1
|
Shahid N, Siddique A, Liess M. Predicting the Combined Effects of Multiple Stressors and Stress Adaptation in Gammarus pulex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12899-12908. [PMID: 38984974 PMCID: PMC11270985 DOI: 10.1021/acs.est.4c02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Global change confronts organisms with multiple stressors causing nonadditive effects. Persistent stress, however, leads to adaptation and related trade-offs. The question arises: How can the resulting effects of these contradictory processes be predicted? Here we show that Gammarus pulex from agricultural streams were more tolerant to clothianidin (mean EC50 148 μg/L) than populations from reference streams (mean EC50 67 μg/L). We assume that this increased tolerance results from a combination of physiological acclimation, epigenetic effects, and genetic evolution, termed as adaptation. Further, joint exposure to pesticide mixture and temperature stress led to synergistic interactions of all three stressors. However, these combined effects were significantly stronger in adapted populations as shown by the model deviation ratio (MDR) of 4, compared to reference populations (MDR = 2.7). The pesticide adaptation reduced the General-Stress capacity of adapted individuals, and the related trade-off process increased vulnerability to combined stress. Overall, synergistic interactions were stronger with increasing total stress and could be well predicted by the stress addition model (SAM). In contrast, traditional models such as concentration addition (CA) and effect addition (EA) substantially underestimated the combined effects. We conclude that several, even very disparate stress factors, including population adaptations to stress, can act synergistically. The strong synergistic potential underscores the critical importance of correctly predicting multiple stresses for risk assessment.
Collapse
Affiliation(s)
- Naeem Shahid
- System-Ecotoxicology, Helmholtz Centre for Environmental Research −
UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Department
of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, 60629 Frankfurt am Main, Germany
| | - Ayesha Siddique
- System-Ecotoxicology, Helmholtz Centre for Environmental Research −
UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute
for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Matthias Liess
- System-Ecotoxicology, Helmholtz Centre for Environmental Research −
UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute
for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
2
|
Jones DK, DiGiacopo DG, Mattes BM, Yates E, Hua J, Hoverman JT, Relyea RA. Naïve and induced tolerance of 15 amphibian populations to three commonly applied insecticides. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106945. [PMID: 38759526 DOI: 10.1016/j.aquatox.2024.106945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Human impacts on ecological communities are pervasive and species must either move or adapt to changing environmental conditions. For environments polluted by contaminants, researchers have found hundreds of target pest species evolving increased tolerance, but we have substantially fewer cases of evolved tolerance in non-target species. When species do evolve increased tolerance, inducible tolerance can provide immediate protection and favor the evolution of increased tolerance over generations via genetic assimilation. Using a model larval amphibian (wood frogs, Rana sylvatica), we examined the tolerance of 15 populations from western Pennsylvania and eastern New York (USA), when first exposed to no pesticide or sublethal concentrations and subsequently exposed to lethal concentrations of three common insecticides (carbaryl, chlorpyrifos, and diazinon). We found high variation in naïve tolerance among the populations for all three insecticides. We also discovered that nearly half of the populations exhibited inducible tolerance, though the degree of inducible tolerance (magnitude of tolerance plasticity; MoTP) varied. We observed a cross-tolerance pattern of the populations between chlorpyrifos and diazinon, but no pattern of similar MoTP among the pesticides. With populations combined from two regions, increased tolerance was not associated with proximity to agricultural fields, but there were correlations between proximity to agriculture and MoTP. Collectively, these results suggests that amphibian populations possess a wide range of naïve tolerance to common pesticides, with many also being able to rapidly induce increased tolerance. Future research should examine inducible tolerance in a wide variety of other taxa and contaminants to determine the ubiquity of these responses to anthropogenic factors.
Collapse
Affiliation(s)
- Devin K Jones
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA; Department. of Forestry and Natural Resources, Purdue Univ., West Lafayette, IN 47907 USA
| | - Devin G DiGiacopo
- Teatown Lake Reservation, 1600 Spring Valley Road, Ossining, NY 10562 USA
| | - Brian M Mattes
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Erika Yates
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Jessica Hua
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Jason T Hoverman
- Department. of Forestry and Natural Resources, Purdue Univ., West Lafayette, IN 47907 USA
| | - Rick A Relyea
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA.
| |
Collapse
|
3
|
Gomarasca S, Stefani F, Fasola E, La Porta CA, Bocchi S. Regional evaluation of glyphosate pollution in the minor irrigation network. CHEMOSPHERE 2024; 355:141679. [PMID: 38527632 DOI: 10.1016/j.chemosphere.2024.141679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/13/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024]
Abstract
Due to its low cost, its ease of use and to the "mild action" declared for long time by the Control and Approval Agencies towards it, the herbicide Glyphosate, is one of the currently best-selling and most-used agricultural products worldwide. In this work, we evaluated the presence and spread of Glyphosate in the Po River Basin (Northern Italy), one of the regions with the most intensified agriculture in Europe and where, by now for decades, a strong and general loss of aquatic biodiversity is observed. In order to carry out a more precise study of the real presence of this herbicide in the waters, samples were collected from the minor water network for two consecutive years, starting in 2022, at an interval time coinciding with those of the spring and summer crop treatments. In contrast to the sampling strategies generally adopted by Environmental Protection Agencies, a more focused sampling strategy was adopted to highlight the possible high concentrations in minor watercourses in direct contact with cultivated fields. Finally, we investigated the possible consequences that the higher amounts of Glyphosate found in our monitoring activities can have on stress reactions in plant (Groenlandia densa) and animal (Daphnia magna) In all the monitoring campaigns we detected exceeding European Environmental Quality Standard - EQS limits (0.1 μg/L) values. Furthermore, in some intensively agricultural areas, concentrations reached hundreds of μg/L, with the highest peaks during spring. In G. densa and D. magna, the exposition to increasing doses of herbicide showed a clear response linked to metabolic stress. Overall, our results highlight how, after several decades of its use, the Glyphosate use efficiency is still too low, leading to economic losses for the farm and to strong impacts on ecosystem health. Current EU policy indications call for an agroecological approach necessary to find alternatives to chemical weed control, which farms can develop in different contexts in order to achieve the sustainability goals set by the Farm to Fork strategy.
Collapse
Affiliation(s)
- Stefano Gomarasca
- Dep. of Environmental Science and Policy (ESP), University of Milan, Via Celoria 2, 20133, Milano, Italy.
| | - Fabrizio Stefani
- Water Research Institute-National Research Council (IRSA-CNR), Via del Mulino 19, 20861, Brugherio, MB, Italy.
| | - Emanuele Fasola
- Water Research Institute-National Research Council (IRSA-CNR), Via del Mulino 19, 20861, Brugherio, MB, Italy.
| | - Caterina Am La Porta
- Dep. of Environmental Science and Policy (ESP), University of Milan, Via Celoria 2, 20133, Milano, Italy.
| | - Stefano Bocchi
- Dep. of Environmental Science and Policy (ESP), University of Milan, Via Celoria 2, 20133, Milano, Italy.
| |
Collapse
|
4
|
Relyea RA, Schermerhorn CX, Mattes BM, Shepard ID. Phenotypically plastic responses to freshwater salinization in larval amphibians: Induced tolerance and induced sensitivity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122588. [PMID: 37734634 DOI: 10.1016/j.envpol.2023.122588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Contamination of aquatic ecosystems is pervasive around the world and there has been a growing interest in understanding the ecological and evolutionary impacts. For contaminants such as pesticides, researchers are discovering widespread evolution of increased tolerance in target and non-target species and the role of phenotypic plasticity in facilitating this evolution. In contrast, we know much less about the evolution of tolerance in response to the increasing problem of freshwater salinization. In amphibians, recent studies have discovered that some populations from ponds with high salt pollution (from deicing road salts) have evolved higher tolerance. In this study, we examined whether populations of wood frog tadpoles (Rana sylvatica) possess rapid, inducible tolerance to salinity in a manner similar to their inducible tolerance to pesticides. Using newly hatched tadpoles from nine populations, we discovered that eight of the populations were able to alter their tolerance to salt. However, seven of the eight inducible populations experienced a higher sensitivity to salt while the eighth population experienced a higher tolerance to salt. Such inducible responses likely reflect the interplay of salt dynamics in the ponds, combined with the available genetic variation and selection intensity of each pond. This appears to be the first example of inducible salt tolerance in any animal and future studies should examine the generality of the response and how it may affect the evolution of tolerance to the global issue of freshwater salinization.
Collapse
Affiliation(s)
- Rick A Relyea
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Candace X Schermerhorn
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Brian M Mattes
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Isaac D Shepard
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
5
|
Billet LS, Wuerthner VP, Relyea RA, Hoverman JT, Hua J. Population-level variation in insecticide tolerance across three life stages of the trematode Echinostoma trivolvis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106626. [PMID: 37437313 DOI: 10.1016/j.aquatox.2023.106626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/18/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
Ecotoxicological studies using single test populations may miss the inherent variation of natural systems and limit our understanding of how contaminants affect focal species. Though population-level variation in pesticide tolerance is commonly observed in host taxa, few studies have assessed population-level differences in the tolerance of parasites to different contaminants. We investigated population-level variation in insecticide tolerance of three Echinostoma trivolvis life stages (egg, miracidium, and cercaria) to three insecticides (carbaryl, chlorpyrifos, and diazinon). We tested two relevant metrics of insecticide tolerance-baseline and induced-across up to eight different parasite populations per life stage. Across all life stages, the insecticide treatments tended to reduce survival, but the magnitude of their effects often varied significantly among populations. Surprisingly, we found that exposure to chlorpyrifos increased the hatching success of echinostome eggs relative to the control treatment in three of six tested populations. We also found that cercariae shed from snails previously exposed to a sublethal concentration of chlorpyrifos had a significantly lower mortality rate when subsequently exposed to a lethal concentration of chlorpyrifos relative to individuals from snails that were not previously exposed; this suggests inducible tolerance in cercariae. We found no evidence that insecticide tolerance is correlated across parasite life stages within a population. Together the findings of our study demonstrate that single-population toxicity assays may greatly over- or underestimate the effects of pesticides on the survival of free-living parasite stages, insecticide tolerance levels may not be predictable from one parasite life stage to the next, and insecticides can have both expected and counterintuitive effects on non-target taxa.
Collapse
Affiliation(s)
- Logan S Billet
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; School of the Environment, Yale University, New Haven, CT 06520, USA.
| | - Vanessa P Wuerthner
- Biological Sciences Department, Binghamton University, Binghamton, NY 13902, USA
| | - Rick A Relyea
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12198, USA
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Jessica Hua
- Biological Sciences Department, Binghamton University, Binghamton, NY 13902, USA; Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
6
|
Choi YJ, Lee LS, Hoskins TD, Gharehveran MM, Sepúlveda MS. Occurrence and implications of per and polyfluoroalkyl substances in animal feeds used in laboratory toxicity testing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161583. [PMID: 36638992 DOI: 10.1016/j.scitotenv.2023.161583] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The exceptional thermal and chemical stability and the amphiphilicity of per- and polyfluoroalkyl substances (PFAS) have resulted in widespread use and subsequent contamination in environmental media and biota. Concerns surrounding toxicity have led to numerous animal-based toxicity studies. Due to the ubiquity of PFAS and the low parts per trillion (ppt) health advisory levels for drinking water, several contamination elimination protocols have been implemented. In addition, it is urgently necessary to perform low-dose experiments, but due to unknown pathways for entry of unwanted PFAS, low-dose studies are extremely challenging to conduct. However, animal feed sources are a likely route that could introduce unwanted PFAS into experiments, yet investigations of PFAS in common animal feeds are lacking. Here, we report the examination of PFAS levels in eighteen different animal feeds, representing a range of diets fed to diverse taxa. We evaluated whether PFAS levels in feeds were correlated with ingredient composition (plant versus animal-based) or dietary habits of lab animals (amphibian, fish, invertebrate, mammal). PFOS, PFHxS, PFOA, and short-chain perfluoroalkyl carboxylic acids had the highest detection levels and frequencies across all samples. Different food ingredients led to different PFAS profiles. No meaningful levels of PFAS precursors were detected. We demonstrate that PFAS contamination in animal feed is pervasive. Reducing food-sourced PFAS is a critical, albeit challenging task to improve interpretability of in vivo exposures.
Collapse
Affiliation(s)
- Youn Jeong Choi
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA.
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA; Division of Environmental Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA; Interdisciplinary Ecological Science & Engineering Graduate Program, Purdue University, West Lafayette, IN 47907, USA
| | - Tyler D Hoskins
- Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | | | - Maria S Sepúlveda
- Interdisciplinary Ecological Science & Engineering Graduate Program, Purdue University, West Lafayette, IN 47907, USA; Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; Sustainability Research Center & PhD in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
7
|
Leeb C, Schuler L, Brühl CA, Theissinger K. Low temperatures lead to higher toxicity of the fungicide folpet to larval stages of Rana temporaria and Bufotes viridis. PLoS One 2022; 17:e0258631. [PMID: 35951548 PMCID: PMC9371251 DOI: 10.1371/journal.pone.0258631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Pesticides are one of the main drivers of the worldwide amphibian decline. Their actual toxicity depends on a number of factors, like the species in focus or the developmental stage of exposed individuals. As ectothermic species, the metabolism of amphibians is influenced by ambient temperature. Therefore, temperature also affects metabolic rates and thus processes that might enhance or reduce toxic effects. Studies about the interactive effect of temperature and toxicity on amphibians are rare and deliver contrasting results. To investigate the temperature-dependent pesticide sensitivity of larvae of two European species we conducted acute toxicity tests for the viticultural fungicide Folpan® 500 SC with the active ingredient folpet at different temperatures (6°C, 11°C, 16°C, 21°C, 26°C). Sensitivity of Rana temporaria and Bufotes viridis was highly affected by temperature: early larvae (Gosner stage 20) were about twice more sensitive to Folpan® 500 SC at 6°C compared to 21°C. Next to temperature, species and developmental stage of larvae had an effect on sensitivity. The most sensitive individuals (early stages of R. temporaria at 6°C) were 14.5 times more sensitive than the least sensitive ones (early stages of B. viridis at 26°C). Our results raise concerns about typical ecotoxicological studies with amphibians that are often conducted at temperatures between 15°C and 20°C. We suggest that future test designs should be performed at temperatures that reflect the temperature range amphibians are exposed to in their natural habitats. Variations in the sensitivity due to temperature should also be considered as an uncertainty factor in upcoming environmental risk assessments for amphibians.
Collapse
Affiliation(s)
- Christoph Leeb
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
- * E-mail:
| | - Laura Schuler
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Carsten A. Brühl
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Kathrin Theissinger
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| |
Collapse
|
8
|
Siddique A, Shahid N, Liess M. Multiple Stress Reduces the Advantage of Pesticide Adaptation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15100-15109. [PMID: 34730333 DOI: 10.1021/acs.est.1c02669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Under global change scenarios, multistress conditions may occur regularly and require adaptation. However, the adaptation to one stressor might be associated with the increased sensitivity to another stressor. Here, we investigated the ecological consequences of such trade-off under multiple stress. We compared the pesticide tolerance of the crustacean Gammarus pulex from agricultural streams with populations from reference streams. Under optimum temperature, G. pulex from agricultural streams were considerably more tolerant to pesticides as compared to the reference populations. Here, we assume that the increased tolerance in agricultural populations is the combination of acclimation, epigenetic effect, and genetic evolution. After experimental pre-exposure to very low concentration (LC50/1000), reference populations showed increased pesticide tolerance. In contrast, pre-exposure did not further increase the tolerance of agricultural populations. Moreover, these populations were more sensitive to elevated temperature alone due to the hypothesized fitness cost of genetic adaptation to pesticides. However, both reference and agricultural populations showed a similar tolerance to the combined stress of pesticides and warming due to stronger synergistic effects in adapted populations. As a result, pesticide adaptation loses its advantage. The combined effect was predicted well using the stress addition model, developed for predicting the synergistic interaction of independent stressors. We conclude that under multistress conditions, adaptation to pesticides reduces the general stress capacity of individuals and trade-off processes increase the sensitivity to additional stressors. This causes strong synergistic effects of additional stressors on pesticide-adapted individuals.
Collapse
Affiliation(s)
- Ayesha Siddique
- Department of System-Ecotoxicology, Helmholtz Centre for Environmental Research─UFZ, Permoserstraße 15, Leipzig 04318, Germany
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany
| | - Naeem Shahid
- Department of System-Ecotoxicology, Helmholtz Centre for Environmental Research─UFZ, Permoserstraße 15, Leipzig 04318, Germany
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Street 13, Frankfurt am Main 60438, Germany
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Matthias Liess
- Department of System-Ecotoxicology, Helmholtz Centre for Environmental Research─UFZ, Permoserstraße 15, Leipzig 04318, Germany
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany
| |
Collapse
|
9
|
Shidemantle G, Buss N, Hua J. Are glucocorticoids good indicators of disturbance across populations that exhibit cryptic variation in contaminant tolerance? Anim Conserv 2021. [DOI: 10.1111/acv.12737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- G. Shidemantle
- Biological Sciences Department Binghamton University (SUNY) Binghamton NY USA
| | - N. Buss
- Biological Sciences Department Binghamton University (SUNY) Binghamton NY USA
| | - J. Hua
- Biological Sciences Department Binghamton University (SUNY) Binghamton NY USA
| |
Collapse
|
10
|
Flynn RW, Welch AM, Lance SL. Divergence in heritable life history traits suggests potential for local adaptation and trade-offs associated with a coal ash disposal site. Evol Appl 2021; 14:2039-2054. [PMID: 34429747 PMCID: PMC8372081 DOI: 10.1111/eva.13256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 11/30/2022] Open
Abstract
Globally, human activities have resulted in rapid environmental changes that present unique challenges for wildlife. However, investigations of local adaptation in response to simultaneous exposure to multiple anthropogenic selection pressures are rare and often generate conflicting results. We used an in situ reciprocal transplant design within a quantitative genetic framework to examine how adaptive evolution and phenotypic plasticity contribute to the persistence of an amphibian population inhabiting an environment characterized by high levels of multiple toxic trace elements. We found evidence of phenotypic divergence that is largely consistent with local adaptation to an environment contaminated with multiple chemical stressors, tied to potential trade-offs in the absence of contaminants. Specifically, the population derived from the contaminated environment had a reduced risk of mortality and greater larval growth and in the contaminated environment, relative to offspring from the naïve population. Further, while survival in the uncontaminated environment was not compromised in offspring from the contaminant-exposed population, they did show delayed development and reduced growth rates over larval development, relative to the naïve population. We found no evidence of reduced additive genetic variation in the contaminant-exposed population, suggesting long-term selection in a novel environment has not reduced the evolutionary potential of that population. We also saw little evidence that past selection in the ASH environment had reduced trait plasticity in the resident population. Maternal effects were prominent in early development, but we did not detect any trends suggesting these effects were associated with the maternal transfer of toxic trace elements. Our results demonstrate the potential for adaptation to multiple contaminants in a wild amphibian population, which may have facilitated long-term persistence in a heavily impacted environment.
Collapse
Affiliation(s)
- R. Wesley Flynn
- Savannah River Ecology LaboratoryUniversity of GeorgiaAikenSCUSA
| | | | - Stacey L. Lance
- Savannah River Ecology LaboratoryUniversity of GeorgiaAikenSCUSA
| |
Collapse
|
11
|
Sweeney MR, Thompson CM, Popescu VD. Sublethal, Behavioral, and Developmental Effects of the Neonicotinoid Pesticide Imidacloprid on Larval Wood Frogs (Rana sylvatica). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1840-1849. [PMID: 33760293 DOI: 10.1002/etc.5047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/09/2020] [Accepted: 03/18/2020] [Indexed: 06/12/2023]
Abstract
Imidacloprid, a neonicotinoid pesticide, is used to prevent the spread of the hemlock woolly adelgid, currently affecting Eastern Hemlock trees across North America. When the pesticide is sprayed directly onto soil around infested trees (soil drenching), it can run off into aquatic systems, with potential negative effects on biota. Simultaneously, climate change may lead to faster pool drying, which acts as an additional stressor for sensitive species such as amphibians. We evaluated the sublethal effects of imidacloprid (10 ppb), and interaction with shorter hydroperiods on the larval behavior, growth, and survival of a model organism, the wood frog (Rana sylvatica). We performed 3 behavioral experiments evaluating swimming speed, time spent swimming, and distance the larvae swam. We found that larvae raised in 10 ppb imidacloprid or shorter hydroperiod did not differ in their swimming time, distance, and speed from nonexposed larvae. Naïve larvae exposed for 20 min to 10- to 500-ppb concentrations also showed similar performance to nonexposed larvae. However, when we applied a stimulus halfway through each experiment, we found that larvae exposed to 10 ppb imidacloprid (short and long term) swam shorter distances and spent less time swimming, suggesting that imidacloprid exposure may slow reaction time, potentially increasing the risk of predation. To minimize impacts on pool-breeding amphibians, imidacloprid application to combat the invasive hemlock woolly adelgid should use trunk injection and avoid soil drenching. Environ Toxicol Chem 2021;40:1840-1849. © 2021 SETAC.
Collapse
Affiliation(s)
- Megan R Sweeney
- Department of Biological Sciences and Sustainability Studies Theme, Ohio University, Athens, Ohio, USA
| | - Cassandra M Thompson
- Department of Biological Sciences and Sustainability Studies Theme, Ohio University, Athens, Ohio, USA
| | - Viorel D Popescu
- Department of Biological Sciences and Sustainability Studies Theme, Ohio University, Athens, Ohio, USA
- Center for Environmental Research, University of Bucharest, Bucharest, Romania
| |
Collapse
|
12
|
Buss N, Swierk L, Hua J. Amphibian breeding phenology influences offspring size and response to a common wetland contaminant. Front Zool 2021; 18:31. [PMID: 34172063 PMCID: PMC8228996 DOI: 10.1186/s12983-021-00413-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/17/2021] [Indexed: 11/23/2022] Open
Abstract
Background Increases in temperature variability associated with climate change have critical implications for the phenology of wildlife across the globe. For example, warmer winter temperatures can induce forward shifts in breeding phenology across taxa (“false springs”), which can put organisms at risk of freezing conditions during reproduction or vulnerable early life stages. As human activities continue to encroach on natural ecosystems, it is also important to consider how breeding phenology interacts with other anthropogenic stressors (e.g., pollutants). Using 14 populations of a widespread amphibian (wood frog; Rana sylvatica), we compared 1) growth; 2) tolerance to a common wetland contaminant (NaCl); and 3) the ability of tadpoles to acclimate to lethal NaCl exposure following sublethal exposure earlier in life. We evaluated these metrics across two breeding seasons (2018 and 2019) and across populations of tadpoles whose parents differed in breeding phenology (earlier- versus later-breeding cohorts). In both years, the earlier-breeding cohorts completed breeding activity prior to a winter storm and later-breeding cohorts completed breeding activities after a winter storm. The freezing conditions that later-breeding cohorts were exposed to in 2018 were more severe in both magnitude and duration than those in 2019. Results In 2018, offspring of the later-breeding cohort were larger but less tolerant of NaCl compared to offspring of the earlier-breeding cohort. The offspring of the earlier-breeding cohort additionally were able to acclimate to a lethal concentration of NaCl following sublethal exposure earlier in life, while the later-breeding cohort became less tolerant of NaCl following acclimation. Interestingly, in 2019, the warmer of the two breeding seasons, we did not detect the negative effects of later breeding phenology on responses to NaCl. Conclusions These results suggest that phenological shifts that expose breeding amphibians to freezing conditions can have cascading consequences on offspring mass and ability to tolerate future stressors but likely depends on the severity of the freeze event. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-021-00413-0.
Collapse
Affiliation(s)
- Nicholas Buss
- Biological Sciences Department, Binghamton University, State University of New York, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA.
| | - Lindsey Swierk
- Biological Sciences Department, Binghamton University, State University of New York, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA.,Environmental Studies Program, Binghamton University, State University of New York, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Jessica Hua
- Biological Sciences Department, Binghamton University, State University of New York, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| |
Collapse
|
13
|
Jones DK, Hua J, Mattes BM, Cothran RD, Hoverman JT, Relyea RA. Predator- and competitor-induced responses in amphibian populations that evolved different levels of pesticide tolerance. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02305. [PMID: 33587795 DOI: 10.1002/eap.2305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/31/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Exposure to agrochemicals can drive rapid phenotypic and genetic changes in exposed populations. For instance, amphibian populations living far from agriculture (a proxy for agrochemical exposure) exhibit low pesticide tolerance, but they can be induced to possess high tolerance following a sublethal pesticide exposure. In contrast, amphibian populations close to agriculture exhibit high, constitutive tolerance to pesticides. A recent study has demonstrated that induced pesticide tolerance appears to have arisen from plastic responses to predator cues. As a result, we might expect that selection for constitutive pesticide tolerance in populations near agriculture (i.e., genetic assimilation) will lead to the evolution of constitutive responses to natural stressors. Using 15 wood frog (Rana sylvatica) populations from across an agricultural gradient, we conducted an outdoor mesocosm experiment to examine morphological (mass, body length, and tail depth) and behavioral responses (number of tadpoles observed and overall activity) of tadpoles exposed to three stressor environments (no-stressor, competitors, or predator cues). We discovered widespread differences in tadpole traits among populations and stressor environments, but no population-by-environment interaction. Subsequent linear models revealed that population distance to agriculture (DTA) was occasionally correlated with tadpole traits in a given environment and with magnitudes of plasticity, but none of the correlations were significant after Bonferroni adjustment. The magnitudes of predator and competitor plasticity were never correlated with the magnitude of pesticide-induced plasticity that we documented in a companion study. These results suggest that while predator-induced plasticity appears to have laid the foundation for the evolution of pesticide-induced plasticity and its subsequent genetic assimilation, inspection of population-level differences in plastic responses show that the evolution of pesticide-induced plasticity has not had a reciprocal effect on the evolved plastic responses to natural stressors.
Collapse
Affiliation(s)
- Devin K Jones
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, 46556, USA
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA
| | - Jessica Hua
- Biological Sciences Department, State University of New York Binghamton University, Binghamton, New York, 13902, USA
| | - Brian M Mattes
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA
| | - Rickey D Cothran
- Department of Biological Sciences, Southwestern Oklahoma State University, Weatherford, Oklahoma, 73096, USA
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Rick A Relyea
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA
| |
Collapse
|
14
|
Shephard AM, Zambre AM, Snell‐Rood EC. Evaluating costs of heavy metal tolerance in a widely distributed, invasive butterfly. Evol Appl 2021; 14:1390-1402. [PMID: 34025774 PMCID: PMC8127708 DOI: 10.1111/eva.13208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Organismal tolerance to environmental pollution is thought to be constrained by fitness costs, where variants with higher survival in polluted environments have lower performance in nonpolluted environments. Yet, costs are not always detected in empirical studies. One hypothesis suggests that whether tolerance costs emerge depends on the degree of heterogeneity populations experience with respect to pollution exposure. For instance, in populations confined to local environments where pollution is persistent, selection may favour alleles that enhance pollution tolerance but reduce performance in nonpolluted environments (costs). However, in broadly distributed populations that undergo selection in both polluted and nonpolluted patches, costs should be eroded. Understanding tolerance costs in broadly distributed populations is relevant to management of invasive species, which are highly dispersive, wide ranging, and often colonize disturbed or polluted patches such as agricultural monocultures. Therefore, we conducted a case study quantifying costs of tolerance to zinc pollution (a common heavy metal pollutant) in wild cabbage white butterflies (Pieris rapae). This wide ranging, highly dispersive and invasive pest periodically encounters metal pollution by consuming plants in urban and agricultural settings. In contrast to expected costs of tolerance, we found that cabbage white families with greater zinc tolerance also produced more eggs and had higher reproductive effort under nonpolluted conditions. These results contribute to a more general hypothesis of why costs of pollution tolerance vary across studies: patchy selection with pollutants should erode costs and may favour genotypes that perform well under both polluted and nonpolluted conditions. This might partly explain why widely distributed invasive species are able to thrive in diverse, polluted and nonpolluted habitats.
Collapse
Affiliation(s)
- Alexander M. Shephard
- Department of Ecology, Evolution, and BehaviorUniversity of Minnesota – Twin CitiesSt. PaulMNUSA
| | - Amod M. Zambre
- Department of Ecology, Evolution, and BehaviorUniversity of Minnesota – Twin CitiesSt. PaulMNUSA
| | - Emilie C. Snell‐Rood
- Department of Ecology, Evolution, and BehaviorUniversity of Minnesota – Twin CitiesSt. PaulMNUSA
| |
Collapse
|
15
|
Adams E, Gerstle V, Brühl CA. Dermal Fungicide Exposure at Realistic Field Rates Induces Lethal and Sublethal Effects on Juvenile European Common Frogs (Rana temporaria). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1289-1297. [PMID: 33348437 DOI: 10.1002/etc.4972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/15/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Viticulture is one of the most pesticide-intensive agricultures in Europe, leading to a spatiotemporal overlap of amphibian migration and pesticide applications. Because postmetamorphic, terrestrial amphibian stages are mostly neglected in ecotoxicological studies, we investigated acute effects of viticultural fungicides on juvenile common frogs (Rana temporaria). Tadpoles from an uncontaminated pond were placed in enclosures in 8 ponds with an increasing degree of pesticide contamination in southwest Germany to represent different aquatic exposure backgrounds. After metamorphosis, juveniles were exposed to soil contaminated with 50% of the recommended field rates of the fungicides Folpan® 80 water dispersible granule (WDG) and Folpan® 500 suspension concentrate with the same amount of folpet as active ingredient and differing additives. After 48 h, effects on the survival, body mass, and behavior were investigated. No effect of the aquatic exposure background on terrestrial sensitivity could be detected. Acute terrestrial exposure led to mean mortality rates of 14% (13-17%, suspension concentrate) and 60% (17-100%, WDG) and resulted in adverse effects on locomotor activity as well as feeding behavior. Moreover, the results suggest that the toxicity of the 2 tested folpet formulations depends on their additives. Because the identified effects may result in severe impairments and thus in declines of amphibian populations, a more protective risk assessment of pesticides is needed for postmetamorphic amphibians to ensure proper conservation of amphibian populations. Environ Toxicol Chem 2021;40:1289-1297. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Elena Adams
- iES Landau, Institute for Environmental Sciences, University of Koblenz Landau, Landau, Germany
| | - Verena Gerstle
- iES Landau, Institute for Environmental Sciences, University of Koblenz Landau, Landau, Germany
| | - Carsten A Brühl
- iES Landau, Institute for Environmental Sciences, University of Koblenz Landau, Landau, Germany
| |
Collapse
|
16
|
Yin X, Martinez AS, Perkins A, Sparks MM, Harder AM, Willoughby JR, Sepúlveda MS, Christie MR. Incipient resistance to an effective pesticide results from genetic adaptation and the canalization of gene expression. Evol Appl 2021; 14:847-859. [PMID: 33767757 PMCID: PMC7980271 DOI: 10.1111/eva.13166] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
The resistance of pest species to chemical controls has vast ecological, economic, and societal costs. In most cases, resistance is only detected after spreading throughout an entire population. Detecting resistance in its incipient stages, by comparison, provides time to implement preventative strategies. Incipient resistance can be detected by coupling standard toxicology assays with large-scale gene expression experiments. We apply this approach to a system where an invasive parasite, sea lamprey (Petromyzon marinus), has been treated with the highly effective pesticide 3-trifluoromethyl-4-nitrophenol (TFM) for 60 years. Toxicological experiments revealed that lamprey from treated populations did not have higher survival to TFM exposure than lamprey from untreated populations, demonstrating that full-fledged resistance has not yet evolved. In contrast, we find hundreds of genes differentially expressed in response to TFM in the population with the longest history of exposure, many of which relate to TFM's primary mode of action, the uncoupling of oxidative phosphorylation, and subsequent depletion of ATP. Three genes critical to oxidative phosphorylation, ATP5PB, PLCB1, and NDUFA9, were nearly fixed for alternative alleles in comparisons of SNPs between treated and untreated populations (FST > 5 SD from the mean). ATP5PB encodes subunit b of ATP synthase and an additional subunit, ATP5F1B, was canalized for high expression in treated populations, but remained plastic in response to TFM treatment in individuals from the untreated population. These combined genomic and transcriptomic results demonstrate that an adaptive, genetic response to TFM is likely driving incipient resistance in a damaging pest species.
Collapse
Affiliation(s)
- Xiaoshen Yin
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
| | | | - Abigail Perkins
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Morgan M. Sparks
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
| | - Avril M. Harder
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
| | - Janna R. Willoughby
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
- School of Forestry and Wildlife SciencesAuburn UniversityAuburnALUSA
| | - Maria S. Sepúlveda
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteINUSA
| | - Mark R. Christie
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
17
|
Shuman-Goodier ME, Singleton GR, Forsman AM, Hines S, Christodoulides N, Daniels KD, Propper CR. Developmental assays using invasive cane toads, Rhinella marina, reveal safety concerns of a common formulation of the rice herbicide, butachlor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115955. [PMID: 33221087 PMCID: PMC7878340 DOI: 10.1016/j.envpol.2020.115955] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Identifying the adverse impacts of pesticide exposure is essential to guide regulations that are protective of wildlife and human health. Within rice ecosystems, amphibians are valuable indicators because pesticide applications coincide with sensitive reproductive and developmental life stages. We conducted two experiments using wild cane toads (Rhinella marina) to test 1) whether environmentally relevant exposure to a commercial formulation of butachlor, an acetanilide herbicide used extensively in rice, affects amphibian development and 2) whether cane toad tadpoles are capable of acclimatizing to sub-lethal exposure. First, we exposed wild cane toads to 0.002, 0.02, or 0.2 mg/L of butachlor (Machete EC), during distinct development stages (as eggs and hatchlings, as tadpoles, or continuously) for 12 days. Next, we exposed a subset of animals from the first experiment to a second, lethal concentration and examined survivorship. We found that cane toads exposed to butachlor developed slower and weighed less than controls, and that development of the thyroid gland was affected: exposed individuals had smaller thyroid glands and thyrocyte cells, and more individual follicles. Analyses of the transcriptome revealed that butachlor exposure resulted in downregulation of transcripts related to metabolic processes, anatomic structure development, immune system function, and response to stress. Last, we observed evidence of acclimatization, where animals exposed to butachlor early in life performed better than naïve animals during a second exposure. Our findings indicate that the commercial formulation of butachlor, Machete EC, causes thyroid endocrine disruption in vertebrates, and suggest that exposure in lowland irrigated rice fields presents a concern for wildlife and human health. Furthermore, we establish that developmental assays with cane toads can be used to screen for adverse effects of pesticides in rice fields.
Collapse
Affiliation(s)
- Molly E Shuman-Goodier
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86001, USA; International Rice Research Institute, Los Baños, Philippines.
| | - Grant R Singleton
- International Rice Research Institute, Los Baños, Philippines; Natural Resource Institute, University of Greenwich, Chatham Maritime, Kent, UK
| | - Anna M Forsman
- Department of Biology, University of Central Florida, Orlando, FL, 32816-2368, USA; Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, 32816-2368, USA
| | - Shyann Hines
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86001, USA
| | | | - Kevin D Daniels
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86001, USA
| |
Collapse
|
18
|
Leeb C, Kolbenschlag S, Laubscher A, Adams E, Brühl CA, Theissinger K. Avoidance behavior of juvenile common toads (Bufo bufo) in response to surface contamination by different pesticides. PLoS One 2020; 15:e0242720. [PMID: 33253276 PMCID: PMC7704001 DOI: 10.1371/journal.pone.0242720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Most agricultural soils are expected to be contaminated with agricultural chemicals. As the exposure to pesticides can have adverse effects on non-target organisms, avoiding contaminated areas would be advantageous on an individual level, but could lead to a chemical landscape fragmentation with disadvantages on the metapopulation level. We investigated the avoidance behavior of juvenile common toads (Bufo bufo) in response to seven pesticide formulations commonly used in German vineyards. We used test arenas filled with silica sand and oversprayed half of each with different pesticide formulations. We placed a toad in the middle of an arena, filmed its behavior over 24 hours, calculated the proportion of time a toad spent on the contaminated side and compared it to a random side choice. We found evidence for the avoidance of the folpet formulation Folpan® 500 SC, the metrafenone formulation Vivando® and the glyphosate formulation Taifun® forte at maximum recommended field rates for vine and a trend for avoidance of Wettable Sulphur Stulln (sulphur). No avoidance was observed when testing Folpan® 80 WDG (folpet), Funguran® progress (copper hydroxide), SpinTorTM (spinosad), or 10% of the maximum field rate of any formulation tested. In the choice-tests in which we observed an avoidance, toads also showed higher activity on the contaminated side of the arena. As video analysis with tracking software is not always feasible, we further tested the effect of reducing the sampling interval for manual data analyses. We showed that one data point every 15 or 60 minutes results in a risk of overlooking a weak avoidance behavior, but still allows to verify the absence/presence of an avoidance for six out of seven formulations. Our findings are important for an upcoming pesticide risk assessment for amphibians and could be a template for future standardized tests.
Collapse
Affiliation(s)
- Christoph Leeb
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Rhineland-Palatinate, Germany
- * E-mail:
| | - Sara Kolbenschlag
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Rhineland-Palatinate, Germany
| | - Aurelia Laubscher
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Rhineland-Palatinate, Germany
| | - Elena Adams
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Rhineland-Palatinate, Germany
| | - Carsten A. Brühl
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Rhineland-Palatinate, Germany
| | - Kathrin Theissinger
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Rhineland-Palatinate, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Research Institute, Frankfurt, Germany
| |
Collapse
|
19
|
Billet LS, Hoverman JT. Pesticide tolerance induced by a generalized stress response in wood frogs (Rana sylvatica). ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1476-1485. [PMID: 32936363 DOI: 10.1007/s10646-020-02277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Increasing evidence suggests that phenotypic plasticity can play a critical role in ecotoxicology. More specifically, induced pesticide tolerance, in which populations exposed to a contaminant show increased tolerance to the contaminants later, has been documented in multiple taxa. However, the physiological mechanisms of induced tolerance remain unclear. We hypothesized that induced pesticide tolerance is the result of a generalized stress response based on previous studies showing that both natural stressors and anthropogenic stressors can induce tolerance to pesticides. We tested this hypothesis by first exposing larval wood frogs (Rana sylvatica) to either an anthropogenic stressor (sublethal carbaryl concentration), a natural stressor (cues from a caged predator), or a simulated stressor via exogenous exposure to the stress hormone corticosterone (125 nM). We also included treatments that inhibited corticosterone synthesis with the compound metyrapone (MTP). We then exposed the larvae to a lethal carbaryl treatment to assess time to death. We found that prior exposure to 125 nM of exogenous CORT and predator cues induced tolerance to a lethal concentration of carbaryl through a slight delay in time to death. Pre-exposure to sublethal carbaryl, as well as MTP alone or in combination with predator cues, did not induce tolerance to the lethal carbaryl concentration relative to the ethanol vehicle control treatment. Our study provides evidence that pesticide tolerance can be induced by a generalized stress response both in the presence and absence (exogenous CORT) of specific cues and highlights the importance of considering physiological ecology and environmental context in ecotoxicology.
Collapse
Affiliation(s)
- Logan S Billet
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
20
|
Becker JM, Russo R, Shahid N, Liess M. Drivers of pesticide resistance in freshwater amphipods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139264. [PMID: 32485446 DOI: 10.1016/j.scitotenv.2020.139264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Aquatic invertebrates exposed to pesticides may develop pesticide resistance. Based on a meta-analysis we revealed environmental factors driving the magnitude of resistance in the freshwater amphipod Gammarus pulex in the field. We showed that (i) insecticide tolerance of G. pulex increased with pesticide contamination in agricultural streams generally by a factor of up to 4. Tolerance increased even at concentrations lower than what is considered safe in regulatory risk assessment (ii) The increase in insecticide tolerance was pronounced at high test concentrations; comparing the LC50 of populations therefore potentially underestimates the development of resistance. (iii) Insecticide resistance in agricultural streams diminished during the spraying season, suggesting that adverse effects of sublethal concentrations in the short term contrast long-term adaptation to insecticide exposure. (iv) We found that resistance was especially high in populations characterized not only by high pesticide exposure, but also by large distance (>3.3 km) from non-polluted stream sections and by low species diversity within the invertebrate community. We conclude that the test concentration, the timing of measurement, distance to refuge areas and species diversity mediate the observed response of aquatic communities to pesticide pollution and need to be considered for the sustainable management of agricultural practices.
Collapse
Affiliation(s)
- Jeremias Martin Becker
- UFZ, Helmholtz Centre for Environmental Research, Department of System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany
| | - Renato Russo
- UFZ, Helmholtz Centre for Environmental Research, Department of System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany
| | - Naeem Shahid
- UFZ, Helmholtz Centre for Environmental Research, Department of System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany
| | - Matthias Liess
- UFZ, Helmholtz Centre for Environmental Research, Department of System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
21
|
DiGiacopo DG, Hua J. Evaluating the fitness consequences of plasticity in tolerance to pesticides. Ecol Evol 2020; 10:4448-4456. [PMID: 32489609 PMCID: PMC7246205 DOI: 10.1002/ece3.6211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 11/10/2022] Open
Abstract
In a rapidly changing world, phenotypic plasticity may be a critical mechanism allowing populations to rapidly acclimate when faced with novel anthropogenic stressors. Theory predicts that if exposure to anthropogenic stress is heterogeneous, plasticity should be maintained as it allows organisms to avoid unnecessary expression of costly traits (i.e., phenotypic costs) when stressors are absent. Conversely, if exposure to stressors becomes constant, costs or limits of plasticity may lead to evolutionary trait canalization (i.e., genetic assimilation). While these concepts are well-established in theory, few studies have examined whether these factors explain patterns of plasticity in natural populations facing anthropogenic stress. Using wild populations of wood frogs that vary in plasticity in tolerance to pesticides, the goal of this study was to evaluate the environmental conditions under which plasticity is expected to be advantageous or detrimental. We found that when pesticides were absent, more plastic populations exhibited lower pesticide tolerance and were more fit than less plastic populations, likely avoiding the cost of expressing high tolerance when it was not necessary. Contrary to our predictions, when pesticides were present, more plastic populations were as fit as less plastic populations, showing no signs of costs or limits of plasticity. Amidst unprecedented global change, understanding the factors shaping the evolution of plasticity will become increasingly important.
Collapse
Affiliation(s)
- Devin G. DiGiacopo
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - Jessica Hua
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| |
Collapse
|
22
|
Fugère V, Hébert MP, da Costa NB, Xu CCY, Barrett RDH, Beisner BE, Bell G, Fussmann GF, Shapiro BJ, Yargeau V, Gonzalez A. Community rescue in experimental phytoplankton communities facing severe herbicide pollution. Nat Ecol Evol 2020; 4:578-588. [PMID: 32123321 DOI: 10.1038/s41559-020-1134-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/30/2020] [Indexed: 12/16/2022]
Abstract
Community rescue occurs when ecological or evolutionary processes restore positive growth in a highly stressful environment that was lethal to the community in its ancestral form, thus averting biomass collapse in a deteriorating environment. Laboratory evidence suggests that community rescue is most likely in high-biomass communities that have previously experienced moderate doses of sublethal stress. We assessed this result under more natural conditions, in a mesocosm experiment with phytoplankton communities exposed to the ubiquitous herbicide glyphosate. We tested whether community biomass and prior herbicide exposure would facilitate community rescue after severe contamination. We found that prior exposure to glyphosate was a very strong predictor of the rescue outcome, while high community biomass was not. Furthermore, although glyphosate had negative effects on diversity, it did not influence community composition significantly, suggesting a modest role for genus sorting in this rescue process. Our results expand the scope of community rescue theory to complex ecosystems and confirm that prior stress exposure is a key predictor of rescue.
Collapse
Affiliation(s)
- Vincent Fugère
- Department of Biology, McGill University, Montreal, Québec, Canada. .,Department of Biological Sciences, University of Québec at Montréal, Montreal, Québec, Canada.
| | - Marie-Pier Hébert
- Department of Biology, McGill University, Montreal, Québec, Canada.,Department of Biological Sciences, University of Québec at Montréal, Montreal, Québec, Canada
| | | | - Charles C Y Xu
- Department of Biology, McGill University, Montreal, Québec, Canada.,Redpath Museum, McGill University, Montreal, Québec, Canada
| | - Rowan D H Barrett
- Department of Biology, McGill University, Montreal, Québec, Canada.,Redpath Museum, McGill University, Montreal, Québec, Canada
| | - Beatrix E Beisner
- Department of Biological Sciences, University of Québec at Montréal, Montreal, Québec, Canada
| | - Graham Bell
- Department of Biology, McGill University, Montreal, Québec, Canada
| | | | - B Jesse Shapiro
- Département des Sciences Biologiques, Université de Montréal, Montreal, Québec, Canada
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, Montreal, Québec, Canada
| | - Andrew Gonzalez
- Department of Biology, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
23
|
Hernández-Gómez O, Kimble SJ, Hua J, Wuerthner VP, Jones DK, Mattes BM, Cothran RD, Relyea RA, Meindl GA, Hoverman JT. Local adaptation of the MHC class IIβ gene in populations of wood frogs (Lithobates sylvaticus) correlates with proximity to agriculture. INFECTION GENETICS AND EVOLUTION 2019; 73:197-204. [DOI: 10.1016/j.meegid.2019.04.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 11/16/2022]
|
24
|
Le Navenant A, Siegwart M, Maugin S, Capowiez Y, Rault M. Metabolic mechanisms and acetylcholinesterase sensitivity involved in tolerance to chlorpyrifos-ethyl in the earwig Forficula auricularia. CHEMOSPHERE 2019; 227:416-424. [PMID: 31003126 DOI: 10.1016/j.chemosphere.2019.04.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Apple orchards are highly treated crops, in which organophosphorus (OP) are among the most heavily sprayed insecticides. These pesticides are toxic to non-target arthropods and their repeated use increases the risk of resistance. We studied mechanisms involved in tolerance and resistance to OP insecticides in the earwig Forficula auricularia, an effective generalist predator in pomefruit orchards. Adult earwigs were sampled in three apple orchards managed under contrasting strategies: conventional, Integrated Pest Management, and organic. The threshold activities of enzyme families involved in pesticides tolerance: Glutathione-S-transferases (GSTs) and Carboxylesterases (CbEs) were measured in earwig extracts. Acetylcholinesterase (AChE) was monitored as a toxicological endpoint. Variations in these activities were assessed prior to and after exposure to chlorpyrifos-ethyl at the normal application rate. We observed that the mortality of earwigs exposed to chlorpyrifos-ethyl depended on the management strategy of orchards. Significantly lower mortality was seen in individuals sampled from conventional orchard. The basal activities of CbEs and GSTs of collected organisms were higher in conventional orchard. After in vivo exposure, AChE activity appeared to be inhibited in surviving males with no difference between orchards. However an in vitro inhibition trial with chlorpyrifos-oxon showed that AChE from earwigs collected in organic and IPM orchards were more sensitive than from conventional ones. These observations support the hypothesis of a molecular target modification in AChE and highlight the possible role of CbEs in effective protection of AChE. Our findings suggest that the earwigs with a high historic level of insecticide exposure could acquire resistance to chlorpyrifos-ethyl.
Collapse
Affiliation(s)
- Adrien Le Navenant
- Avignon University, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916, Avignon, France; INRA, Unité PSH, Equipe Ecologie de la Production Intégrée, Site Agroparc, 84914, Avignon Cedex 9, France.
| | - Myriam Siegwart
- INRA, Unité PSH, Equipe Ecologie de la Production Intégrée, Site Agroparc, 84914, Avignon Cedex 9, France
| | - Sandrine Maugin
- INRA, Unité PSH, Equipe Ecologie de la Production Intégrée, Site Agroparc, 84914, Avignon Cedex 9, France
| | - Yvan Capowiez
- INRA, UMR 1114 EMMAH Domaine Saint Paul 84914, Avignon Cedex 09, France
| | - Magali Rault
- Avignon University, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916, Avignon, France
| |
Collapse
|
25
|
Wuerthner VP, Jaeger J, Garramone PS, Loomis CO, Pecheny Y, Reynolds R, Deluna L, Klein S, Lam M, Hua J, Meindl GA. Inducible pesticide tolerance in Daphnia pulex influenced by resource availability. Ecol Evol 2019; 9:1182-1190. [PMID: 30805151 PMCID: PMC6374683 DOI: 10.1002/ece3.4807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 01/08/2023] Open
Abstract
Pesticides are a ubiquitous contaminant in aquatic ecosystems. Despite the relative sensitivity of aquatic species to pesticides, growing evidence suggests that populations can respond to pesticides by evolving higher baseline tolerance or inducing a higher tolerance via phenotypic plasticity. While both mechanisms can allow organisms to persist when faced with pesticides, resource allocation theory suggests that tolerance may be related to resource acquisition by the organism. Using Daphnia pulex, we investigated how algal resource availability influenced the baseline and inducible tolerance of D. pulex to a carbamate insecticide, carbaryl. Individuals reared in high resource environments had a higher baseline carbaryl tolerance compared to those reared in low resource environments. However, D. pulex from low resource treatments exposed to sublethal concentrations of carbaryl early in development induced increased tolerance to a lethal concentration of carbaryl later in life. Only individuals reared in the low resource environment induced carbaryl tolerance. Collectively, this highlights the importance of considering resource availability in our understanding of pesticide tolerance.
Collapse
Affiliation(s)
| | - Jared Jaeger
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - Paige S. Garramone
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - Connor O. Loomis
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - Yelena Pecheny
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - Rachel Reynolds
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - Lindsey Deluna
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - Samantha Klein
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - Michael Lam
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - Jessica Hua
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| | - George A. Meindl
- Biological Sciences DepartmentBinghamton University (SUNY)BinghamtonNew York
| |
Collapse
|
26
|
Flynn RW, Love CN, Coleman A, Lance SL. Variation in metal tolerance associated with population exposure history in Southern toads (Anaxyrus terrestris). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 207:163-169. [PMID: 30572176 DOI: 10.1016/j.aquatox.2018.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Human activities have radically shaped the global landscape, affecting the structure and function of ecosystems. Habitat loss is one of the most visible changes to the landscape and a primary driver of species declines; however, anthropogenic environmental contamination also threatens population persistence, but is not as readily observed. Aquatic organisms are especially susceptible to chemical perturbations, which can negatively impact survival and fitness related traits. Some populations have evolved tolerance to chemical stressors, which could mitigate the consequences associated with contamination. Amphibians are experiencing global declines due to multiple stressors and are particularly at risk to aquatic chemical stressors due to their permeable skin and reliance on wetlands for reproduction and larval development. However, amphibians also have substantial plasticity in response to environmental variation. We designed our study to examine whether tolerance to heavy metals is greater in Southern toad (Anaxyrus terrestris) larvae from wetlands with a history of contamination. Considering many of the most common trace elements elicit acute toxicity by disrupting osmotic- and ionic-regulation, we hypothesized that alterations to these aspects of physiology resulting from multigenerational exposure to trace element mixtures would be the most likely routes by which tolerance would evolve. We used copper (Cu) as a proxy for heavy metal exposure because it is a widely distributed aquatic stressor known to cause osmotic stress that can also cause mortality at levels commonly encountered in the environment. We found considerable within and among population variation in Cu tolerance, as measured by time to death. Larvae from populations living in sites contaminated with mixtures of heavy metals associated with coal fly ash were no more tolerant to Cu than those from reference sites. However, larvae from a population inhabiting a constructed wetland complex with high Cu levels were significantly more tolerant; having half the risk of mortality as reference animals. This wetland complex was created < 20 years ago, thus if elevated Cu tolerance in this population is due to selection in the aquatic habitat, such adaptation may occur rapidly (i.e. ∼10 generation). Our results provide evidence that amphibians may be able to evolve tolerance in response to trace element contamination, though such tolerance may be specific to the combination of contaminants present.
Collapse
Affiliation(s)
- R Wesley Flynn
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States.
| | - Cara N Love
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States
| | - Austin Coleman
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States
| | - Stacey L Lance
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States
| |
Collapse
|
27
|
Hintz WD, Jones DK, Relyea RA. Evolved tolerance to freshwater salinization in zooplankton: life-history trade-offs, cross-tolerance and reducing cascading effects. Philos Trans R Soc Lond B Biol Sci 2018; 374:rstb.2018.0012. [PMID: 30509914 DOI: 10.1098/rstb.2018.0012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 12/22/2022] Open
Abstract
Recent discoveries have documented evolutionary responses to freshwater salinization. We investigated if evolutionary responses to salinization exhibit life-history trade-offs or if they can mitigate ecological impacts such as cascading effects through mechanisms of tolerance and cross-tolerance. We conducted an outdoor mesocosm experiment using populations of Daphnia pulex-a ubiquitous algal grazer-that were either naive or had previously experienced selection to become more tolerant to sodium chloride (NaCl). During the initial phase of population growth, we discovered that evolved tolerance comes at the cost of slower population growth in the absence of salt. We found evolved Daphnia populations maintained a tolerance to NaCl approximately 30 generations after the initial discovery. Evolved tolerance to NaCl also conferred cross-tolerance to a high concentration of CaCl2 (3559 µS cm-1) and a moderate concentration of MgCl2 (967 µS cm-1). A higher concentration of MgCl2 (2188 µS cm-1) overwhelmed the cross-tolerance and killed all Daphnia Tolerance to NaCl did not mitigate NaCl-induced cascades leading to phytoplankton blooms, but cross-tolerance at moderate concentrations of MgCl2 and high concentrations of CaCl2 mitigated such cascading effects caused by these two salts. These discoveries highlight the important interplay between ecology and evolution in understanding the full impacts of freshwater salinization.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Collapse
Affiliation(s)
- William D Hintz
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Devin K Jones
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Rick A Relyea
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
28
|
Costantini D, Borremans B. The linear no-threshold model is less realistic than threshold or hormesis-based models: An evolutionary perspective. Chem Biol Interact 2018; 301:26-33. [PMID: 30342016 DOI: 10.1016/j.cbi.2018.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022]
Abstract
The linear no-threshold (LNT) risk model is the current human health risk assessment paradigm. This model states that adverse stochastic biological responses to high levels of a stressor can be used to estimate the response to low or moderate levels of that stressor. In recent years the validity of the LNT risk model has increasingly been questioned because of the recurring observation that an organism's response to high stressor doses differs from that to low doses. This raises important questions about the biological and evolutionary validity of the LNT model. In this review we reiterate that the LNT model as applied to stochastic biological effects of low and moderate stressor levels has less biological validity than threshold or, particularly, hormetic models. In so doing, we rely heavily on literature from disciplines like ecophysiology or evolutionary ecology showing how exposure to moderate amounts of stress can have severe impacts on phenotype and organism reproductive fitness. We present a mathematical model that illustrates and explores the hypothetical conditions that make a particular kind of hormesis (conditioning hormesis) ecologically and evolutionarily plausible.
Collapse
Affiliation(s)
- David Costantini
- UMR 7221 CNRS/MNHN, Muséum National d'Histoire Naturelle, Sorbonne Universités, 7 rue Cuvier, 75005, Paris, France; Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Benny Borremans
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 610 Charles E. Young Dr. South, Los Angeles, 90095, United States; Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BIOSTAT), Hasselt University, Agoralaan gebouw D, 3590, Diepenbeek, Belgium
| |
Collapse
|
29
|
Jones DK, Yates EK, Mattes BM, Hintz WD, Schuler MS, Relyea RA. Timing and frequency of sublethal exposure modifies the induction and retention of increased insecticide tolerance in wood frogs (Lithobates sylvaticus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2188-2197. [PMID: 29786147 DOI: 10.1002/etc.4177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/16/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Although the paradigm for increased tolerance to pesticides has been by selection on constitutive (naïve) traits, recent research has shown it can also occur through phenotypic plasticity. However, the time period in which induction can occur, the duration of induced tolerance, and the influence of multiple induction events remain unknown. We hypothesized that the induction of increased pesticide tolerance is limited to early sensitive periods, the magnitude of induced tolerance depends on the number of exposures, and the retention of induced tolerance depends on the time elapsed after an exposure and the number of exposures. To test these hypotheses, we exposed wood frog tadpoles to either a no-carbaryl control (water) or 0.5 mg/L carbaryl at 4 time periods, and later tested their tolerance to carbaryl using time-to-death assays. We discovered that tadpoles induced increased tolerance early and midway but not late in our experiment and their constitutive tolerance increased with age. We found no difference in the magnitude of induced tolerance after a single or 2 exposures. Finally, induced pesticide tolerance was reversed within 6 d but was retained only when tadpoles experienced all 4 consecutive exposures. Phenotypic plasticity provides an immediate response for sensitive amphibian larvae to early pesticide exposures and reduces phenotypic mismatches in aquatic environments contaminated by agrochemicals. Environ Toxicol Chem 2018;37:2188-2197. © 2018 SETAC.
Collapse
Affiliation(s)
- Devin K Jones
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Erika K Yates
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Brian M Mattes
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - William D Hintz
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Matthew S Schuler
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Rick A Relyea
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
30
|
Ogawara H. Comparison of Strategies to Overcome Drug Resistance: Learning from Various Kingdoms. Molecules 2018; 23:E1476. [PMID: 29912169 PMCID: PMC6100412 DOI: 10.3390/molecules23061476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
Drug resistance, especially antibiotic resistance, is a growing threat to human health. To overcome this problem, it is significant to know precisely the mechanisms of drug resistance and/or self-resistance in various kingdoms, from bacteria through plants to animals, once more. This review compares the molecular mechanisms of the resistance against phycotoxins, toxins from marine and terrestrial animals, plants and fungi, and antibiotics. The results reveal that each kingdom possesses the characteristic features. The main mechanisms in each kingdom are transporters/efflux pumps in phycotoxins, mutation and modification of targets and sequestration in marine and terrestrial animal toxins, ABC transporters and sequestration in plant toxins, transporters in fungal toxins, and various or mixed mechanisms in antibiotics. Antibiotic producers in particular make tremendous efforts for avoiding suicide, and are more flexible and adaptable to the changes of environments. With these features in mind, potential alternative strategies to overcome these resistance problems are discussed. This paper will provide clues for solving the issues of drug resistance.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
31
|
Shahid N, Becker JM, Krauss M, Brack W, Liess M. Adaptation of Gammarus pulex to agricultural insecticide contamination in streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:479-485. [PMID: 29195196 DOI: 10.1016/j.scitotenv.2017.11.220] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/19/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
Exposure to pesticides affects non-target aquatic communities, with substantial consequences on ecosystem services. Adaptation of exposed populations may reduce the effects of pesticides. However, it is not known under which conditions adaptation occurs when only a low toxic pressure from pesticides is present. Here, we show that Gammarus pulex, a dominant macroinvertebrate species in many agricultural streams, acquires increased tolerance to pesticides when recolonization from non-contaminated refuge areas is low. Populations in the field that were exposed to pesticides at concentrations several orders of magnitude below considerable acute effects showed almost 3-fold higher tolerance to the neonicotinoid insecticide clothianidin (mean EC50 218μgL-1) compared with non-exposed populations (mean EC50 81μgL-1). This tolerance of exposed populations increased from 2- to 4-fold with increasing distance to the next refuge area (0 to 10km). We conclude that the development of tolerance for non-target species may occur at very low concentrations, much below those affecting sensitive test organisms and also lower than those predicted to be safe by governmental risk assessment frameworks.
Collapse
Affiliation(s)
- Naeem Shahid
- UFZ, Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Aachen, Germany; Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, Pakistan.
| | - Jeremias Martin Becker
- UFZ, Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Aachen, Germany
| | - Martin Krauss
- UFZ, Helmholtz Centre for Environmental Research, Department Effect-Directed Analysis, Permoserstraße 15, 04318 Leipzig, Germany
| | - Werner Brack
- RWTH Aachen University, Institute for Environmental Research (Biology V), Aachen, Germany; UFZ, Helmholtz Centre for Environmental Research, Department Effect-Directed Analysis, Permoserstraße 15, 04318 Leipzig, Germany
| | - Matthias Liess
- UFZ, Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Aachen, Germany.
| |
Collapse
|
32
|
Levis NA, Pfennig DW. Phenotypic plasticity, canalization, and the origins of novelty: Evidence and mechanisms from amphibians. Semin Cell Dev Biol 2018; 88:80-90. [PMID: 29408711 DOI: 10.1016/j.semcdb.2018.01.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022]
Abstract
A growing number of biologists have begun asking whether environmentally induced phenotypic change--'phenotypic plasticity'--precedes and facilitates the origin and canalization of novel, complex phenotypes. However, such 'plasticity-first evolution' (PFE) remains controversial. Here, we summarize the PFE hypothesis and describe how it can be evaluated in natural systems. We then review the evidence for PFE from amphibians (a group in which phenotypic plasticity is especially widespread) and describe how phenotypic plasticity might have facilitated macroevolutionary change. Finally, we discuss what is known about the proximate mechanisms of PFE in amphibians. We close with suggestions for future research. As we describe, amphibians offer some of the best support for plasticity's role in the origin of evolutionary novelties.
Collapse
Affiliation(s)
- Nicholas A Levis
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - David W Pfennig
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
33
|
Exposure to a cyanobacterial toxin increases larval amphibian susceptibility to parasitism. Parasitol Res 2017; 117:513-520. [PMID: 29270769 DOI: 10.1007/s00436-017-5727-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
Anthropogenic activities are promoting the proliferation of aquatic primary producers in freshwater habitats, including cyanobacteria. Among various problems stemming from eutrophication, cyanobacterial blooms can be toxic due to the production of secondary compounds, including microcystins such as microcystin-LR (MC-LR); however, it is unknown whether cyanotoxins can affect the susceptibility of aquatic vertebrates such as fish and larval amphibians to parasites or pathogens even though infectious diseases can significantly affect natural populations. Here, we examined how exposure to environmentally relevant concentrations of MC-LRs affected the resistance of larval amphibians (northern leopard frog, Rana pipiens) to infection by a helminth parasite (the trematode Echinostoma sp.), and whether this was manifested by reductions in host anti-parasite behavior. Exposure to a relatively high (82 μg L-1) concentration of MC-LR caused over 70% mortality, and tadpoles that survived exposure to the low MC-LR (11 μg L-1) treatment had significantly higher infection intensities than those in the control; however, anti-parasite behavior was not affected by treatment. Our results indicate that MC-LR can have both direct and indirect negative effects on larval amphibians by increasing their mortality and susceptibility to parasitism, which may have implications for other aquatic vertebrates in eutrophic habitats dominated by cyanobacteria as well.
Collapse
|
34
|
Jones DK, Hintz WD, Schuler MS, Yates EK, Mattes BM, Relyea RA. Inducible Tolerance to Agrochemicals Was Paved by Evolutionary Responses to Predators. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13913-13919. [PMID: 29087697 DOI: 10.1021/acs.est.7b03816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent research has reported increased tolerance to agrochemicals in target and nontarget organisms following acute physiological changes induced through phenotypic plasticity. Moreover, the most inducible populations are those from more pristine locations, far from agrochemical use. We asked why do populations with no known history of pesticide exposure have the ability to induce adaptive responses to novel agrochemicals? We hypothesized that increased pesticide tolerance results from a generalized stressor response in organisms, and would be induced following sublethal exposure to natural and anthropogenic stressors. We exposed larval wood frogs (Lithobates sylvaticus) to one of seven natural or anthropogenic stressors (predator cue (Anax spp.), 0.5 or 1.0 mg carbaryl/L, road salt (200 or 1000 mg Cl-/L), ethanol-vehicle control, or no-stressor control) and subsequently tested their tolerance to a lethal carbaryl concentration using time-to-death assays. We observed induced carbaryl tolerance in tadpoles exposed to 0.5 mg/L carbaryl and also in tadpoles exposed to predator cues. Our results suggest that the ability to induce pesticide tolerance likely arose through evolved antipredator responses. Given that antipredator responses are widespread among species, many animals might possess inducible pesticide tolerance, buffering them from agrochemical exposure.
Collapse
Affiliation(s)
- Devin K Jones
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - William D Hintz
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Matthew S Schuler
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Erika K Yates
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Brian M Mattes
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Rick A Relyea
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|
35
|
Lenhardt PP, Brühl CA, Leeb C, Theissinger K. Amphibian population genetics in agricultural landscapes: does viniculture drive the population structuring of the European common frog ( Rana temporaria)? PeerJ 2017; 5:e3520. [PMID: 28713651 PMCID: PMC5508807 DOI: 10.7717/peerj.3520] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/08/2017] [Indexed: 01/22/2023] Open
Abstract
Amphibian populations have been declining globally over the past decades. The intensification of agriculture, habitat loss, fragmentation of populations and toxic substances in the environment are considered as driving factors for this decline. Today, about 50% of the area of Germany is used for agriculture and is inhabited by a diverse variety of 20 amphibian species. Of these, 19 are exhibiting declining populations. Due to the protection status of native amphibian species, it is important to evaluate the effect of land use and associated stressors (such as road mortality and pesticide toxicity) on the genetic population structure of amphibians in agricultural landscapes. We investigated the effects of viniculture on the genetic differentiation of European common frog (Rana temporaria) populations in Southern Palatinate (Germany). We analyzed microsatellite data of ten loci from ten breeding pond populations located within viniculture landscape and in the adjacent forest block and compared these results with a previously developed landscape permeability model. We tested for significant correlation of genetic population differentiation and landscape elements, including land use as well as roads and their associated traffic intensity, to explain the genetic structure in the study area. Genetic differentiation among forest populations was significantly lower (median pairwise FST = 0.0041 at 5.39 km to 0.0159 at 9.40 km distance) than between viniculture populations (median pairwise FST = 0.0215 at 2.34 km to 0.0987 at 2.39 km distance). Our analyses rejected isolation by distance based on roads and associated traffic intensity as the sole explanation of the genetic differentiation and suggest that the viniculture landscape has to be considered as a limiting barrier for R. temporaria migration, partially confirming the isolation of breeding ponds predicted by the landscape permeability model. Therefore, arable land may act as a sink habitat, inhibiting genetic exchange and causing genetic differentiation of pond populations in agricultural areas. In viniculture, pesticides could be a driving factor for the observed genetic impoverishment, since pesticides are more frequently applied than any other management measure and can be highly toxic for terrestrial life stages of amphibians.
Collapse
Affiliation(s)
- Patrick P Lenhardt
- Institute for Environmental Science, Universität Koblenz-Landau, Germany
| | - Carsten A Brühl
- Institute for Environmental Science, Universität Koblenz-Landau, Germany
| | - Christoph Leeb
- Institute for Environmental Science, Universität Koblenz-Landau, Germany
| | | |
Collapse
|
36
|
Mikó Z, Ujszegi J, Hettyey A. Age-dependent changes in sensitivity to a pesticide in tadpoles of the common toad (Bufo bufo). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 187:48-54. [PMID: 28365461 DOI: 10.1016/j.aquatox.2017.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 06/07/2023]
Abstract
The worldwide en masse application of pesticides and the frequently reported malign effects on several non-target organisms underpin the importance of ecotoxicological research on these anthropogenic pollutants. Previous studies showed that sensitivity to herbicides can vary widely depending on additional stress factors, on the species and even on the population investigated. However, there is little information about how sensitivity changes during ontogeny, and how the duration of exposure is linked to the magnitude of malign effects, even though this knowledge would be important for the interpretation of toxicity test results and for formulating recommendations regarding the timing of pesticide application. We exposed tadpoles of the common toad (Bufo bufo) to three concentrations (0, 2 and 4mg a.e./L) of a glyphosate-based herbicide during the 1st, 2nd, 3rd, 4th, or 5th period of larval development or during the entire experiment, and measured survival, time until metamorphosis and body mass at metamorphosis to estimate fitness-consequences. Younger tadpoles were more sensitive to the herbicide in all measured traits than older ones, and this age-dependence was especially pronounced at the high herbicide concentration. Furthermore, tadpoles exposed to the herbicide during the entire experiment developed slower than tadpoles exposed only early on, but we did not observe a similar effect either on body mass or survival. The observed age-dependence of sensitivity to herbicides draws attention to the fact that results of toxicity tests obtained for one age-class are not necessarily generalizable across ontogeny. Also, the age of test animals has to be considered when planning ecotoxicological studies and interpreting their results. Finally, taking into account the temporal breeding habits of local amphibians when planning pesticide application would be highly favourable: if tadpoles would not get exposed to the herbicide during their most sensitive early development, they would sustain less anthropogenic damage from our efforts of controlling weeds.
Collapse
Affiliation(s)
- Zsanett Mikó
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary.
| | - János Ujszegi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary; Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest 1117, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary
| |
Collapse
|
37
|
Oziolor EM, Howard W, Lavado R, Matson CW. Induced pesticide tolerance results from detoxification pathway priming. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:615-621. [PMID: 28259584 DOI: 10.1016/j.envpol.2017.02.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/23/2017] [Accepted: 02/19/2017] [Indexed: 06/06/2023]
Abstract
Few studies in developmental toxicology have focused on whether early life contaminant exposure affects future susceptibility. Investigations in frogs suggested that early life exposure to a pesticide resulted in higher tolerance to a subsequent challenge. This led to the hypothesis that early-life stage exposures can alter phenotypically plastic traits during development, resulting in induced tolerance. Here, we used Gulf killifish (Fundulus grandis) to test the role of detoxification pathway priming in this inducible tolerance. In frogs, the induced tolerance is present five days after the end of the pre-exposure, but absent after a month. We show that a pre-exposure early in life with carbaryl, induces the activity of cytochrome P450 1A (CYP1A) and increases the ability of pre-exposed groups to metabolize carbaryl, likely because of activation of the aryl hydrocarbon receptor (AHR) pathway. Embryos pre-exposed to carbaryl had a 350-500% increase in CYP1A activity, threefold greater capacity to metabolize carbaryl and were more tolerant to a lethal challenge five days after the end of pre-exposure. However, ten days later the differences in CYP1A activity, metabolic capacity and tolerance between pre-exposed and control groups were no longer present. Thus, we conclude that the increase in tolerance observed in pre-exposed fish embryos was due to the activation of the AHR and other metabolic pathways, resulting in a prolonged increase in biotransformation capacity. This allowed individuals to more efficiently deal with subsequent chemical challenges for a short period after the initial pre-exposure. However, this induced tolerance was only short-lived due to the recycling of biotransformation enzymes in the cells as part of general cellular protein maintenance. These findings suggest that induced tolerance was likely due to induction of defense mechanisms during the duration of response to the original stressor, rather than a more permanent change in their ability to respond to future challenges.
Collapse
Affiliation(s)
- Elias M Oziolor
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA; Center for Reservoir and Aquatic Systems Research, Institute for Biomedical Studies, Baylor University, Waco, TX, 76798, USA.
| | - Willow Howard
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Cole W Matson
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA; Center for Reservoir and Aquatic Systems Research, Institute for Biomedical Studies, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
38
|
Lambert MR, Edwards TM. Hormonally active phytochemicals and vertebrate evolution. Evol Appl 2017; 10:419-432. [PMID: 28515776 PMCID: PMC5427676 DOI: 10.1111/eva.12469] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/13/2017] [Indexed: 01/08/2023] Open
Abstract
Living plants produce a diversity of chemicals that share structural and functional properties with vertebrate hormones. Wildlife species interact with these chemicals either through consumption of plant materials or aquatic exposure. Accumulating evidence shows that exposure to these hormonally active phytochemicals (HAPs) often has consequences for behavior, physiology, and fecundity. These fitness effects suggest there is potential for an evolutionary response by vertebrates to HAPs. Here, we explore the toxicological HAP-vertebrate relationship in an evolutionary framework and discuss the potential for vertebrates to adapt to or even co-opt the effects of plant-derived chemicals that influence fitness. We lay out several hypotheses about HAPs and provide a path forward to test whether plant-derived chemicals influence vertebrate reproduction and evolution. Studies of phytochemicals with direct impacts on vertebrate reproduction provide an obvious and compelling system for studying evolutionary toxicology. Furthermore, an understanding of whether animal populations evolve in response to HAPs could provide insightful context for the study of rapid evolution and how animals cope with chemical agents in the environment.
Collapse
Affiliation(s)
- Max R Lambert
- School of Forestry and Environmental Studies Yale University New Haven CT USA
| | - Thea M Edwards
- Department of Biology University of the South Sewanee TN USA
| |
Collapse
|
39
|
Coldsnow KD, Mattes BM, Hintz WD, Relyea RA. Rapid evolution of tolerance to road salt in zooplankton. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:367-373. [PMID: 28065573 DOI: 10.1016/j.envpol.2016.12.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 06/06/2023]
Abstract
Organisms around the globe are experiencing novel environments created by human activities. One such disturbance of growing concern is the salinization of freshwater habitats from the application of road deicing salts, which creates salinity levels not experienced within the recent evolutionary history of most freshwater organisms. Moreover, salinization can induce trophic cascades and alter the structure of freshwater communities, but knowledge is still scarce about the ability of freshwater organisms to adapt to elevated salinity. We examined if a common zooplankton of freshwater lakes (Daphnia pulex) could evolve a tolerance to the most commonly used road deicing salt (sodium chloride, NaCl). Using a mesocosm experiment, we exposed freshwater communities containing Daphnia to five levels of NaCl (15, 100, 200, 500, and 1000 mg Cl- L-1). After 2.5 months, we collected Daphnia from each mesocosm and raised them in the lab for three generations under low salt conditions (15 mg Cl- L-1). We then conducted a time-to-death experiment with varying concentrations of NaCl (30, 1300, 1500, 1700, 1900 mg Cl- L-1) to test for evolved tolerance. All Daphnia populations exhibited high survival when subsequently exposed to the lowest salt concentration (30 mg Cl- L-1). At the intermediate concentration (1300 mg Cl- L-1), however, populations previously exposed to elevated concentrations (i.e.100-1000 mg Cl- L-1) had higher survival than populations previously exposed to natural background levels (15 mg Cl- L-1). All populations survived poorly when subsequently exposed to the highest concentrations (1500, 1700, and 1900 mg Cl- L-1). Our results show that the evolution of tolerance to moderate levels of salt can occur within 2.5 months, or 5-10 generations, in Daphnia. Given the importance of Daphnia in freshwater food webs, such evolved tolerance might allow Daphnia to buffer food webs from the impacts of freshwater salinization.
Collapse
Affiliation(s)
- Kayla D Coldsnow
- Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180, USA.
| | - Brian M Mattes
- Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180, USA.
| | - William D Hintz
- Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180, USA.
| | - Rick A Relyea
- Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180, USA.
| |
Collapse
|
40
|
Egea-Serrano A, Solé M. Effects of insecticides on a phytotelmata-breeding amphibian. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:422-428. [PMID: 27400022 DOI: 10.1002/etc.3555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/05/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
Abstract
Information on the impact of pesticides on amphibian species breeding in phytotelmata (water bodies within plants) is totally lacking. The aim of the present study was to assess the impact of the insecticide malathion on larvae of Phyllodytes luteolus. Individuals were exposed to ecologically relevant concentrations of malathion (commercial formulation) for 16 d under laboratory conditions. Malathion had a lethal effect that allowed the authors to hypothesize that phtytotelmata-breeding species are likely as vulnerable to pollution as pond breeders. Environ Toxicol Chem 2017;36:422-428. © 2016 SETAC.
Collapse
Affiliation(s)
- Andrés Egea-Serrano
- Department of Biological Sciences, State University of Santa Cruz, Bahia, Brazil
| | - Mirco Solé
- Department of Biological Sciences, State University of Santa Cruz, Bahia, Brazil
| |
Collapse
|
41
|
Wagner N, Veith M, Lötters S, Viertel B. Population and life-stage-specific effects of two herbicide formulations on the aquatic development of European common frogs (Rana temporaria). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:190-200. [PMID: 27291460 DOI: 10.1002/etc.3525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/15/2016] [Accepted: 06/09/2016] [Indexed: 05/02/2023]
Abstract
Environmental contamination is suggested to contribute to amphibian population declines. However, the effects of a contaminant on a particular amphibian species can differ among populations. The authors investigated the toxic effects of 2 herbicide formulations on different populations and on representative developmental stages of the European common frog (Rana temporaria). Larvae from forest populations were more sensitive to a commonly used glyphosate-based herbicide compared with individuals from agrarian land. Median lethal concentrations correlated with measured glyphosate levels in the breeding ponds, which may be a sign of evolved tolerances. The reverse result was observed for a less commonly used cycloxydim-based herbicide. Effects of the glyphosate-based herbicide were stronger for earlier larval stages compared with later larval stages. Hence, applications in early spring (when early larvae are present in breeding ponds) pose greater risk concerning acute toxic effects on R. temporaria. With regard to late larval stages, short exposure (96 h) of prometamorphic larvae prolonged time to metamorphosis, but only at the highest test concentration that did not significantly induce mortality. This could be due to impairment of the thyroid axis. Notably, nearly all test concentrations of the 2 herbicides provoked growth retardation. Further research on how evolved or induced tolerances are acquired, actual contamination levels of amphibian habitats, and potential endocrine effects of glyphosate-based herbicides is necessary. Environ Toxicol Chem 2017;36:190-200. © 2016 SETAC.
Collapse
Affiliation(s)
- Norman Wagner
- Trier University, Department of Biogeography, Trier, Germany
| | - Michael Veith
- Trier University, Department of Biogeography, Trier, Germany
| | - Stefan Lötters
- Trier University, Department of Biogeography, Trier, Germany
| | - Bruno Viertel
- Trier University, Department of Biogeography, Trier, Germany
| |
Collapse
|
42
|
Diamond SE, Martin RA. The interplay between plasticity and evolution in response to human-induced environmental change. F1000Res 2016; 5:2835. [PMID: 28003883 PMCID: PMC5147521 DOI: 10.12688/f1000research.9731.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 11/22/2022] Open
Abstract
Some populations will cope with human-induced environmental change, and others will undergo extirpation; understanding the mechanisms that underlie these responses is key to forecasting responses to environmental change. In cases where organisms cannot disperse to track suitable habitats, plastic and evolved responses to environmental change will determine whether populations persist or perish. However, the majority of studies consider plasticity and evolution in isolation when in fact plasticity can shape evolution and plasticity itself can evolve. In particular, whether cryptic genetic variation exposed by environmental novelty can facilitate adaptive evolution has been a source of controversy and debate in the literature and has received even less attention in the context of human-induced environmental change. However, given that many studies indicate organisms will be unable to keep pace with environmental change, we need to understand how often and the degree to which plasticity can facilitate adaptive evolutionary change under novel environmental conditions.
Collapse
Affiliation(s)
- Sarah E. Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Ryan A. Martin
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
43
|
Latorre MA, Romito ML, Larriera A, Poletta GL, Siroski PA. Total and differential white blood cell counts in Caiman latirostris after in ovo and in vivo exposure to insecticides. J Immunotoxicol 2016; 13:903-908. [DOI: 10.1080/1547691x.2016.1236854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- María A. Latorre
- Proyecto Yacaré, Laboratorio de Zoología Aplicada: Anexo Vertebrados, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Ministerio de Agua, Servicios Públicos y Medio Ambiente, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - María L. Romito
- Proyecto Yacaré, Laboratorio de Zoología Aplicada: Anexo Vertebrados, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Ministerio de Agua, Servicios Públicos y Medio Ambiente, Santa Fe, Argentina
| | - Alejandro Larriera
- Proyecto Yacaré, Laboratorio de Zoología Aplicada: Anexo Vertebrados, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Ministerio de Agua, Servicios Públicos y Medio Ambiente, Santa Fe, Argentina
| | - Gisela L. Poletta
- Proyecto Yacaré, Laboratorio de Zoología Aplicada: Anexo Vertebrados, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Ministerio de Agua, Servicios Públicos y Medio Ambiente, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Cátedra de Toxicología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Pablo A. Siroski
- Proyecto Yacaré, Laboratorio de Zoología Aplicada: Anexo Vertebrados, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Ministerio de Agua, Servicios Públicos y Medio Ambiente, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Instituto de Ciencias Veterinarias del Litoral (ICiVet) Esperanza, Santa Fe, Argentina
| |
Collapse
|
44
|
Rohr JR, Salice CJ, Nisbet RM. The pros and cons of ecological risk assessment based on data from different levels of biological organization. Crit Rev Toxicol 2016; 46:756-84. [PMID: 27340745 PMCID: PMC5141515 DOI: 10.1080/10408444.2016.1190685] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 01/15/2023]
Abstract
Ecological risk assessment (ERA) is the process used to evaluate the safety of manufactured chemicals to the environment. Here we review the pros and cons of ERA across levels of biological organization, including suborganismal (e.g., biomarkers), individual, population, community, ecosystem and landscapes levels. Our review revealed that level of biological organization is often related negatively with ease at assessing cause-effect relationships, ease of high-throughput screening of large numbers of chemicals (it is especially easier for suborganismal endpoints), and uncertainty of the ERA because low levels of biological organization tend to have a large distance between their measurement (what is quantified) and assessment endpoints (what is to be protected). In contrast, level of biological organization is often related positively with sensitivity to important negative and positive feedbacks and context dependencies within biological systems, and ease at capturing recovery from adverse contaminant effects. Some endpoints did not show obvious trends across levels of biological organization, such as the use of vertebrate animals in chemical testing and ease at screening large numbers of species, and other factors lacked sufficient data across levels of biological organization, such as repeatability, variability, cost per study and cost per species of effects assessment, the latter of which might be a more defensible way to compare costs of ERAs than cost per study. To compensate for weaknesses of ERA at any particular level of biological organization, we also review mathematical modeling approaches commonly used to extrapolate effects across levels of organization. Finally, we provide recommendations for next generation ERA, submitting that if there is an ideal level of biological organization to conduct ERA, it will only emerge if ERA is approached simultaneously from the bottom of biological organization up as well as from the top down, all while employing mathematical modeling approaches where possible to enhance ERA. Because top-down ERA is unconventional, we also offer some suggestions for how it might be implemented efficaciously. We hope this review helps researchers in the field of ERA fill key information gaps and helps risk assessors identify the best levels of biological organization to conduct ERAs with differing goals.
Collapse
Affiliation(s)
| | | | - Roger M. Nisbet
- University of California at Santa Barbara, Santa Barbara, CA 93106-9620
| |
Collapse
|
45
|
Tarvin RD, Santos JC, O'Connell LA, Zakon HH, Cannatella DC. Convergent Substitutions in a Sodium Channel Suggest Multiple Origins of Toxin Resistance in Poison Frogs. Mol Biol Evol 2016; 33:1068-81. [DOI: 10.1093/molbev/msv350] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Complex phenotypes typically have a correspondingly multifaceted genetic component. However, the genotype–phenotype association between chemical defense and resistance is often simple: genetic changes in the binding site of a toxin alter how it affects its target. Some toxic organisms, such as poison frogs (Anura: Dendrobatidae), have defensive alkaloids that disrupt the function of ion channels, proteins that are crucial for nerve and muscle activity. Using protein-docking models, we predict that three major classes of poison frog alkaloids (histrionicotoxins, pumiliotoxins, and batrachotoxins) bind to similar sites in the highly conserved inner pore of the muscle voltage-gated sodium channel, Nav1.4. We predict that poison frogs are somewhat resistant to these compounds because they have six types of amino acid replacements in the Nav1.4 inner pore that are absent in all other frogs except for a distantly related alkaloid-defended frog from Madagascar, Mantella aurantiaca. Protein-docking models and comparative phylogenetics support the role of these replacements in alkaloid resistance. Taking into account the four independent origins of chemical defense in Dendrobatidae, phylogenetic patterns of the amino acid replacements suggest that 1) alkaloid resistance in Nav1.4 evolved independently at least five times in these frogs, 2) variation in resistance-conferring replacements is likely a result of differences in alkaloid exposure across species, and 3) functional constraint shapes the evolution of the Nav1.4 inner pore. Our study is the first to demonstrate the genetic basis of autoresistance in frogs with alkaloid defenses.
Collapse
Affiliation(s)
| | - Juan C Santos
- Department of Zoology, Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
- Department of Biology, Brigham Young University, Provo
| | | | - Harold H Zakon
- Department of Integrative Biology, University of Texas—Austin
| | - David C Cannatella
- Department of Integrative Biology, University of Texas—Austin
- Biodiversity Collections, University of Texas—Austin
| |
Collapse
|
46
|
Hua J, Jones DK, Mattes BM, Cothran RD, Relyea RA, Hoverman JT. Evolved pesticide tolerance in amphibians: Predicting mechanisms based on pesticide novelty and mode of action. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 206:56-63. [PMID: 26142751 DOI: 10.1016/j.envpol.2015.06.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/17/2015] [Accepted: 06/24/2015] [Indexed: 06/04/2023]
Abstract
We examined 10 wood frog populations distributed along an agricultural gradient for their tolerance to six pesticides (carbaryl, malathion, cypermethrin, permethrin, imidacloprid, and thiamethoxam) that differed in date of first registration (pesticide novelty) and mode-of-action (MOA). Our goals were to assess whether: 1) tolerance was correlated with distance to agriculture for each pesticide, 2) pesticide novelty predicted the likelihood of evolved tolerance, and 3) populations display cross-tolerance between pesticides that share and differ in MOA. Wood frog populations located close to agriculture were more tolerant to carbaryl and malathion than populations far from agriculture. Moreover, the strength of the relationship between distance to agriculture and tolerance was stronger for older pesticides compared to newer pesticides. Finally, we found evidence for cross-tolerance between carbaryl and malathion (two pesticides that share MOA). This study provides one of the most comprehensive approaches for understanding patterns of evolved tolerance in non-pest species.
Collapse
Affiliation(s)
- Jessica Hua
- Biological Sciences Department, Binghamton University (SUNY), Binghamton, NY 13902, USA.
| | - Devin K Jones
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Brian M Mattes
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Rickey D Cothran
- Department of Biological Sciences, Southwestern Oklahoma State University, Weatherford, OK 73096, USA
| | - Rick A Relyea
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
47
|
Murren CJ, Auld JR, Callahan H, Ghalambor CK, Handelsman CA, Heskel MA, Kingsolver JG, Maclean HJ, Masel J, Maughan H, Pfennig DW, Relyea RA, Seiter S, Snell-Rood E, Steiner UK, Schlichting CD. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity (Edinb) 2015; 115:293-301. [PMID: 25690179 PMCID: PMC4815460 DOI: 10.1038/hdy.2015.8] [Citation(s) in RCA: 313] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/21/2014] [Accepted: 12/15/2014] [Indexed: 12/13/2022] Open
Abstract
Phenotypic plasticity is ubiquitous and generally regarded as a key mechanism for enabling organisms to survive in the face of environmental change. Because no organism is infinitely or ideally plastic, theory suggests that there must be limits (for example, the lack of ability to produce an optimal trait) to the evolution of phenotypic plasticity, or that plasticity may have inherent significant costs. Yet numerous experimental studies have not detected widespread costs. Explicitly differentiating plasticity costs from phenotype costs, we re-evaluate fundamental questions of the limits to the evolution of plasticity and of generalists vs specialists. We advocate for the view that relaxed selection and variable selection intensities are likely more important constraints to the evolution of plasticity than the costs of plasticity. Some forms of plasticity, such as learning, may be inherently costly. In addition, we examine opportunities to offset costs of phenotypes through ontogeny, amelioration of phenotypic costs across environments, and the condition-dependent hypothesis. We propose avenues of further inquiry in the limits of plasticity using new and classic methods of ecological parameterization, phylogenetics and omics in the context of answering questions on the constraints of plasticity. Given plasticity's key role in coping with environmental change, approaches spanning the spectrum from applied to basic will greatly enrich our understanding of the evolution of plasticity and resolve our understanding of limits.
Collapse
Affiliation(s)
- C J Murren
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - J R Auld
- Department of Biology, West Chester University, West Chester, PA, USA
| | - H Callahan
- Barnard College, Columbia University, New York, NY, USA
| | - C K Ghalambor
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - C A Handelsman
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - M A Heskel
- Research School of Biology, Australian National University, Acton, Canberra, Australian Capital Territory, Australia
| | - J G Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - H J Maclean
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - J Masel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | | | - D W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - R A Relyea
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - S Seiter
- Department of Ecology and Evolution, University of Colorado Boulder, Boulder, CO, USA
| | - E Snell-Rood
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, USA
| | - U K Steiner
- Department of Biology, University of Southern Denmark, Max-Planck Odense Centre on the Biodemography of Aging, Odense, Denmark
| | - C D Schlichting
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
48
|
Jones DK, Relyea RA. Here today, gone tomorrow: Short-term retention of pesticide-induced tolerance in amphibians. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2295-2301. [PMID: 25940070 DOI: 10.1002/etc.3056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/04/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
Pesticide use has led to the ubiquitous contamination of natural habitats, which has inadvertently increased pesticide tolerance in target and nontarget species. Historically, increased pesticide tolerance has been attributed to natural selection for tolerance among individuals of affected populations. Recent research, however, has discovered that pesticide tolerance can be increased through phenotypic plasticity. Although induced pesticide tolerance may benefit organisms experiencing contaminated systems, little is known about its occurrence in vertebrates, its retention through ontogeny, or potential life history tradeoffs. Using time-to-death assays at 2 distinct developmental windows, the authors discovered that gray treefrog (Hyla versicolor) tadpoles exposed to sublethal concentrations (0 mg a.i./L, 0.5 mg a.i./L, and 1.0 mg a.i./L) of the insecticide Sevin® (carbaryl) early in life increased their pesticide tolerance to a lethal carbaryl concentration 5 d after sublethal exposure. However, this increased tolerance was not retained later in ontogeny (23 d post-sublethal exposure). Moreover, no indication was found of pesticide-induced treefrogs experiencing life-history tradeoffs in terms of survival to metamorphosis, mass, or snout-vent length. Gray treefrogs are only the second vertebrate species and the second amphibian family to exhibit pesticide-induced tolerance after sublethal exposure. The authors' data suggest that the ability to induce increased pesticide tolerance may play a critical role in amphibian survival in contaminated ecosystems. However, future work is needed to test the occurrence of inducible pesticide tolerance among numerous amphibian populations worldwide.
Collapse
Affiliation(s)
- Devin K Jones
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Rick A Relyea
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
49
|
|
50
|
Levis NA, Johnson JR. Level of UV-B radiation influences the effects of glyphosate-based herbicide on the spotted salamander. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:1073-86. [PMID: 25794558 DOI: 10.1007/s10646-015-1448-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/11/2015] [Indexed: 06/04/2023]
Abstract
Glyphosate-based herbicides are the number one pesticide in the United States and are used commonly around the world. Understanding the affects of glyphosate-based herbicides on non-target wildlife, for example amphibians, is critical for evaluation of regulations pertaining to the use of such herbicides. Additionally, it is important to understand how variation in biotic and abiotic environmental conditions, such as UV-B light regime, could potentially affect how glyphosate-based herbicides interact with non-target species. This study used artificial pond mesocosms to identify the effects of generic glyphosate-based herbicide (GLY-4 Plus) on mortality, cellular immune response, body size, and morphological plasticity of larvae of the spotted salamander (Ambystoma maculatum) under conditions that reflect moderate (UV(M)) and low (UV(L)) UV-B light regimes. Survival within a given UV-B level was unaffected by herbicide presence or absence. However, when herbicide was present, survival varied between UV-B levels with higher survival in UV(M) conditions. Herbicide presence in the UV(M) treatments also decreased body size and reduced cellular immune response. In the UV(L) treatments, the presence of herbicide increased body size and affected tail morphology. Finally, in the absence of herbicide, body size and cellular immune response were higher in UV(M) treatments compared to UV(L) treatments. Thus, the effects of herbicide on salamander fitness were dependent on UV-B level. As anthropogenic habitat modifications continue to alter landscapes that contain amphibian breeding ponds, salamanders may increasingly find themselves in locations with reduced canopy cover and increased levels of UV light. Our findings suggest that the probability of surviving exposure to the glyphosate-based herbicide used in this study may be elevated in more open canopy ponds, but the effects on other components of fitness may be varied and unexpected.
Collapse
Affiliation(s)
- Nicholas A Levis
- Department of Biology, Western Kentucky University, Bowling Green, KY, 42101, USA,
| | | |
Collapse
|