nova classification. Cognitive performance was evaluated using the Non-Verbal General Intelligence Test. Results 116 adolescents were included, of which 50 (43.1%) showed low cognitive performance. The average energy intake was 1973.5 kcal, with 24.2% coming from UPF. Participants with low cognitive performance consumed 26.5% (95% CI: [22.2; 30.7]%) of daily energy intake from UPF compared to 22.5% ([18.8; 26.2]%) of those with medium-high cognitive performance (P = 0.17), without differences in energy and macronutrient intake. Conclusion Despite similar UPF consumption compared to the Brazilian average, no association was found between UPF consumption and cognitive performance in this low-income adolescent sample.
Collapse
Affiliation(s)
- João Victor Laurindo dos Santos
- Faculty of Nutrition, Federal University of Alagoas, Maceió, Brazil
- Satuba Campus, Federal Institute of Education, Science and Technology of Alagoas, Satuba, Brazil
| | | | - Clara Andrezza Crisóstomo Bezerra Costa
- Satuba Campus, Federal Institute of Education, Science and Technology of Alagoas, Satuba, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | | | | | | | | | | | - Nassib Bezerra Bueno
- Faculty of Nutrition, Federal University of Alagoas, Maceió, Brazil
- Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Yoshimura Y, Wakabayashi H, Nagano F, Matsumoto A, Shimazu S, Shiraishi A, Kido Y, Bise T, Hamada T, Yoneda K. Coexistence of low body mass index and poor oral health negatively affects activities of daily living, swallowing, and cognition after stroke. Geriatr Gerontol Int 2024; 24:1045-1052. [PMID: 39188241 DOI: 10.1111/ggi.14971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/23/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024]
Abstract
AIM Low body mass index (BMI) and poor oral health are prevalent among older stroke patients and associated with adverse outcomes. However, their combined impact on functional recovery after stroke remains unclear. This study investigated the synergistic effects of low BMI and poor oral health on activities of daily living (ADL) independence, swallowing function, and cognitive status in post-stroke older patients. METHODS A retrospective cohort study was conducted on 708 hospitalized post-stroke patients aged ≥70 years. Low BMI was defined as <20 kg/m2, and poor oral health was assessed using the Revised Oral Assessment Guide (ROAG) with a score ≥13 indicating oral problems. The primary outcome was ADL independence (Functional Independence Measure-motor score >78) at discharge. Secondary outcomes included swallowing level (Food Intake Level Scale) and cognitive status (Functional Independence Measure-cognition score). Multiple regression analyses were performed to examine the associations of low BMI, poor oral health, and their combination with outcomes of interest. RESULTS The coexistence of low BMI and poor oral health was independently associated with lower odds of achieving ADL independence (odds ratio 0.130, 95% confidence interval [CI] 0.023-0.718), worse swallowing level (B = -0.878, 95% CI -1.280 to -0.476), and poorer cognitive status (B = -1.872, 95% CI -2.960 to -0.784) at discharge, after adjusting for confounders. The combined impact was stronger than either condition alone. CONCLUSIONS The coexistence of low BMI and poor oral health exerts a synergistic negative impact on functional recovery in older stroke inpatients. Comprehensive interventions integrating nutritional support, oral management, and rehabilitation are crucial to optimizing outcomes in this vulnerable population. Geriatr Gerontol Int 2024; 24: 1045-1052.
Collapse
Affiliation(s)
- Yoshihiro Yoshimura
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, Kumamoto, Japan
| | - Hidetaka Wakabayashi
- Department of Rehabilitation Medicine, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Fumihiko Nagano
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, Kumamoto, Japan
| | - Ayaka Matsumoto
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, Kumamoto, Japan
| | - Sayuri Shimazu
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, Kumamoto, Japan
| | - Ai Shiraishi
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, Kumamoto, Japan
| | - Yoshifumi Kido
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, Kumamoto, Japan
| | - Takahiro Bise
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, Kumamoto, Japan
| | - Takenori Hamada
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, Kumamoto, Japan
| | - Kouki Yoneda
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, Kumamoto, Japan
| |
Collapse
|
4
|
Cerin E, Soloveva MV, Molina MA, Schroers RD, Knibbs LD, Akram M, Wu YT, Mavoa S, Prina M, Sachdev PS, Sorensen Catts V, Jalaludin B, Poudel G, Symmons M, Barnett A, Hamidul Huque M, Leung Y, Cherbuin N, Anstey KJ. Neighbourhood environments and cognitive health in the longitudinal Personality and Total Health (PATH) through life study: A 12-year follow-up of older Australians. ENVIRONMENT INTERNATIONAL 2024; 191:108984. [PMID: 39208561 DOI: 10.1016/j.envint.2024.108984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Urban neighbourhood environments may impact older adults' cognitive health. However, longitudinal studies examining key environmental correlates of cognitive health are lacking. We estimated cross-sectional and longitudinal associations of neighbourhood built and natural environments and ambient air pollution with multiple cognitive health outcomes in Australian urban dwellers aged 60+ years. METHODS The study included 1160 participants of the PATH Through Life study (60+ cohort) who were followed up for 12 years (four assessments; 2001/02 to 2013/15) and with data on socio-demographics, health, cognitive functions and diagnoses, and full residential address. Neighbourhood environmental features encompassed population and street-intersection densities, non-commercial land use mix, transit points, presence of blue space, percentages of commercial land, parkland and tree cover, and annual average PM2.5 and NO2 concentrations. All exposures except for tree cover were assessed at two time points. Generalised additive mixed models estimated associations of person-level average, and within-person changes in, exposures with cognitive functions. Multi-state hidden Markov models estimated the associations of neighbourhood attributes with transitions to/from mild cognitive impairment (MCI). RESULTS Dense, destination-rich neighbourhoods were associated with a lower likelihood of transition to MCI and reversal to no MCI. Positive cross-sectional and longitudinal associations of non-commercial land use mix, street intersection density and percentage of commercial land were observed especially with global cognition and processing speed. While access to parkland and blue spaces were associated with a lower risk of transition to MCI, the findings related to cognitive functions were mixed and supportive of an effect of parkland on verbal memory only. Higher levels of PM2.5 and NO2 were consistently associated with steeper declines and/or decreases in cognitive functions and worse cognitive states across time. CONCLUSION To support cognitive health in ageing populations, neighbourhoods need to provide an optimal mix of environmental complexity, destinations and access to the natural environment and, at the same time, minimise ambient air pollution.
Collapse
Affiliation(s)
- Ester Cerin
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia; School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR.
| | - Maria V Soloveva
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia.
| | - Miguel A Molina
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia.
| | - Ralf-Dieter Schroers
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia.
| | - Luke D Knibbs
- School of Public Health, The University of Sydney, New South Wales, Australia; Public Health Research Analytics and Methods for Evidence, Public Health Unit, Sydney Local Health District, Camperdown, New South Wales, Australia.
| | - Muhammad Akram
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Yu-Tzu Wu
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Suzanne Mavoa
- Population Health, Murdoch Children's Research Institute, Melbourne School of Population & Global Health, University of Melbourne, Melbourne, Victoria, Australia.
| | - Matthew Prina
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Clinical Medicine, University of New South Wales, Sydney, Australia.
| | - Vibeke Sorensen Catts
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, UNSW, Sydney, Australia.
| | - Bin Jalaludin
- School of Population Health, University of New South Wales, Randwick, New South Wales, Australia.
| | - Govinda Poudel
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia.
| | - Mark Symmons
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia.
| | - Anthony Barnett
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia.
| | - Md Hamidul Huque
- School of Psychology, University of New South Wales, Randwick, New South Wales, Australia; Neuroscience Research Australia (NeuRA), Sydney, Australia.
| | - Yvonne Leung
- School of Psychology, University of New South Wales, Randwick, New South Wales, Australia; Neuroscience Research Australia (NeuRA), Sydney, Australia; UNSW Ageing Futures Institute, Sydney, Australia.
| | - Nicolas Cherbuin
- National Centre for Epidemiology and Population Health, Canberra, Australian Capital Territory, Australia.
| | - Kaarin J Anstey
- School of Psychology, University of New South Wales, Randwick, New South Wales, Australia; Neuroscience Research Australia (NeuRA), Sydney, Australia; UNSW Ageing Futures Institute, Sydney, Australia.
| |
Collapse
|
5
|
Kciuk M, Garg N, Dhankhar S, Saini M, Mujwar S, Devi S, Chauhan S, Singh TG, Singh R, Marciniak B, Gielecińska A, Kontek R. Exploring the Comprehensive Neuroprotective and Anticancer Potential of Afzelin. Pharmaceuticals (Basel) 2024; 17:701. [PMID: 38931368 PMCID: PMC11206995 DOI: 10.3390/ph17060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, and others) and cancer, seemingly disparate in their etiology and manifestation, exhibit intriguing associations in certain cellular and molecular processes. Both cancer and neurodegenerative diseases involve the deregulation of cellular processes such as apoptosis, proliferation, and DNA repair and pose a significant global health challenge. Afzelin (kaempferol 3-O-rhamnoside) is a flavonoid compound abundant in various plant sources. Afzelin exhibits a diverse range of biological activities, offering promising prospects for the treatment of diseases hallmarked by oxidative stress and deregulation of cell death pathways. Its protective potential against oxidative stress is also promising for alleviating the side effects of chemotherapy. This review explores the potential therapeutic implications of afzelin, including its capacity to mitigate oxidative stress, modulate inflammation, and promote cellular regeneration in neurodegenerative and cancer diseases.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Monika Saini
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala 133207, Haryana, India;
- Swami Vivekanand College of Pharmacy, Ramnagar, Banur 140601, Punjab, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, Punjab, India;
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
| |
Collapse
|
6
|
Cherbuin N, Patel H, Walsh EI, Ambikairajah A, Burns R, Brüstle A, Rasmussen LJ. Cognitive Function Is Associated with the Genetically Determined Efficiency of DNA Repair Mechanisms. Genes (Basel) 2024; 15:153. [PMID: 38397143 PMCID: PMC10888195 DOI: 10.3390/genes15020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Several modifiable risk factors for neurodegeneration and dementia have been identified, although individuals vary in their vulnerability despite a similar risk of exposure. This difference in vulnerability could be explained at least in part by the variability in DNA repair mechanisms' efficiency between individuals. Therefore, the aim of this study was to test associations between documented, prevalent genetic variation (single nucleotide polymorphism, SNP) in DNA repair genes, cognitive function, and brain structure. Community-living participants (n = 488,159; 56.54 years (8.09); 54.2% female) taking part in the UK Biobank study and for whom cognitive and genetic measures were available were included. SNPs in base excision repair (BER) genes of the bifunctional DNA glycosylases OGG1 (rs1052133, rs104893751), NEIL1 (rs7402844, rs5745906), NEIL2 (rs6601606), NEIL3 (rs10013040, rs13112390, rs13112358, rs1395479), MUTYH (rs34612342, rs200165598), NTHL1 (rs150766139, rs2516739) were considered. Cognitive measures included fluid intelligence, the symbol-digit matching task, visual matching, and trail-making. Hierarchical regression and latent class analyses were used to test the associations between SNPs and cognitive measures. Associations between SNPs and brain measures were also tested in a subset of 39,060 participants. Statistically significant associations with cognition were detected for 12 out of the 13 SNPs analyzed. The strongest effects amounted to a 1-6% difference in cognitive function detected for NEIL1 (rs7402844), NEIL2 (rs6601606), and NTHL1 (rs2516739). Associations varied by age and sex, with stronger effects detected in middle-aged women. Weaker associations with brain measures were also detected. Variability in some BER genes is associated with cognitive function and brain structure and may explain variability in the risk for neurodegeneration and dementia.
Collapse
Affiliation(s)
- Nicolas Cherbuin
- National Centre for Epidemiology and Population Health, Australian National University, Canberra 2601, Australia; (E.I.W.); (A.A.); (R.B.)
| | - Hardip Patel
- John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia; (H.P.); (A.B.)
| | - Erin I. Walsh
- National Centre for Epidemiology and Population Health, Australian National University, Canberra 2601, Australia; (E.I.W.); (A.A.); (R.B.)
| | - Ananthan Ambikairajah
- National Centre for Epidemiology and Population Health, Australian National University, Canberra 2601, Australia; (E.I.W.); (A.A.); (R.B.)
- Discipline of Psychology, University of Canberra, Canberra 2617, Australia
- Centre for Ageing Research and Translation, Faculty of Health, University of Canberra, Canberra 2617, Australia
| | - Richard Burns
- National Centre for Epidemiology and Population Health, Australian National University, Canberra 2601, Australia; (E.I.W.); (A.A.); (R.B.)
| | - Anne Brüstle
- John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia; (H.P.); (A.B.)
| | - Lene Juel Rasmussen
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark;
| |
Collapse
|
7
|
Alateeq K, Walsh EI, Cherbuin N. Dietary magnesium intake is related to larger brain volumes and lower white matter lesions with notable sex differences. Eur J Nutr 2023:10.1007/s00394-023-03123-x. [PMID: 36899275 DOI: 10.1007/s00394-023-03123-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/14/2023] [Indexed: 03/12/2023]
Abstract
PURPOSE To examine the association between dietary magnesium (Mg) intake and brain volumes and white matter lesions (WMLs) in middle to early old age. METHODS Participants (aged 40-73 years) from UK Biobank (n = 6001) were included and stratified by sex. Dietary Mg was measured using an online computerised 24 h recall questionnaire to estimate daily Mg intake. Latent class analysis and hierarchical linear regression models were performed to investigate the association between baseline dietary Mg, Mg trajectories, and brain volumes and WMLs. Associations between baseline Mg, and baseline blood pressure (BP) measures, and baseline Mg, Mg trajectories and BP changes (between baseline and wave 2) were also investigated to assess whether BP mediates the link between Mg intake and brain health. All analyses controlled for health and socio-demographic covariates. Possible interactions between menopausal status and Mg trajectories in predicting brain volumes and WMLs were also investigated. RESULTS On average, higher baseline dietary Mg intake was associated with larger brain volumes (gray matter [GM]: 0.001% [SE = 0.0003]; left hippocampus [LHC]: 0.0013% [SE = 0.0006]; and right hippocampus [RHC]: 0.0023% [SE = 0.0006]) in both men and women. Latent class analysis of Mg intake revealed three classes: "high-decreasing" (men = 3.2%, women = 1.9%), "low-increasing" (men = 1.09%, women = 1.62%), and "stable normal" (men = 95.71%, women = 96.51%). In women, only the "high-decreasing" trajectory was significantly associated with larger brain volumes (GM: 1.17%, [SE = 0.58]; and RHC: 2.79% [SE = 1.11]) compared to the "normal-stable", the "low-increasing" trajectory was associated with smaller brain volumes (GM: - 1.67%, [SE = 0.30]; white matter [WM]: - 0.85% [SE = 0.42]; LHC: - 2.43% [SE = 0.59]; and RHC: - 1.50% [SE = 0.57]) and larger WMLs (1.6% [SE = 0.53]). Associations between Mg and BP measures were mostly non-significant. Furthermore, the observed neuroprotective effect of higher dietary Mg intake in the "high-decreasing" trajectory appears to be greater in post-menopausal than pre-menopausal women. CONCLUSIONS Higher dietary Mg intake is related to better brain health in the general population, and particularly in women.
Collapse
Affiliation(s)
- Khawlah Alateeq
- National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, 54 Mills Road, Canberra, ACT, 2601, Australia. .,Radiological Science, College of Applied Medical Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Erin I Walsh
- National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, 54 Mills Road, Canberra, ACT, 2601, Australia.,Population Health Exchange, National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia
| | - Nicolas Cherbuin
- National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, 54 Mills Road, Canberra, ACT, 2601, Australia
| |
Collapse
|
8
|
Yu J, He Y, Yu X, Gu L, Wang Q, Wang S, Tao F, Sheng J. Associations Between Mild Cognitive Impairment and Whole Blood Zinc and Selenium in the Elderly Cohort. Biol Trace Elem Res 2023; 201:51-64. [PMID: 35113349 DOI: 10.1007/s12011-022-03136-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 01/11/2023]
Abstract
Some studies have shown that an imbalance in trace element homeostasis can lead to cognitive dysfunction, but data are lacking. The purpose of this study was to investigate the association between whole blood zinc (Zn), selenium (Se), copper-zinc ratio (Cu/Zn), copper-selenium ratio (Cu/Se), and zinc-selenium ratio (Zn/Se) and mild cognitive impairment (MCI) in elderly Chinese individuals. The study was based on the Elderly Health and Controlled Environmental Factors Cohort in Lu'an, Anhui Province, China, from June to September 2016. The cognitive function of the elderly was determined by the Mini-Mental State Examination (MMSE) and activities of daily living (ADL) scales. The concentrations of Zn, Cu, and Se in the whole blood were measured by inductively coupled plasma-mass spectrometry (ICP-MS). Binary logistic regression was used to analyze the associations between trace elements and MCI. A total of 1006 participants with an average age of 71.70 years old were included in this study. Compared with healthy people, MCI patients had higher whole blood Zn levels and lower Se levels, and Cu/Zn, Cu/Se, and Zn/Se were also significantly different. Binary logistic regression analysis showed that Zn, Cu/Se, and Zn/Se exposure in the third tertile was associated with an increased risk of MCI, while Se exposure in the third tertile was associated with a reduced risk of MCI. After adjustment for sex, age, marital status, BMI, and living status, whole blood Zn, Se, Cu/Zn, Cu/Se, and Zn/Se were significantly associated with MCI risk, especially in elderly women.
Collapse
Affiliation(s)
- Jinhui Yu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yu He
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xuemin Yu
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ling Gu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Changzhou Center for Disease Control and Prevention, Changzhou, 213000, Jiangsu, China
| | - Qunan Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Sufang Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle/Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China
| | - Jie Sheng
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
- MOE Key Laboratory of Population Health Across Life Cycle/Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China.
| |
Collapse
|
9
|
Zhuo B, Zheng D, Cai M, Wang C, Zhang S, Zhang Z, Tian F, Wang X, Lin H. Mediation Effect of Brain Volume on the Relationship Between Peripheral Inflammation and Cognitive Decline. J Alzheimers Dis 2023; 95:523-533. [PMID: 37545239 DOI: 10.3233/jad-230253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND Studies have reported the associations between inflammation, brain volume, and cognition separately. It is reasonable to assume peripheral inflammation may contribute to cognitive decline through brain volume atrophy. OBJECTIVE To examine the associations between peripheral inflammation, brain volume, and cognition among adults, and to investigate whether brain volume atrophy mediates the inflammation-cognition relationshipMethods:We retrieved 20,381 participants with available data on peripheral inflammation, brain volume, and cognition from the UK Biobank cohort. Cognitive function was assessed by performance on cognitive tasks probing various cognitive domains. Brain volumes were measured by magnetic resonance imaging (MRI). Multivariable linear models were used to investigate the associations between three peripheral inflammatory indexes (C-reactive protein, systemic immune-inflammatory index, neutrophil-to-lymphocyte ratio), brain volume, and cognition. Mediation analyses were conducted to assess the potential mediating effect of brain volume atrophy. All results were corrected for multiple comparisons using the false-discovery rate (FDR). RESULTS Peripheral inflammation was inversely associated with grey matter volume (GMV), white matter volume (WMV), and cognition after adjusting for potential covariates. For instance, CRP was associated with the GMV of left parahippocampal gyrus (β= -0.05, 95% confidence interval [CI]: -0.06 to -0.04, pFDR =1.07×10-16) and general cognitive factor (β= -0.03, 95% CI: -0. -0.04 to -0.01, pFDR = 0.001). Brain volume atrophy mediated the inflammation-cognitive decline relationship, accounting for 15-29% of the overall impact. CONCLUSION In this cohort study, peripheral inflammation was associated with brain volume atrophy and cognitive decline. Brain atrophy may mediate the inflammation-cognitive decline relationship.
Collapse
Affiliation(s)
- Bingting Zhuo
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dashan Zheng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Henan, China
| | - Shiyu Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fei Tian
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaojie Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Molot J, Sears M, Marshall LM, Bray RI. Neurological susceptibility to environmental exposures: pathophysiological mechanisms in neurodegeneration and multiple chemical sensitivity. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:509-530. [PMID: 34529912 DOI: 10.1515/reveh-2021-0043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/13/2021] [Indexed: 05/23/2023]
Abstract
The World Health Organization lists air pollution as one of the top five risks for developing chronic non-communicable disease, joining tobacco use, harmful use of alcohol, unhealthy diets and physical inactivity. This review focuses on how host defense mechanisms against adverse airborne exposures relate to the probable interacting and overlapping pathophysiological features of neurodegeneration and multiple chemical sensitivity. Significant long-term airborne exposures can contribute to oxidative stress, systemic inflammation, transient receptor subfamily vanilloid 1 (TRPV1) and subfamily ankyrin 1 (TRPA1) upregulation and sensitization, with impacts on olfactory and trigeminal nerve function, and eventual loss of brain mass. The potential for neurologic dysfunction, including decreased cognition, chronic pain and central sensitization related to airborne contaminants, can be magnified by genetic polymorphisms that result in less effective detoxification. Onset of neurodegenerative disorders is subtle, with early loss of brain mass and loss of sense of smell. Onset of MCS may be gradual following long-term low dose airborne exposures, or acute following a recognizable exposure. Upregulation of chemosensitive TRPV1 and TRPA1 polymodal receptors has been observed in patients with neurodegeneration, and chemically sensitive individuals with asthma, migraine and MCS. In people with chemical sensitivity, these receptors are also sensitized, which is defined as a reduction in the threshold and an increase in the magnitude of a response to noxious stimulation. There is likely damage to the olfactory system in neurodegeneration and trigeminal nerve hypersensitivity in MCS, with different effects on olfactory processing. The associations of low vitamin D levels and protein kinase activity seen in neurodegeneration have not been studied in MCS. Table 2 presents a summary of neurodegeneration and MCS, comparing 16 distinctive genetic, pathophysiological and clinical features associated with air pollution exposures. There is significant overlap, suggesting potential comorbidity. Canadian Health Measures Survey data indicates an overlap between neurodegeneration and MCS (p < 0.05) that suggests comorbidity, but the extent of increased susceptibility to the other condition is not established. Nevertheless, the pathways to the development of these conditions likely involve TRPV1 and TRPA1 receptors, and so it is hypothesized that manifestation of neurodegeneration and/or MCS and possibly why there is divergence may be influenced by polymorphisms of these receptors, among other factors.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, North York, ON, Canada
| | | | | | - Riina I Bray
- Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Lee JJ, Kim JH, Song DS, Lee K. Effect of Short- to Long-Term Exposure to Ambient Particulate Matter on Cognitive Function in a Cohort of Middle-Aged and Older Adults: KoGES. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9913. [PMID: 36011565 PMCID: PMC9408640 DOI: 10.3390/ijerph19169913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Exposure to ambient air pollution and its threat to human health is a global concern, especially in the elderly population. Therefore, more in-depth studies are required to understand the extent of the harmful effects of particulate matter (PM) based on duration and levels of exposure. An investigation was conducted to determine the association between short- (1-14 days), medium- (1, 3, and 6 months), and long-term (1, 2, and 3 years) exposure to air pollutants (PM2.5 and PM10) and cognitive function among Koreans (4175 participants, mean age 67.8 years, 55.2% women) aged over 50 years. Higher levels of PM2.5 exposure for short to long term and PM10 exposure for medium to long term were found to be associated with decreased cognitive function, as indicated by lower scores of the Mini-Mental State Examination adopted in Korean (K-MMSE). There were significant effect modifications by sex, age group, alcohol consumption, physical activity, and smoking status in the association between long-term PM2.5 and PM10 exposure and cognitive function. These findings, which underscore the importance of the efforts to reduce the exposure levels and durations of air pollutants, especially in the vulnerable elderly population, provide evidence for establishing more stringent policies for air pollution regulations.
Collapse
|
12
|
Bawa KK, Ba J, Kiss A, Wang R, Feng V, Swardfager W, Andreazza A, Gallagher D, Marotta G, Herrmann N, Lanctôt KL. Lipid Peroxidation as a Marker of Apathy and Executive Dysfunction in Patients at Risk for Vascular Cognitive Impairment. J Alzheimers Dis 2022; 89:733-743. [DOI: 10.3233/jad-220274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The co-occurrence of apathy and executive dysfunction, a correlate of vascular cognitive impairment (VCI), is highly prevalent, yet facilitating factors are largely unknown. Objective: This study investigates the relationship between lipid peroxidation, apathy, and executive dysfunction in patients at risk for VCI. Methods: In participants with coronary artery disease, who are at a high risk of VCI, apathy (Apathy Evaluation Scale), and executive function (composite z-score based on age and education population norms from trails making test B, animal naming, and phonemic fluency tests) were assessed. Serum concentrations of an early (lipid hydroperoxide (LPH)) and late (8-isoprostane (8-ISO)) lipid peroxidation marker, were measured and the 8-ISO/LPH ratio was calculated. Results: Participants (n = 206, age±SD = 63.0±7.5, 80% men, total years of education = 15.9±3.4, AES score = 28.3±8.8, executive function = 0±1) demonstrated significantly different 8-ISO/LPH ratios between groups (F(3, 202) = 10.915, p < 0.001) with increasing levels in the following order: no apathy or executive dysfunction, only executive dysfunction (executive function composite score≤–1), only apathy (AES≥28), and both apathy and executive dysfunction. A model adjusting for demographics showed that lipid peroxidation was associated with both apathy (B(SE) = 4.63 (0.954), t = 4.852, p < 0.001) and executive function (B(SE) = –0.19 (0.079), t = –2.377, p = 0.018). However, when controlling for both demographics and vascular risk factors, lipid peroxidation was associated with only apathy (B(SE) = 3.11 (0.987), t = 3.149, p = 0.002). Conclusion: The results highlight a potentially important involvement of lipid peroxidation in the co-occurrence of apathy and executive dysfunction in those at risk for VCI.
Collapse
Affiliation(s)
- Kritleen K. Bawa
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Joycelyn Ba
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Alex Kiss
- ICES, Sunnybrook Research Institute, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - RuoDing Wang
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Vivian Feng
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Walter Swardfager
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ana Andreazza
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Damien Gallagher
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Giovanni Marotta
- Division of Geriatric Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Krista L. Lanctôt
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Systemic Inflammation Predicts Alzheimer Pathology in Community Samples without Dementia. Biomedicines 2022; 10:biomedicines10061240. [PMID: 35740262 PMCID: PMC9219863 DOI: 10.3390/biomedicines10061240] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Neuroinflammation and oxidative stress (OS) are implicated in the pathophysiology of Alzheimer’s disease (AD). However, it is unclear at what stage of the disease process inflammation first becomes manifest. The aim of this study was to investigate the associations between specific plasma markers of inflammation and OS, tau, and Amyloid-β 38, 40, and 42 levels in cognitively unimpaired middle-age and older individuals. Associations between inflammatory states identified through principal component analysis and AD biomarkers were investigated in middle-age (52–56 years, n = 335, 52% female) and older-age (72–76 years, n = 351, 46% female) participants without dementia. In middle-age, a component reflecting variation in OS was most strongly associated with tau and to a lesser extent amyloid-β levels. In older-age, a similar component to that observed in middle-age was only associated with tau, while another component reflecting heightened inflammation independent of OS, was associated with all AD biomarkers. In middle and older-age, inflammation and OS states are associated with plasma AD biomarkers.
Collapse
|
14
|
Cherbuin N, Walsh EI, Shaw M, Luders E, Anstey KJ, Sachdev PS, Abhayaratna WP, Gaser C. Optimal Blood Pressure Keeps Our Brains Younger. Front Aging Neurosci 2021; 13:694982. [PMID: 34675795 PMCID: PMC8523821 DOI: 10.3389/fnagi.2021.694982] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Elevated blood pressure (BP) is a major health risk factor and the leading global cause of premature death. Hypertension is also a risk factor for cognitive decline and dementia. However, when elevated blood pressure starts impacting cerebral health is less clear. We addressed this gap by estimating how a validated measure of brain health relates to changes in BP over a period of 12 years. Methods: Middle-age (44-46 years at baseline, n = 335, 52% female) and older-age (60-64 years, n = 351, 46% female) cognitively intact individuals underwent up to four brain scans. Brain health was assessed using a machine learning approach to produce an estimate of "observed" age (BrainAGE), which can be contrasted with chronological age. Longitudinal associations between blood pressures and BrainAGE were assessed with linear mixed-effects models. Results: A progressive increase in BP was observed over the follow up (MAP = 0.8 mmHg/year, SD = 0.92; SBP = 1.41 mmHg/year, SD = 1.49; DBP = 0.61 mmHg/year, SD = 0.78). In fully adjusted models, every additional 10 mmHg increase in blood pressure (above 90 for mean, 114 for systolic, and 74 for diastolic blood pressure) was associated with a higher BrainAGE by 65.7 days for mean, and 51.1 days for systolic/diastolic blood pressure. These effects occurred across the blood pressure range and were not exclusively driven by hypertension. Conclusion: Increasing blood pressure is associated with poorer brain health. Compared to a person becoming hypertensive, somebody with an ideal BP is predicted to have a brain that appears more than 6 months younger at midlife.
Collapse
Affiliation(s)
- Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, ACT, Australia
| | - Erin I Walsh
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, ACT, Australia
| | - Marnie Shaw
- College of Engineering & Computer Science, Australian National University, Canberra, ACT, Australia
| | - Eileen Luders
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, ACT, Australia.,School of Psychology, University of Auckland, Auckland, New Zealand
| | - Kaarin J Anstey
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | | | - Christian Gaser
- Department of Neurology, Jena University Hospital, Jena, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| |
Collapse
|
15
|
Anstey KJ, Butterworth P, Christensen H, Easteal S, Cherbuin N, Leach L, Burns R, Kiely KM, Mortby ME, Eramudugolla R, Gad I. Cohort Profile Update: The PATH Through Life Project. Int J Epidemiol 2021; 50:35-36. [PMID: 33232442 DOI: 10.1093/ije/dyaa179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kaarin J Anstey
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, ACT, Australia.,School of Psychology, University of New South Wales, Randwick, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| | - Peter Butterworth
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, ACT, Australia.,Melbourne Institute of Applied Economic and Social Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Helen Christensen
- Black Dog Institute, University of South Wales, Sydney, NSW, Australia
| | - Simon Easteal
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, ACT, Australia
| | - Liana Leach
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, ACT, Australia
| | - Richard Burns
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, ACT, Australia
| | - Kim M Kiely
- School of Psychology, University of New South Wales, Randwick, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| | - Moyra E Mortby
- School of Psychology, University of New South Wales, Randwick, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| | - Ranmalee Eramudugolla
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, ACT, Australia.,School of Psychology, University of New South Wales, Randwick, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| | - Imogen Gad
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, ACT, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| |
Collapse
|
16
|
Manzine PR, Vatanabe IP, Peron R, Grigoli MM, Pedroso RV, Nascimento CMC, Cominetti MR. Blood-based Biomarkers of Alzheimer's Disease: The Long and Winding Road. Curr Pharm Des 2020; 26:1300-1315. [PMID: 31942855 DOI: 10.2174/1381612826666200114105515] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Blood-based biomarkers can be very useful in formulating new diagnostic and treatment proposals in the field of dementia, especially in Alzheimer's disease (AD). However, due to the influence of several factors on the reproducibility and reliability of these markers, their clinical use is still very uncertain. Thus, up-to-date knowledge about the main blood biomarkers that are currently being studied is extremely important in order to discover clinically useful and applicable tools, which could also be used as novel pharmacological strategies for the AD treatment. METHODS A narrative review was performed based on the current candidates of blood-based biomarkers for AD to show the main results from different studies, focusing on their clinical applicability and association with AD pathogenesis. OBJECTIVE The aim of this paper was to carry out a literature review on the major blood-based biomarkers for AD, connecting them with the pathophysiology of the disease. RESULTS Recent advances in the search of blood-based AD biomarkers were summarized in this review. The biomarkers were classified according to the topics related to the main hallmarks of the disease such as inflammation, amyloid, and tau deposition, synaptic degeneration and oxidative stress. Moreover, molecules involved in the regulation of proteins related to these hallmarks were described, such as non-coding RNAs, neurotrophins, growth factors and metabolites. Cells or cellular components with the potential to be considered as blood-based AD biomarkers were described in a separate topic. CONCLUSION A series of limitations undermine new discoveries on blood-based AD biomarkers. The lack of reproducibility of findings due to the small size and heterogeneity of the study population, different analytical methods and other assay conditions make longitudinal studies necessary in this field to validate these structures, especially when considering a clinical evaluation that includes a broad panel of these potential and promising blood-based biomarkers.
Collapse
Affiliation(s)
- Patricia R Manzine
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Izabela P Vatanabe
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Rafaela Peron
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Marina M Grigoli
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Renata V Pedroso
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Carla M C Nascimento
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Marcia R Cominetti
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| |
Collapse
|
17
|
Camarillo-López RH, Hernández Rodríguez M, Torres-Ramos MA, Arciniega-Martínez IM, García-Marín ID, Correa Basurto J, Méndez Méndez JV, Rosales-Hernández MC. Tert-butyl-(4-hydroxy-3-((3-(2-methylpiperidin-yl)propyl)carbamoyl)phenyl)carbamate Has Moderated Protective Activity in Astrocytes Stimulated with Amyloid Beta 1-42 and in a Scopolamine Model. Molecules 2020; 25:molecules25215009. [PMID: 33137907 PMCID: PMC7672627 DOI: 10.3390/molecules25215009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with no cure nowadays; there is no treatment either to prevent or to stop its progression. In vitro studies suggested that tert-butyl-(4-hydroxy-3-((3-(2-methylpiperidin-yl)propyl)carbamoyl)phenyl) carbamate named the M4 compound can act as both β-secretase and an acetylcholinesterase inhibitor, preventing the amyloid beta peptide (Aβ) aggregation and the formation of fibrils (fAβ) from Aβ1-42. This work first aimed to assess in in vitro studies to see whether the death of astrocyte cells promoted by Aβ1-42 could be prevented. Second, our work investigated the ability of the M4 compound to inhibit amyloidogenesis using an in vivo model after scopolamine administration. The results showed that M4 possesses a moderate protective effect in astrocytes against Aβ1-42 due to a reduction in the TNF-α and free radicals observed in cell cultures. In the in vivo studies, however, no significant effect of M4 was observed in comparison with a galantamine model employed in rats, in which case this outcome was attributed to the bioavailability of M4 in the brain of the rats.
Collapse
Affiliation(s)
- Raúl Horacio Camarillo-López
- Laboratorio de Biofísica y biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, 11340 Ciudad de México, Mexico; (R.H.C.-L.); (M.H.R.); (I.D.G.-M.)
| | - Maricarmen Hernández Rodríguez
- Laboratorio de Biofísica y biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, 11340 Ciudad de México, Mexico; (R.H.C.-L.); (M.H.R.); (I.D.G.-M.)
| | - Mónica Adriana Torres-Ramos
- Unidad Periférica de Neurociencias, Facultad de Medicina UNAM-Instituto Nacional de Neurología y Neurocirugía, MVS-SSA, Insurgentes sur 3877, La Fama, Tlalpan, 14269 Ciudad de México, Mexico;
| | - Ivonne Maciel Arciniega-Martínez
- Laboratorio de Inmunidad de Mucosas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México, Mexico;
| | - Iohanan Daniel García-Marín
- Laboratorio de Biofísica y biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, 11340 Ciudad de México, Mexico; (R.H.C.-L.); (M.H.R.); (I.D.G.-M.)
| | - José Correa Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 Ciudad de México, Mexico;
| | - Juan Vicente Méndez Méndez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional. Av. Luis Enrique Erro s/n, Nueva Industrial Vallejo, Gustavo A. Madero, 07738 Ciudad de México, Mexico;
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, 11340 Ciudad de México, Mexico; (R.H.C.-L.); (M.H.R.); (I.D.G.-M.)
- Correspondence:
| |
Collapse
|
18
|
Polverino A, Rucco R, Stillitano I, Bonavita S, Grimaldi M, Minino R, Pesoli M, Trojsi F, D'Ursi AM, Sorrentino G, Sorrentino P. In Amyotrophic Lateral Sclerosis Blood Cytokines Are Altered, but Do Not Correlate with Changes in Brain Topology. Brain Connect 2020; 10:411-421. [PMID: 32731760 DOI: 10.1089/brain.2020.0741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: The present study aims at investigating the possible correlation between peripheral markers of inflammation and brain networks. Introduction: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease dominated by progressive motor impairment. Among the complex mechanisms contributing to the pathogenesis of the disease, neuroinflammation, which is associated with altered circulating cytokine levels, is suggested to play a prominent role. Methods: Based on magnetoencephalography data, we estimated topological properties of the brain networks in ALS patients and healthy controls. Subsequently, the blood levels of a subset of cytokines were assayed. Finally, we modeled the brain topological features in the function of the cytokine levels. Results: Significant differences were found in the levels of the cytokines interleukin (IL)-4, IL-1β, and interferon-gamma (IFN-γ) between patients and controls. In particular, IL-4 and IL-1β levels increased in ALS patients, while the IFN-γ level was higher in healthy controls. We also detected modifications in brain global topological parameters in terms of hyperconnectedness. Despite both blood cytokines and brain topology being altered in ALS patients, such changes do not appear to be in a direct relationship. Conclusion: Our results would be in line with the idea that topological changes relate to neurodegenerative processes. However, the absence of correlation between blood cytokines and topological parameters of brain networks does not preclude that inflammatory processes contribute to the alterations of the brain networks. Impact statement The progression of amyotrophic lateral sclerosis entails both neurodegenerative and inflammatory processes. Furthermore, disease progression induces global modifications of the brain networks, with advanced stages showing a more compact, hyperconnected network topology. The pathophysiological processes underlying topological changes are unknown. In this article, we hypothesized that the global inflammatory profile would relate to the topological alterations. Our results showed that this is not the case, as modeling the topological properties as a function of the inflammatory state did not yield good predictions. Hence, our results suggest that topological changes might directly relate to neurodegenerative processes instead.
Collapse
Affiliation(s)
- Arianna Polverino
- Institute of Diagnosis and Treatment Hermitage Capodimonte, Naples, Italy
| | - Rosaria Rucco
- Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy.,Institute of Applied Sciences and Intelligent Systems of National Research Council, Pozzuoli, Italy
| | | | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | | | - Roberta Minino
- Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Matteo Pesoli
- Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | | | - Giuseppe Sorrentino
- Institute of Diagnosis and Treatment Hermitage Capodimonte, Naples, Italy.,Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy.,Institute of Applied Sciences and Intelligent Systems of National Research Council, Pozzuoli, Italy
| | - Pierpaolo Sorrentino
- Institute of Applied Sciences and Intelligent Systems of National Research Council, Pozzuoli, Italy.,Department of Engineering, University of Naples "Parthenope", Naples, Italy
| |
Collapse
|
19
|
Protective effect of seleno-amino-oligosaccharide on oxidative damage of IPEC-1 cells by activating Keap1/Nrf2 signaling pathway. Int J Biol Macromol 2020; 155:972-978. [DOI: 10.1016/j.ijbiomac.2019.11.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022]
|
20
|
Qin C, Xu PP, Zhang X, Zhang C, Liu CB, Yang DG, Gao F, Yang ML, Du LJ, Li JJ. Pathological significance of tRNA-derived small RNAs in neurological disorders. Neural Regen Res 2020; 15:212-221. [PMID: 31552886 PMCID: PMC6905339 DOI: 10.4103/1673-5374.265560] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a type of RNA that is not translated into proteins. Transfer RNAs (tRNAs), a type of ncRNA, are the second most abundant type of RNA in cells. Recent studies have shown that tRNAs can be cleaved into a heterogeneous population of ncRNAs with lengths of 18–40 nucleotides, known as tRNA-derived small RNAs (tsRNAs). There are two main types of tsRNA, based on their length and the number of cleavage sites that they contain: tRNA-derived fragments and tRNA-derived stress-induced RNAs. These RNA species were first considered to be byproducts of tRNA random cleavage. However, mounting evidence has demonstrated their critical functional roles as regulatory factors in the pathophysiological processes of various diseases, including neurological diseases. However, the underlying mechanisms by which tsRNAs affect specific cellular processes are largely unknown. Therefore, this study comprehensively summarizes the following points: (1) The biogenetics of tsRNA, including their discovery, classification, formation, and the roles of key enzymes. (2) The main biological functions of tsRNA, including its miRNA-like roles in gene expression regulation, protein translation regulation, regulation of various cellular activities, immune mediation, and response to stress. (3) The potential mechanisms of pathophysiological changes in neurological diseases that are regulated by tsRNA, including neurodegeneration and neurotrauma. (4) The identification of the functional diversity of tsRNA may provide valuable information regarding the physiological and pathophysiological mechanisms of neurological disorders, thus providing a new reference for the clinical treatment of neurological diseases. Research into tsRNAs in neurological diseases also has the following challenges: potential function and mechanism studies, how to accurately quantify expression, and the exact relationship between tsRNA and miRNA. These challenges require future research efforts.
Collapse
Affiliation(s)
- Chuan Qin
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Pei-Pei Xu
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xin Zhang
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chao Zhang
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chang-Bin Liu
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - De-Gang Yang
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Ming-Liang Yang
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|