1
|
Basiouny SM, Zaki HF, Elshazly SM, Mohamed AF. Berberine ameliorates seizure activity and cardiac dysfunction in pentylenetetrazol-kindling seizures in rats: Modulation of sigma1 receptor, Akt/eNOS signaling, and ferroptosis. Neuropharmacology 2025; 267:110295. [PMID: 39800083 DOI: 10.1016/j.neuropharm.2025.110295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Seizures can lead to cardiac dysfunction. Multiple pathways contribute to this phenomenon, of which the chaperone sigma-1 receptor (S1R) signaling represents a promising nexus between the abnormalities seen in both epilepsy and ensuing cardiac complications. The study explored the potential of Berberine (BER), a promising S1R agonist, in treating epilepsy and associated cardiac abnormalities in a pentylenetetrazol (PTZ) kindling rat model of epilepsy. Male Wistar albino rats received PTZ (35 mg/kg) every other day alone, with BER, with phenytoin (PHT), with both BER and PHT and with both BER and an S1R blocker (NE-100) over 27 days. BER decreased seizure severity and improved hemodynamic parameters. Histopathological abnormalities were more pronounced in the PTZ, and blocker group than in other groups, in heart tissue. In cardiac tissue, BER enhanced the AKT/eNOS signaling pathway and mitigated ferroptosis by boosting the cystine/glutamate transporter/Glutathione/Glutathione Peroxidase 4 (XCT/GSH/GPX4) system and ferritin heavy chain-1 (FTH-1) expression, while reducing iron and Transferrin receptor protein 1 (TFR1) levels. Such effects were largely negated by NE-100 pretreatment. In conclusion, BER shows protective effects on cardiac dysfunction induced by the PTZ kindling model by acting as an S1R agonist and influencing the AKT/eNOS signaling pathway and ferroptosis.
Collapse
Affiliation(s)
- Shrouk M Basiouny
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Sinai University, Egypt.
| | - Hala F Zaki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Shimaa M Elshazly
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Zagazig University, Egypt
| | - Ahmed F Mohamed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, 46612, Egypt
| |
Collapse
|
2
|
Dwivedi AK, Mahesh A, Sanfeliu A, Larkin J, Siwicki RA, Sweeney KJ, O’Brien DF, Widdess-Walsh P, Picelli S, Henshall DC, Tiwari VK. High-resolution multimodal profiling of human epileptic brain activity via explanted depth electrodes. JCI Insight 2025; 10:e184518. [PMID: 39541170 PMCID: PMC11721296 DOI: 10.1172/jci.insight.184518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The availability and integration of electrophysiological and molecular data from the living brain is critical in understanding and diagnosing complex human disease. Intracranial stereo electroencephalography (SEEG) electrodes used for identifying the seizure focus in patients with epilepsy could enable the integration of such multimodal data. Here, we report multimodal profiling of epileptic brain activity via explanted depth electrodes (MoPEDE), a method that recovers extensive protein-coding transcripts, including cell type markers, DNA methylation, and short variant profiles from explanted SEEG electrodes matched with electrophysiological and radiological data allowing for high-resolution reconstructions of brain structure and function. We found gene expression gradients that corresponded with the neurophysiology-assigned epileptogenicity index but also outlier molecular fingerprints in some electrodes, potentially indicating seizure generation or propagation zones not detected during electroclinical assessments. Additionally, we identified DNA methylation profiles indicative of transcriptionally permissive or restrictive chromatin states and SEEG-adherent differentially expressed and methylated genes not previously associated with epilepsy. Together, these findings validate that RNA profiles and genome-wide epigenetic data from explanted SEEG electrodes offer high-resolution surrogate molecular landscapes of brain activity. The MoPEDE approach has the potential to enhance diagnostic decisions and deepen our understanding of epileptogenic network processes in the human brain.
Collapse
Affiliation(s)
- Anuj Kumar Dwivedi
- Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Arun Mahesh
- Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Albert Sanfeliu
- FutureNeuro Research Ireland Centre for Translational Brain Science and
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland
| | - Julian Larkin
- FutureNeuro Research Ireland Centre for Translational Brain Science and
- Department of Neurology and Clinical Neurophysiology, Beaumont Hospital, Dublin, Ireland
- Strategic Academic Recruitment Doctor of Medicine Programme, RCSI University of Medicine and Health Sciences in collaboration with Blackrock Clinic, Dublin, Ireland
| | - Rebecca A. Siwicki
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Kieron J. Sweeney
- FutureNeuro Research Ireland Centre for Translational Brain Science and
- Department of Neurosurgery, Beaumont Hospital, Dublin, Ireland
| | - Donncha F. O’Brien
- FutureNeuro Research Ireland Centre for Translational Brain Science and
- Department of Neurosurgery, Beaumont Hospital, Dublin, Ireland
| | - Peter Widdess-Walsh
- FutureNeuro Research Ireland Centre for Translational Brain Science and
- Department of Neurology and Clinical Neurophysiology, Beaumont Hospital, Dublin, Ireland
| | - Simone Picelli
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - David C. Henshall
- FutureNeuro Research Ireland Centre for Translational Brain Science and
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, Ireland
| | - Vijay K. Tiwari
- Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queens University Belfast, Belfast, United Kingdom
| |
Collapse
|
3
|
Luo S, Wang PY, Zhou P, Zhang WJ, Gu YJ, Liang XY, Zhang JW, Luo JX, Zhang HW, Lan S, Zhang TT, Yang JH, Sun SZ, Guo XY, Wang JL, Deng LF, Xu ZH, Jin L, He YY, Ye ZL, Gu WY, Li BM, Shi YW, Liu XR, Yan HJ, Yi YH, Jiang YW, Mao X, Li WL, Meng H, Liao WP. Variants in EP400, encoding a chromatin remodeler, cause epilepsy with neurodevelopmental disorders. Am J Hum Genet 2025; 112:87-105. [PMID: 39708813 PMCID: PMC11739926 DOI: 10.1016/j.ajhg.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024] Open
Abstract
EP400 encodes a core catalytic ATPase subunit of ATP-dependent chromatin remodeling complexes. The gene-disease association of EP400 is undetermined. In this study, we performed trio-based whole-exome sequencing in a cohort of 402 families with epilepsy and neurodevelopmental disorders (NDDs) and identified compound heterozygous EP400 variants in six unrelated individuals. Six additional EP400 individuals were recruited via the match platform of China, including two de novo heterozygous and four compound heterozygous variants. The individual with a heterozygous de novo frameshift variant presented with NDDs, while the others exhibited epilepsy and NDDs, explained by the damaged genetic dependence quantity. EP400 presented significantly higher excesses of variants in the individuals. Clustering analysis revealed that the majority paralogs of EP400 were associated with NDDs/epilepsy and co-expressed highly with EP400. Analysis of the spatiotemporal expression indicated that EP400 is highly expressed in the developing brain and cells during differentiation, indicating its vital role in neurodevelopment; EP400 is predominantly expressed in inhibitory neurons in the early stage but in excitatory neurons in the mature stage. The development-dependent expression pattern of neuron specificity explained the favorable outcome of epilepsy. Knockdown of EP400 ortholog in Drosophila caused significantly increased susceptibility to seizures and abnormal neuronal firing. The ep400 crispant zebrafish exhibited brain developmental abnormalities, poorer adaptability, lower response to stimulation, epileptic discharges, abnormal cellular apoptosis, and increased susceptibility to seizures. Transcriptome analysis showed that ep400 deficiency caused expressional dysregulation of 84 epilepsy/NDD-associated genes, including 11 highly dose-sensitive genes. This study identified EP400 as a causative gene of epilepsy/NDDs.
Collapse
Affiliation(s)
- Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Peng-Yu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Peng Zhou
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Wen-Jun Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yu-Jie Gu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Xiao-Yu Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Jing-Wen Zhang
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jun-Xia Luo
- Epilepsy Center, Qilu Children's Hospital of Shandong University, Jinan 250000, Shandong, China
| | - Hong-Wei Zhang
- Epilepsy Center, Qilu Children's Hospital of Shandong University, Jinan 250000, Shandong, China
| | - Song Lan
- Department of Neurology, Maoming People's Hospital, Maoming 525000, Guangdong, China
| | - Ting-Ting Zhang
- Department of Psychology, Guangdong Sanjiu Brain Hospital, Guangzhou 510440, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie-Hua Yang
- Department of Neurology, Second Affiliated Hospital of Shantou University, Shantou 515000, Guangdong, China
| | - Su-Zhen Sun
- Department of Neurology, Hebei Children's Hospital, Shijiazhuang 050000, Hebei, China
| | - Xiang-Yang Guo
- Department of Pediatrics, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Ju-Li Wang
- Epilepsy Center, Jiamusi Central Hospital, Jiamusi 154002, Heilongjiang, China
| | - Lin-Fan Deng
- Department of Pediatrics, Mianyang Central Hospital, Mianyang 621000, Sichuan, China
| | - Ze-Hai Xu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Liang Jin
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yun-Yan He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Zi-Long Ye
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Wei-Yue Gu
- Beijing Chigene Translational Medicine Research Center Co., Ltd., Beijing 100000, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yi-Wu Shi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Hong-Jun Yan
- Epilepsy Center, Guangdong Sanjiu Brain Hospital, Guangzhou 510440, Guangdong, China
| | - Yong-Hong Yi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yu-Wu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiao Mao
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Wen-Ling Li
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Heng Meng
- Department of Neurology, the First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, 613 West Huangpu Avenue, Guangzhou, China.
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China.
| |
Collapse
|
4
|
Bleakley LE, Reid CA. HCN1 epilepsy: From genetics and mechanisms to precision therapies. J Neurochem 2024; 168:3891-3910. [PMID: 37565989 DOI: 10.1111/jnc.15928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/12/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023]
Abstract
Pathogenic variation in HCN1 is now an established cause of epilepsy and intellectual disability. Variation in HCN1 causes a spectrum of disease with a genotype-phenotype relationship emerging. De novo pathogenic variants that occur in the transmembrane domains of the channel typically cause a cation 'leak' that associates with severe developmental and epileptic encephalopathy (DEE). Genotype-phenotype associations for variants that fall outside of the transmembrane domains are less well established but do include milder forms of epilepsy that can be either de novo or inherited. HCN1 DEE mouse models have been generated which recapitulate the seizures and learning difficulties seen in human patients. These mice have also acted as powerful preclinical models which share pharmacoresponsiveness with human HCN1 DEE patients. Data from these mouse models support the conclusion that anti-seizure medications with sodium channel block as their primary mechanism of action should be used with caution in HCN1 DEE. Other comorbidities of HCN1 DEE including retinal dysfunction have also been modelled in HCN1 DEE mice, suggesting HCN1 variants can cause a dramatically reduced sensitivity to light with limited ability to process temporal information. Our understanding of the genetics and pathophysiological mechanisms underlying HCN1 epilepsy has progressed significantly and is already influencing therapy. However, more research effort is needed to fully understand the natural histories of HCN1 epilepsies and to develop precision therapeutic approaches.
Collapse
Affiliation(s)
- Lauren E Bleakley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Gavaz M, Aslan ES, Tekeş S. Clinical application of whole-exome sequencing analysis in childhood epilepsy. J Neurogenet 2024; 38:187-194. [PMID: 39654149 DOI: 10.1080/01677063.2024.2434869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
The swift updates of public databases and advancements in next-generation sequencing (NGS) technologies have enhanced the genetic identification capacities of epilepsy clinics. This study aimed to evaluate the diagnostic efficacy of NGS in pediatric epilepsy patients as a whole and to present the data obtained in the whole exome sequence analysis. We enrolled 40 children with suspected childhood epilepsy in this study. All patients underwent evaluation by a clinical geneticist or pediatric neurologist and the molecular genetic analysis of those children was performed by whole-exome sequencing (WES). Out of the 40 patients, 12 (30%) received a genetic diagnosis, involving 14 mutations across 13 genes. The cumulative positive diagnostic yield was 30%. Twelve of these patients were identified to have 5 variants previously documented as pathogenic, 9 variants classified as likely pathogenic, and 5 novel variants that have not been reported before. The outcomes indicate that whole-exome sequencing offers great benefits in clinical patient diagnosis, particularly in terms of detecting diagnostic variants. This study underscored the significance of whole exome sequencing (WES) studies, where only a broad gene set is examined in epilepsy patients. This approach has the potential to establish gene-specific phenotypic profiles, particularly by uncovering novel candidate genes in epilepsy patients with well-defined phenotypes. Additionally, conducting validation studies on variants of uncertain clinical significance could enhance the outcome yield.
Collapse
Affiliation(s)
- Meral Gavaz
- Department of Molecular and Medical Genetics, Biruni University, Istanbul, Turkey
| | - Elif S Aslan
- Department of Molecular and Medical Genetics, Biruni University, Istanbul, Turkey
| | - Selahattin Tekeş
- Faculty of Medicine, Department of Medical Genetics, Dicle University, Diyarbakir, Turkey
| |
Collapse
|
6
|
Josephson CB, Aronica E, Beniczky S, Boyce D, Cavalleri G, Denaxas S, French J, Jehi L, Koh H, Kwan P, McDonald C, Mitchell JW, Rampp S, Sadleir L, Sisodiya SM, Wang I, Wiebe S, Yasuda C, Youngerman B. Big data research is everyone's research-Making epilepsy data science accessible to the global community: Report of the ILAE big data commission. Epileptic Disord 2024; 26:733-752. [PMID: 39446076 DOI: 10.1002/epd2.20288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024]
Abstract
Epilepsy care generates multiple sources of high-dimensional data, including clinical, imaging, electroencephalographic, genomic, and neuropsychological information, that are collected routinely to establish the diagnosis and guide management. Thanks to high-performance computing, sophisticated graphics processing units, and advanced analytics, we are now on the cusp of being able to use these data to significantly improve individualized care for people with epilepsy. Despite this, many clinicians, health care providers, and people with epilepsy are apprehensive about implementing Big Data and accompanying technologies such as artificial intelligence (AI). Practical, ethical, privacy, and climate issues represent real and enduring concerns that have yet to be completely resolved. Similarly, Big Data and AI-related biases have the potential to exacerbate local and global disparities. These are highly germane concerns to the field of epilepsy, given its high burden in developing nations and areas of socioeconomic deprivation. This educational paper from the International League Against Epilepsy's (ILAE) Big Data Commission aims to help clinicians caring for people with epilepsy become familiar with how Big Data is collected and processed, how they are applied to studies using AI, and outline the immense potential positive impact Big Data can have on diagnosis and management.
Collapse
Affiliation(s)
- Colin B Josephson
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Alberta, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada
- Centre for Health Informatics, University of Calgary, Calgary, Alberta, Canada
- Institute for Health Informatics, University College London, London, UK
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Sandor Beniczky
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Department of Neurophysiology, Danish Epilepsy Center, Dianalund, Denmark
- Department of Clinical Medicine, Aarhus University and Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Danielle Boyce
- Tufts University School of Medicine, Boston, Massachusetts, USA
- Johns Hopkins University Biomedical Informatics and Data Science Section, Baltimore, Maryland, USA
- West Chester University Department of Public Policy and Administration, West Chester, Pennsylvania, USA
| | - Gianpiero Cavalleri
- School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Spiros Denaxas
- Institute for Health Informatics, University College London, London, UK
- British Heart Foundation Data Science Center, Health Data Research UK, London, UK
| | - Jacqueline French
- Department of Neurology, Grossman School of Medicine, New York University, New York, New York, USA
| | - Lara Jehi
- Epilepsy Center, Cleveland Clinic, Cleveland, Ohio, USA
- Center for Computational Life Sciences, Cleveland, Ohio, USA
| | - Hyunyong Koh
- Harvard Brain Science Initiative, Harvard University, Boston, Massachusetts, USA
| | - Patrick Kwan
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Carrie McDonald
- Department of Radiation Medicine and Applied Sciences & Psychiatry, University of California, San Diego, California, USA
| | - James W Mitchell
- Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, UK
- Department of Neurology, The Walton Cetnre NHS Foundation Trust, Liverpool, UK
| | - Stefan Rampp
- Department of Neurosurgery and Department of Neuroradiology, University Hospital Erlangen, Department of Neurosurgery, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Lynette Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG and Chalfont Centre for Epilepsy, London, UK
| | - Irene Wang
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Samuel Wiebe
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Alberta, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada
- Clinical Research Unit, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Clarissa Yasuda
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Brett Youngerman
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
7
|
Reid CA. Preface: Special issue: "Ion channels and genetic epilepsy". J Neurochem 2024; 168:3829-3830. [PMID: 38722169 DOI: 10.1111/jnc.16121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 11/27/2024]
Abstract
This preface introduces the Journal of Neurochemistry Special Issue on Advances in Epilepsy Research. Epilepsy is a devastating disease characterized by recurrent seizures. Despite the addition of numerous therapeutics over the last few decades epilepsy patients resistant to standard of care treatments remains stubbornly high. This highlights a clear unmet clinical need and the importance of new research into this disease. One major advance over the last two decades has been the recognition that genetic factors play a significant role in the underlying pathogenesis of epilepsy. Much of our insights into the pathogenic mechanisms underlying genetic epilepsy has come from research into genes that encode ion channels. In this issue, there are up-to-date reviews discussing epilepsy caused by variation in HCN channels, voltage-dependent sodium channels, voltage-dependent calcium channels, and GABAA receptors. The reviews highlight our understanding of the genotype-phenotype relationships and the identification of precision medicine approaches. Complimenting this is a review on metabolic aspects modulating ion channels in genetic disease. This issue also has fundamental research manuscripts investigating how currently approved drugs may rescue NMDA receptor dysfunction and how in vitro neuron cultures can be used to probe network scale deficits and drug impacts in SCN2A disease. Other primary data manuscripts include those focusing on metabolic therapies, gut microbiota, and new in vivo screening tools for identifying novel anti-seizure drugs. Collectively, manuscripts published as part of this edition highlight recent research gains, especially in our understanding of genetic causes of epilepsy involving ion channels.
Collapse
Affiliation(s)
- Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Quatraccioni A, Cases-Cunillera S, Balagura G, Coleman M, Rossini L, Mills JD, Casillas-Espinosa PM, Moshé SL, Sankar R, Baulac S, Noebels JL, Auvin S, O'Brien TJ, Henshall DC, Akman Ö, Galanopoulou AS. WONOEP appraisal: Genetic insights into early onset epilepsies. Epilepsia 2024; 65:3138-3154. [PMID: 39302576 DOI: 10.1111/epi.18124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
Early onset epilepsies occur in newborns and infants, and to date, genetic aberrations and variants have been identified in approximately one quarter of all patients. With technological sequencing advances and ongoing research, the genetic diagnostic yield for specific seizure disorders and epilepsies is expected to increase. Genetic variants associated with epilepsy include chromosomal abnormalities and rearrangements of various sizes as well as single gene variants. Among these variants, a distinction can be made between germline and somatic, with the latter being increasingly identified in epilepsies with focal cortical malformations in recent years. The identification of the underlying genetic mechanisms of epilepsy syndromes not only revolutionizes the diagnostic schemes but also leads to a better understanding of the diseases and their interrelationships, ultimately providing new opportunities for therapeutic targeting. At the XVI Workshop on Neurobiology of Epilepsy (WONOEP 2022, Talloires, France, July 2022), various etiologies, research models, and mechanisms of genetic early onset epilepsies were presented and discussed.
Collapse
Affiliation(s)
- Anne Quatraccioni
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Silvia Cases-Cunillera
- Neuronal Signaling in Epilepsy and Glioma, Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Ganna Balagura
- Department of Neuroscience, Ophthalmology, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Matthew Coleman
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Laura Rossini
- Epilepsy Unit, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy
| | - James D Mills
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont St. Peter, UK
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Solomon L Moshé
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, and Department of Neuroscience and Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Raman Sankar
- Department of Neurology and Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Jeffrey L Noebels
- Departments of Neurology, Neuroscience, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Stéphane Auvin
- AP-HP, Hôpital Robert-Debré, INSERM NeuroDiderot, DMU Innov-RDB, Neurologie Pédiatrique, member of European Reference Network EpiCARE, Université Paris Cité and Institut Universitaire de France, Paris, France
| | - Terence J O'Brien
- Department of Neuroscience, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria, Australia
| | - David C Henshall
- Department of Physiology and Medical Physics and FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Özlem Akman
- Department of Physiology, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
9
|
Oliver KL, Scheffer IE, Ellis CA, Grinton BE, Berkovic SF, Bahlo M. Investigating the effect of polygenic background on epilepsy phenotype in 'monogenic' families. EBioMedicine 2024; 109:105404. [PMID: 39476534 PMCID: PMC11558038 DOI: 10.1016/j.ebiom.2024.105404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Phenotypic variability within families with epilepsy is often observed, even when relatives share the same monogenic cause. We aimed to investigate whether common polygenic risk for epilepsy could explain the penetrance and phenotypic expression of rare pathogenic variants in familial epilepsies. METHODS We studied 58 clinically heterogeneous families with genetic epilepsy with febrile seizures plus (GEFS+). Relatives were coded as either unaffected or affected with epilepsy, and graded according to phenotype severity: no seizures, febrile seizures (FS) only, febrile seizures plus (FS+), generalised/focal epilepsy, or developmental and epileptic encephalopathy (DEE). Epilepsy polygenic risk scores (PRSs) were tested for association with epilepsy phenotype. Within families, the mean PRS difference was compared between pairs concordant versus discordant for phenotype severity. Statistical analyses were performed using mixed-effect regression models. FINDINGS 304 individuals segregating a known, or presumed, rare variant of large effect, were studied. Within families, higher epilepsy polygenic risk was associated with an epilepsy diagnosis (OR = 1.39, 95% CI 1.08, 1.80, padj = 0.040). Relatives with a more severe phenotype had a mean pairwise PRS difference of +0.19 higher than relatives with a milder phenotype (padj = 0.010). The difference increased with greater phenotype discordance between relatives. As the cohort included two rare variants with >30 relatives each, variant-specific genotype-phenotype associations could also be analysed. Whilst the epilepsy PRS effect was strong for relatives segregating the GABRG2 p.Arg82Gln pathogenic variant (padj = 0.0010), the effect was not significant for SCN1B p.Cys121Trp. INTERPRETATION We provide support for genetic background modifying the penetrance and phenotypic expression of rare variants associated with 'monogenic' epilepsies. In GEFS+ families, relatives with higher epilepsy PRSs were more likely to show penetrance (epilepsy diagnosis) and a more severe phenotype. Variant-specific analyses suggest that some rare variants may be more susceptible to PRS modification, carrying important genetic counselling and disease prognostication implications for patients. FUNDING National Health and Medical Research Council of Australia, Medical Research Future Fund of Australia.
Collapse
Affiliation(s)
- Karen L Oliver
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia; Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, VIC, Australia
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, VIC, Australia; Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg, VIC, Australia; Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia; Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Colin A Ellis
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bronwyn E Grinton
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia; Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, VIC, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, VIC, Australia; Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg, VIC, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
10
|
Smal N, Majdoub F, Janssens K, Reyniers E, Meuwissen MEC, Ceulemans B, Northrup H, Hill JB, Liu L, Errichiello E, Gana S, Strong A, Rohena L, Franciskovich R, Murali CN, Huybrechs A, Sulem T, Fridriksdottir R, Sulem P, Stefansson K, Bai Y, Rosenfeld JA, Lalani SR, Streff H, Kooy RF, Weckhuysen S. Burden re-analysis of neurodevelopmental disorder cohorts for prioritization of candidate genes. Eur J Hum Genet 2024; 32:1378-1386. [PMID: 38965372 DOI: 10.1038/s41431-024-01661-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/12/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
This study aimed to uncover novel genes associated with neurodevelopmental disorders (NDD) by leveraging recent large-scale de novo burden analysis studies to enhance a virtual gene panel used in a diagnostic setting. We re-analyzed historical trio-exome sequencing data from 745 individuals with NDD according to the most recent diagnostic standards, resulting in a cohort of 567 unsolved individuals. Next, we designed a virtual gene panel containing candidate genes from three large de novo burden analysis studies in NDD and prioritized candidate genes by stringent filtering for ultra-rare de novo variants with high pathogenicity scores. Our analysis revealed an increased burden of de novo variants in our selected candidate genes within the unsolved NDD cohort and identified qualifying de novo variants in seven candidate genes: RIF1, CAMK2D, RAB11FIP4, AGO3, PCBP2, LEO1, and VCP. Clinical data were collected from six new individuals with de novo or inherited LEO1 variants and three new individuals with de novo PCBP2 variants. Our findings add additional evidence for LEO1 as a risk gene for autism and intellectual disability. Furthermore, we prioritize PCBP2 as a candidate gene for NDD associated with motor and language delay. In summary, by leveraging de novo burden analysis studies, employing a stringent variant filtering pipeline, and engaging in targeted patient recruitment, our study contributes to the identification of novel genes implicated in NDDs.
Collapse
Affiliation(s)
- Noor Smal
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Fatma Majdoub
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Medical Genetics Department, University Hedi Chaker Hospital of Sfax, University of Sfax, Sfax, Tunisia
| | - Katrien Janssens
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
- Center of Medical Genetics, University Hospital Antwerp, Drie Eikenstraat 655, Edegem, 2650, Belgium
| | - Edwin Reyniers
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
- Center of Medical Genetics, University Hospital Antwerp, Drie Eikenstraat 655, Edegem, 2650, Belgium
| | - Marije E C Meuwissen
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
- Center of Medical Genetics, University Hospital Antwerp, Drie Eikenstraat 655, Edegem, 2650, Belgium
| | - Berten Ceulemans
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Jeremy B Hill
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Lingying Liu
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Edoardo Errichiello
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Simone Gana
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Alanna Strong
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Luis Rohena
- Division of Medical Genetics, Department of Pediatrics, San Antonio Military Medical Center, San Antonio, TX, USA
- Department of Pediatrics, Long School of Medicine-UT Health San Antonio, San Antonio, TX, USA
| | - Rachel Franciskovich
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Chaya N Murali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - An Huybrechs
- Department of Pediatrics, Heilig Hart Ziekenhuis, Lier, Belgium
| | - Telma Sulem
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | | | | | | | - Yan Bai
- GeneDx, Gaithersburg, MD, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Sarah Weckhuysen
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium.
- Department of Neurology, University Hospital Antwerp, Antwerp, Belgium.
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
11
|
Viswanathan S, Oliver KL, Regan BM, Schneider AL, Myers CT, Mehaffey MG, LaCroix AJ, Antony J, Webster R, Cardamone M, Subramanian GM, Chiu ATG, Roza E, Teleanu RI, Malone S, Leventer RJ, Gill D, Berkovic SF, Hildebrand MS, Goad BS, Howell KB, Symonds JD, Brunklaus A, Sadleir LG, Zuberi SM, Mefford HC, Scheffer IE. Solving the Etiology of Developmental and Epileptic Encephalopathy with Spike-Wave Activation in Sleep (D/EE-SWAS). Ann Neurol 2024; 96:932-943. [PMID: 39096015 PMCID: PMC11496008 DOI: 10.1002/ana.27041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/31/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE To understand the etiological landscape and phenotypic differences between 2 developmental and epileptic encephalopathy (DEE) syndromes: DEE with spike-wave activation in sleep (DEE-SWAS) and epileptic encephalopathy with spike-wave activation in sleep (EE-SWAS). METHODS All patients fulfilled International League Against Epilepsy (ILAE) DEE-SWAS or EE-SWAS criteria with a Core cohort (n = 91) drawn from our Epilepsy Genetics research program, together with 10 etiologically solved patients referred by collaborators in the Expanded cohort (n = 101). Detailed phenotyping and analysis of molecular genetic results were performed. We compared the phenotypic features of individuals with DEE-SWAS and EE-SWAS. Brain-specific gene co-expression analysis was performed for D/EE-SWAS genes. RESULTS We identified the etiology in 42/91 (46%) patients in our Core cohort, including 29/44 (66%) with DEE-SWAS and 13/47 (28%) with EE-SWAS. A genetic etiology was identified in 31/91 (34%). D/EE-SWAS genes were highly co-expressed in brain, highlighting the importance of channelopathies and transcriptional regulators. Structural etiologies were found in 12/91 (13%) individuals. We identified 10 novel D/EE-SWAS genes with a range of functions: ATP1A2, CACNA1A, FOXP1, GRIN1, KCNMA1, KCNQ3, PPFIA3, PUF60, SETD1B, and ZBTB18, and 2 novel copy number variants, 17p11.2 duplication and 5q22 deletion. Although developmental regression patterns were similar in both syndromes, DEE-SWAS was associated with a longer duration of epilepsy and poorer intellectual outcome than EE-SWAS. INTERPRETATION DEE-SWAS and EE-SWAS have highly heterogeneous genetic and structural etiologies. Phenotypic analysis highlights valuable clinical differences between DEE-SWAS and EE-SWAS which inform clinical care and prognostic counseling. Our etiological findings pave the way for the development of precision therapies. ANN NEUROL 2024;96:932-943.
Collapse
Affiliation(s)
- Sindhu Viswanathan
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
- Department of Paediatrics, Hospital Pulau Pinang, Pulau Pinang, Malaysia
| | - Karen L. Oliver
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
- Population Health and Immunity Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, the University of Melbourne, Melbourne, VIC 3010, Australia
| | - Brigid M. Regan
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Amy L. Schneider
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Candace T. Myers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Michele G. Mehaffey
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
| | - Amy J. LaCroix
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
| | - Jayne Antony
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Richard Webster
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Michael Cardamone
- Sydney Children’s Hospital, Randwick; School of Clinical Medicine, UNSW Sydney, New South Wales, Australia
| | | | - Annie TG Chiu
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Eugenia Roza
- Faculty of Medicine, Clinical Neurosciences Department, Paediatric Neurology, Carol Davila University of Medicine and Pharmacy, Romania
- Pediatric Neurology Department, Dr. Victor Gomoiu Children’s Hospital, Romania
| | - Raluca I. Teleanu
- Faculty of Medicine, Clinical Neurosciences Department, Paediatric Neurology, Carol Davila University of Medicine and Pharmacy, Romania
- Pediatric Neurology Department, Dr. Victor Gomoiu Children’s Hospital, Romania
| | - Stephen Malone
- Centre for Advanced Imaging, University of Queensland, St Lucia, Australia
- Neurosciences Department, Queensland Children’s Hospital, South Brisbane Queensland, Australia
| | - Richard J. Leventer
- Department of Neurology, Royal Children’s Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Deepak Gill
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Kids Neuroscience Centre, Kids Research Institute, Sydney, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Michael S. Hildebrand
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Beatrice S. Goad
- Department of Neurology, Royal Children’s Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Katherine B. Howell
- Department of Neurology, Royal Children’s Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Joseph D. Symonds
- School of Health and Wellbeing, University of Glasgow, UK
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
| | - Andreas Brunklaus
- School of Health and Wellbeing, University of Glasgow, UK
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
| | - Lynette G. Sadleir
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington, New Zealand
| | - Sameer M. Zuberi
- School of Health and Wellbeing, University of Glasgow, UK
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
| | - Heather C. Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
- Centre for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN,USA
| | - Ingrid E. Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
- Department of Neurology, Royal Children’s Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- The Florey Institute of Neurosciences and Mental Health, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Specchio N, Trivisano M, Aronica E, Balestrini S, Arzimanoglou A, Colasante G, Cross JH, Jozwiak S, Wilmshurst JM, Vigevano F, Auvin S, Nabbout R, Curatolo P. The expanding field of genetic developmental and epileptic encephalopathies: current understanding and future perspectives. THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:821-834. [PMID: 39419567 DOI: 10.1016/s2352-4642(24)00196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 10/19/2024]
Abstract
Recent advances in genetic testing technologies have revolutionised the identification of genetic abnormalities in early onset developmental and epileptic encephalopathies (DEEs). In this Review, we provide an update on the expanding landscape of genetic factors contributing to DEEs, encompassing over 800 reported genes. We focus on the cellular and molecular mechanisms driving epileptogenesis, with an emphasis on emerging therapeutic strategies and effective treatment options. We explore noteworthy, novel genes linked to DEE phenotypes, such as gBRAT-1 and GNAO1, and gene families such as GRIN and HCN. Understanding the network-level effects of gene variants will pave the way for potential gene therapy applications. Given the diverse comorbidities associated with DEEs, a multidisciplinary team approach is essential. Despite ongoing efforts and improved genetic testing, DEEs lack a cure, and treatment complexities persist. This Review underscores the necessity for larger international prospective studies focusing on both seizure outcomes and developmental trajectories.
Collapse
Affiliation(s)
- Nicola Specchio
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesu' Children's Hospital IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies, EpiCARE, Rome, Italy.
| | - Marina Trivisano
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesu' Children's Hospital IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies, EpiCARE, Rome, Italy
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam, Netherlands; Stichting Epilepsie Instellingen Nederland, Heemstede, Netherlands
| | - Simona Balestrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies, EpiCARE, Florence, Italy; Neuroscience Department, University of Florence, Florence, Italy; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Alexis Arzimanoglou
- Paediatric Epilepsy and Neurophysiology Department, Hospital San Juan de Dios, Coordinating member of the European Reference Network on Rare and Complex Epilepsies, EpiCARE, Barcelona, Spain
| | - Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - J Helen Cross
- UCL NIHR BRC Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - Sergiusz Jozwiak
- Research Department, Children's Memorial Health Institute, EpicARE Member, Warsaw, Poland
| | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, South Africa
| | - Federico Vigevano
- Pediatric Neurorehabilitation Department, IRCCS San Raffaele, Rome, Italy
| | - Stéphane Auvin
- AP-HP, Service de Neurologie Pédiatrique, Centre de référence Epilepsies Rares, Member of European Reference Network EpiCARE, Hôpital Universitaire Robert-Debré, Paris, France; Université Paris-Cité, INSERM Neuro Diderot, Paris, France; Institut Universitaire de France, Paris, France
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker-Enfants Malades Hospital, AP-HP, Member of European Reference Network EpiCARE, Institut Imagine, INSERM, UMR 1163, Université de Paris Cité, Paris, France
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| |
Collapse
|
13
|
Gao S, Fang A, Huang Y, Giunchiglia V, Noori A, Schwarz JR, Ektefaie Y, Kondic J, Zitnik M. Empowering biomedical discovery with AI agents. Cell 2024; 187:6125-6151. [PMID: 39486399 DOI: 10.1016/j.cell.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 09/12/2024] [Indexed: 11/04/2024]
Abstract
We envision "AI scientists" as systems capable of skeptical learning and reasoning that empower biomedical research through collaborative agents that integrate AI models and biomedical tools with experimental platforms. Rather than taking humans out of the discovery process, biomedical AI agents combine human creativity and expertise with AI's ability to analyze large datasets, navigate hypothesis spaces, and execute repetitive tasks. AI agents are poised to be proficient in various tasks, planning discovery workflows and performing self-assessment to identify and mitigate gaps in their knowledge. These agents use large language models and generative models to feature structured memory for continual learning and use machine learning tools to incorporate scientific knowledge, biological principles, and theories. AI agents can impact areas ranging from virtual cell simulation, programmable control of phenotypes, and the design of cellular circuits to developing new therapies.
Collapse
Affiliation(s)
- Shanghua Gao
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Ada Fang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Allston, MA, USA
| | - Yepeng Huang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Valentina Giunchiglia
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Department of Brain Sciences, Imperial College London, London, UK
| | - Ayush Noori
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Harvard College, Cambridge, MA, USA
| | | | - Yasha Ektefaie
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Program in Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Jovana Kondic
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Allston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Data Science Initiative, Cambridge, MA, USA.
| |
Collapse
|
14
|
Chen S, Abou-Khalil BW, Afawi Z, Ali QZ, Amadori E, Anderson A, Anderson J, Andrade DM, Annesi G, Arslan M, Auce P, Bahlo M, Baker MD, Balagura G, Balestrini S, Banks E, Barba C, Barboza K, Bartolomei F, Bass N, Baum LW, Baumgartner TH, Baykan B, Bebek N, Becker F, Bennett CA, Beydoun A, Bianchini C, Bisulli F, Blackwood D, Blatt I, Borggräfe I, Bosselmann C, Braatz V, Brand H, Brockmann K, Buono RJ, Busch RM, Caglayan SH, Canafoglia L, Canavati C, Castellotti B, Cavalleri GL, Cerrato F, Chassoux F, Cherian C, Cherny SS, Cheung CL, Chou IJ, Chung SK, Churchhouse C, Ciullo V, Clark PO, Cole AJ, Cosico M, Cossette P, Cotsapas C, Cusick C, Daly MJ, Davis LK, Jonghe PD, Delanty N, Dennig D, Depondt C, Derambure P, Devinsky O, Vito LD, Dickerson F, Dlugos DJ, Doccini V, Doherty CP, El-Naggar H, Ellis CA, Epstein L, Evans M, Faucon A, Feng YCA, Ferguson L, Ferraro TN, Silva IFD, Ferri L, Feucht M, Fields MC, Fitzgerald M, Fonferko-Shadrach B, Fortunato F, Franceschetti S, French JA, Freri E, Fu JM, Gabriel S, Gagliardi M, Gambardella A, Gauthier L, Giangregorio T, Gili T, Glauser TA, Goldberg E, Goldman A, Goldstein DB, Granata T, Grant R, Greenberg DA, Guerrini R, Gundogdu-Eken A, Gupta N, Haas K, Hakonarson H, Haryanyan G, Häusler M, Hegde M, Heinzen EL, Helbig I, Hengsbach C, Heyne H, Hirose S, Hirsch E, Ho CJ, Hoeper O, Howrigan DP, Hucks D, Hung PC, Iacomino M, Inoue Y, Inuzuka LM, Ishii A, Jehi L, Johnson MR, Johnstone M, Kälviäinen R, Kanaan M, Kara B, Kariuki SM, Kegele J, Kesim Y, Khoueiry-Zgheib N, Khoury J, King C, Klein KM, Kluger G, Knake S, Kok F, Korczyn AD, Korinthenberg R, Koupparis A, Kousiappa I, Krause R, Krenn M, Krestel H, Krey I, Kunz WS, Kurlemann G, Kuzniecky RI, Kwan P, Vega-Talbott ML, Labate A, Lacey A, Lal D, Laššuthová P, Lauxmann S, Lawthom C, Leech SL, Lehesjoki AE, Lemke JR, Lerche H, Lesca G, Leu C, Lewin N, Lewis-Smith D, Li GHY, Liao C, Licchetta L, Lin CH, Lin KL, Linnankivi T, Lo W, Lowenstein DH, Lowther C, Lubbers L, Lui CHT, Macedo-Souza LI, Madeleyn R, Madia F, Magri S, Maillard L, Marcuse L, Marques P, Marson AG, Matthews AG, May P, Mayer T, McArdle W, McCarroll SM, McGoldrick P, McGraw CM, McIntosh A, McQuillan A, Meador KJ, Mei D, Michel V, Millichap JJ, Minardi R, Montomoli M, Mostacci B, Muccioli L, Muhle H, Müller-Schlüter K, Najm IM, Nasreddine W, Neaves S, Neubauer BA, Newton CRJC, Noebels JL, Northstone K, Novod S, O’Brien TJ, Owusu-Agyei S, Özkara Ç, Palotie A, Papacostas SS, Parrini E, Pato C, Pato M, Pendziwiat M, Pennell PB, Petrovski S, Pickrell WO, Pinsky R, Pinto D, Pippucci T, Piras F, Piras F, Poduri A, Pondrelli F, Posthuma D, Powell RHW, Privitera M, Rademacher A, Ragona F, Ramirez-Hamouz B, Rau S, Raynes HR, Rees MI, Regan BM, Reif A, Reinthaler E, Rheims S, Ring SM, Riva A, Rojas E, Rosenow F, Ryvlin P, Saarela A, Sadleir LG, Salman B, Salmon A, Salpietro V, Sammarra I, Scala M, Schachter S, Schaller A, Schankin CJ, Scheffer IE, Schneider N, Schubert-Bast S, Schulze-Bonhage A, Scudieri P, Sedláčková L, Shain C, Sham PC, Shiedley BR, Siena SA, Sills GJ, Sisodiya SM, Smoller JW, Solomonson M, Spalletta G, Sparks KR, Sperling MR, Stamberger H, Steinhoff BJ, Stephani U, Štěrbová K, Stewart WC, Stipa C, Striano P, Strzelczyk A, Surges R, Suzuki T, Talarico M, Talkowski ME, Taneja RS, Tanteles GA, Timonen O, Timpson NJ, Tinuper P, Todaro M, Topaloglu P, Tsai MH, Tumiene B, Turkdogan D, Uğur-İşeri S, Utkus A, Vaidiswaran P, Valton L, van Baalen A, Vari MS, Vetro A, Vlčková M, von Brauchitsch S, von Spiczak S, Wagner RG, Watts N, Weber YG, Weckhuysen S, Widdess-Walsh P, Wiebe S, Wolf SM, Wolff M, Wolking S, Wong I, von Wrede R, Wu D, Yamakawa K, Yapıcı Z, Yis U, Yolken R, Yücesan E, Zagaglia S, Zahnert F, Zara F, Zimprich F, Zizovic M, Zsurka G, Neale BM, Berkovic SF. Exome sequencing of 20,979 individuals with epilepsy reveals shared and distinct ultra-rare genetic risk across disorder subtypes. Nat Neurosci 2024; 27:1864-1879. [PMID: 39363051 PMCID: PMC11646479 DOI: 10.1038/s41593-024-01747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/01/2024] [Indexed: 10/05/2024]
Abstract
Identifying genetic risk factors for highly heterogeneous disorders such as epilepsy remains challenging. Here we present, to our knowledge, the largest whole-exome sequencing study of epilepsy to date, with more than 54,000 human exomes, comprising 20,979 deeply phenotyped patients from multiple genetic ancestry groups with diverse epilepsy subtypes and 33,444 controls, to investigate rare variants that confer disease risk. These analyses implicate seven individual genes, three gene sets and four copy number variants at exome-wide significance. Genes encoding ion channels show strong association with multiple epilepsy subtypes, including epileptic encephalopathies and generalized and focal epilepsies, whereas most other gene discoveries are subtype specific, highlighting distinct genetic contributions to different epilepsies. Combining results from rare single-nucleotide/short insertion and deletion variants, copy number variants and common variants, we offer an expanded view of the genetic architecture of epilepsy, with growing evidence of convergence among different genetic risk loci on the same genes. Top candidate genes are enriched for roles in synaptic transmission and neuronal excitability, particularly postnatally and in the neocortex. We also identify shared rare variant risk between epilepsy and other neurodevelopmental disorders. Our data can be accessed via an interactive browser, hopefully facilitating diagnostic efforts and accelerating the development of follow-up studies.
Collapse
|
15
|
Scheffer IE, Zuberi S, Mefford HC, Guerrini R, McTague A. Developmental and epileptic encephalopathies. Nat Rev Dis Primers 2024; 10:61. [PMID: 39237642 DOI: 10.1038/s41572-024-00546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Developmental and epileptic encephalopathies, the most severe group of epilepsies, are characterized by seizures and frequent epileptiform activity associated with developmental slowing or regression. Onset typically occurs in infancy or childhood and includes many well-defined epilepsy syndromes. Patients have wide-ranging comorbidities including intellectual disability, psychiatric features, such as autism spectrum disorder and behavioural problems, movement and musculoskeletal disorders, gastrointestinal and sleep problems, together with an increased mortality rate. Problems change with age and patients require substantial support throughout life, placing a high psychosocial burden on parents, carers and the community. In many patients, the aetiology can be identified, and a genetic cause is found in >50% of patients using next-generation sequencing technologies. More than 900 genes have been identified as monogenic causes of developmental and epileptic encephalopathies and many cell components and processes have been implicated in their pathophysiology, including ion channels and transporters, synaptic proteins, cell signalling and metabolism and epigenetic regulation. Polygenic risk score analyses have shown that common variants also contribute to phenotypic variability. Holistic management, which encompasses antiseizure therapies and care for multimorbidities, is determined both by epilepsy syndrome and aetiology. Identification of the underlying aetiology enables the development of precision medicines to improve the long-term outcome of patients with these devastating diseases.
Collapse
Affiliation(s)
- Ingrid E Scheffer
- Epilepsy Research Centre, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.
- Florey and Murdoch Children's Research Institutes, Melbourne, Victoria, Australia.
- Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.
| | - Sameer Zuberi
- Paediatric Neurosciences Research Group, School of Health & Wellbeing, University of Glasgow, Glasgow, UK
- Paediatric Neurosciences, Royal Hospital for Children, Glasgow, UK
| | - Heather C Mefford
- Center for Paediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Meyer IRCCS, Florence, Italy
- University of Florence, Florence, Italy
| | - Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
16
|
Andjelkovic M, Klaassen K, Skakic A, Marjanovic I, Kravljanac R, Djordjevic M, Vucetic Tadic B, Kecman B, Pavlovic S, Stojiljkovic M. Characterization of 13 Novel Genetic Variants in Genes Associated with Epilepsy: Implications for Targeted Therapeutic Strategies. Mol Diagn Ther 2024; 28:645-663. [PMID: 39003674 PMCID: PMC11349789 DOI: 10.1007/s40291-024-00720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Childhood epilepsies are caused by heterogeneous underlying disorders where approximately 40% of the origins of epilepsy can be attributed to genetic factors. The application of next-generation sequencing (NGS) has revolutionized molecular diagnostics and has enabled the identification of disease-causing genes and variants in childhood epilepsies. The objective of this study was to use NGS to identify variants in patients with childhood epilepsy, to expand the variant spectrum and discover potential therapeutic targets. METHODS In our study, 55 children with epilepsy of unknown etiology were analyzed by combining clinical-exome and whole-exome sequencing. Novel variants were characterized using various in silico algorithms for pathogenicity and structure prediction. RESULTS The molecular genetic cause of epilepsy was identified in 28 patients and the overall diagnostic success rate was 50.9%. We identified variants in 22 different genes associated with epilepsy that correlate well with the described phenotype. SCN1A gene variants were found in five unrelated patients, while ALDH7A1 and KCNQ2 gene variants were found twice. In the other 19 genes, variants were found only in a single patient. This includes genes such as ASH1L, CSNK2B, RHOBTB2, and SLC13A5, which have only recently been associated with epilepsy. Almost half of diagnosed patients (46.4%) carried novel variants. Interestingly, we identified variants in ALDH7A1, KCNQ2, PNPO, SCN1A, and SCN2A resulting in gene-directed therapy decisions for 11 children from our study, including four children who all carried novel SCN1A genetic variants. CONCLUSIONS Described novel variants will contribute to a better understanding of the European genetic landscape, while insights into the genotype-phenotype correlation will contribute to a better understanding of childhood epilepsies worldwide. Given the expansion of molecular-based approaches, each newly identified genetic variant could become a potential therapeutic target.
Collapse
Affiliation(s)
- Marina Andjelkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Kristel Klaassen
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Anita Skakic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Irena Marjanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Ruzica Kravljanac
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Maja Djordjevic
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Biljana Vucetic Tadic
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bozica Kecman
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Maja Stojiljkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia.
| |
Collapse
|
17
|
D’Gama AM, Shao W, Smith L, Koh HY, Davis M, Koh J, Oby BT, Urzua CI, Sheidley BR, Rockowitz S, Poduri A. Utility of Genome Sequencing After Nondiagnostic Exome Sequencing in Unexplained Pediatric Epilepsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.08.24307445. [PMID: 39148850 PMCID: PMC11326351 DOI: 10.1101/2024.08.08.24307445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Importance Epilepsy is the most common neurological disorder of childhood. Identifying genetic diagnoses underlying epilepsy is critical to developing effective therapies and improving outcomes. Most children with non-acquired (unexplained) epilepsy remain genetically unsolved, and the utility of genome sequencing after nondiagnostic exome sequencing is unknown. Objective To determine the diagnostic (primary) and clinical (secondary) utility of genome sequencing after nondiagnostic exome sequencing in individuals with unexplained pediatric epilepsy. Design This cohort study performed genome sequencing and comprehensive analyses for 125 participants and available biological parents enrolled from August 2018 to May 2023, with data analysis through April 2024 and clinical return of diagnostic and likely diagnostic genetic findings. Clinical utility was evaluated. Setting Pediatric referral center. Participants Participants with unexplained pediatric epilepsy and previous nondiagnostic exome sequencing; biological parents when available. Exposures Short-read genome sequencing and analysis. Main Outcomes and Measures Primary outcome measures were the diagnostic yield of genome sequencing, defined as the percentage of participants receiving a diagnostic or likely diagnostic genetic finding, and the unique diagnostic yield of genome sequencing, defined as the percentage of participants receiving a diagnostic or likely diagnostic genetic finding that required genome sequencing. The secondary outcome measure was clinical utility of genome sequencing, defined as impact on evaluation, treatment, or prognosis for the participant or their family. Results 125 participants (58 [46%] female) were enrolled with median age at seizure onset 3 [IQR 1.25, 8] years, including 44 (35%) with developmental and epileptic encephalopathies. The diagnostic yield of genome sequencing was 7.2% (9/125), with diagnostic genetic findings in five cases and likely diagnostic genetic findings in four cases. Among the solved cases, 7/9 (78%) required genome sequencing for variant detection (small copy number variant, three noncoding variants, and three difficult to sequence small coding variants), for a unique diagnostic yield of genome sequencing of 5.6% (7/125). Clinical utility was documented for 4/9 solved cases (44%). Conclusions and Relevance These findings suggest that genome sequencing can have diagnostic and clinical utility after nondiagnostic exome sequencing and should be considered for patients with unexplained pediatric epilepsy.
Collapse
Affiliation(s)
- Alissa M. D’Gama
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Children’s Rare Disease Collaborative, Boston Children’s Hospital, Boston, MA
| | - Wanqing Shao
- Children’s Rare Disease Collaborative, Boston Children’s Hospital, Boston, MA
| | - Lacey Smith
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA
| | - Hyun Yong Koh
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX
| | - Maya Davis
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA
| | - Julia Koh
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA
| | - Brandon T. Oby
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA
| | - Cesar I. Urzua
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA
| | - Beth R. Sheidley
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA
| | - Shira Rockowitz
- Children’s Rare Disease Collaborative, Boston Children’s Hospital, Boston, MA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA
- Children’s Rare Disease Collaborative, Boston Children’s Hospital, Boston, MA
- Department of Neurology, Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
LaFlamme CW, Rastin C, Sengupta S, Pennington HE, Russ-Hall SJ, Schneider AL, Bonkowski ES, Almanza Fuerte EP, Allan TJ, Zalusky MPG, Goffena J, Gibson SB, Nyaga DM, Lieffering N, Hebbar M, Walker EV, Darnell D, Olsen SR, Kolekar P, Djekidel MN, Rosikiewicz W, McConkey H, Kerkhof J, Levy MA, Relator R, Lev D, Lerman-Sagie T, Park KL, Alders M, Cappuccio G, Chatron N, Demain L, Genevieve D, Lesca G, Roscioli T, Sanlaville D, Tedder ML, Gupta S, Jones EA, Weisz-Hubshman M, Ketkar S, Dai H, Worley KC, Rosenfeld JA, Chao HT, Neale G, Carvill GL, Wang Z, Berkovic SF, Sadleir LG, Miller DE, Scheffer IE, Sadikovic B, Mefford HC. Diagnostic utility of DNA methylation analysis in genetically unsolved pediatric epilepsies and CHD2 episignature refinement. Nat Commun 2024; 15:6524. [PMID: 39107278 PMCID: PMC11303402 DOI: 10.1038/s41467-024-50159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/28/2024] [Indexed: 08/09/2024] Open
Abstract
Sequence-based genetic testing identifies causative variants in ~ 50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. We interrogate the diagnostic utility of genome-wide DNA methylation array analysis on peripheral blood samples from 582 individuals with genetically unsolved DEEs. We identify rare differentially methylated regions (DMRs) and explanatory episignatures to uncover causative and candidate genetic etiologies in 12 individuals. Using long-read sequencing, we identify DNA variants underlying rare DMRs, including one balanced translocation, three CG-rich repeat expansions, and four copy number variants. We also identify pathogenic variants associated with episignatures. Finally, we refine the CHD2 episignature using an 850 K methylation array and bisulfite sequencing to investigate potential insights into CHD2 pathophysiology. Our study demonstrates the diagnostic yield of genome-wide DNA methylation analysis to identify causal and candidate variants as 2% (12/582) for unsolved DEE cases.
Collapse
Affiliation(s)
- Christy W LaFlamme
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cassandra Rastin
- Department of Pathology & Laboratory Medicine, Western University, London, ON, N5A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Soham Sengupta
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Helen E Pennington
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Mathematics & Statistics, Rhodes College, Memphis, TN, 38112, USA
| | - Sophie J Russ-Hall
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Amy L Schneider
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Emily S Bonkowski
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Edith P Almanza Fuerte
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Talia J Allan
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Miranda Perez-Galey Zalusky
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
| | - Joy Goffena
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
| | - Sophia B Gibson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Denis M Nyaga
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Nico Lieffering
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Malavika Hebbar
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
| | - Emily V Walker
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Daniel Darnell
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Scott R Olsen
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mohamed Nadhir Djekidel
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Dorit Lev
- Institute of Medical Genetics, Wolfson Medical Center, Holon, 58100, Israel
| | - Tally Lerman-Sagie
- Fetal Neurology Clinic, Pediatric Neurology Unit, Wolfson Medical Center, Holon, 58100, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Kristen L Park
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Marielle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Gerarda Cappuccio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Nicolas Chatron
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM, U1315, Lyon, France
| | - Leigh Demain
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - David Genevieve
- Montpellier University, Inserm Unit 1183, Reference Center for Rare Diseases Developmental Anomaly and Malformative Syndrome, Clinical Genetic Department, CHU Montpellier, Montpellier, France
| | - Gaetan Lesca
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM, U1315, Lyon, France
| | - Tony Roscioli
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Damien Sanlaville
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM, U1315, Lyon, France
| | | | - Sachin Gupta
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Elizabeth A Jones
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Monika Weisz-Hubshman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital, Genetic Department, Houston, TX, 77030, USA
| | - Shamika Ketkar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kim C Worley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, TX, 77030, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Gemma L Carvill
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC, Australia
- Florey Institute and Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Bekim Sadikovic
- Department of Pathology & Laboratory Medicine, Western University, London, ON, N5A 3K7, Canada.
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada.
| | - Heather C Mefford
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
19
|
Heyne HO, Pajuste FD, Wanner J, Daniel Onwuchekwa JI, Mägi R, Palotie A, Kälviainen R, Daly MJ. Polygenic risk scores as a marker for epilepsy risk across lifetime and after unspecified seizure events. Nat Commun 2024; 15:6277. [PMID: 39054313 PMCID: PMC11272783 DOI: 10.1038/s41467-024-50295-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
A diagnosis of epilepsy has significant consequences for an individual but is often challenging in clinical practice. Novel biomarkers are thus greatly needed. Here, we investigated how common genetic factors (epilepsy polygenic risk scores, [PRSs]) influence epilepsy risk in detailed longitudinal electronic health records (EHRs) of > 700k Finns and Estonians. We found that a high genetic generalized epilepsy PRS (PRSGGE) increased risk for genetic generalized epilepsy (GGE) (hazard ratio [HR] 1.73 per PRSGGE standard deviation [SD]) across lifetime and within 10 years after an unspecified seizure event. The effect of PRSGGE was significantly larger on idiopathic generalized epilepsies, in females and for earlier epilepsy onset. Analogously, we found significant but more modest focal epilepsy PRS burden associated with non-acquired focal epilepsy (NAFE). Here, we outline the potential of epilepsy specific PRSs to serve as biomarkers after a first seizure event.
Collapse
Affiliation(s)
- Henrike O Heyne
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany.
- Hasso Plattner Institute, Mount Sinai School of Medicine, New York, NY, US.
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Fanny-Dhelia Pajuste
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Julian Wanner
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Jennifer I Daniel Onwuchekwa
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany
- Faculty of Life Sciences, University of Siegen, Siegen, Germany
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Reetta Kälviainen
- Kuopio Epilepsy Center, Neurocenter, Kuopio University Hospital, Member of ERN EpiCARE, Kuopio, Finland
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mark J Daly
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
20
|
Banerjee S, Szyszka P, Beck CW. Knockdown of NeuroD2 leads to seizure-like behavior, brain neuronal hyperactivity and a leaky blood-brain barrier in a Xenopus laevis tadpole model of DEE75. Genetics 2024; 227:iyae085. [PMID: 38788202 PMCID: PMC11228833 DOI: 10.1093/genetics/iyae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Developmental and Epileptic Encephalopathies (DEE) are a genetically diverse group of severe, early onset seizure disorders. DEE are normally identified clinically in the first six months of life by the presence of frequent, difficult to control seizures and accompanying stalling or regression of development. DEE75 results from de novo mutations of the NEUROD2 gene that result in loss of activity of the encoded transcription factor, and the seizure phenotype was shown to be recapitulated in Xenopus tropicalis tadpoles. We used CRISPR/Cas9 to make a DEE75 model in Xenopus laevis, to further investigate the developmental etiology. NeuroD2.S CRISPR/Cas9 edited tadpoles were more active, swam faster on average, and had more seizures (C-shaped contractions resembling unprovoked C-start escape responses) than their sibling controls. Live imaging of Ca2+ signaling revealed prolongued, strong signals sweeping through the brain, indicative of neuronal hyperactivity. While the resulting tadpole brain appeared grossly normal, the blood-brain barrier (BBB) was found to be leakier than that of controls. Additionally, the TGFβ antagonist Losartan was shown to have a short-term protective effect, reducing neuronal hyperactivity and reducing permeability of the BBB. Treatment of NeuroD2 CRISPant tadpoles with 5 mM Losartan decreased seizure events by more than 4-fold compared to the baseline. Our results support a model of DEE75 resulting from reduced NeuroD2 activity during vertebrate brain development, and indicate that a leaky BBB contributes to epileptogenesis.
Collapse
Affiliation(s)
- Sulagna Banerjee
- Department of Zoology, University of Otago, PO Box56, Dunedin 9016, New Zealand
| | - Paul Szyszka
- Department of Zoology, University of Otago, PO Box56, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Caroline W Beck
- Department of Zoology, University of Otago, PO Box56, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
21
|
Di Gennaro G, Lattanzi S, Mecarelli O, Saverio Mennini F, Vigevano F. Current challenges in focal epilepsy treatment: An Italian Delphi consensus. Epilepsy Behav 2024; 155:109796. [PMID: 38643659 DOI: 10.1016/j.yebeh.2024.109796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Epilepsy, a globally prevalent neurological condition, presents distinct challenges in management, particularly for focal-onset types. This study aimed at addressing the current challenges and perspectives in focal epilepsy management, with focus on the Italian reality. METHODS Using the Delphi methodology, this research collected and analyzed the level of consensus of a panel of Italian epilepsy experts on key aspects of focal epilepsy care. Areas of focus included patient flow, treatment pathways, controlled versus uncontrolled epilepsy, follow-up protocols, and the relevance of patient-reported outcomes (PROs). This method allowed for a comprehensive assessment of consensus and divergences in clinical opinions and practices. RESULTS The study achieved consensus on 23 out of 26 statements, with three items failing to reach a consensus. There was strong agreement on the importance of timely intervention, individualized treatment plans, regular follow-ups at Epilepsy Centers, and the role of PROs in clinical practice. In cases of uncontrolled focal epilepsy, there was a clear inclination to pursue alternative treatment options following the failure of two previous therapies. Divergent views were evident on the inclusion of epilepsy surgery in treatment for uncontrolled epilepsy and the routine necessity of EEG evaluations in follow-ups. Other key findings included concerns about the lack of pediatric-specific research limiting current therapeutic options in this patient population, insufficient attention to the transition from pediatric to adult care, and need for improved communication. The results highlighted the complexities in managing epilepsy, with broad consensus on patient care aspects, yet notable divergences in specific treatment and management approaches. CONCLUSION The study offered valuable insights into the current state and complexities of managing focal-onset epilepsy. It highlighted many deficiencies in the therapeutic pathway of focal-onset epilepsy in the Italian reality, while it also underscored the importance of patient-centric care, the necessity of early and appropriate intervention, and individualized treatment approaches. The findings also called for continued research, policy development, and healthcare system improvements to enhance epilepsy management, highlighting the ongoing need for tailored healthcare solutions in this evolving field.
Collapse
Affiliation(s)
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Oriano Mecarelli
- Department of Human Neurosciences, Sapienza University, Rome (Retired) and Past President of LICE, Italian League Against Epilepsy, Rome, Italy
| | - Francesco Saverio Mennini
- Faculty of Economics, Economic Evaluation and HTA (EEHTA), CEIS, University of Rome "Tor Vergata", Rome, Italy; Institute for Leadership and Management in Health, Kingston University London, London, UK.
| | - Federico Vigevano
- Head of Paediatric Neurorehabilitation Department, IRCCS San Raffaele, Rome, Italy.
| |
Collapse
|
22
|
Karadag N, Hagen E, Shadrin AA, van der Meer D, O'Connell KS, Rahman Z, Kutrolli G, Parker N, Bahrami S, Fominykh V, Heuser K, Taubøll E, Steen NE, Djurovic S, Dale AM, Frei O, Andreassen OA, Smeland OB. Dissecting the Shared Genetic Architecture of Common Epilepsies With Cortical Brain Morphology. Neurol Genet 2024; 10:e200143. [PMID: 38817246 PMCID: PMC11139015 DOI: 10.1212/nxg.0000000000200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/27/2024] [Indexed: 06/01/2024]
Abstract
Background and Objectives Epilepsies are associated with differences in cortical thickness (TH) and surface area (SA). However, the mechanisms underlying these relationships remain elusive. We investigated the extent to which these phenotypes share genetic influences. Methods We analyzed genome-wide association study data on common epilepsies (n = 69,995) and TH and SA (n = 32,877) using Gaussian mixture modeling MiXeR and conjunctional false discovery rate (conjFDR) analysis to quantify their shared genetic architecture and identify overlapping loci. We biologically interrogated the loci using a variety of resources and validated in independent samples. Results The epilepsies (2.4 k-2.9 k variants) were more polygenic than both SA (1.8 k variants) and TH (1.3 k variants). Despite absent genome-wide genetic correlations, there was a substantial genetic overlap between SA and genetic generalized epilepsy (GGE) (1.1 k), all epilepsies (1.1 k), and juvenile myoclonic epilepsy (JME) (0.7 k), as well as between TH and GGE (0.8 k), all epilepsies (0.7 k), and JME (0.8 k), estimated with MiXeR. Furthermore, conjFDR analysis identified 15 GGE loci jointly associated with SA and 15 with TH, 3 loci shared between SA and childhood absence epilepsy, and 6 loci overlapping between SA and JME. 23 loci were novel for epilepsies and 11 for cortical morphology. We observed a high degree of sign concordance in the independent samples. Discussion Our findings show extensive genetic overlap between generalized epilepsies and cortical morphology, indicating a complex genetic relationship with mixed-effect directions. The results suggest that shared genetic influences may contribute to cortical abnormalities in epilepsies.
Collapse
Affiliation(s)
- Naz Karadag
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Espen Hagen
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Alexey A Shadrin
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Dennis van der Meer
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Kevin S O'Connell
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Zillur Rahman
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Gleda Kutrolli
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Nadine Parker
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Shahram Bahrami
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Vera Fominykh
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Kjell Heuser
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Erik Taubøll
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Nils Eiel Steen
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Srdjan Djurovic
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Anders M Dale
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Oleksandr Frei
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Ole A Andreassen
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| | - Olav B Smeland
- From the Institute of Clinical Medicine (N.K., E.H., A.A.S., D.M., K.S.O.C., Z.R., G.K., N.P., S.B., V.F., N.E.S., O.F., O.A.A., O.B.S.), NORMENT, University of Oslo; K.G. Jebsen Centre for Neurodevelopmental Disorders (A.A.S., O.A.A.), University of Oslo and Oslo University Hospital, Norway; Faculty of Health (D.M.), School of Mental Health and Neuroscience, Maastricht University, Netherlands; Department of Neurology (K.H., E.T.), Oslo University Hospital; Faculty of Medicine (E.T.), University of Oslo; Division of Mental Health and Addiction (N.E.S., O.A.A., O.B.S.), Oslo University Hospital; Department of Psychiatric Research (N.E.S.), Diakonhjemmet Hospital; Department of Medical Genetics (S.D.), Oslo University Hospital, Norway; Department of Clinical Science (S.D.), NORMENT, University of Bergen, Norway; Department of Cognitive Science (A.M.D.); Multimodal Imaging Laboratory (A.M.D.); Department of Psychiatry (A.M.D.); Department of Neurosciences (A.M.D.), University of California, San Diego; and Department of Informatics (O.F.), Center for Bioinformatics, University of Oslo, Norway
| |
Collapse
|
23
|
Robertson AJ, Tran KA, Bennett C, Sullivan C, Stark Z, Vadlamudi L, Waddell N. Clinically significant changes in genes and variants associated with epilepsy over time: implications for re-analysis. Sci Rep 2024; 14:7717. [PMID: 38565608 PMCID: PMC10987647 DOI: 10.1038/s41598-024-57976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
Despite the significant advances in understanding the genetic architecture of epilepsy, many patients do not receive a molecular diagnosis after genomic testing. Re-analysing existing genomic data has emerged as a potent method to increase diagnostic yields-providing the benefits of genomic-enabled medicine to more individuals afflicted with a range of different conditions. The primary drivers for these new diagnoses are the discovery of novel gene-disease and variants-disease relationships; however, most decisions to trigger re-analysis are based on the passage of time rather than the accumulation of new knowledge. To explore how our understanding of a specific condition changes and how this impacts re-analysis of genomic data from epilepsy patients, we developed Vigelint. This approach combines the information from PanelApp and ClinVar to characterise how the clinically relevant genes and causative variants available to laboratories change over time, and this approach to five clinical-grade epilepsy panels. Applying the Vigelint pipeline to these panels revealed highly variable patterns in new, clinically relevant knowledge becoming publicly available. This variability indicates that a more dynamic approach to re-analysis may benefit the diagnosis and treatment of epilepsy patients. Moreover, this work suggests that Vigelint can provide empirical data to guide more nuanced, condition-specific approaches to re-analysis.
Collapse
Affiliation(s)
- Alan J Robertson
- Faculty of Medicine, University of Queensland, Brisbane, Australia.
- Medical Genomics Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
- Queensland Digital Health Centre, University of Queensland, Brisbane, Australia.
- The Genomic Institute, Department of Health, Queensland Government, Brisbane, Australia.
| | - Khoa A Tran
- Medical Genomics Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - Carmen Bennett
- UQ Centre for Clinical Research, Herston, Brisbane, QLD, 4029, Australia
- Department of Neurology, Royal Brisbane & Women's Hospital, Herston, Brisbane, QLD, 4029, Australia
| | - Clair Sullivan
- Faculty of Medicine, University of Queensland, Brisbane, Australia
- Queensland Digital Health Centre, University of Queensland, Brisbane, Australia
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Woolloongabba, Australia
- Department of Health, Metro North Hospital and Health Service, Queensland Government, Brisbane, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Australian Genomics, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - Lata Vadlamudi
- UQ Centre for Clinical Research, Herston, Brisbane, QLD, 4029, Australia
- Department of Neurology, Royal Brisbane & Women's Hospital, Herston, Brisbane, QLD, 4029, Australia
| | - Nicola Waddell
- Faculty of Medicine, University of Queensland, Brisbane, Australia.
- Medical Genomics Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| |
Collapse
|
24
|
Nyaga DM, Hildebrand MS, de Valles‐Ibáñez G, Keenan NF, Ye Z, LaFlamme CW, Mefford HC, Bennett MF, Bahlo M, Sadleir LG. Leveraging multiple approaches for the detection of pathogenic deep intronic variants in developmental and epileptic encephalopathies: A case report. Epilepsia Open 2024; 9:758-764. [PMID: 38129960 PMCID: PMC10984288 DOI: 10.1002/epi4.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
About 50% of individuals with developmental and epileptic encephalopathies (DEEs) are unsolved following genetic testing. Deep intronic variants, defined as >100 bp from exon-intron junctions, contribute to disease by affecting the splicing of mRNAs in clinically relevant genes. Identifying deep intronic pathogenic variants is challenging and resource intensive, and interpretation is difficult due to limited functional annotations. We aimed to identify deep intronic variants in individuals suspected to have unsolved single gene DEEs. In a research cohort of unsolved cases of DEEs, we searched for children with a DEE syndrome predominantly caused by variants in specific genes in >80% of described cases. We identified two children with Dravet syndrome and one individual with classic lissencephaly. Multiple sequencing and bioinformatics strategies were employed to interrogate intronic regions in SCN1A and PAFAH1B1. A novel de novo deep intronic 12 kb deletion in PAFAH1B1 was identified in the individual with lissencephaly. We showed experimentally that the deletion disrupts mRNA splicing, which results in partial intron retention after exon 2 and disruption of the highly conserved LisH motif. We demonstrate that targeted interrogation of deep intronic regions using multiple genomics technologies, coupled with functional analysis, can reveal hidden causes of unsolved monogenic DEE syndromes. PLAIN LANGUAGE SUMMARY: Deep intronic variants can cause disease by affecting the splicing of mRNAs in clinically relevant genes. A deep intronic deletion that caused abnormal splicing of the PAFAH1B1 gene was identified in a patient with classic lissencephaly. Our findings reinforce that targeted interrogation of deep intronic regions and functional analysis can reveal hidden causes of unsolved epilepsy syndromes.
Collapse
Affiliation(s)
- Denis M. Nyaga
- Department of Paediatrics and Child HealthUniversity of OtagoWellingtonNew Zealand
| | - Michael S. Hildebrand
- Department of Medicine (Austin Health)University of MelbourneMelbourneVictoriaAustralia
- Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
| | | | - Ngaire F. Keenan
- Department of Paediatrics and Child HealthUniversity of OtagoWellingtonNew Zealand
| | - Zimeng Ye
- Department of Medicine (Austin Health)University of MelbourneMelbourneVictoriaAustralia
| | - Christy W. LaFlamme
- Center for Pediatric Neurological Disease ResearchSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Heather C. Mefford
- Center for Pediatric Neurological Disease ResearchSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Mark F. Bennett
- Department of Medicine (Austin Health)University of MelbourneMelbourneVictoriaAustralia
- Population Health and Immunity DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Melanie Bahlo
- Population Health and Immunity DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Lynette G. Sadleir
- Department of Paediatrics and Child HealthUniversity of OtagoWellingtonNew Zealand
| |
Collapse
|
25
|
Karadag N, Hagen E, Shadrin AA, van der Meer D, O’Connell KS, Rahman Z, Kutrolli G, Parker N, Bahrami S, Fominykh V, Heuser K, Taubøll E, Ueland T, Steen NE, Djurovic S, Dale AM, Frei O, Andreassen OA, Smeland OB. Unraveling the shared genetics of common epilepsies and general cognitive ability. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.25.24304773. [PMID: 38585944 PMCID: PMC10996742 DOI: 10.1101/2024.03.25.24304773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Objective Cognitive impairment is prevalent among individuals with epilepsy, and it is possible that genetic factors can underlie this relationship. Here, we investigated the potential shared genetic basis of common epilepsies and general cognitive ability (COG). Methods We applied linkage disequilibrium score (LDSC) regression, MiXeR and conjunctional false discovery rate (conjFDR) to analyze different aspects of genetic overlap between COG and epilepsies. We used the largest available genome-wide association study data on COG (n = 269,867) and common epilepsies (n = 27,559 cases, 42,436 controls), including the broad phenotypes 'all epilepsy', focal epilepsies and genetic generalized epilepsies (GGE), and as well as specific subtypes. We functionally annotated the identified loci using a variety of biological resources and validated the results in independent samples. Results Using MiXeR, COG (11.2k variants) was estimated to be almost four times more polygenic than 'all epilepsy', GGE, juvenile myoclonic epilepsy (JME), and childhood absence epilepsy (CAE) (2.5k - 2.9k variants). The other epilepsy phenotypes were insufficiently powered for analysis. We show extensive genetic overlap between COG and epilepsies with significant negative genetic correlations (-0.23 to -0.04). COG was estimated to share 2.9k variants with both GGE and 'all epilepsy', and 2.3k variants with both JME and CAE. Using conjFDR, we identified 66 distinct loci shared between COG and epilepsies, including novel associations for GGE (27), 'all epilepsy' (5), JME (5) and CAE (5). The implicated genes were significantly expressed in multiple brain regions. The results were validated in independent samples (COG: p = 1.0 × 10-14; 'all epilepsy': p = 5.6 × 10-3). Significance Our study demonstrates a substantial genetic basis shared between epilepsies and COG and identifies novel overlapping genomic loci. Enhancing our understanding of the relationship between epilepsies and COG may lead to the development of novel comorbidity-targeted epilepsy treatments.
Collapse
Affiliation(s)
- Naz Karadag
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
| | - Espen Hagen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
| | - Alexey A. Shadrin
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Dennis van der Meer
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Maastricht University, Maastricht, Netherlands
| | - Kevin S. O’Connell
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
| | - Zillur Rahman
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
| | - Gleda Kutrolli
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
| | - Nadine Parker
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
| | - Shahram Bahrami
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
| | - Vera Fominykh
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
| | - Kjell Heuser
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Erik Taubøll
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Torill Ueland
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anders M. Dale
- Department of Cognitive Science, University of California, San Diego, United States
- Multimodal Imaging Laboratory, University of California, San Diego, United States
- Department of Psychiatry, University of California, San Diego, United States
- Department of Neurosciences, University of California, San Diego, United States
| | - Oleksandr Frei
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Olav B. Smeland
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
26
|
Diaz-Marugan L, Rutsch A, Kaindl AM, Ronchi F. The impact of microbiota and ketogenic diet interventions in the management of drug-resistant epilepsy. Acta Physiol (Oxf) 2024; 240:e14104. [PMID: 38314929 DOI: 10.1111/apha.14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024]
Abstract
AIM Drug-resistant epilepsy (DRE) is a neurological disorder characterized by uncontrolled seizures. It affects between 10%-40% of the patients with epilepsy worldwide. Drug-resistant patients have been reported to have a different microbiota composition compared to drug-sensitive patients and healthy controls. Importantly, fecal microbiota transplantations (FMTs), probiotic and dietary interventions have been shown to be able to reduce seizure frequency and improve the quality of life in drug-resistant patients. The classic ketogenic diet (KD) and its modifications may reduce seizures in DRE in some patients, whereas in others they do not. The mechanisms mediating the dietary effects remain elusive, although it is known that gut microbes play an important role in transmitting dietary effects to the host. Indeed, specific commensal microbes differ even between responders and non-responders to KD treatment. METHODS In this narrative mini-review, we summarize what is known about the gut microbiota changes and ketogenic diets with special focus on patients with DRE. RESULTS AND CONCLUSIONS By highlighting unanswered questions and by suggesting future research directions, we map the route towards future improvement of successful DRE therapy.
Collapse
Affiliation(s)
- Laura Diaz-Marugan
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Andrina Rutsch
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Angela M Kaindl
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Francesca Ronchi
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
27
|
Zhang MW, Liang XY, Wang J, Gao LD, Liao HJ, He YH, Yi YH, He N, Liao WP. Epilepsy-associated genes: an update. Seizure 2024; 116:4-13. [PMID: 37777370 DOI: 10.1016/j.seizure.2023.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/31/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023] Open
Abstract
PURPOSE To provide an updated list of epilepsy-associated genes based on clinical-genetic evidence. METHODS Epilepsy-associated genes were systematically searched and cross-checked from the OMIM, HGMD, and PubMed databases up to July 2023. To facilitate the reference for the epilepsy-associated genes that are potentially common in clinical practice, the epilepsy-associated genes were ranked by the mutation number in the HGMD database and by case number in the China Epilepsy Gene 1.0 project, which targeted common epilepsy. RESULTS Based on the OMIM database, 1506 genes were identified to be associated with epilepsy and were classified into three categories according to their potential association with epilepsy or other abnormal phenotypes, including 168 epilepsy genes that were associated with epilepsies as pure or core symptoms, 364 genes that were associated with neurodevelopmental disorders as the main symptom and epilepsy, and 974 epilepsy-related genes that were associated with gross physical/systemic abnormalities accompanied by epilepsy/seizures. Among the epilepsy genes, 115 genes (68.5%) were associated with epileptic encephalopathy. After cross-checking with the HGMD and PubMed databases, an additional 1440 genes were listed as potential epilepsy-associated genes, of which 278 genes have been repeatedly identified variants in patients with epilepsy. The top 100 frequently reported/identified epilepsy-associated genes from the HGMD database and the China Epilepsy Gene 1.0 project were listed, among which 40 genes were identical in both sources. SIGNIFICANCE Recognition of epilepsy-associated genes will facilitate genetic screening strategies and be helpful for precise molecular diagnosis and treatment of epilepsy in clinical practice.
Collapse
Affiliation(s)
- Meng-Wen Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiao-Yu Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Liang-Di Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Han-Jun Liao
- University of South China, Hengyang, 421001, China
| | - Yun-Hua He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yong-Hong Yi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
28
|
Snyder HE, Jain P, RamachandranNair R, Jones KC, Whitney R. Genetic Advancements in Infantile Epileptic Spasms Syndrome and Opportunities for Precision Medicine. Genes (Basel) 2024; 15:266. [PMID: 38540325 PMCID: PMC10970414 DOI: 10.3390/genes15030266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 06/15/2024] Open
Abstract
Infantile epileptic spasms syndrome (IESS) is a devastating developmental epileptic encephalopathy (DEE) consisting of epileptic spasms, as well as one or both of developmental regression or stagnation and hypsarrhythmia on EEG. A myriad of aetiologies are associated with the development of IESS; broadly, 60% of cases are thought to be structural, metabolic or infectious in nature, with the remainder genetic or of unknown cause. Epilepsy genetics is a growing field, and over 28 copy number variants and 70 single gene pathogenic variants related to IESS have been discovered to date. While not exhaustive, some of the most commonly reported genetic aetiologies include trisomy 21 and pathogenic variants in genes such as TSC1, TSC2, CDKL5, ARX, KCNQ2, STXBP1 and SCN2A. Understanding the genetic mechanisms of IESS may provide the opportunity to better discern IESS pathophysiology and improve treatments for this condition. This narrative review presents an overview of our current understanding of IESS genetics, with an emphasis on animal models of IESS pathogenesis, the spectrum of genetic aetiologies of IESS (i.e., chromosomal disorders, single-gene disorders, trinucleotide repeat disorders and mitochondrial disorders), as well as available genetic testing methods and their respective diagnostic yields. Future opportunities as they relate to precision medicine and epilepsy genetics in the treatment of IESS are also explored.
Collapse
Affiliation(s)
- Hannah E. Snyder
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| | - Puneet Jain
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1E8, Canada
| | - Rajesh RamachandranNair
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| | - Kevin C. Jones
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| | - Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| |
Collapse
|
29
|
Chi W, Kiskinis E. Integrative analysis of epilepsy-associated genes reveals expression-phenotype correlations. Sci Rep 2024; 14:3587. [PMID: 38351047 PMCID: PMC10864290 DOI: 10.1038/s41598-024-53494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Epilepsy is a highly prevalent neurological disorder characterized by recurrent seizures. Patients exhibit broad genetic, molecular, and clinical diversity involving mild to severe comorbidities. The factors that contribute to this phenotypic diversity remain unclear. Here we used publicly available datasets to systematically interrogate the expression pattern of 230 epilepsy-associated genes across human tissues, developmental stages, and central nervous system (CNS) cellular subtypes. We grouped genes based on their curated phenotypes into 3 broad classes: core epilepsy genes (CEG), where seizures are the dominant phenotype, developmental and epileptic encephalopathy genes (DEEG) that are associated with developmental and epileptic encephalopathy, and seizure-related genes (SRG), which are characterized by the presence of seizures and gross brain malformations. We find that compared to the other two groups of genes, DEEGs are highly expressed within the adult CNS, exhibit the highest and most dynamic expression in various brain regions across development, and are significantly enriched in GABAergic neurons. Our analysis provides an overview of the expression pattern of epilepsy-associated genes with spatiotemporal resolution and establishes a broad expression-phenotype correlation in epilepsy.
Collapse
Affiliation(s)
- Wanhao Chi
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA.
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
30
|
Gamirova R, Shagimardanova E, Sato T, Kannon T, Gamirova R, Tajima A. Identification of potential disease-associated variants in idiopathic generalized epilepsy using targeted sequencing. J Hum Genet 2024; 69:59-67. [PMID: 37993639 DOI: 10.1038/s10038-023-01208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Many questions remain regarding the genetics of idiopathic generalized epilepsy (IGE), a subset of genetic generalized epilepsy (GGE). We aimed to identify the candidate coding variants of epilepsy panel genes in a cohort of affected individuals, using variant frequency information from a control cohort of the same region. We performed whole-exome sequencing analysis of 121 individuals and 10 affected relatives, focusing on variants of 950 candidate genes associated with epilepsy according to the Genes4Epilepsy curated panel. We identified 168 candidate variants (CVs) in 137 of 950 candidate genes in 88 of 121 affected individuals with IGE, of which 61 were novel variants. Notably, we identified five CVs in known GGE-associated genes (CHD2, GABRA1, RORB, SCN1A, and SCN1B) in five individuals and CVs shared by affected individuals in each of four family cases for other epilepsy candidate genes. The results of this study demonstrate that IGE is a disease with high heterogeneity and provide IGE-associated CVs whose pathogenicity should be proven by future studies, including advanced functional analysis. The low detection rate of CVs in the GGE-associated genes (4.1%) in this study suggests the current incompleteness of the Genes4Epilepsy panel for the diagnosis of IGE in clinical practice.
Collapse
Affiliation(s)
- Regina Gamirova
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | | | - Takehiro Sato
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Takayuki Kannon
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Biomedical Data Science, Fujita Health University School of Medicine, Toyoake, Japan
| | - Rimma Gamirova
- Department of Neurology with Courses in Psychiatry, Clinical Psychology and Medical Genetics, Kazan Federal University, Kazan, Russia.
- Laboratory of Neurocognitive Investigations, Kazan Federal University, Kazan, Russia.
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
31
|
Heyne HO, Pajuste FD, Wanner J, Onwuchekwa JID, Mägi R, Palotie A, Kälviainen R, Daly MJ. Polygenic risk scores as a marker for epilepsy risk across lifetime and after unspecified seizure events. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.27.23297542. [PMID: 38076931 PMCID: PMC10705659 DOI: 10.1101/2023.11.27.23297542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
A diagnosis of epilepsy has significant consequences for an individual but is often challenging in clinical practice. Novel biomarkers are thus greatly needed. Here, we investigated how common genetic factors (epilepsy polygenic risk scores, [PRSs]) influence epilepsy risk in detailed longitudinal electronic health records (EHRs) of > 360k Finns spanning up to 50 years of individuals' lifetimes. Individuals with a high genetic generalized epilepsy PRS (PRSGGE) in FinnGen had an increased risk for genetic generalized epilepsy (GGE) (hazard ratio [HR] 1.55 per PRSGGE standard deviation [SD]) across their lifetime and after unspecified seizure events. Effect sizes of epilepsy PRSs were comparable to effect sizes in clinically curated data supporting our EHR-derived epilepsy diagnoses. Within 10 years after an unspecified seizure, the GGE rate was 37% when PRSGGE > 2 SD compared to 5.6% when PRSGGE < -2 SD. The effect of PRSGGE was even larger on GGE subtypes of idiopathic generalized epilepsy (IGE) (HR 2.1 per SD PRSGGE). We further report significantly larger effects of PRSGGE on epilepsy in females and in younger age groups. Analogously, we found significant but more modest focal epilepsy PRS burden associated with non-acquired focal epilepsy (NAFE). We found PRSGGE specifically associated with GGE in comparison with >2000 independent diseases while PRSNAFE was also associated with other diseases than NAFE such as back pain. Here, we show that epilepsy specific PRSs have good discriminative ability after a first seizure event i.e. in circumstances where the prior probability of epilepsy is high outlining a potential to serve as biomarkers for an epilepsy diagnosis.
Collapse
Affiliation(s)
- Henrike O Heyne
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Germany
- Hasso Plattner Institute, Mount Sinai School of Medicine, NY, US
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fanny-Dhelia Pajuste
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Julian Wanner
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Germany
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Jennifer I Daniel Onwuchekwa
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Germany
- Faculty of Life Sciences, University of Siegen, Germany
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Aarno Palotie
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Reetta Kälviainen
- Kuopio Epilepsy Center, Neurocenter, Kuopio University Hospital, Member of ERN EpiCARE, Kuopio, Finland
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mark J Daly
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
32
|
van der Veen S, Tse GTW, Ferretti A, Garone G, Post B, Specchio N, Fung VSC, Trivisano M, Scheffer IE. Movement Disorders in Patients With Genetic Developmental and Epileptic Encephalopathies. Neurology 2023; 101:e1884-e1892. [PMID: 37748886 PMCID: PMC10663013 DOI: 10.1212/wnl.0000000000207808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Movement disorders (MDs) are underrecognized in the developmental and epileptic encephalopathies (DEEs). There are now more than 800 genes implicated in causing the DEEs; relatively few of these rare genetic diseases are known to be associated with MDs. We identified patients with genetic DEEs who had MDs, classified the nature of their MDs, and asked whether specific patterns correlated with the underlying mechanism. METHODS We classified the type of MDs associated with specific genetic DEEs in a large international cohort of patients and analyzed whether specific patterns of MDs reflected the underlying biological dysfunction. RESULTS Our cohort comprised 77 patients with a genetic DEE with a median age of 9 (range 1-38) years. Stereotypies (37/77, 48%) and dystonia (34/77, 44%) were the most frequent MDs, followed by chorea (18/77, 23%), myoclonus (14/77, 18%), ataxia (9/77, 12%), tremor (7/77, 9%), and hypokinesia (6/77, 8%). In 47% of patients, a combination of MDs was seen. The MDs were first observed at a median age of 18 months (range day 2-35 years). Dystonia was more likely to be observed in nonambulatory patients, while ataxia was less likely. In 46% of patients, therapy was initiated with medication (34/77, 44%), deep brain stimulation (1/77, 1%), or intrathecal baclofen (1/77, 1%). We found that patients with channelopathies or synaptic vesicle trafficking defects were more likely to experience dystonia; whereas, stereotypies were most frequent in individuals with transcriptional defects. DISCUSSION MDs are often underrecognized in patients with genetic DEEs, but recognition is critical for the management of these complex neurologic diseases. Distinguishing MDs from epileptic seizures is important in tailoring patient treatment. Understanding which MDs occur with different biological mechanisms will inform early diagnosis and management.
Collapse
Affiliation(s)
- Sterre van der Veen
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Gabrielle T W Tse
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Alessandro Ferretti
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Giacomo Garone
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Bart Post
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Nicola Specchio
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Victor S C Fung
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Marina Trivisano
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Ingrid E Scheffer
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia.
| |
Collapse
|
33
|
LaFlamme CW, Rastin C, Sengupta S, Pennington HE, Russ-Hall SJ, Schneider AL, Bonkowski ES, Almanza Fuerte EP, Galey M, Goffena J, Gibson SB, Allan TJ, Nyaga DM, Lieffering N, Hebbar M, Walker EV, Darnell D, Olsen SR, Kolekar P, Djekidel N, Rosikiewicz W, McConkey H, Kerkhof J, Levy MA, Relator R, Lev D, Lerman-Sagie T, Park KL, Alders M, Cappuccio G, Chatron N, Demain L, Genevieve D, Lesca G, Roscioli T, Sanlaville D, Tedder ML, Hubshman MW, Ketkar S, Dai H, Worley KC, Rosenfeld JA, Chao HT, Neale G, Carvill GL, Wang Z, Berkovic SF, Sadleir LG, Miller DE, Scheffer IE, Sadikovic B, Mefford HC. Diagnostic Utility of Genome-wide DNA Methylation Analysis in Genetically Unsolved Developmental and Epileptic Encephalopathies and Refinement of a CHD2 Episignature. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.11.23296741. [PMID: 37873138 PMCID: PMC10592992 DOI: 10.1101/2023.10.11.23296741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Sequence-based genetic testing currently identifies causative genetic variants in ∼50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. Rare epigenetic variations ("epivariants") can drive disease by modulating gene expression at single loci, whereas genome-wide DNA methylation changes can result in distinct "episignature" biomarkers for monogenic disorders in a growing number of rare diseases. Here, we interrogate the diagnostic utility of genome-wide DNA methylation array analysis on peripheral blood samples from 516 individuals with genetically unsolved DEEs who had previously undergone extensive genetic testing. We identified rare differentially methylated regions (DMRs) and explanatory episignatures to discover causative and candidate genetic etiologies in 10 individuals. We then used long-read sequencing to identify DNA variants underlying rare DMRs, including one balanced translocation, three CG-rich repeat expansions, and two copy number variants. We also identify pathogenic sequence variants associated with episignatures; some had been missed by previous exome sequencing. Although most DEE genes lack known episignatures, the increase in diagnostic yield for DNA methylation analysis in DEEs is comparable to the added yield of genome sequencing. Finally, we refine an episignature for CHD2 using an 850K methylation array which was further refined at higher CpG resolution using bisulfite sequencing to investigate potential insights into CHD2 pathophysiology. Our study demonstrates the diagnostic yield of genome-wide DNA methylation analysis to identify causal and candidate genetic causes as ∼2% (10/516) for unsolved DEE cases.
Collapse
|
34
|
Addona C, Hurlimann T, Jaitovich-Groisman I, Godard B. Experiences of adults living with refractory epilepsy and their views and expectations on receiving results from whole genome sequencing. Epilepsy Res 2023; 196:107221. [PMID: 37696194 DOI: 10.1016/j.eplepsyres.2023.107221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
INTRODUCTION Researchers, clinicians and patients are turning to new innovations in research and clinical practice to further their knowledge in the genetic domain and improve diagnostics or treatment. However, with increased knowledge in genetics, societal issues may arise. Being conscious of these issues is crucial in order to implement standardized and efficient testing on a wider scale that is accessible to a greater number of individuals while simultaneously returning test results, including incidental findings, in a timely manner. METHODS Within the framework of a genomics research project, we invited 20 participants who suffer from refractory epilepsy to provide insight on their personal experiences with epilepsy, as well as their thoughts on receiving Whole Genome Sequencing (WGS) results and with whom they would feel comfortable sharing these results with. RESULTS All participants had their own unique experience with epilepsy, such as how they handled their diagnosis, their struggles following the diagnosis, the healthcare services they received, how they shared their diagnosis with others, and how they managed stigmatization from others. Most participants would be eager to know their WGS results, whether the results be related to epilepsy (n = 19), response to pharmaceutical drugs including AEDs (n = 16), comorbidities (n = 19) and incidental findings (n = 15). CONCLUSION Our findings reinforce the need to improve access to genetic testing for epilepsy patients in clinical settings. Furthermore, while acquiring more genetic knowledge (i.e. WGS) about epilepsy can provide answers for the affected population, it also requires the simultaneous involvement of several medical disciplines, with greater emphasis on genetic and psychological counseling.
Collapse
Affiliation(s)
- Cynthia Addona
- Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Thierry Hurlimann
- Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, QC H3C 3J7, Canada
| | | | - Beatrice Godard
- Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
35
|
Cameron JM, Ellis CA, Berkovic SF. ILAE Genetics Literacy series: Progressive myoclonus epilepsies. Epileptic Disord 2023; 25:670-680. [PMID: 37616028 PMCID: PMC10947580 DOI: 10.1002/epd2.20152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/21/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Progressive Myoclonus Epilepsy (PME) is a rare epilepsy syndrome characterized by the development of progressively worsening myoclonus, ataxia, and seizures. A molecular diagnosis can now be established in approximately 80% of individuals with PME. Almost fifty genetic causes of PME have now been established, although some remain extremely rare. Herein, we provide a review of clinical phenotypes and genotypes of the more commonly encountered PMEs. Using an illustrative case example, we describe appropriate clinical investigation and therapeutic strategies to guide the management of this often relentlessly progressive and devastating epilepsy syndrome. This manuscript in the Genetic Literacy series maps to Learning Objective 1.2 of the ILAE Curriculum for Epileptology (Epileptic Disord. 2019;21:129).
Collapse
Affiliation(s)
- Jillian M. Cameron
- Epilepsy Research Centre, Department of MedicineUniversity of MelbourneAustin HealthMelbourneVictoriaAustralia
| | - Colin A. Ellis
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Samuel F. Berkovic
- Epilepsy Research Centre, Department of MedicineUniversity of MelbourneAustin HealthMelbourneVictoriaAustralia
| | | |
Collapse
|
36
|
Stevelink R, Campbell C, Chen S, Abou-Khalil B, Adesoji OM, Afawi Z, Amadori E, Anderson A, Anderson J, Andrade DM, Annesi G, Auce P, Avbersek A, Bahlo M, Baker MD, Balagura G, Balestrini S, Barba C, Barboza K, Bartolomei F, Bast T, Baum L, Baumgartner T, Baykan B, Bebek N, Becker AJ, Becker F, Bennett CA, Berghuis B, Berkovic SF, Beydoun A, Bianchini C, Bisulli F, Blatt I, Bobbili DR, Borggraefe I, Bosselmann C, Braatz V, Bradfield JP, Brockmann K, Brody LC, Buono RJ, Busch RM, Caglayan H, Campbell E, Canafoglia L, Canavati C, Cascino GD, Castellotti B, Catarino CB, Cavalleri GL, Cerrato F, Chassoux F, Cherny SS, Cheung CL, Chinthapalli K, Chou IJ, Chung SK, Churchhouse C, Clark PO, Cole AJ, Compston A, Coppola A, Cosico M, Cossette P, Craig JJ, Cusick C, Daly MJ, Davis LK, de Haan GJ, Delanty N, Depondt C, Derambure P, Devinsky O, Di Vito L, Dlugos DJ, Doccini V, Doherty CP, El-Naggar H, Elger CE, Ellis CA, Eriksson JG, Faucon A, Feng YCA, Ferguson L, Ferraro TN, Ferri L, Feucht M, Fitzgerald M, Fonferko-Shadrach B, Fortunato F, Franceschetti S, Franke A, French JA, Freri E, Gagliardi M, Gambardella A, Geller EB, Giangregorio T, Gjerstad L, Glauser T, Goldberg E, Goldman A, Granata T, Greenberg DA, Guerrini R, Gupta N, Haas KF, Hakonarson H, Hallmann K, Hassanin E, Hegde M, Heinzen EL, Helbig I, Hengsbach C, Heyne HO, Hirose S, Hirsch E, Hjalgrim H, Howrigan DP, Hucks D, Hung PC, Iacomino M, Imbach LL, Inoue Y, Ishii A, Jamnadas-Khoda J, Jehi L, Johnson MR, Kälviäinen R, Kamatani Y, Kanaan M, Kanai M, Kantanen AM, Kara B, Kariuki SM, Kasperavičiūte D, Kasteleijn-Nolst Trenite D, Kato M, Kegele J, Kesim Y, Khoueiry-Zgheib N, King C, Kirsch HE, Klein KM, Kluger G, Knake S, Knowlton RC, Koeleman BPC, Korczyn AD, Koupparis A, Kousiappa I, Krause R, Krenn M, Krestel H, Krey I, Kunz WS, Kurki MI, Kurlemann G, Kuzniecky R, Kwan P, Labate A, Lacey A, Lal D, Landoulsi Z, Lau YL, Lauxmann S, Leech SL, Lehesjoki AE, Lemke JR, Lerche H, Lesca G, Leu C, Lewin N, Lewis-Smith D, Li GHY, Li QS, Licchetta L, Lin KL, Lindhout D, Linnankivi T, Lopes-Cendes I, Lowenstein DH, Lui CHT, Madia F, Magnusson S, Marson AG, May P, McGraw CM, Mei D, Mills JL, Minardi R, Mirza N, Møller RS, Molloy AM, Montomoli M, Mostacci B, Muccioli L, Muhle H, Müller-Schlüter K, Najm IM, Nasreddine W, Neale BM, Neubauer B, Newton CRJC, Nöthen MM, Nothnagel M, Nürnberg P, O’Brien TJ, Okada Y, Ólafsson E, Oliver KL, Özkara C, Palotie A, Pangilinan F, Papacostas SS, Parrini E, Pato CN, Pato MT, Pendziwiat M, Petrovski S, Pickrell WO, Pinsky R, Pippucci T, Poduri A, Pondrelli F, Powell RHW, Privitera M, Rademacher A, Radtke R, Ragona F, Rau S, Rees MI, Regan BM, Reif PS, Rhelms S, Riva A, Rosenow F, Ryvlin P, Saarela A, Sadleir LG, Sander JW, Sander T, Scala M, Scattergood T, Schachter SC, Schankin CJ, Scheffer IE, Schmitz B, Schoch S, Schubert-Bast S, Schulze-Bonhage A, Scudieri P, Sham P, Sheidley BR, Shih JJ, Sills GJ, Sisodiya SM, Smith MC, Smith PE, Sonsma ACM, Speed D, Sperling MR, Stefansson H, Stefansson K, Steinhoff BJ, Stephani U, Stewart WC, Stipa C, Striano P, Stroink H, Strzelczyk A, Surges R, Suzuki T, Tan KM, Taneja RS, Tanteles GA, Taubøll E, Thio LL, Thomas GN, Thomas RH, Timonen O, Tinuper P, Todaro M, Topaloğlu P, Tozzi R, Tsai MH, Tumiene B, Turkdogan D, Unnsteinsdóttir U, Utkus A, Vaidiswaran P, Valton L, van Baalen A, Vetro A, Vining EPG, Visscher F, von Brauchitsch S, von Wrede R, Wagner RG, Weber YG, Weckhuysen S, Weisenberg J, Weller M, Widdess-Walsh P, Wolff M, Wolking S, Wu D, Yamakawa K, Yang W, Yapıcı Z, Yücesan E, Zagaglia S, Zahnert F, Zara F, Zhou W, Zimprich F, Zsurka G, Zulfiqar Ali Q. GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture. Nat Genet 2023; 55:1471-1482. [PMID: 37653029 PMCID: PMC10484785 DOI: 10.1038/s41588-023-01485-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment.
Collapse
|
37
|
van Eyk CL, Fahey MC, Gecz J. Redefining cerebral palsies as a diverse group of neurodevelopmental disorders with genetic aetiology. Nat Rev Neurol 2023; 19:542-555. [PMID: 37537278 DOI: 10.1038/s41582-023-00847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
Cerebral palsy is a clinical descriptor covering a diverse group of permanent, non-degenerative disorders of motor function. Around one-third of cases have now been shown to have an underlying genetic aetiology, with the genetic landscape overlapping with those of neurodevelopmental disorders including intellectual disability, epilepsy, speech and language disorders and autism. Here we review the current state of genomic testing in cerebral palsy, highlighting the benefits for personalized medicine and the imperative to consider aetiology during clinical diagnosis. With earlier clinical diagnosis now possible, we emphasize the opportunity for comprehensive and early genomic testing as a crucial component of the routine diagnostic work-up in people with cerebral palsy.
Collapse
Affiliation(s)
- Clare L van Eyk
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Jozef Gecz
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
| |
Collapse
|
38
|
D'Gama AM, Mulhern S, Sheidley BR, Boodhoo F, Buts S, Chandler NJ, Cobb J, Curtis M, Higginbotham EJ, Holland J, Khan T, Koh J, Liang NSY, McRae L, Nesbitt SE, Oby BT, Paternoster B, Patton A, Rose G, Scotchman E, Valentine R, Wiltrout KN, Hayeems RZ, Jain P, Lunke S, Marshall CR, Rockowitz S, Sebire NJ, Stark Z, White SM, Chitty LS, Cross JH, Scheffer IE, Chau V, Costain G, Poduri A, Howell KB, McTague A. Evaluation of the feasibility, diagnostic yield, and clinical utility of rapid genome sequencing in infantile epilepsy (Gene-STEPS): an international, multicentre, pilot cohort study. Lancet Neurol 2023; 22:812-825. [PMID: 37596007 DOI: 10.1016/s1474-4422(23)00246-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Most neonatal and infantile-onset epilepsies have presumed genetic aetiologies, and early genetic diagnoses have the potential to inform clinical management and improve outcomes. We therefore aimed to determine the feasibility, diagnostic yield, and clinical utility of rapid genome sequencing in this population. METHODS We conducted an international, multicentre, cohort study (Gene-STEPS), which is a pilot study of the International Precision Child Health Partnership (IPCHiP). IPCHiP is a consortium of four paediatric centres with tertiary-level subspecialty services in Australia, Canada, the UK, and the USA. We recruited infants with new-onset epilepsy or complex febrile seizures from IPCHiP centres, who were younger than 12 months at seizure onset. We excluded infants with simple febrile seizures, acute provoked seizures, known acquired cause, or known genetic cause. Blood samples were collected from probands and available biological parents. Clinical data were collected from medical records, treating clinicians, and parents. Trio genome sequencing was done when both parents were available, and duo or singleton genome sequencing was done when one or neither parent was available. Site-specific protocols were used for DNA extraction and library preparation. Rapid genome sequencing and analysis was done at clinically accredited laboratories, and results were returned to families. We analysed summary statistics for cohort demographic and clinical characteristics and the timing, diagnostic yield, and clinical impact of rapid genome sequencing. FINDINGS Between Sept 1, 2021, and Aug 31, 2022, we enrolled 100 infants with new-onset epilepsy, of whom 41 (41%) were girls and 59 (59%) were boys. Median age of seizure onset was 128 days (IQR 46-192). For 43 (43% [binomial distribution 95% CI 33-53]) of 100 infants, we identified genetic diagnoses, with a median time from seizure onset to rapid genome sequencing result of 37 days (IQR 25-59). Genetic diagnosis was associated with neonatal seizure onset versus infantile seizure onset (14 [74%] of 19 vs 29 [36%] of 81; p=0·0027), referral setting (12 [71%] of 17 for intensive care, 19 [44%] of 43 non-intensive care inpatient, and 12 [28%] of 40 outpatient; p=0·0178), and epilepsy syndrome (13 [87%] of 15 for self-limited epilepsies, 18 [35%] of 51 for developmental and epileptic encephalopathies, 12 [35%] of 34 for other syndromes; p=0·001). Rapid genome sequencing revealed genetic heterogeneity, with 34 unique genes or genomic regions implicated. Genetic diagnoses had immediate clinical utility, informing treatment (24 [56%] of 43), additional evaluation (28 [65%]), prognosis (37 [86%]), and recurrence risk counselling (all cases). INTERPRETATION Our findings support the feasibility of implementation of rapid genome sequencing in the clinical care of infants with new-onset epilepsy. Longitudinal follow-up is needed to further assess the role of rapid genetic diagnosis in improving clinical, quality-of-life, and economic outcomes. FUNDING American Academy of Pediatrics, Boston Children's Hospital Children's Rare Disease Cohorts Initiative, Canadian Institutes of Health Research, Epilepsy Canada, Feiga Bresver Academic Foundation, Great Ormond Street Hospital Charity, Medical Research Council, Murdoch Children's Research Institute, National Institute of Child Health and Human Development, National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, One8 Foundation, Ontario Brain Institute, Robinson Family Initiative for Transformational Research, The Royal Children's Hospital Foundation, University of Toronto McLaughlin Centre.
Collapse
Affiliation(s)
- Alissa M D'Gama
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sarah Mulhern
- Victorian Clinical Genetics Service, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Beth R Sheidley
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Fadil Boodhoo
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Sarah Buts
- Department of Paediatric Neurology, Aachen University Hospital, Germany
| | - Natalie J Chandler
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | - Joanna Cobb
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Meredith Curtis
- Division of Genome Diagnostics, Hospital for Sick Children, Toronto, ON, Canada
| | | | - Jonathon Holland
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Tayyaba Khan
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Julia Koh
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Nicole S Y Liang
- Department of Genetic Counselling, Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lyndsey McRae
- Division of Neurology, Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Sarah E Nesbitt
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK; Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Brandon T Oby
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Ben Paternoster
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | - Alistair Patton
- Department of Paediatrics, Frimley Park Hospital, Frimley Health NHS Foundation Trust, Frimley, UK
| | - Graham Rose
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | - Elizabeth Scotchman
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | - Rozalia Valentine
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Kimberly N Wiltrout
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Robin Z Hayeems
- Program in Child Health Evaluative Sciences, SickKids Research Institute, Toronto, ON, Canada; Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Puneet Jain
- Division of Neurology, Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sebastian Lunke
- Victorian Clinical Genetics Service, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Christian R Marshall
- Division of Genome Diagnostics, Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Shira Rockowitz
- The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Research Computing, Boston Children's Hospital, Boston, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Neil J Sebire
- DRIVE Centre, Great Ormond Street Hospital for Children, London, UK
| | - Zornitza Stark
- Victorian Clinical Genetics Service, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Susan M White
- Victorian Clinical Genetics Service, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Lyn S Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK; Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - J Helen Cross
- Department of Neurology, Great Ormond Street Hospital, London, UK; Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Ingrid E Scheffer
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, Melbourne, VIC, Australia; Austin Health, and Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia; Department of Neurology, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Vann Chau
- Division of Neurology, Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Gregory Costain
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Clinical and Metabolic Genetics, Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Annapurna Poduri
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Katherine B Howell
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Neurology, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Amy McTague
- Department of Neurology, Great Ormond Street Hospital, London, UK; Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
39
|
Boßelmann CM, Leu C, Lal D. Technological and computational approaches to detect somatic mosaicism in epilepsy. Neurobiol Dis 2023:106208. [PMID: 37343892 DOI: 10.1016/j.nbd.2023.106208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
Lesional epilepsy is a common and severe disease commonly associated with malformations of cortical development, including focal cortical dysplasia and hemimegalencephaly. Recent advances in sequencing and variant calling technologies have identified several genetic causes, including both short/single nucleotide and structural somatic variation. In this review, we aim to provide a comprehensive overview of the methodological advancements in this field while highlighting the unresolved technological and computational challenges that persist, including ultra-low variant allele fractions in bulk tissue, low availability of paired control samples, spatial variability of mutational burden within the lesion, and the issue of false-positive calls and validation procedures. Information from genetic testing in focal epilepsy may be integrated into clinical care to inform histopathological diagnosis, postoperative prognosis, and candidate precision therapies.
Collapse
Affiliation(s)
- Christian M Boßelmann
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T., Cambridge, MA, USA; Cologne Center for Genomics (CCG), University of Cologne, Cologne, DE, USA
| |
Collapse
|
40
|
Chi W, Kiskinis E. Integrative Analysis of Epilepsy-Associated Genes Reveals Expression-Phenotype Correlations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544142. [PMID: 37333355 PMCID: PMC10274872 DOI: 10.1101/2023.06.09.544142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Epilepsy is a highly prevalent neurological disorder characterized by recurrent seizures. Patients exhibit broad genetic, molecular, and clinical diversity involving mild to severe comorbidities. The factors that contribute to this phenotypic diversity remain unclear. We used publicly available datasets to systematically interrogate the expression pattern of 247 epilepsy-associated genes across human tissues, developmental stages, and central nervous system (CNS) cellular subtypes. We grouped genes based on their curated phenotypes into 3 broad classes: core epilepsy genes (CEG), where seizures are the core syndrome, developmental and epileptic encephalopathy genes (DEEG) that are associated with developmental delay, and seizure-related genes (SRG), which are characterized by developmental delay and gross brain malformations. We find that DEEGs are highly expressed within the CNS, while SRGs are most abundant in non-CNS tissues. DEEGs and CEGs exhibit highly dynamic expression in various brain regions across development, spiking during the prenatal to infancy transition. Lastly, the abundance of CEGs and SRGs is comparable within cellular subtypes in the brain, while the average expression level of DEEGs is significantly higher in GABAergic neurons and non-neuronal cells. Our analysis provides an overview of the expression pattern of epilepsy-associated genes with spatiotemporal resolution and establishes a broad expression-phenotype correlation in epilepsy.
Collapse
Affiliation(s)
- Wanhao Chi
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
41
|
Oliver KL, Trivisano M, Mandelstam SA, De Dominicis A, Francis DI, Green TE, Muir AM, Chowdhary A, Hertzberg C, Goldhahn K, Metreau J, Prager C, Pinner J, Cardamone M, Myers KA, Leventer RJ, Lesca G, Bahlo M, Hildebrand MS, Mefford HC, Kaindl AM, Specchio N, Scheffer IE. WWOX developmental and epileptic encephalopathy: Understanding the epileptology and the mortality risk. Epilepsia 2023; 64:1351-1367. [PMID: 36779245 PMCID: PMC10952634 DOI: 10.1111/epi.17542] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
OBJECTIVE WWOX is an autosomal recessive cause of early infantile developmental and epileptic encephalopathy (WWOX-DEE), also known as WOREE (WWOX-related epileptic encephalopathy). We analyzed the epileptology and imaging features of WWOX-DEE, and investigated genotype-phenotype correlations, particularly with regard to survival. METHODS We studied 13 patients from 12 families with WWOX-DEE. Information regarding seizure semiology, comorbidities, facial dysmorphisms, and disease outcome were collected. Electroencephalographic (EEG) and brain magnetic resonance imaging (MRI) data were analyzed. Pathogenic WWOX variants from our cohort and the literature were coded as either null or missense, allowing individuals to be classified into one of three genotype classes: (1) null/null, (2) null/missense, (3) missense/missense. Differences in survival outcome were estimated using the Kaplan-Meier method. RESULTS All patients experienced multiple seizure types (median onset = 5 weeks, range = 1 day-10 months), the most frequent being focal (85%), epileptic spasms (77%), and tonic seizures (69%). Ictal EEG recordings in six of 13 patients showed tonic (n = 5), myoclonic (n = 2), epileptic spasms (n = 2), focal (n = 1), and migrating focal (n = 1) seizures. Interictal EEGs demonstrated slow background activity with multifocal discharges, predominantly over frontal or temporo-occipital regions. Eleven of 13 patients had a movement disorder, most frequently dystonia. Brain MRIs revealed severe frontotemporal, hippocampal, and optic atrophy, thin corpus callosum, and white matter signal abnormalities. Pathogenic variants were located throughout WWOX and comprised both missense and null changes including five copy number variants (four deletions, one duplication). Survival analyses showed that patients with two null variants are at higher mortality risk (p-value = .0085, log-rank test). SIGNIFICANCE Biallelic WWOX pathogenic variants cause an early infantile developmental and epileptic encephalopathy syndrome. The most common seizure types are focal seizures and epileptic spasms. Mortality risk is associated with mutation type; patients with biallelic null WWOX pathogenic variants have significantly lower survival probability compared to those carrying at least one presumed hypomorphic missense pathogenic variant.
Collapse
Affiliation(s)
- Karen L. Oliver
- Epilepsy Research Centre, Department of MedicineUniversity of Melbourne, Austin HealthHeidelbergVictoriaAustralia
- Population Health and Immunity DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Department of NeuroscienceBambino Gesù Children's Hospital IRCCS, full member of European Reference Network EpiCARERomeItaly
| | - Simone A. Mandelstam
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Murdoch Children's Research InstituteMelbourneVictoriaAustralia
- Florey Institute of Neuroscience and Mental HealthMelbourneVictoriaAustralia
- Department of Radiology, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Angela De Dominicis
- Rare and Complex Epilepsy Unit, Department of NeuroscienceBambino Gesù Children's Hospital IRCCS, full member of European Reference Network EpiCARERomeItaly
- Department of Biomedicine and PreventionUniversity of Rome “Tor Vergata”RomeItaly
| | - David I. Francis
- Victorian Clinical Genetics ServicesMurdoch Children's Research Institute, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Timothy E. Green
- Epilepsy Research Centre, Department of MedicineUniversity of Melbourne, Austin HealthHeidelbergVictoriaAustralia
| | - Alison M. Muir
- Department of PediatricsUniversity of WashingtonSeattleWashingtonUSA
| | - Apoorva Chowdhary
- Department of PediatricsUniversity of WashingtonSeattleWashingtonUSA
| | - Christoph Hertzberg
- Zentrum für Sozialpädiatrie und Neuropädiatrie (DBZ)Vivantes Hospital NeukoellnBerlinGermany
| | - Klaus Goldhahn
- Department of Pediatrics and Neuropediatrics, DRK Klinikum WestendBerlinGermany
| | - Julia Metreau
- Department of Pediatric NeurologyHôpital Bicêtre, Assistance Publique Hopitaux de ParisLe Kremlin‐BicêtreFrance
| | - Christine Prager
- Center for Chronically Sick Children (SPZ)Charité‐Universitätsmedizin BerlinBerlinGermany
- Department of Pediatric NeurologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Jason Pinner
- Sydney Children's HospitalRandwickNew South WalesAustralia
- School of Women's and Children's HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Michael Cardamone
- Sydney Children's HospitalRandwickNew South WalesAustralia
- School of Women's and Children's HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Kenneth A. Myers
- Division of Child Neurology, Department of PediatricsMcGill UniversityMontrealQuebecCanada
- Research Institute of the McGill University Health CentreMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMontreal Children's Hospital, McGill UniversityMontrealQuebecCanada
| | - Richard J. Leventer
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Murdoch Children's Research InstituteMelbourneVictoriaAustralia
- Department of NeurologyRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Gaetan Lesca
- Department of Medical Genetics, Lyon University HospitalUniversité Claude Bernard Lyon 1, member of the European Reference Network EpiCARELyonFrance
| | - Melanie Bahlo
- Population Health and Immunity DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Michael S. Hildebrand
- Epilepsy Research Centre, Department of MedicineUniversity of Melbourne, Austin HealthHeidelbergVictoriaAustralia
- Murdoch Children's Research InstituteMelbourneVictoriaAustralia
| | - Heather C. Mefford
- Department of PediatricsUniversity of WashingtonSeattleWashingtonUSA
- Center for Pediatric Neurological Disease ResearchSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Angela M. Kaindl
- Center for Chronically Sick Children (SPZ)Charité‐Universitätsmedizin BerlinBerlinGermany
- Department of Pediatric NeurologyCharité–Universitätsmedizin BerlinBerlinGermany
- Institute of Cell Biology and NeurobiologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of NeuroscienceBambino Gesù Children's Hospital IRCCS, full member of European Reference Network EpiCARERomeItaly
| | - Ingrid E. Scheffer
- Epilepsy Research Centre, Department of MedicineUniversity of Melbourne, Austin HealthHeidelbergVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Murdoch Children's Research InstituteMelbourneVictoriaAustralia
- Florey Institute of Neuroscience and Mental HealthMelbourneVictoriaAustralia
| |
Collapse
|