1
|
Frommel AY, Ghanizadeh-Kazerouni E, Dichiera A, Hunt BPV, Brauner CJ. Effects of ocean warming with stable and fluctuating ocean acidification on seawater transition in Chinook salmon smolts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177185. [PMID: 39454774 DOI: 10.1016/j.scitotenv.2024.177185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Anadromous salmon populations are declining in the Pacific Northwest, with high mortality during the transition from fresh- to seawater as smolts, a stage particularly vulnerable to adverse environmental conditions. This study seeks to explore the impacts of warming and ocean acidification on the transition of life in freshwater to life at sea in Chinook salmon smolts. In a fully factorial experiment, we transitioned Chinook salmon from fresh- to seawater at current and future conditions of temperature (13 °C and 16 °C, respectively) and ocean acidification (400 and 1400 atm CO2), including a fluctuating CO2 treatment (between control and high CO2) that may be more representative of natural environmental conditions associated with upwelling and tidal cycling. We hypothesized that constant elevated CO2 levels would impair smoltification success immediately following seawater transfer, but that fluctuating conditions would be even more physiologically challenging. We predicted that elevated temperatures would exacerbate these effects. To test this, we measured plasma ion concentrations, gill Na+/K+-ATPase (NKA) isoform mRNA and protein expression, as well as condition indices in freshwater and following 1, 3, 6, and 18 days in seawater at the respective treatments. We confirmed the existence of gill freshwater and seawater isoforms of NKA (α1a and α1b, respectively) in Chinook salmon for the first time, and found an upregulation of both isoforms in the fluctuating CO2 treatment but a reduction of the number of NKA α1b cells 3-days post seawater transfer at 13 °C. At 16 °C, NKA α1b was upregulated in high CO2 levels, with an elevated hematocrit indicating fish were likely stressed. Taken together, plasma ions, gill NKA and condition indices revealed a complex response to interacting warming and acidification during the first few days in seawater, however there were no longer-term adverse physiological responses. Thus, Chinook salmon appear to be relatively resilient to near-future climate change.
Collapse
Affiliation(s)
- Andrea Y Frommel
- Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | | | - Angelina Dichiera
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada; Virginia Institute of Marine Science, College of William and Mary, 1370 Greate Road, Gloucester Point, VA 23062, USA
| | - Brian P V Hunt
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada; Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2207 Main Mall, Vancouver, BC V6T 1Z4, Canada; Hakai Institute, PO Box 309, Heriot Bay, Quadra Island, BC V0P 1H0, Canada
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
2
|
Krkosek M, Bateman AW, Bass AL, Bugg WS, Connors BM, Deeg CM, Di Cicco E, Godwin S, Grimm J, Krichel L, Mordecai G, Morton A, Peacock S, Shea D, Riddell B, Miller KM. Pathogens from salmon aquaculture in relation to conservation of wild Pacific salmon in Canada. SCIENCE ADVANCES 2024; 10:eadn7118. [PMID: 39413187 PMCID: PMC11482380 DOI: 10.1126/sciadv.adn7118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/21/2024] [Indexed: 10/18/2024]
Abstract
The spread of pathogens from farmed salmon is a conservation concern for wild Pacific salmon in British Columbia (BC), Canada. Three pathogens are prevalent in farmed Atlantic salmon in BC, spill over to wild Pacific salmon, and are linked to negative impacts on wild salmon: Piscine orthoreovirus, Tenacibaculum spp., and sea lice (Lepeophtheirus salmonis). Molecular screening of infectious agents in farmed and wild salmon and environmental DNA highlights a further 4 agents that are likely elevated near salmon farms and 37 that co-occur in wild and farmed salmon. Pathogens likely affect wild salmon indirectly by mediating migration, competition, and predation. Current net-pen aquaculture practices pose these risks to numerous populations of all species of wild salmon in BC, most of which are not covered in Government of Canada science and advisory reports. Climate change, pathogen evolution, and changes to disease management and aquaculture regulations will influence future risks.
Collapse
Affiliation(s)
- Martin Krkosek
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON M5S 3B2, Canada
- Salmon Coast Field Station, General Delivery, Simoom Sound, BC V0P 1S0, Canada
| | - Andrew W. Bateman
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON M5S 3B2, Canada
- Salmon Coast Field Station, General Delivery, Simoom Sound, BC V0P 1S0, Canada
- Pacific Salmon Foundation, 1385 W 8th Ave #320, Vancouver, BC V6H 3V9, Canada
| | - Arthur L. Bass
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - William S. Bugg
- Pacific Salmon Foundation, 1385 W 8th Ave #320, Vancouver, BC V6H 3V9, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Brendan M. Connors
- Institute of Ocean Sciences, Fisheries and Oceans in Canada, 9860 W Saanich Rd, Sidney, BC V8L 5T5, Canada
| | - Christoph M. Deeg
- Pacific Salmon Foundation, 1385 W 8th Ave #320, Vancouver, BC V6H 3V9, Canada
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Emiliano Di Cicco
- Pacific Salmon Foundation, 1385 W 8th Ave #320, Vancouver, BC V6H 3V9, Canada
| | - Sean Godwin
- Salmon Coast Field Station, General Delivery, Simoom Sound, BC V0P 1S0, Canada
- Pacific Salmon Foundation, 1385 W 8th Ave #320, Vancouver, BC V6H 3V9, Canada
- Bodega Marine Laboratory, University of California, Davis, 2099 Westshore Rd, Bodega Bay, CA 94923, USA
- Department of Environmental Science and Policy, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jaime Grimm
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON M5S 3B2, Canada
| | - Leila Krichel
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON M5S 3B2, Canada
- Salmon Coast Field Station, General Delivery, Simoom Sound, BC V0P 1S0, Canada
| | - Gideon Mordecai
- Institute for the Oceans and Fisheries, University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Alexandra Morton
- Salmon Coast Field Station, General Delivery, Simoom Sound, BC V0P 1S0, Canada
- Raincoast Research Society, Sointula, BC V0N 3E0, Canada
| | - Stephanie Peacock
- Salmon Coast Field Station, General Delivery, Simoom Sound, BC V0P 1S0, Canada
- Pacific Salmon Foundation, 1385 W 8th Ave #320, Vancouver, BC V6H 3V9, Canada
| | - Dylan Shea
- NORCE Norwegian Research Centre, Nygårdsgaten 112, 5008 Bergen, Norway
| | - Brian Riddell
- Pacific Salmon Foundation, 1385 W 8th Ave #320, Vancouver, BC V6H 3V9, Canada
| | - Kristina M. Miller
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
3
|
Mordecai G, Di Cicco E, Deeg C, Bateman A, Teffer A, Miller K. Comment on a perspective: Molecular detections of new agents in finfish-Interpreting biological significance for fish health management. JOURNAL OF AQUATIC ANIMAL HEALTH 2024; 36:220-230. [PMID: 39042565 DOI: 10.1002/aah.10221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/31/2023] [Accepted: 02/20/2024] [Indexed: 07/25/2024]
Abstract
Impact statementThe rapid development of genomic technologies has begun a new paradigm in the study and management of emerging infectious diseases. To inform the conservation of fish, here we examine different perspectives on how to determine thresholds for management action in the context of molecular tools and fisheries policy.
Collapse
Affiliation(s)
- Gideon Mordecai
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Christoph Deeg
- Pacific Salmon Foundation, Vancouver, British Columbia, Canada
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Andrew Bateman
- Pacific Salmon Foundation, Vancouver, British Columbia, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Amy Teffer
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Kristi Miller
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| |
Collapse
|
4
|
Cooke SJ, Piczak ML, Singh NJ, Åkesson S, Ford AT, Chowdhury S, Mitchell GW, Norris DR, Hardesty-Moore M, McCauley D, Hammerschlag N, Tucker MA, Horns JJ, Reisinger RR, Kubelka V, Lennox RJ. Animal migration in the Anthropocene: threats and mitigation options. Biol Rev Camb Philos Soc 2024; 99:1242-1260. [PMID: 38437713 DOI: 10.1111/brv.13066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024]
Abstract
Animal migration has fascinated scientists and the public alike for centuries, yet migratory animals are facing diverse threats that could lead to their demise. The Anthropocene is characterised by the reality that humans are the dominant force on Earth, having manifold negative effects on biodiversity and ecosystem function. Considerable research focus has been given to assessing anthropogenic impacts on the numerical abundance of species/populations, whereas relatively less attention has been devoted to animal migration. However, there are clear linkages, for example, where human-driven impacts on migration behaviour can lead to population/species declines or even extinction. Here, we explore anthropogenic threats to migratory animals (in all domains - aquatic, terrestrial, and aerial) using International Union for the Conservation of Nature (IUCN) Threat Taxonomy classifications. We reveal the diverse threats (e.g. human development, disease, invasive species, climate change, exploitation, pollution) that impact migratory wildlife in varied ways spanning taxa, life stages and type of impact (e.g. from direct mortality to changes in behaviour, health, and physiology). Notably, these threats often interact in complex and unpredictable ways to the detriment of wildlife, further complicating management. Fortunately, we are beginning to identify strategies for conserving and managing migratory animals in the Anthropocene. We provide a set of strategies that, if embraced, have the potential to ensure that migratory animals, and the important ecological functions sustained by migration, persist.
Collapse
Affiliation(s)
- Steven J Cooke
- Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada
| | - Morgan L Piczak
- Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada
| | - Navinder J Singh
- Department of Wildlife, Fish and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Susanne Åkesson
- Department of Biology, Centre for Animal Movement Research, Lund University, Ecology Building, Lund, 22362, Sweden
| | - Adam T Ford
- Department of Biology, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, V1V 1V7, Canada
| | - Shawan Chowdhury
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstr, 15, Leipzig, 04318, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr, 4, Leipzig, 04103, Germany
| | - Greg W Mitchell
- Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada
- Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, 1125 Colonel By Dr, Ottawa, Ontario, K1A 0H3, Canada
| | - D Ryan Norris
- Department of Integrative Biology, University of Guelph, 50 Stone Rd. E, Guelph, Ontario, N1G 2W1, Canada
| | - Molly Hardesty-Moore
- Department of Ecology, Evolution, and Marine Biology and Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Douglas McCauley
- Department of Ecology, Evolution, and Marine Biology and Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Neil Hammerschlag
- Atlantic Shark Expeditions, 29 Wideview Lane, Boutiliers Point, Nova Scotia, B3Z 0M9, Canada
| | - Marlee A Tucker
- Radboud Institute of Biological and Environmental Sciences, Radboud University, Houtlaan 4, Nijmegen, 6525, The Netherlands
| | - Joshua J Horns
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Ryan R Reisinger
- School of Ocean and Earth Science, University of Southampton, National Oceanography Center Southampton, University Way, Southampton, SO14 3ZH, UK
| | - Vojtěch Kubelka
- Dept of Zoology and Centre for Polar Ecology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Robert J Lennox
- Ocean Tracking Network, Faculty of Science, Dalhousie University, 1355 Oxford St, Halifax, Nova Scotia, B3H 3Z1, Canada
| |
Collapse
|
5
|
Lennox RJ, Donaldson MR, Raby GD, Cook KV, LaRochelle L, Madden JC, Cooke SJ, Patterson DA, Hinch SG. Using vitality indicators to predict survival of aquatic animals released from fisheries. CONSERVATION PHYSIOLOGY 2024; 12:coae034. [PMID: 38827188 PMCID: PMC11140223 DOI: 10.1093/conphys/coae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/30/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
Estimating the survival probability of animals released from fisheries can improve the overall understanding of animal biology with implications for fisheries management, conservation and animal welfare. Vitality indicators are simple visual measures of animal condition that change in response to stressors (like fisheries capture) and can be assessed to predict post-release survival. These indicators typically include immediate reflex responses which are typically combined into a score. Vitality indicators are straight-forward and non-invasive metrics that allow users to quantify how close (or far) an animal is from a normal, 'healthy' or baseline state, which in turn can be correlated with outcomes such as survival probability, given appropriate calibration. The literature on using vitality indicators to predict post-release survival of animals has grown rapidly over the past decade. We identified 136 papers that used vitality indicators in a fisheries context. These studies were primarily focused on marine and freshwater fishes, with a few examples using herptiles and crustaceans. The types of vitality indicators are diverse and sometimes taxa-specific (e.g. pinching leg of turtles, spraying water at nictitating membrane of sharks) with the most commonly used indicators being those that assess escape response or righting response given the vulnerability of animals when those reflexes are impaired. By presenting Pacific salmon fisheries as a case study, we propose a framework for using vitality indicators to predict survival across taxa and fisheries.
Collapse
Affiliation(s)
- R J Lennox
- Ocean Tracking Network, Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - M R Donaldson
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - G D Raby
- Department of Biology, Trent University, 2089 East Bank Drive, Peterborough, ON K9L 1Z8, Canada
| | - K V Cook
- InStream Fisheries Research, 1121A Enterprise Way, Squamish, BC V8B 0E8, Canada
| | - L LaRochelle
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - J C Madden
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - S J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - D A Patterson
- Fisheries and Oceans Canada, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - S G Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
6
|
Vollset KW, Dohoo I, Lennox RJ. The paradox of predation studies. Biol Lett 2023; 19:20230354. [PMID: 37848051 PMCID: PMC10734775 DOI: 10.1098/rsbl.2023.0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
Understanding the causal relationships that contribute to mortality in populations is a priority for epidemiology, animal husbandry and ecology. Of all the sources of mortality in nature, predation is perhaps the most important, while simultaneously being one of the most difficult to study and understand. In this opinion piece, we use the epidemiological concept of the sufficient-component cause model to outline why we believe that predation studies often misrepresent predators as sufficient cause of death (or natural mortality) in ecological studies. This is pivotal in conservation biology because such studies have often led to demands for predator removal throughout the world. We use the sufficient-component cause model to illustrate the paradox that multiple studies, each studying singular putative causes of mortality (including predation), will sum to more than 100% mortality when added together. We suggest that the sufficient-component framework should be integrated into both fundamental and applied ecology to better understand the role of predators in natural ecosystems.
Collapse
Affiliation(s)
- Knut Wiik Vollset
- Laboratory for Freshwater
Ecology and Inland Fisheries, NORCE Norwegian Research
Centre, Nygardsgaten 112, 5008 Bergen,
Norway
| | - Ian Dohoo
- University of
Prince Edward Island, Charlottetown,
Canada C1A 4P3
| | - Robert J. Lennox
- Laboratory for Freshwater
Ecology and Inland Fisheries, NORCE Norwegian Research
Centre, Nygardsgaten 112, 5008 Bergen,
Norway
- Ocean Tracking Network,
Dalhousie University, 1355 Oxford Street,
Halifax, Canada
| |
Collapse
|
7
|
Abdelrazek SMR, Connon RE, Sanchez C, Atencio B, Mauduit F, Lehman B, Hallett SL, Atkinson SD, Foott JS, Daniels ME. Responses to pathogen exposure in sentinel juvenile fall-run Chinook salmon in the Sacramento River, CA. CONSERVATION PHYSIOLOGY 2023; 11:coad066. [PMID: 37649642 PMCID: PMC10465009 DOI: 10.1093/conphys/coad066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
This study investigated how the deployment of juvenile Chinook salmon in ambient river conditions and the subsequent exposure to and infection by pathogens was associated with the changes in the expression of genes involved in immune system functioning, general stress and host development. Juvenile fish were deployed in sentinel cages for 21 days in the Sacramento River, CA, USA. Gill, kidney and intestinal tissue were sampled at 0, 7, 14 and 21 days post-deployment. Pathogen detection and host response were assessed by a combination of molecular and histopathological evaluation. Our findings showed that fish became infected by the parasites Ceratonova shasta, Parvicapsula minibicornis and Ichthyophthirius multifiliis, and to a lesser extent, the bacteria Flavobacterium columnare and Rickettsia-like organisms. Co-infection was common among sentinel fish. Expression of investigated genes was altered following deployment and was often associated with pathogen abundance. This study provides a foundation for future avenues of research investigating pathogens that affect out-migrating Chinook salmon in the Sacramento River, and offers crucial knowledge related to conservation efforts.
Collapse
Affiliation(s)
- Samah M R Abdelrazek
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA 95616, USA
| | - Richard E Connon
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA 95616, USA
| | - Camilo Sanchez
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA 95616, USA
| | - Benjamin Atencio
- Institute of Marine Sciences, University of California, Santa Cruz, Affiliated with Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA 95060, USA
| | - Florian Mauduit
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA 95616, USA
| | - Brendan Lehman
- Institute of Marine Sciences, University of California, Santa Cruz, Affiliated with Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA 95060, USA
| | - Sascha L Hallett
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - J. Scott Foott
- California Nevada Fish Health Center, U.S. Fish and Wildlife Service, Anderson, CA 96007, USA
| | - Miles E Daniels
- Institute of Marine Sciences, University of California, Santa Cruz, Affiliated with Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA 95060, USA
| |
Collapse
|
8
|
Mordecai G, Bass AL, Routledge R, Di Cicco E, Teffer A, Deeg C, Bateman AW, Miller KM. Assessing the role of Piscine orthoreovirus in disease and the associated risk for wild Pacific salmon. BMC Biol 2023; 21:114. [PMID: 37208758 DOI: 10.1186/s12915-023-01548-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 02/20/2023] [Indexed: 05/21/2023] Open
Abstract
This paper is a response to Polinski, M. P. et al. Innate antiviral defense demonstrates high energetic efficiency in a bony fish. BMC Biology 19, 138 (2021). https://doi.org/10.1186/s12915-021-01069-2.
Collapse
Affiliation(s)
- Gideon Mordecai
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada.
| | - Arthur L Bass
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences University of British Columbia, Vancouver, BC, Canada
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Rick Routledge
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada
| | | | - Amy Teffer
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Christoph Deeg
- Pacific Salmon Foundation, Vancouver, BC, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Andrew W Bateman
- Pacific Salmon Foundation, Vancouver, BC, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Wang Y, Bass AL, Hinch SG, Li S, Di Cicco E, Kaukinen KH, Ferguson H, Ming TJ, Patterson DA, Miller KM. Infectious agents and their physiological correlates in early marine Chinook salmon ( Oncorhynchus tshawytscha). CONSERVATION PHYSIOLOGY 2023; 11:coad031. [PMID: 37701371 PMCID: PMC10494280 DOI: 10.1093/conphys/coad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 09/14/2023]
Abstract
The early marine life of Pacific salmon is believed to be a critical period limiting population-level survival. Recent evidence suggests that some infectious agents are associated with survival but linkages with underlying physiological mechanisms are lacking. While challenge studies can demonstrate cause and effect relationships between infection and pathological change or mortality, in some cases pathological change may only manifest in the presence of environmental stressors; thus, it is important to gain context from field observations. Herein, we examined physiological correlates with infectious agent loads in Chinook salmon during their first ocean year. We measured physiology at the molecular (gene expression), metabolic (plasma chemistry) and cellular (histopathology) levels. Of 46 assayed infectious agents, 27 were detected, including viruses, bacteria and parasites. This exploratory study identified. a strong molecular response to viral disease and pathological change consistent with jaundice/anemia associated with Piscine orthoreovirus,strong molecular signals of gill inflammation and immune response associated with gill agents `Candidatus Branchiomonas cysticola' and Parvicapsula pseudobranchicola,a general downregulation of gill immune response associated with Parvicapsula minibicornis complementary to that of P. pseudobranchicola.Importantly, our study provides the first evidence that the molecular activation of viral disease response and the lesions observed during the development of the PRV-related disease jaundice/anemia in farmed Chinook salmon are also observed in wild juvenile Chinook salmon.
Collapse
Affiliation(s)
- Yuwei Wang
- Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Arthur L Bass
- Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC, V9T 6N7, Canada
| | - Scott G Hinch
- Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC, V9T 6N7, Canada
| | - Emiliano Di Cicco
- Pacific Salmon Foundation, 1682 W 7th Ave, Vancouver, BC, V6J 4S6, Canada
| | - Karia H Kaukinen
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC, V9T 6N7, Canada
| | - Hugh Ferguson
- School of Veterinary Medicine, St. George’s University, University Centre Grenada, W. Indies, Grenada
| | - Tobi J Ming
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC, V9T 6N7, Canada
| | - David A Patterson
- Fisheries and Oceans Canada, School of Resource and Environmental Mangement, Simon Fraser University, Science Branch, 643A Science Rd, Burnaby, BC, V5A 1S6, Canada
| | - Kristina M Miller
- Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC, V9T 6N7, Canada
| |
Collapse
|
10
|
Jones SRM, Low JC, Goodall A. Parvicapsula pseudobranchicola in the northeast Pacific Ocean is rare in farmed Atlantic salmon Salmo salar despite widespread occurrence and pathology in wild Pacific salmon Oncorhynchus spp. Parasit Vectors 2023; 16:138. [PMID: 37085914 PMCID: PMC10122293 DOI: 10.1186/s13071-023-05751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/21/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Infection with the myxozoan parasite Parvicapsula pseudobranchicola causes disease in wild and farmed salmonids in Norway. In the northeast Pacific Ocean, the parasite has been reported in Pacific salmon Oncorhynchus spp. without evidence of disease. The objectives of the present study were to confirm the identity of P. pseudobranchicola in the Pacific, document its host and geographic ranges, and describe associated pathological changes. METHODS Ocean-entry year wild pink salmon Oncorhynchus gorbuscha, chum salmon O. keta, Chinook salmon O. tshawytscha, coho salmon O. kisutch and sockeye salmon O. nerka were collected in summer and autumn surveys near Vancouver Island (VI) and from a winter survey in the Gulf of Alaska. Samples were also obtained from farmed Atlantic salmon Salmo salar and Chinook salmon near VI. Samples were analysed by qPCR and histology using conventional staining or in situ hybridisation. Parasite sequence was obtained from small subunit ribosomal RNA gene (SSU rDNA). RESULTS Identical 1525 base-pair SSU rDNA sequences from infected pink salmon, chum salmon and Chinook salmon shared 99.93% identity with a P. pseudobranchicola sequence from Norwegian Atlantic salmon. In autumn surveys, the prevalence was greatest in chum salmon (91.8%) and pink salmon (85.9%) and less so in Chinook salmon (68.8%) and sockeye salmon (8.3%). In farmed salmon, the prevalence was zero in Atlantic salmon (n = 967) and 41% in Chinook salmon (n = 118). Infections were preferentially sited in pseudobranch and visualised by in situ hybridisation. Heavy parasite burdens in all species of Pacific salmon were inconsistently associated with focal granulomatous pseudobranchitis. CONCLUSIONS In the northeast Pacific, widespread occurrence of P. pseudobranchicola in Pacific salmon together with its absence or sporadic occurrence in farmed Atlantic salmon differs from its epidemiology in Norway, despite similar pathological development in the pseudobranch. Consequences of the infections to the health of wild Pacific salmon, identity of the invertebrate host and the distribution and abundance of infective actinospores are unknown and remain high priorities for research.
Collapse
Affiliation(s)
- Simon R M Jones
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC, Canada.
| | - Jessica C Low
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC, Canada
| | - Aidan Goodall
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC, Canada
| |
Collapse
|
11
|
Bass AL, Bateman AW, Kaukinen KH, Li S, Ming T, Patterson DA, Hinch SG, Miller KM. The spatial distribution of infectious agents in wild Pacific salmon along the British Columbia coast. Sci Rep 2023; 13:5473. [PMID: 37016008 PMCID: PMC10071257 DOI: 10.1038/s41598-023-32583-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/29/2023] [Indexed: 04/06/2023] Open
Abstract
Although infectious agents can act as strong population regulators, knowledge of their spatial distributions in wild Pacific salmon is limited, especially in the marine environment. Characterizing pathogen distributions during early marine residence, a period considered a survival bottleneck for Pacific salmon, may reveal where salmon populations are exposed to potentially detrimental pathogens. Using high-throughput qPCR, we determined the prevalence of 56 infectious agents in 5719 Chinook, 2032 Coho and 4062 Sockeye salmon, sampled between 2008 and 2018, in their first year of marine residence along coastal Western Canada. We identified high prevalence clusters, which often shifted geographically with season, for most of the 41 detected agents. A high density of infection clusters was found in the Salish Sea along the east coast of Vancouver Island, an important migration route and residence area for many salmon populations, some experiencing chronically poor marine survival. Maps for each infectious agent taxa showing clusters across all host species are provided. Our novel documentation of salmon pathogen distributions in the marine environment contributes to the ecological knowledge regarding some lesser known pathogens, identifies salmon populations potentially impacted by specific pathogens, and pinpoints priority locations for future research and remediation.
Collapse
Affiliation(s)
- Arthur L Bass
- Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T 1Z4, Canada.
| | - Andrew W Bateman
- Pacific Salmon Foundation, Vancouver, V6J 4S6, Canada
- Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 1A1, Canada
| | - Karia H Kaukinen
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, V9T 6N7, Canada
| | - Shaorong Li
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, V9T 6N7, Canada
| | - Tobi Ming
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, V9T 6N7, Canada
| | - David A Patterson
- Fisheries and Oceans Canada, Science Branch, Pacific Region, School of Resource and Environmental Management, Simon Fraser University, Burnaby, V5A 1S6, Canada
| | - Scott G Hinch
- Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Kristina M Miller
- Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, V9T 6N7, Canada
| |
Collapse
|
12
|
Priscilla L, Malathi E, Moses Inbaraj R. Sex steroid profile during oocyte development and maturation in the intertidal worm Marphysa madrasi (Polychaeta: Eunicidae) from the east coast of India. Gen Comp Endocrinol 2023; 331:114118. [PMID: 36037874 DOI: 10.1016/j.ygcen.2022.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Marphysa madrasi is a commercially valuable maturation diet in crustacean aquaculture. This study presents the first detailed investigation of oogenesis in the intertidal polychaete worm M. madrasi and reports the steroid profile during oocyte growth and development. Oogenesis is extraovarian type I, originating from coelomic epithelial cells, with four stages of development - primary growth, early vitellogenic, late vitellogenic, and maturation. The primary growth phase contains oogonial cells and previtellogenic oocyte clusters in the early, mid, and late stages of development form a dispersed ovary attached to blood vessels. The late previtellogenic oocytes detach from the ovary at the onset of vitellogenesis. The detached oocytes complete vitellogenesis and final maturation in the coelomic fluid as solitary free-floating cells without any connection with follicle cells. The worms display asynchronous reproduction with a heterogeneous population of developing oocytes. Steroid extracts from the polychaete homogenates in different stages of oogenesis were identified by HPLC and confirmed by LC-MS/MS. In M. madrasi, two vertebrate-type steroids, pregnenolone (P5) and 17α-hydroxyprogesterone (17-OHP) were detected and quantified. The P5 levels were low in immature worms but increased significantly by ∼ 8.3-fold in the previtellogenic stage and peaked during oocyte maturation. 17-OHP levels were low in immature worms but gradually increase as the oogenesis progress to the primary growth and early vitellogenic phase, with a significant increase (p < 0.001) during the late vitellogenic phase. Although an increase in the concentration of P5 and 17-OHP during vitellogenesis and maturation of oocytes points to a possible role in reproduction, the absence of other vertebrate-type steroids in the investigated polychaete signifies a plausible uptake of P5 and 17-OHP from the environment.
Collapse
Affiliation(s)
- Lyndsay Priscilla
- Department of Zoology, Queen Mary's College (Autonomous), Affiliated to the University of Madras, Chennai 600004, Tamil Nadu, India; Endocrinology Unit, Department of Zoology, Madras Christian College, Affiliated to the University of Madras, Chennai, India
| | - E Malathi
- Department of Zoology, Queen Mary's College (Autonomous), Affiliated to the University of Madras, Chennai 600004, Tamil Nadu, India
| | - R Moses Inbaraj
- Endocrinology Unit, Department of Zoology, Madras Christian College, Affiliated to the University of Madras, Chennai, India.
| |
Collapse
|
13
|
Birnie-Gauvin K, Berthelsen C, Larsen T, Aarestrup K. The Physiological Costs of Reproduction in a Capital Breeding Fish. Physiol Biochem Zool 2023; 96:40-52. [PMID: 36626845 DOI: 10.1086/722136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractReproduction represents the most energetically demanding period of life for many organisms. Capital breeders, such as anadromous sea trout (Salmo trutta), provide a particularly interesting group of organisms to study within the context of reproduction because they rely on energy stores accrued before breeding to reproduce and sustain all phenotypic and behavioral changes related to reproduction. Energy allocation into current reproduction therefore cannot be mitigated via food intake, resulting in an important life history trade-off. For this reason, exploring indexes related to energetics in salmonids can provide powerful insights into the physiological costs of reproduction. In this study, we sampled blood from and PIT tagged 232 fish captured in the wild before the spawning season. We recaptured and resampled 74 individuals (53 females and 21 males) at the end of the spawning season. Females were further divided into spawning phases (nonspawned, partially spawned, and spawned individuals), though males could not be classified as such. We compared nutritional correlates (triglycerides, cholesterol, calcium, inorganic phosphorus, and total protein), stress correlates (cortisol, sodium, potassium, chloride, and glucose), and indexes of tissue damage (aspartate aminotransferase) between initial capture and recapture as well as among spawning phases in females. We found that nutritional status decreased in all fish throughout the spawning season but that it was substantially lower in females that had spawned. We further found that spawning itself appears stressful, with elevated glucose in partially spawned females and elevated cortisol in male sea trout at recapture. Our findings thus support the idea that the cost of reproduction is energetically high and that incurred stress and a decrease in nutritional status are important physiological costs.
Collapse
|
14
|
Lennox RJ, Dahlmo LS, Ford AT, Sortland LK, Vogel EF, Vollset KW. Predation research with electronic tagging. WILDLIFE BIOLOGY 2022. [DOI: 10.1002/wlb3.01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Robert J. Lennox
- Norwegian Inst. for Nature Research Trondheim Norway
- NORCE Norwegian Research Centre, Laboratory for Freshwater Ecology and Inland Fisheries Bergen Norway
| | - Lotte S. Dahlmo
- NORCE Norwegian Research Centre, Laboratory for Freshwater Ecology and Inland Fisheries Bergen Norway
- Dept of Biological Sciences, Univ. of Bergen Bergen Norway
| | - Adam T. Ford
- Univ. of British Columbia Okanagan Kelowna BC Canada
| | - Lene K. Sortland
- NORCE Norwegian Research Centre, Laboratory for Freshwater Ecology and Inland Fisheries Bergen Norway
- Dept of Biological Sciences, Univ. of Bergen Bergen Norway
| | - Emma F. Vogel
- UiT − The Arctic Univ. of Norway, Faculty of Biosciences, Fisheries and Economics Tromsø Norway
| | - Knut Wiik Vollset
- NORCE Norwegian Research Centre, Laboratory for Freshwater Ecology and Inland Fisheries Bergen Norway
| |
Collapse
|
15
|
Bull JK, Stanford BCM, Bokvist JK, Josephson MP, Rogers SM. Environment and genotype predict the genomic nature of domestication of salmonids as revealed by gene expression. Proc Biol Sci 2022; 289:20222124. [PMID: 36475438 PMCID: PMC9727666 DOI: 10.1098/rspb.2022.2124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Billions of salmonids are produced annually by artificial reproduction for harvest and conservation. Morphologically, behaviourally and physiologically these fish differ from wild-born fish, including in ways consistent with domestication. Unlike most studied domesticates, which diverged from wild ancestors millennia ago, salmonids offer a tractable model for early-stage domestication. Here, we review a fundamental mechanism for domestication-driven differences in early-stage domestication, differentially expressed genes (DEGs), in salmonids. We found 34 publications examining DEGs under domestication driven by environment and genotype, covering six species, over a range of life-history stages and tissues. Three trends emerged. First, domesticated genotypes have increased expression of growth hormone and related metabolic genes, with differences magnified under artificial environments with increased food. Regulatory consequences of these DEGs potentially drive overall DEG patterns. Second, immune genes are often DEGs under domestication and not simply owing to release from growth-immune trade-offs under increased food. Third, domesticated genotypes exhibit reduced gene expression plasticity, with plasticity further reduced in low-complexity environments typical of production systems. Recommendations for experimental design improvements, coupled with tissue-specific expression and emerging analytical approaches for DEGs present tractable avenues to understand the evolution of domestication in salmonids and other species.
Collapse
Affiliation(s)
- James K. Bull
- Department of Biological Sciences, University of Calgary, Alberta, Canada T2N 1N4
| | | | - Jessy K. Bokvist
- Department of Biological Sciences, University of Calgary, Alberta, Canada T2N 1N4,Fisheries and Oceans Canada, South Coast Area Office, Nanaimo, British Columbia, Canada V9T 1K3
| | - Matthew P. Josephson
- Department of Biological Sciences, University of Calgary, Alberta, Canada T2N 1N4
| | - Sean M. Rogers
- Department of Biological Sciences, University of Calgary, Alberta, Canada T2N 1N4,Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada V0R 1B0
| |
Collapse
|
16
|
Al-Ashhab A, Alexander-Shani R, Avrahami Y, Ehrlich R, Strem RI, Meshner S, Shental N, Sharon G. Sparus aurata and Lates calcarifer skin microbiota under healthy and diseased conditions in UV and non-UV treated water. Anim Microbiome 2022; 4:42. [PMID: 35729615 PMCID: PMC9210813 DOI: 10.1186/s42523-022-00191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022] Open
Abstract
Background The welfare of farmed fish is influenced by numerous environmental and management factors. Fish skin is an important site for immunity and a major route by which infections are acquired. The objective of this study was to characterize bacterial composition variability on skin of healthy, diseased, and recovered Gilthead Seabream (Sparus aurata) and Barramundi (Lates calcarifer). S. aurata, which are highly sensitive to gram-negative bacteria, were challenged with Vibrio harveyi. In addition, and to provide a wider range of infections, both fish species (S. aurata and L. calcarifer) were infected with gram-positive Streptococcus iniae, to compare the response of the highly sensitive L. calcarifer to that of the more resistant S. aurata. All experiments also compared microbial communities found on skin of fish reared in UV (a general practice used in aquaculture) and non-UV treated water tanks. Results Skin swab samples were taken from different areas of the fish (lateral lines, abdomen and gills) prior to controlled infection, and 24, 48 and 72 h, 5 days, one week and one-month post-infection. Fish skin microbial communities were determined using Illumina iSeq100 16S rDNA for bacterial sequencing. The results showed that naturally present bacterial composition is similar on all sampled fish skin sites prior to infection, but the controlled infections (T1 24 h post infection) altered the bacterial communities found on fish skin. Moreover, when the naturally occurring skin microbiota did not quickly recover, fish mortality was common following T1 (24 h post infection). We further confirmed the differences in bacterial communities found on skin and in the water of fish reared in non-UV and UV treated water under healthy and diseased conditions. Conclusions Our experimental findings shed light on the fish skin microbiota in relation to fish survival (in diseased and healthy conditions). The results can be harnessed to provide management tools for commercial fish farmers; predicting and preventing fish diseases can increase fish health, welfare, and enhance commercial fish yields. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00191-y.
Collapse
|
17
|
Low-cost adaptation options to support green growth in agriculture, water resources, and coastal zones. Sci Rep 2022; 12:17898. [PMID: 36284114 PMCID: PMC9596419 DOI: 10.1038/s41598-022-22331-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/13/2022] [Indexed: 01/20/2023] Open
Abstract
The regional climate as it is now and in the future will put pressure on investments in sub-Saharan Africa in water resource management, fisheries, and other crop and livestock production systems. Changes in oceanic characteristics across the Atlantic Ocean will result in remarkable vulnerability of coastal ecology, littorals, and mangroves in the middle of the twenty-first century and beyond. In line with the countries' objectives of creating a green economy that allows reduced greenhouse gas emissions, improved resource efficiency, and prevention of biodiversity loss, we identify the most pressing needs for adaptation and the best adaptation choices that are also clean and affordable. According to empirical data from the field and customized model simulation designs, the cost of these adaptation measures will likely decrease and benefit sustainable green growth in agriculture, water resource management, and coastal ecosystems, as hydroclimatic hazards such as pluviometric and thermal extremes become more common in West Africa. Most of these adaptation options are local and need to be scaled up and operationalized for sustainable development. Governmental sovereign wealth funds, investments from the private sector, and funding from global climate funds can be used to operationalize these adaptation measures. Effective legislation, knowledge transfer, and pertinent collaborations are necessary for their success.
Collapse
|
18
|
MacKnight NJ, Dimos BA, Beavers KM, Muller EM, Brandt ME, Mydlarz LD. Disease resistance in coral is mediated by distinct adaptive and plastic gene expression profiles. SCIENCE ADVANCES 2022; 8:eabo6153. [PMID: 36179017 PMCID: PMC9524840 DOI: 10.1126/sciadv.abo6153] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Infectious diseases are an increasing threat to coral reefs, resulting in altered community structure and hindering the functional contributions of disease-susceptible species. We exposed seven reef-building coral species from the Caribbean to white plague disease and determined processes involved in (i) lesion progression, (ii) within-species gene expression plasticity, and (iii) expression-level adaptation among species that lead to differences in disease risk. Gene expression networks enriched in immune genes and cytoskeletal arrangement processes were correlated to lesion progression rates. Whether or not a coral developed a lesion was mediated by plasticity in genes involved in extracellular matrix maintenance, autophagy, and apoptosis, while resistant coral species had constitutively higher expression of intracellular protein trafficking. This study offers insight into the process involved in lesion progression and within- and between-species dynamics that lead to differences in disease risk that is evident on current Caribbean reefs.
Collapse
Affiliation(s)
- Nicholas J. MacKnight
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
| | - Bradford A. Dimos
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
| | - Kelsey M. Beavers
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
| | - Erinn M. Muller
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| | - Marilyn E. Brandt
- University of the Virgin Islands, 2 John Brewers Bay, St. Thomas, VI 00802, USA
| | - Laura D. Mydlarz
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
- Corresponding author.
| |
Collapse
|
19
|
Costa JCD, Souza SSD, Val AL. Impact of high temperature, CO 2 and parasitic infection on inflammation, immunodepression and programmed cell death in Colossoma macropomum at the transcriptional level. Microb Pathog 2022; 172:105804. [PMID: 36179975 DOI: 10.1016/j.micpath.2022.105804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 10/31/2022]
Abstract
The production of tambaqui Colossoma macropomum has recently reached a milestone, being considered the main native species produced in South American continental waters. Despite the importance of this fish, its immunity is poorly understood, and global warming could pose severe risks to its health as increasing water temperature leads to an increase in the incidence of parasitic diseases. In an experimental context based on the high-emission scenario of the 5th Intergovernmental Panel on Climate Change (IPCC) report, we evaluated the synergistic effect of exposure to the extreme climate change scenario (RCP8.5) during two exposure periods (7 and 30 days) and two levels of parasitism by monogeneans (low and high). The goal was to understand how the tambaqui immune system will react to this challenge. To achieve this goal, we analyzed the expression of nine immunity-related genes (jak3, stat3, il-10, socs1, casp1, il-1β, tp53, bcl2, and hif-1α) in the spleen. Our main findings showed downregulation in the jak3/stat3 pathway, genes related to the control of inflammation and apoptosis, in addition to upregulation of proinflammatory genes and those related to pyroptosis during the first 7 days of exposure to the extreme climate scenario, also indicating a stage of immunodepression in these animals. After 30 days of exposure, all genes tended to return to similar levels in the current scenario, possibly due to the decrease in parasite load caused by chronic exposure to the extreme scenario. Our data strongly suggest that the increase in parasitism intensity caused by the extreme climate change scenario is responsible for disturbances in the host's immune system. However, more studies are needed to clarify this poorly understood cascade of events.
Collapse
Affiliation(s)
- Jaqueline Custódio da Costa
- Graduate Program in Genetics, Conservation and Evolutionary Biology (PPG-GCBEv), Laboratory of Ecophysiology and Molecular Evolution (LEEM), Brazilian National Institute for Research of the Amazon (INPA), 69067-375, Manaus, Amazonas, Brazil.
| | - Samara Silva de Souza
- Graduate Program in Genetics, Conservation and Evolutionary Biology (PPG-GCBEv), Laboratory of Ecophysiology and Molecular Evolution (LEEM), Brazilian National Institute for Research of the Amazon (INPA), 69067-375, Manaus, Amazonas, Brazil
| | - Adalberto Luis Val
- Graduate Program in Genetics, Conservation and Evolutionary Biology (PPG-GCBEv), Laboratory of Ecophysiology and Molecular Evolution (LEEM), Brazilian National Institute for Research of the Amazon (INPA), 69067-375, Manaus, Amazonas, Brazil
| |
Collapse
|
20
|
Thorstensen MJ, Vandervelde CA, Bugg WS, Michaleski S, Vo L, Mackey TE, Lawrence MJ, Jeffries KM. Non-Lethal Sampling Supports Integrative Movement Research in Freshwater Fish. Front Genet 2022; 13:795355. [PMID: 35547248 PMCID: PMC9081360 DOI: 10.3389/fgene.2022.795355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Freshwater ecosystems and fishes are enormous resources for human uses and biodiversity worldwide. However, anthropogenic climate change and factors such as dams and environmental contaminants threaten these freshwater systems. One way that researchers can address conservation issues in freshwater fishes is via integrative non-lethal movement research. We review different methods for studying movement, such as with acoustic telemetry. Methods for connecting movement and physiology are then reviewed, by using non-lethal tissue biopsies to assay environmental contaminants, isotope composition, protein metabolism, and gene expression. Methods for connecting movement and genetics are reviewed as well, such as by using population genetics or quantitative genetics and genome-wide association studies. We present further considerations for collecting molecular data, the ethical foundations of non-lethal sampling, integrative approaches to research, and management decisions. Ultimately, we argue that non-lethal sampling is effective for conducting integrative, movement-oriented research in freshwater fishes. This research has the potential for addressing critical issues in freshwater systems in the future.
Collapse
Affiliation(s)
- Matt J. Thorstensen
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Twardek WM, Lapointe NWR, Cooke SJ. High egg retention in Chinook Salmon Oncorhynchus tshawytscha carcasses sampled downstream of a migratory barrier. JOURNAL OF FISH BIOLOGY 2022; 100:715-726. [PMID: 34958124 DOI: 10.1111/jfb.14985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Barriers in rivers have the potential to severely decrease functional connectivity between habitats. Failure to pass barriers and reach natal spawning habitat may compromise individual reproductive success, particularly for semelparous, philopatric species that rely on free-flowing rivers to reach natal habitat during their once-in-a-lifetime spawning migrations. To investigate the consequences of in-river barriers on fish spawning success, we quantified egg retention and spawning effort (caudal fin wear) in female Chinook Salmon Oncorhynchus tshawytscha carcasses collected downstream of the Whitehorse Hydro Plant on the upper Yukon River and at a nearby free-flowing tributary (Teslin River) from 2018 to 2020 (~2900 km migrations). Previous studies have demonstrated that a large proportion of fish attempting to reach spawning locations upstream of the hydro plant fail to pass the associated fishway. We estimated nearly all female salmon failing to pass the hydro plant attempted spawning in non-natal habitat downstream, but that these females retained ~34% of their total fecundity compared to ~6% in females from the free-flowing river. Females downstream of the hydro plant also had lower wear on their caudal fin, a characteristic that was correlated with increased egg deposition. Egg retention did not vary across years with different run sizes, and we propose that egg retention downstream of the hydro plant was not driven by density-dependent mechanisms. Findings from this work indicate that female Chinook Salmon can still deposit eggs following failed fish passage and failure to reach natal spawning sites, though egg retention rates are considerably higher and uncertainties remain about reproductive success. We encourage researchers to incorporate carcass surveys into fish passage evaluations for semelparous species to fully account for consequences of failed passage.
Collapse
Affiliation(s)
- William M Twardek
- Canadian Wildlife Federation, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | - Steven J Cooke
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
22
|
Deeg CM, Sutherland BJG, Ming TJ, Wallace C, Jonsen K, Flynn KL, Rondeau EB, Beacham TD, Miller KM. In-field genetic stock identification of overwintering coho salmon in the Gulf of Alaska: Evaluation of Nanopore sequencing for remote real-time deployment. Mol Ecol Resour 2022; 22:1824-1835. [PMID: 35212146 PMCID: PMC9303916 DOI: 10.1111/1755-0998.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 11/27/2022]
Abstract
Genetic stock identification (GSI) from genotyping‐by‐sequencing of single nucleotide polymorphism (SNP) loci has become the gold standard for stock of origin identification in Pacific salmon. The sequencing platforms currently applied require large batch sizes and multiday processing in specialized facilities to perform genotyping by the thousands. However, recent advances in third‐generation single‐molecule sequencing platforms, such as the Oxford Nanopore minION, provide base calling on portable, pocket‐sized sequencers and promise real‐time, in‐field stock identification of variable batch sizes. Here we evaluate utility and comparability to established GSI platforms of at‐sea stock identification of coho salmon (Oncorhynchus kisutch) using targeted SNP amplicon sequencing on the minION platform during a high‐sea winter expedition to the Gulf of Alaska. As long read sequencers are not optimized for short amplicons, we concatenate amplicons to increase coverage and throughput. Nanopore sequencing at‐sea yielded data sufficient for stock assignment for 50 out of 80 individuals. Nanopore‐based SNP calls agreed with Ion Torrent‐based genotypes in 83.25%, but assignment of individuals to stock of origin only agreed in 61.5% of individuals, highlighting inherent challenges of Nanopore sequencing, such as resolution of homopolymer tracts and indels. However, poor representation of assayed salmon in the queried baseline data set contributed to poor assignment confidence on both platforms. Future improvements will focus on lowering turnaround time and cost, increasing accuracy and throughput, as well as augmentation of the existing baselines. If successfully implemented, Nanopore sequencing will provide an alternative method to the large‐scale laboratory approach by providing mobile small batch genotyping to diverse stakeholders.
Collapse
Affiliation(s)
- Christoph M Deeg
- Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Pacific Salmon Foundation, Vancouver, British Columbia, Canada
| | - Ben J G Sutherland
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Tobi J Ming
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Colin Wallace
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Kim Jonsen
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Kelsey L Flynn
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Eric B Rondeau
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Terry D Beacham
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Kristina M Miller
- Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| |
Collapse
|
23
|
Carreira KCV, da Silva DT, de Carvalho Sanches O, Matos ER, Hamoy I. Sphaeromyxa azevedoi n. sp. (Myxozoa: Sphaeromyxidae) infecting the gall bladder of Gobioides grahamae (Perciformes: Gobiidae) in the Amazon region. Parasitol Res 2022; 121:867-875. [PMID: 35088135 DOI: 10.1007/s00436-022-07443-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
Sphaeromyxa azevedoi n. sp. is described from the gall bladder of the goby Gobioides grahamae (Gobiidae) captured on the Paracauari River in Salvaterra, on Marajó Island, northern Brazil. A total of 50 G. grahamae specimens were analysed, and 15 (30%) were parasitised by the plasmodia and myxospore of Sphaeromyxa azevedoi n. sp. Large plasmodia were observed floating in the bile. These plasmodia were flat, rounded, oval or elongated, and of varying sizes. The mature myxospores, found singly or in pairs, were 27.1 ± 2.7 (20.5-30.1) μm Length and 3.8 ± 0.2 (3.5-4.4) μm Width in the valvular view. The myxospore has two polar capsules of equal size, 8.1 ± 0.6 (7.4-9.4) μm in length and 2.9 ± 0.2 (2.3-3.3) μm in width. A polar tubule was observed in each capsule, arranged perpendicularly to the principal axis, with three or four coils. The histological analysis showed that the plasmodia and myxospore are located in the lumen of the gall bladder, arranged in pairs, and the epithelium of the gall bladder presented multifocal necrosis. The SSU rDNA of Sphaeromyxa azevedoi n. sp. clusters in the 'balbianii' group of the Sphaeromyxa clade. The morphological characteristics and molecular phylogeny of Sphaeromyxa azevedoi n. sp. support its classification as a new species of the genus Sphaeromyxa, which represents an important advancement in the understanding of the diversity of the myxozoan parasite fauna of Brazilian fishes, especially considering that the new species may be detrimental to the host, a commercially important Brazilian fish species.
Collapse
Affiliation(s)
| | | | | | - Edilson R Matos
- Carlos Azevedo Research Laboratory, Federal Rural University of the Amazon (UFRA), Avenida Presidente Tancredo Neves, 2501, Montese, Belém, Pará, 66077-901, Brazil.
| | - Igor Hamoy
- Laboratory of Applied Genetics, Federal Rural University of Amazonia (UFRA), Belém, Pará, Brazil
| |
Collapse
|
24
|
Mauduit F, Segarra A, Mandic M, Todgham AE, Baerwald MR, Schreier AD, Fangue NA, Connon RE. Understanding risks and consequences of pathogen infections on the physiological performance of outmigrating Chinook salmon. CONSERVATION PHYSIOLOGY 2022; 10:coab102. [PMID: 35492407 PMCID: PMC9040276 DOI: 10.1093/conphys/coab102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The greatest concentration of at-risk anadromous salmonids is found in California (USA)-the populations that have been negatively impacted by the degradation of freshwater ecosystems. While climate-driven environmental changes threaten salmonids directly, they also change the life cycle dynamics and geographic distribution of pathogens, their resulting host-pathogen interactions and potential for disease progression. Recent studies have established the correlation between pathogen detection and salmonid smolt mortality during their migration to the ocean. The objective of the present study was to screen for up to 47 pathogens in juvenile Chinook salmon (Oncorhynchus tshawytscha) that were held in cages at two key sites of the Sacramento River (CA, USA) and measure potential consequences on fish health. To do so, we used a combination of transcriptomic analysis, enzymatic assays for energy metabolism and hypoxia and thermal tolerance measures. Results revealed that fish were infected by two myxozoan parasites: Ceratonova shasta and Parvicapsula minibicornis within a 2-week deployment. Compared to the control fish maintained in our rearing facility, infected fish displayed reduced body mass, depleted hepatic glycogen stores and differential regulation of genes involved in the immune and general stress responses. This suggests that infected fish would have lower chances of migration success. In contrast, hypoxia and upper thermal tolerances were not affected by infection, suggesting that infection did not impair their capacity to cope with acute abiotic stressors tested in this study. An evaluation of long-term consequences of the observed reduced body mass and hepatic glycogen depletion is needed to establish a causal relationship between salmon parasitic infection and their migration success. This study highlights that to assess the potential sublethal effects of a stressor, or to determine a suitable management action for fish, studies need to consider a combination of endpoints from the molecular to the organismal level.
Collapse
Affiliation(s)
- F Mauduit
- Corresponding author: Department of Anatomy, Physiology & Cell Biology, University of California Davis, 95616 Davis, CA, USA.
| | - A Segarra
- Department of Anatomy, Physiology & Cell Biology, University of California Davis, 95616 Davis, CA, USA
| | - M Mandic
- Department of Animal Science, University of California Davis, 95616 Davis, CA, USA
| | - A E Todgham
- Department of Animal Science, University of California Davis, 95616 Davis, CA, USA
| | - M R Baerwald
- California Department of Water Resources, Division of Environmental Services, 95814 Sacramento, CA, USA
| | - A D Schreier
- Department of Animal Science, University of California Davis, 95616 Davis, CA, USA
| | - N A Fangue
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, 95616 Davis, CA, USA
| | - R E Connon
- Department of Anatomy, Physiology & Cell Biology, University of California Davis, 95616 Davis, CA, USA
| |
Collapse
|
25
|
Bass AL, Bateman AW, Connors BM, Staton BA, Rondeau EB, Mordecai GJ, Teffer AK, Kaukinen KH, Li S, Tabata AM, Patterson DA, Hinch SG, Miller KM. Identification of infectious agents in early marine Chinook and Coho salmon associated with cohort survival. Facets (Ott) 2022. [DOI: 10.1139/facets-2021-0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent decades have seen an increased appreciation for the role infectious diseases can play in mass mortality events across a diversity of marine taxa. At the same time many Pacific salmon populations have declined in abundance as a result of reduced marine survival. However, few studies have explicitly considered the potential role pathogens could play in these declines. Using a multi-year dataset spanning 59 pathogen taxa in Chinook and Coho salmon sampled along the British Columbia coast, we carried out an exploratory analysis to quantify evidence for associations between pathogen prevalence and cohort survival and between pathogen load and body condition. While a variety of pathogens had moderate to strong negative correlations with body condition or survival for one host species in one season, we found that Tenacibaculum maritimum and Piscine orthoreovirus had consistently negative associations with body condition in both host species and seasons and were negatively associated with survival for Chinook salmon collected in the fall and winter. Our analyses, which offer the most comprehensive examination of associations between pathogen prevalence and Pacific salmon survival to date, suggest that pathogens in Pacific salmon warrant further attention, especially those whose distribution and abundance may be influenced by anthropogenic stressors.
Collapse
Affiliation(s)
- Arthur L. Bass
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Andrew W. Bateman
- Pacific Salmon Foundation, Vancouver, BC V6J 4S6, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Brendan M. Connors
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC V8L 5T5, Canada
| | - Benjamin A. Staton
- Fisheries Science Department, Columbia River Inter-Tribal Fish Commission, Portland, OR 97232, USA
| | - Eric B. Rondeau
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Gideon J. Mordecai
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V9T 6N7, Canada
| | - Amy K. Teffer
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Karia H. Kaukinen
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Amy M. Tabata
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - David A. Patterson
- Fisheries and Oceans Canada, School of Resource and Environmental Management, Simon Fraser University, Science Branch, Burnaby, BC V5A 1S6, Canada
| | - Scott G. Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kristina M. Miller
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| |
Collapse
|
26
|
Deeg CM, Kanzeparova AN, Somov AA, Esenkulova S, Di Cicco E, Kaukinen KH, Tabata A, Ming TJ, Li S, Mordecai G, Schulze A, Miller KM. Way out there: pathogens, health, and condition of overwintering salmon in the Gulf of Alaska. Facets (Ott) 2022. [DOI: 10.1139/facets-2021-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Salmon are keystone species across the North Pacific, supporting ecosystems, commercial opportunities, and cultural identity. Nevertheless, many wild salmon stocks have experienced significant declines. Salmon restoration efforts focus on fresh and coastal waters, but little is known about the open ocean environment. Here we use high throughput RT-qPCR tools to provide the first report on the health, condition, and infection profile of coho, chum, pink, and sockeye salmon in the Gulf of Alaska during the 2019 winter. We found lower infectious agent number, diversity, and burden compared with coastal British Columbia in all species except coho, which exhibited elevated stock-specific infection profiles. We identified Loma sp. and Ichthyophonus hoferi as key pathogens, suggesting transmission in the open ocean. Reduced prey availability, potentially linked to change in ocean conditions due to an El Niño event, correlated with energetic deficits and immunosuppression in salmon. Immunosuppressed individuals showed higher relative infection burden and higher prevalence of opportunistic pathogens. We highlight the cumulative effects of infection and environmental stressors on overwintering salmon, establishing a baseline to document the impacts of a changing ocean on salmon.
Collapse
Affiliation(s)
- Christoph M. Deeg
- Department of Forest & Conservation Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Pacific Salmon Foundation, Vancouver, BC V6J 4S6, Canada
| | | | - Alexei A. Somov
- Pacific branch of VNIRO (“TINRO”), Vladivostok, Russia 690091
| | | | | | - Karia H. Kaukinen
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC V9T 6N7, Canada
| | - Amy Tabata
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC V9T 6N7, Canada
| | - Tobi J. Ming
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC V9T 6N7, Canada
| | - Shaorong Li
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC V9T 6N7, Canada
| | - Gideon Mordecai
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Angela Schulze
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC V9T 6N7, Canada
| | - Kristina M. Miller
- Department of Forest & Conservation Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
27
|
Nguyen DT, López-Porras A, Marancik D, Hawkins L, Welch TJ, Petty BD, Ware C, Griffin MJ, Soto E. Genetic characterization of heterologous Edwardsiella piscicida isolates from diverse fish hosts and virulence assessment in a Chinook salmon Oncorhynchus tshawytscha model. JOURNAL OF FISH DISEASES 2021; 44:1959-1970. [PMID: 34480365 DOI: 10.1111/jfd.13509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Edwardsiella piscicida is an emergent global fish pathogen with a wide host range, although host associations driving genetic diversity remain unclear. This study investigated the genetic and virulence diversity of 37 E. piscicida isolates recovered from 10 fish species in North America. Multilocus sequence analysis (MLSA) was conducted using concatenated alignments of the gyrB, pgi and phoU sequences. MLSA clustered the tested isolates into six discrete clades. In light of recent disease outbreaks in cultured salmonids, the virulence of each clade was evaluated in Chinook salmon Oncorhynchus tshawytscha fingerlings following intracoelomic challenge of ~106 CFU/fish. Challenged and control fish were monitored for 21d, and microbiological and histological examination was performed on dead and surviving fish. Peak mortality occurred 3-5 days post-challenge (dpc) regardless of isolate or genetic group. Edwardsiella piscicida was recovered from all moribund and dead animals. At 21 dpc, fish challenged with isolates from clades II, III and IV presented cumulative mortality ≥83.3%, whereas isolates from clade I, V and VI resulted in cumulative mortality ≤71.4%. This study suggests an underlying genetic basis for strain virulence and potential host associations. Further investigations using other fish models and variable challenge conditions are warranted.
Collapse
Affiliation(s)
- Diem Thu Nguyen
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Pathobiology, St. George's University School of Veterinary Medicine, True Blue, Grenada
| | - Adrián López-Porras
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
| | - David Marancik
- Department of Pathobiology, St. George's University School of Veterinary Medicine, True Blue, Grenada
| | | | - Timothy J Welch
- National Center for Cool and Coldwater Aquaculture, USDA-ARS, Leetown, West Virginia, USA
| | | | - Cynthia Ware
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
| | - Matt J Griffin
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
| | - Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
28
|
Teffer AK, Hinch SG, Miller KM, Patterson DA, Bass AL, Cooke SJ, Farrell AP, Beacham TD, Chapman JM, Juanes F. Host-pathogen-environment interactions predict survival outcomes of adult sockeye salmon (Oncorhynchus nerka) released from fisheries. Mol Ecol 2021; 31:134-160. [PMID: 34614262 DOI: 10.1111/mec.16214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022]
Abstract
Incorporating host-pathogen(s)-environment axes into management and conservation planning is critical to preserving species in a warming climate. However, the role pathogens play in host stress resilience remains largely unexplored in wild animal populations. We experimentally characterized how independent and cumulative stressors (fisheries handling, high water temperature) and natural infections affected the health and longevity of released wild adult sockeye salmon (Oncorhynchus nerka) in British Columbia, Canada. Returning adults were collected before and after entering the Fraser River, yielding marine- and river-collected groups, respectively (N = 185). Fish were exposed to a mild (seine) or severe (gill net) fishery treatment at collection, and then held in flow-through freshwater tanks for up to four weeks at historical (14°C) or projected migration temperatures (18°C). Using weekly nonlethal gill biopsies and high-throughput qPCR, we quantified loads of up to 46 pathogens with host stress and immune gene expression. Marine-collected fish had less severe infections than river-collected fish, a short migration distance (100 km, 5-7 days) that produced profound infection differences. At 14°C, river-collected fish survived 1-2 weeks less than marine-collected fish. All fish held at 18°C died within 4 weeks unless they experienced minimal handling. Gene expression correlated with infections in river-collected fish, while marine-collected fish were more stressor-responsive. Cumulative stressors were detrimental regardless of infections or collection location, probably due to extreme physiological disturbance. Because river-derived infections correlated with single stressor responses, river entry probably decreases stressor resilience of adult salmon by altering both physiology and pathogen burdens, which redirect host responses toward disease resistance.
Collapse
Affiliation(s)
- Amy K Teffer
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada.,Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott G Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristina M Miller
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - David A Patterson
- Fisheries and Oceans Canada, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Arthur L Bass
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Anthony P Farrell
- Department of Zoology, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Terry D Beacham
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Jacqueline M Chapman
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Francis Juanes
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
29
|
Mackey TE, Hasler CT, Durhack T, Jeffrey JD, Macnaughton CJ, Ta K, Enders EC, Jeffries KM. Molecular and physiological responses predict acclimation limits in juvenile brook trout (Salvelinus fontinalis). J Exp Biol 2021; 224:271813. [PMID: 34382658 DOI: 10.1242/jeb.241885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/13/2021] [Indexed: 11/20/2022]
Abstract
Understanding the resilience of ectotherms to high temperatures is essential because of the influence of climate change on aquatic ecosystems. The ability of species to acclimate to high temperatures may determine whether populations can persist in their native ranges. We examined physiological and molecular responses of juvenile brook trout (Salvelinus fontinalis) to six acclimation temperatures (5, 10, 15, 20, 23 and 25°C) that span the thermal distribution of the species to predict acclimation limits. Brook trout exhibited an upregulation of stress-related mRNA transcripts (heat shock protein 90-beta, heat shock cognate 71 kDa protein, glutathione peroxidase 1) and downregulation of transcription factors and osmoregulation-related transcripts (nuclear protein 1, Na+/K+/2Cl- co-transporter-1-a) at temperatures ≥20°C. We then examined the effects of acclimation temperature on metabolic rate (MR) and physiological parameters in fish exposed to an acute exhaustive exercise and air exposure stress. Fish acclimated to temperatures ≥20°C exhibited elevated plasma cortisol and glucose, and muscle lactate after exposure to the acute stress. Fish exhibited longer MR recovery times at 15 and 20°C compared with the 5 and 10°C groups; however, cortisol levels remained elevated at temperatures ≥20°C after 24 h. Oxygen consumption in fish acclimated to 23°C recovered quickest after exposure to acute stress. Standard MR was highest and factorial aerobic scope was lowest for fish held at temperatures ≥20°C. Our findings demonstrate how molecular and physiological responses predict acclimation limits in a freshwater fish as the brook trout in the present study had a limited ability to acclimate to temperatures beyond 20°C.
Collapse
Affiliation(s)
- Theresa E Mackey
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada, R3B 2E9
| | - Caleb T Hasler
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada, R3B 2E9
| | - Travis Durhack
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2.,Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, MB, Canada, R3T 2N6
| | - Jennifer D Jeffrey
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | | | - Kimberly Ta
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | - Eva C Enders
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, MB, Canada, R3T 2N6
| | - Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| |
Collapse
|
30
|
Koch IJ, Narum SR. An evaluation of the potential factors affecting lifetime reproductive success in salmonids. Evol Appl 2021; 14:1929-1957. [PMID: 34429740 PMCID: PMC8372082 DOI: 10.1111/eva.13263] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 01/24/2023] Open
Abstract
Lifetime reproductive success (LRS), the number of offspring produced over an organism's lifetime, is a fundamental component of Darwinian fitness. For taxa such as salmonids with multiple species of conservation concern, understanding the factors affecting LRS is critical for the development and implementation of successful conservation management practices. Here, we reviewed the published literature to synthesize factors affecting LRS in salmonids including significant effects of hatchery rearing, life history, and phenotypic variation, and behavioral and spawning interactions. Additionally, we found that LRS is affected by competitive behavior on the spawning grounds, genetic compatibility, local adaptation, and hybridization. Our review of existing literature revealed limitations of LRS studies, and we emphasize the following areas that warrant further attention in future research: (1) expanding the range of studies assessing LRS across different life-history strategies, specifically accounting for distinct reproductive and migratory phenotypes; (2) broadening the variety of species represented in salmonid fitness studies; (3) constructing multigenerational pedigrees to track long-term fitness effects; (4) conducting LRS studies that investigate the effects of aquatic stressors, such as anthropogenic effects, pathogens, environmental factors in both freshwater and marine environments, and assessing overall body condition, and (5) utilizing appropriate statistical approaches to determine the factors that explain the greatest variation in fitness and providing information regarding biological significance, power limitations, and potential sources of error in salmonid parentage studies. Overall, this review emphasizes that studies of LRS have profoundly advanced scientific understanding of salmonid fitness, but substantial challenges need to be overcome to assist with long-term recovery of these keystone species in aquatic ecosystems.
Collapse
Affiliation(s)
- Ilana J. Koch
- Columbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| |
Collapse
|
31
|
Nguyen DT, Marancik D, Ware C, Griffin MJ, Soto E. Mycobacterium salmoniphilum and M. chelonae in Captive Populations of Chinook Salmon. JOURNAL OF AQUATIC ANIMAL HEALTH 2021; 33:107-115. [PMID: 33780059 DOI: 10.1002/aah.10124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Chinook Salmon Oncorhynchus tshawytscha is a keystone fish species in the Pacific Northwest. In 2019, unusual mortalities occurred in two different populations of cultured fingerlings from the same facility in California, USA. The systems consist of outdoor, enclosed, flow-through freshwater tanks that are maintained at 18 ± 1°C. Clinical signs and gross findings were only observed in one population and included abnormal swimming, inappetence, lethargy, skin discoloration, and the presence of multifocal nodular and ulcerative skin lesions. Microscopic lesions were infrequent and consisted of severe, locally extensive granulomatous dermatitis and myositis and mild, multifocal, granulomatous branchitis, myocarditis, and hepatitis. Intracellular acid-fast organisms were observed within areas of granulomatous myositis. Posterior kidney swabs were collected and inoculated in nutrient-rich and selective agar media and incubated at 25°C for 2 weeks. Visibly pure bacterial colonies were observed 7-10 d postinoculation. Partial sequences of 16S rRNA initially identified the recovered bacteria as members of the genus Mycobacterium. However, marked variability was observed among Mycobacterium spp. isolates by using repetitive extragenic palindromic polymerase chain reaction fingerprinting. Amplification and sequencing of the ribosomal RNA internal transcribed spacer, 65-kDa heat shock protein, and RNA polymerase β-subunit gene of the cultured isolates identified M. salmoniphilum and M. chelonae, discrete members of the M. chelonae-abscessus complex, isolated from diseased Chinook Salmon fingerlings.
Collapse
Affiliation(s)
- Diem Thu Nguyen
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, 2108 Tupper Hall, Davis, California, 95616-5270, USA
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, True Blue, Grenada, West Indies
| | - David Marancik
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, True Blue, Grenada, West Indies
| | - Cynthia Ware
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, 127 Experiment Station Road, Post Office Box 197, Stoneville, Mississippi, 38776, USA
| | - Matt J Griffin
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, 127 Experiment Station Road, Post Office Box 197, Stoneville, Mississippi, 38776, USA
| | - Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, 2108 Tupper Hall, Davis, California, 95616-5270, USA
| |
Collapse
|
32
|
Jeffries KM, Teffer A, Michaleski S, Bernier NJ, Heath DD, Miller KM. The use of non-lethal sampling for transcriptomics to assess the physiological status of wild fishes. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110629. [PMID: 34058376 DOI: 10.1016/j.cbpb.2021.110629] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022]
Abstract
Fishes respond to different abiotic and biotic stressors through changes in gene expression as a part of an integrated physiological response. Transcriptomics approaches have been used to quantify gene expression patterns as a reductionist approach to understand responses to environmental stressors in animal physiology and have become more commonly used to study wild fishes. We argue that non-lethal sampling for transcriptomics should become the norm for assessing the physiological status of wild fishes, especially when there are conservation implications. Processes at the level of the transcriptome provide a "snapshot" of the cellular conditions at a given time; however, by using a non-lethal sampling protocol, researchers can connect the transcriptome profile with fitness-relevant ecological endpoints such as reproduction, movement patterns and survival. Furthermore, telemetry is a widely used approach in fisheries to understand movement patterns in the wild, and when combined with transcriptional profiling, provides arguably the most powerful use of non-lethal sampling for transcriptomics in wild fishes. In this review, we discuss the different tissues that can be successfully incorporated into non-lethal sampling strategies, which is particularly useful in the context of the emerging field of conservation transcriptomics. We briefly describe different methods for transcriptional profiling in fishes from high-throughput qPCR to whole transcriptome approaches. Further, we discuss strategies and the limitations of using transcriptomics for non-lethally studying fishes. Lastly, as 'omics' technology continues to advance, transcriptomics paired with different omics approaches to study wild fishes will provide insight into the factors that regulate phenotypic variation and the physiological responses to changing environmental conditions in the future.
Collapse
Affiliation(s)
- Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada.
| | - Amy Teffer
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, United States of America
| | - Sonya Michaleski
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Daniel D Heath
- Department of Integrative Biology, Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
33
|
Michel CJ, Notch JJ, Cordoleani F, Ammann AJ, Danner EM. Nonlinear survival of imperiled fish informs managed flows in a highly modified river. Ecosphere 2021. [DOI: 10.1002/ecs2.3498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Cyril J. Michel
- Institute of Marine Sciences University of California, Santa Cruz Santa Cruz California95060USA
| | - Jeremy J. Notch
- Institute of Marine Sciences University of California, Santa Cruz Santa Cruz California95060USA
| | - Flora Cordoleani
- Institute of Marine Sciences University of California, Santa Cruz Santa Cruz California95060USA
| | - Arnold J. Ammann
- Southwest Fisheries Science Center – Fisheries Ecology Division National Marine Fisheries ServiceNational Oceanic and Atmospheric Administration 110 McAllister Way Santa Cruz California95060USA
| | - Eric M. Danner
- Southwest Fisheries Science Center – Fisheries Ecology Division National Marine Fisheries ServiceNational Oceanic and Atmospheric Administration 110 McAllister Way Santa Cruz California95060USA
| |
Collapse
|
34
|
Sabal MC, Boyce MS, Charpentier CL, Furey NB, Luhring TM, Martin HW, Melnychuk MC, Srygley RB, Wagner CM, Wirsing AJ, Ydenberg RC, Palkovacs EP. Predation landscapes influence migratory prey ecology and evolution. Trends Ecol Evol 2021; 36:737-749. [PMID: 33994219 DOI: 10.1016/j.tree.2021.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/23/2022]
Abstract
Migratory prey experience spatially variable predation across their life cycle. They face unique challenges in navigating this predation landscape, which affects their perception of risk, antipredator responses, and resulting mortality. Variable and unfamiliar predator cues during migration can limit accurate perception of risk and migrants often rely on social information and learning to compensate. The energetic demands of migration constrain antipredator responses, often through context-dependent patterns. While migration can increase mortality, migrants employ diverse strategies to balance risks and rewards, including life history and antipredator responses. Humans interact frequently with migratory prey across space and alter both mortality risk and antipredator responses, which can scale up to affect migratory populations and should be considered in conservation and management.
Collapse
Affiliation(s)
- Megan C Sabal
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, Santa Cruz, CA 95060, USA.
| | - Mark S Boyce
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada
| | | | - Nathan B Furey
- University of New Hampshire, Department of Biological Sciences, Durham, NH 03824, USA
| | - Thomas M Luhring
- Wichita State University, Department of Biological Sciences, Wichita, KS 67260, USA
| | - Hans W Martin
- University of Montana, Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, Missoula, MT 59812, USA
| | - Michael C Melnychuk
- University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA 98195, USA
| | - Robert B Srygley
- Pest Management Research Unit, Northern Plains Agricultural Research Laboratory, USDA-Agricultural Research Service, Sidney, MT 59270, USA; Smithsonian Tropical Research Institute, Apdo. 0843-03092, Panamá, República de Panamá
| | - C Michael Wagner
- Michigan State University, Department of Fisheries and Wildlife, East Lansing, MI 48824, USA
| | - Aaron J Wirsing
- University of Washington, School of Environmental and Forest Sciences, Seattle, WA 98195, USA
| | - Ronald C Ydenberg
- Simon Fraser University, Centre for Wildlife Ecology, Burnaby, British Columbia V5A 1S6, Canada
| | - Eric P Palkovacs
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, Santa Cruz, CA 95060, USA
| |
Collapse
|
35
|
Abstract
AbstractThe negative effects of parasitism on host population dynamics may be mediated by plastic compensatory life-history changes in hosts. Theory predicts that hosts should shift their life-history towards early reproduction in response to virulent pathogens to maximize reproduction before death. However, for sublethal infections that affect growth, hosts whose fecundity is correlated with body size are predicted to shift towards delayed reproduction associated with larger body size and higher fecundity. This has been observed in Atlantic salmon and parasitic sea lice, via mark-recapture studies that recover mature fish from paired groups of control and parasiticide-treated smolts. We investigated whether such louse-induced changes to age at maturity can offset some of the negative effect of mortality on population growth rate in salmon using a structured population matrix model. Model results show that delayed maturity can partially compensate for reduced survival. However, this only occurs when marine survival is moderate to poor and growth conditions at sea are good. Also, the impact of delayed maturity on population growth when parameterizing the model with empirical data is negligible compared with effects of direct mortality. Our model thus suggests that management that works on minimizing the effect of sea lice from fish farms on wild salmon should focus mainly on correctly quantifying the effect of parasite-induced mortality during the smolt stage if the goal is to maximize population growth rate.
Collapse
|
36
|
Furey NB, Bass AL, Miller KM, Li S, Lotto AG, Healy SJ, Drenner SM, Hinch SG. Infected juvenile salmon can experience increased predation during freshwater migration. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201522. [PMID: 33959321 PMCID: PMC8074935 DOI: 10.1098/rsos.201522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/03/2021] [Indexed: 05/07/2023]
Abstract
Predation risk for animal migrants can be impacted by physical condition. Although size- or condition-based selection is often observed, observing infection-based predation is rare due to the difficulties in assessing infectious agents in predated samples. We examined predation of outmigrating sockeye salmon (Oncorhynchus nerka) smolts by bull trout (Salvelinus confluentus) in south-central British Columbia, Canada. We used a high-throughput quantitative polymerase chain reaction (qPCR) platform to screen for the presence of 17 infectious agents found in salmon and assess 14 host genes associated with viral responses. In one (2014) of the two years assessed (2014 and 2015), the presence of infectious haematopoietic necrosis virus (IHNv) resulted in 15-26 times greater chance of predation; in 2015 IHNv was absent among all samples, predated or not. Thus, we provide further evidence that infection can impact predation risk in migrants. Some smolts with high IHNv loads also exhibited gene expression profiles consistent with a virus-induced disease state. Nine other infectious agents were observed between the two years, none of which were associated with increased selection by bull trout. In 2014, richness of infectious agents was also associated with greater predation risk. This is a rare demonstration of predator consumption resulting in selection for prey that carry infectious agents. The mechanism by which this selection occurs is not yet determined. By culling infectious agents from migrant populations, fish predators could provide an ecological benefit to prey.
Collapse
Affiliation(s)
- Nathan B. Furey
- Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| | - Arthur L. Bass
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada
| | - Kristi M. Miller
- Fisheries and Oceans Canada, Molecular Genetics Section, Pacific Biological Station, Nanaimo, Canada
| | - Shaorong Li
- Fisheries and Oceans Canada, Molecular Genetics Section, Pacific Biological Station, Nanaimo, Canada
| | - Andrew G. Lotto
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada
| | - Stephen J. Healy
- Fisheries and Oceans Canada, Science Branch, Pacific Region, 4160 Marine Dr., West Vancouver, British Columbia, Canada
| | - S. Matthew Drenner
- Stillwater Sciences, 555 W. Fifth St, 35th floor, Los Angeles, CA, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Scott G. Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
37
|
Lefevre S, Wang T, McKenzie DJ. The role of mechanistic physiology in investigating impacts of global warming on fishes. J Exp Biol 2021; 224:224/Suppl_1/jeb238840. [PMID: 33627469 DOI: 10.1242/jeb.238840] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Warming of aquatic environments as a result of climate change is already having measurable impacts on fishes, manifested as changes in phenology, range shifts and reductions in body size. Understanding the physiological mechanisms underlying these seemingly universal patterns is crucial if we are to reliably predict the fate of fish populations with future warming. This includes an understanding of mechanisms for acute thermal tolerance, as extreme heatwaves may be a major driver of observed effects. The hypothesis of gill oxygen limitation (GOL) is claimed to explain asymptotic fish growth, and why some fish species are decreasing in size with warming; but its underlying assumptions conflict with established knowledge and direct mechanistic evidence is lacking. The hypothesis of oxygen- and capacity-limited thermal tolerance (OCLTT) has stimulated a wave of research into the role of oxygen supply capacity and thermal performance curves for aerobic scope, but results vary greatly between species, indicating that it is unlikely to be a universal mechanism. As thermal performance curves remain important for incorporating physiological tolerance into models, we discuss potentially fruitful alternatives to aerobic scope, notably specific dynamic action and growth rate. We consider the limitations of estimating acute thermal tolerance by a single rapid measure whose mechanism of action is not known. We emphasise the continued importance of experimental physiology, particularly in advancing our understanding of underlying mechanisms, but also the challenge of making this knowledge relevant to the more complex reality.
Collapse
Affiliation(s)
- Sjannie Lefevre
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Tobias Wang
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - David J McKenzie
- Marine Biodiversity, Exploitation and Conservation (MARBEC), Université de Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France
| |
Collapse
|
38
|
Bateman AW, Schulze AD, Kaukinen KH, Tabata A, Mordecai G, Flynn K, Bass A, Di Cicco E, Miller KM. Descriptive multi-agent epidemiology via molecular screening on Atlantic salmon farms in the northeast Pacific Ocean. Sci Rep 2021; 11:3466. [PMID: 33568681 PMCID: PMC7876018 DOI: 10.1038/s41598-020-78978-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Rapid expansion of salmon aquaculture has resulted in high-density populations that host diverse infectious agents, for which surveillance and monitoring are critical to disease management. Screening can reveal infection diversity from which disease arises, differential patterns of infection in live and dead fish that are difficult to collect in wild populations, and potential risks associated with agent transmission between wild and farmed hosts. We report results from a multi-year infectious-agent screening program of farmed salmon in British Columbia, Canada, using quantitative PCR to assess presence and load of 58 infective agents (viruses, bacteria, and eukaryotes) in 2931 Atlantic salmon (Salmo salar). Our analysis reveals temporal trends, agent correlations within hosts, and agent-associated mortality signatures. Multiple agents, most notably Tenacibaculum maritimum, were elevated in dead and dying salmon. We also report detections of agents only recently shown to infect farmed salmon in BC (Atlantic salmon calicivirus, Cutthroat trout virus-2), detection in freshwater hatcheries of two marine agents (Kudoa thyrsites and Tenacibaculum maritimum), and detection in the ocean of a freshwater agent (Flavobacterium psychrophilum). Our results provide information for farm managers, regulators, and conservationists, and enable further work to explore patterns of multi-agent infection and farm/wild transmission risk.
Collapse
Affiliation(s)
- Andrew W Bateman
- Pacific Salmon Foundation, Vancouver, Canada. .,Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada.
| | - Angela D Schulze
- Molecular Genetics, Fisheries and Oceans Canada, Nanaimo, Canada
| | - Karia H Kaukinen
- Molecular Genetics, Fisheries and Oceans Canada, Nanaimo, Canada
| | - Amy Tabata
- Molecular Genetics, Fisheries and Oceans Canada, Nanaimo, Canada
| | - Gideon Mordecai
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Kelsey Flynn
- Molecular Genetics, Fisheries and Oceans Canada, Nanaimo, Canada
| | - Arthur Bass
- Pacific Salmon Foundation, Vancouver, Canada.,Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada
| | | | - Kristina M Miller
- Molecular Genetics, Fisheries and Oceans Canada, Nanaimo, Canada.,Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
39
|
Jeffrey JD, Carlson H, Wrubleski D, Enders EC, Treberg JR, Jeffries KM. Applying a gene-suite approach to examine the physiological status of wild-caught walleye ( Sander vitreus). CONSERVATION PHYSIOLOGY 2020; 8:coaa099. [PMID: 33365129 PMCID: PMC7745715 DOI: 10.1093/conphys/coaa099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2020] [Accepted: 10/04/2020] [Indexed: 06/12/2023]
Abstract
Molecular techniques have been increasingly used in a conservation physiology framework to provide valuable information regarding the mechanisms underlying responses of wild organisms to environmental and anthropogenic stressors. In the present study, we developed a reference gill transcriptome for walleye (Sander vitreus), allowing us to pair a gene-suite approach (i.e. multiple genes across multiple cellular processes) with multivariate statistics to examine the physiological status of wild-caught walleye. For molecular analyses of wild fish, the gill is a useful target for conservation studies, not only because of its importance as an indicator of the physiological status of fish but also because it can be biopsied non-lethally. Walleye were non-lethally sampled following short- (~1.5 months) and long-term (~3.5 months) confinement in the Delta Marsh, which is located south of Lake Manitoba in Manitoba, Canada. Large-bodied walleye are confined in the Delta Marsh from late April to early August by exclusion screens used to protect the marsh from invasive common carp (Cyprinus carpio), exposing fish to potentially stressful water quality conditions. Principal components analysis revealed patterns of transcript abundance consistent with exposure of fish to increasingly high temperature and low oxygen conditions with longer holding in the marsh. For example, longer-term confinement in the marsh was associated with increases in the mRNA levels of heat shock proteins and a shift in the mRNA abundance of aerobic to anaerobic metabolic genes. Overall, the results of the present study suggest that walleye confined in the Delta Marsh may be exhibiting sub-lethal responses to high temperature and low oxygen conditions. These results provide valuable information for managers invested in mediating impacts to a local species of conservation concern. More broadly, we highlight the usefulness of pairing transcriptomic techniques with multivariate statistics to address potential confounding factors that can affect measured physiological responses of wild-caught fish.
Collapse
Affiliation(s)
- Jennifer D Jeffrey
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Hunter Carlson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Dale Wrubleski
- Institute for Wetland and Waterfowl Research, Ducks Unlimited Canada, Stonewall, Manitoba, R0C 2Z0 Canada
| | - Eva C Enders
- Fisheries and Oceans Canada, Winnipeg, Manitoba, R3T 2N6 Canada
| | - Jason R Treberg
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| |
Collapse
|
40
|
Polinski MP, Vendramin N, Cuenca A, Garver KA. Piscine orthoreovirus: Biology and distribution in farmed and wild fish. JOURNAL OF FISH DISEASES 2020; 43:1331-1352. [PMID: 32935367 DOI: 10.1111/jfd.13228] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Piscine orthoreovirus (PRV) is a common and widely distributed virus of salmonids. Since its discovery in 2010, the virus has been detected in wild and farmed stocks from North America, South America, Europe and East Asia in both fresh and salt water environments. Phylogenetic analysis suggests three distinct genogroups of PRV with generally discrete host tropisms and/or regional patterns. PRV-1 is found mainly in Atlantic (Salmo salar), Chinook (Oncorhynchus tshawytscha) and Coho (Oncorhynchus kisutch) Salmon of Europe and the Americas; PRV-2 has only been detected in Coho Salmon of Japan; and PRV-3 has been reported primarily in Rainbow Trout (Oncorhynchus mykiss) in Europe. All three genotypes can establish high-load systemic infections by targeting red blood cells for principal replication. Each genotype has also demonstrated potential to cause circulatory disease. At the same time, high-load PRV infections occur in non-diseased salmon and trout, indicating a complexity for defining PRV's role in disease aetiology. Here, we summarize the current body of knowledge regarding PRV following 10 years of study.
Collapse
Affiliation(s)
- Mark P Polinski
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Niccoló Vendramin
- National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| | - Argelia Cuenca
- National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| | - Kyle A Garver
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| |
Collapse
|
41
|
Shea D, Bateman A, Li S, Tabata A, Schulze A, Mordecai G, Ogston L, Volpe JP, Neil Frazer L, Connors B, Miller KM, Short S, Krkošek M. Environmental DNA from multiple pathogens is elevated near active Atlantic salmon farms. Proc Biol Sci 2020; 287:20202010. [PMID: 33081614 PMCID: PMC7661312 DOI: 10.1098/rspb.2020.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The spread of infection from reservoir host populations is a key mechanism for disease emergence and extinction risk and is a management concern for salmon aquaculture and fisheries. Using a quantitative environmental DNA methodology, we assessed pathogen environmental DNA in relation to salmon farms in coastal British Columbia, Canada, by testing for 39 species of salmon pathogens (viral, bacterial, and eukaryotic) in 134 marine environmental samples at 58 salmon farm sites (both active and inactive) over 3 years. Environmental DNA from 22 pathogen species was detected 496 times and species varied in their occurrence among years and sites, likely reflecting variation in environmental factors, other native host species, and strength of association with domesticated Atlantic salmon. Overall, we found that the probability of detecting pathogen environmental DNA (eDNA) was 2.72 (95% CI: 1.48, 5.02) times higher at active versus inactive salmon farm sites and 1.76 (95% CI: 1.28, 2.42) times higher per standard deviation increase in domesticated Atlantic salmon eDNA concentration at a site. If the distribution of pathogen eDNA accurately reflects the distribution of viable pathogens, our findings suggest that salmon farms serve as a potential reservoir for a number of infectious agents; thereby elevating the risk of exposure for wild salmon and other fish species that share the marine environment.
Collapse
Affiliation(s)
- Dylan Shea
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada
| | - Andrew Bateman
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada.,Salmon Coast Field Station, Simoom Sound, British Columbia, Canada.,Pacific Salmon Foundation, Vancouver, British Columbia, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Amy Tabata
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Angela Schulze
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Gideon Mordecai
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lindsey Ogston
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada
| | - John P Volpe
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | - L Neil Frazer
- Department of Earth Sciences, University of Hawaii at Mānoa, Honolulu, Hawaii, Canada
| | - Brendan Connors
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Steven Short
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, British Columbia, Canada
| | - Martin Krkošek
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada.,Salmon Coast Field Station, Simoom Sound, British Columbia, Canada
| |
Collapse
|
42
|
Bowen L, von Biela VR, McCormick SD, Regish AM, Waters SC, Durbin-Johnson B, Britton M, Settles ML, Donnelly DS, Laske SM, Carey MP, Brown RJ, Zimmerman CE. Transcriptomic response to elevated water temperatures in adult migrating Yukon River Chinook salmon ( Oncorhynchus tshawytscha). CONSERVATION PHYSIOLOGY 2020; 8:coaa084. [PMID: 34512988 PMCID: PMC7486460 DOI: 10.1093/conphys/coaa084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/01/2020] [Accepted: 08/25/2020] [Indexed: 06/01/2023]
Abstract
Chinook salmon (Oncorhynchus tshawytscha) declines are widespread and may be attributed, at least in part, to warming river temperatures. Water temperatures in the Yukon River and tributaries often exceed 18°C, a threshold commonly associated with heat stress and elevated mortality in Pacific salmon. Untangling the complex web of direct and indirect physiological effects of heat stress on salmon is difficult in a natural setting with innumerable system challenges but is necessary to increase our understanding of both lethal and sublethal impacts of heat stress on populations. The goal of this study was to characterize the cellular stress response in multiple Chinook salmon tissues after acute elevated temperature challenges. We conducted a controlled 4-hour temperature exposure (control, 18°C and 21°C) experiment on the bank of the Yukon River followed by gene expression (GE) profiling using a 3'-Tag-RNA-Seq protocol. The full transcriptome was analysed for 22 Chinook salmon in muscle, gill and liver tissue. Both the 21°C and 18°C treatments induced greater activity in genes associated with protein folding (e.g. HSP70, HSP90 mRNA) processes in all tissues. Global GE patterns indicate that transcriptomic responses to heat stress were highly tissue-specific, underscoring the importance of analyzing multiple tissues for determination of physiological effect. Primary superclusters (i.e. groupings of loosely related terms) of altered biological processes were identified in each tissue type, including regulation of DNA damage response (gill), regulation by host of viral transcription (liver) and regulation of the force of heart contraction (muscle) in the 21°C treatment. This study provides insight into mechanisms potentially affecting adult Chinook salmon as they encounter warm water during their spawning migration in the Yukon River and suggests that both basic and more specialized cellular functions may be disrupted.
Collapse
Affiliation(s)
- Lizabeth Bowen
- U.S. Geological Survey, Western Ecological Research Center, One Shields Avenue, Davis, CA, 95616, USA
| | - Vanessa R von Biela
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, 99508, USA
| | - Stephen D McCormick
- U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, 1 Migratory Way, Turner Falls, Massachusetts, 01376, USA
- Department of Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Amy M Regish
- U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, 1 Migratory Way, Turner Falls, Massachusetts, 01376, USA
| | - Shannon C Waters
- U.S. Geological Survey, Western Ecological Research Center, One Shields Avenue, Davis, CA, 95616, USA
| | - Blythe Durbin-Johnson
- University of California, Genome Center and Bioinformatics Core Facility, One Shields Avenue, Davis, CA, 95616, USA
| | - Monica Britton
- University of California, Genome Center and Bioinformatics Core Facility, One Shields Avenue, Davis, CA, 95616, USA
| | - Matthew L Settles
- University of California, Genome Center and Bioinformatics Core Facility, One Shields Avenue, Davis, CA, 95616, USA
| | - Daniel S Donnelly
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, 99508, USA
| | - Sarah M Laske
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, 99508, USA
| | - Michael P Carey
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, 99508, USA
| | - Randy J Brown
- U.S. Fish and Wildlife Service, 101 12 Avenue, Room 110, Fairbanks, AK, 99701, USA
| | - Christian E Zimmerman
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, 99508, USA
| |
Collapse
|
43
|
Mordecai GJ, Di Cicco E, Günther OP, Schulze AD, Kaukinen KH, Li S, Tabata A, Ming TJ, Ferguson HW, Suttle CA, Miller KM. Discovery and surveillance of viruses from salmon in British Columbia using viral immune-response biomarkers, metatranscriptomics, and high-throughput RT-PCR. Virus Evol 2020; 7:veaa069. [PMID: 33623707 PMCID: PMC7887441 DOI: 10.1093/ve/veaa069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The emergence of infectious agents poses a continual economic and environmental challenge to aquaculture production, yet the diversity, abundance, and epidemiology of aquatic viruses are poorly characterised. In this study, we applied salmon host transcriptional biomarkers to identify and select fish in a viral disease state, but only those that were negative for known viruses based on RT-PCR screening. These fish were selected for metatranscriptomic sequencing to discover potential viral pathogens of dead and dying farmed Atlantic (Salmo salar) and Chinook (Oncorhynchus tshawytscha) salmon in British Columbia (BC). We found that the application of the biomarker panel increased the probability of discovering viruses in aquaculture populations. We discovered two viruses that have not previously been characterised in Atlantic salmon farms in BC (Atlantic salmon calicivirus and Cutthroat trout virus-2), as well as partially sequenced three putative novel viruses. To determine the epidemiology of the newly discovered or emerging viruses, we conducted high-throughput reverse transcription polymerase chain reaction (RT-PCR) and screened over 9,000 farmed and wild salmon sampled over one decade. Atlantic salmon calicivirus and Cutthroat trout virus-2 were in more than half of the farmed Atlantic salmon we tested. Importantly we detected some of the viruses we first discovered in farmed Atlantic salmon in Chinook salmon, suggesting a broad host range. Finally, we applied in situ hybridisation to determine infection and found differing cell tropism for each virus tested. Our study demonstrates that continual discovery and surveillance of emerging viruses in these ecologically important salmon will be vital for management of both aquaculture and wild resources in the future.
Collapse
Affiliation(s)
- Gideon J Mordecai
- Department of Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor Vancouver, BC Canada V5Z 1M9, Canada
- Corresponding author: E-mail:
| | - Emiliano Di Cicco
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
- Pacific Salmon Foundation, 1682 W 7th Ave, Vancouver, BC V6J 4S6, Canada
| | - Oliver P Günther
- Günther Analytics, 402-5775 Hampton Place, Vancouver, BC, V6T 2G6, Canada
| | - Angela D Schulze
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Karia H Kaukinen
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Amy Tabata
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Tobi J Ming
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Hugh W Ferguson
- School of Veterinary Medicine, St George’s University, True Blue, GrenadaWest Indies
| | - Curtis A Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, 1365 - 2350 Health Sciences Mall Vancouver, British Columbia Canada V6T 1Z3
- Department of Botany, University of British Columbia, 3156-6270 University Blvd. Vancouver, BC Canada V6T 1Z4, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
44
|
Siah A, Breyta RB, Warheit KI, Gagne N, Purcell MK, Morrison D, Powell JFF, Johnson SC. Genomes reveal genetic diversity of Piscine orthoreovirus in farmed and free-ranging salmonids from Canada and USA. Virus Evol 2020; 6:veaa054. [PMID: 33381304 PMCID: PMC7751156 DOI: 10.1093/ve/veaa054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Piscine orthoreovirus (PRV-1) is a segmented RNA virus, which is commonly found in salmonids in the Atlantic and Pacific Oceans. PRV-1 causes the heart and skeletal muscle inflammation disease in Atlantic salmon and is associated with several other disease conditions. Previous phylogenetic studies of genome segment 1 (S1) identified four main genogroups of PRV-1 (S1 genogroups I–IV). The goal of the present study was to use Bayesian phylogenetic inference to expand our understanding of the spatial, temporal, and host patterns of PRV-1 from the waters of the northeast Pacific. To that end, we determined the coding genome sequences of fourteen PRV-1 samples that were selected to improve our knowledge of genetic diversity across a broader temporal, geographic, and host range, including the first reported genome sequences from the northwest Atlantic (Eastern Canada). Nucleotide and amino acid sequences of the concatenated genomes and their individual segments revealed that established sequences from the northeast Pacific were monophyletic in all analyses. Bayesian inference phylogenetic trees of S1 sequences using BEAST and MrBayes also found that sequences from the northeast Pacific grouped separately from sequences from other areas. One PRV-1 sample (WCAN_BC17_AS_2017) from an escaped Atlantic salmon, collected in British Columbia but derived from Icelandic broodstock, grouped with other S1 sequences from Iceland. Our concatenated genome and S1 analysis demonstrated that PRV-1 from the northeast Pacific is genetically distinct but descended from PRV-1 from the North Atlantic. However, the analyses were inconclusive as to the timing and exact source of introduction into the northeast Pacific, either from eastern North America or from European waters of the North Atlantic. There was no evidence that PRV-1 was evolving differently between free-ranging Pacific Salmon and farmed Atlantic Salmon. The northeast Pacific PRV-1 sequences fall within genogroup II based on the classification of Garseth, Ekrem, and Biering (Garseth, A. H., Ekrem, T., and Biering, E. (2013) ‘Phylogenetic Evidence of Long Distance Dispersal and Transmission of Piscine Reovirus (PRV) between Farmed and Wild Atlantic Salmon’, PLoS One, 8: e82202.), which also includes North Atlantic sequences from Eastern Canada, Iceland, and Norway. The additional full-genome sequences herein strengthen our understanding of phylogeographical patterns related to the northeast Pacific, but a more balanced representation of full PRV-1 genomes from across its range, as well additional sequencing of archived samples, is still needed to better understand global relationships including potential transmission links among regions.
Collapse
Affiliation(s)
- A Siah
- British Columbia Centre for Aquatic Health Sciences, 871A Island Highway, V9W 2C2, Campbell River, BC, Canada
| | - R B Breyta
- School of Aquatic Fisheries Sciences, University of Washington, Western Fisheries Research Center, USGS, 6505 NE 65th Street Seattle, WA 98115-5016, USA
| | - K I Warheit
- Washington Department of Fish and Wildlife PO Box 43200, Olympia, WA 98504-3200, USA
| | - N Gagne
- Gulf Fisheries Center, Fisheries & Oceans, 343 Université Ave, Moncton, NB E1C 5K4, Canada
| | - M K Purcell
- Western Fisheries Research Center, U.S. Geological Survey, 56505 NE 65th Street Seattle, WA 98115-5016, USA
| | - D Morrison
- Mowi Canada West, Campbell River, BC, Canada
| | - J F F Powell
- British Columbia Centre for Aquatic Health Sciences, 871A Island Highway, V9W 2C2, Campbell River, BC, Canada
| | - S C Johnson
- Fisheries & Oceans Canada, Nanaimo, British Columbia, Canada
| |
Collapse
|
45
|
Uren Webster TM, Rodriguez-Barreto D, Consuegra S, Garcia de Leaniz C. Cortisol-Related Signatures of Stress in the Fish Microbiome. Front Microbiol 2020; 11:1621. [PMID: 32765459 PMCID: PMC7381252 DOI: 10.3389/fmicb.2020.01621] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Exposure to environmental stressors can compromise fish health and fitness. Little is known about how stress-induced microbiome disruption may contribute to these adverse health effects, including how cortisol influences fish microbial communities. We exposed juvenile Atlantic salmon to a mild confinement stressor for two weeks. We then measured cortisol in the plasma, skin-mucus, and feces, and characterized the skin and fecal microbiome. Fecal and skin cortisol concentrations increased in fish exposed to confinement stress, and were positively correlated with plasma cortisol. Elevated fecal cortisol was associated with pronounced changes in the diversity and structure of the fecal microbiome. In particular, we identified a marked decline in the lactic acid bacteria Carnobacterium sp. and an increase in the abundance of operational taxonomic units within the classes Clostridia and Gammaproteobacteria. In contrast, cortisol concentrations in skin-mucus were lower than in the feces, and were not related to any detectable changes in the skin microbiome. Our results demonstrate that stressor-induced cortisol production is associated with disruption of the gut microbiome, which may, in turn, contribute to the adverse effects of stress on fish health. They also highlight the value of using non-invasive fecal samples to monitor stress, including simultaneous determination of cortisol and stress-responsive bacteria.
Collapse
Affiliation(s)
- Tamsyn M. Uren Webster
- Centre for Sustainable Aquatic Research, College of Science, Swansea University, Swansea, United Kingdom
| | | | | | | |
Collapse
|
46
|
Lennox RJ, Eldøy SH, Vollset KW, Miller KM, Li S, Kaukinen KH, Isaksen TE, Davidsen JG. How pathogens affect the marine habitat use and migration of sea trout (Salmo trutta) in two Norwegian fjord systems. JOURNAL OF FISH DISEASES 2020; 43:729-746. [PMID: 32364277 DOI: 10.1111/jfd.13170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
Wild fish are confronting changing pathogen dynamics arising from anthropogenic disturbance and climate change. Pathogens can influence animal behaviour and life histories, yet there are little such data from fish in the high north where pathogen dynamics may differ from comparatively southern regions. We aimed to compare the pathogen communities of 160 wild anadromous brown trout in two fjords in northern Norway and to determine whether pathogens influenced area use or return to spawn. Application of high-throughput qPCR detected 11 of the 46 pathogens screened for; most frequently encountered were Ichthyobodo spp., Flavobacterium psychrophilum and Candidatus Branchiomonas cysticola. The rate of returning to freshwater during the spawning season was significantly lower for the Skjerstadfjord fish. Piscichlamydia salmonis and F. psychrophilum were indicator species for the Skjerstadfjord and pathogen communities in the two fjords differed according to perMANOVA. Individual length, Fulton's condition factor and the time between first and last detection of the fish were not related to the presence of pathogens ordinated using non-metric multidimensional scaling (NMDS). However, there was evidence that pathogen load was correlated with the expression of smoltification genes, which are upregulated by salmonids in freshwater. Correspondingly, percentage of time in freshwater after release was longer for fish with greater pathogen burdens.
Collapse
Affiliation(s)
- Robert J Lennox
- Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
| | - Sindre H Eldøy
- NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Knut W Vollset
- Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
| | - Kristi M Miller
- Pacific Biological Station, Fisheries and Oceans, The Canadian Coastguard, Nanaimo, BC, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans, The Canadian Coastguard, Nanaimo, BC, Canada
| | - Karia H Kaukinen
- Pacific Biological Station, Fisheries and Oceans, The Canadian Coastguard, Nanaimo, BC, Canada
| | - Trond E Isaksen
- Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
| | - Jan G Davidsen
- NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
47
|
Michel CJ, Henderson MJ, Loomis CM, Smith JM, Demetras NJ, Iglesias IS, Lehman BM, Huff DD. Fish predation on a landscape scale. Ecosphere 2020. [DOI: 10.1002/ecs2.3168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Cyril J. Michel
- NOAA‐SWFSC Fisheries Ecology Division/UC Santa Cruz 110 McAllister Way Santa Cruz California95060USA
| | - Mark J. Henderson
- U.S. Geological Survey Cooperative Fish and Wildlife Research Unit 1 Harpst Street Arcata California95521USA
- Humboldt State University 1 Harpst Street Arcata California95521USA
| | | | - Joseph M. Smith
- NOAA‐NWFSC Fish Ecology Division 2725 Montlake Boulevard East Seattle Washington98112USA
| | - Nicholas J. Demetras
- NOAA‐SWFSC Fisheries Ecology Division/UC Santa Cruz 110 McAllister Way Santa Cruz California95060USA
| | - Ilysa S. Iglesias
- NOAA‐SWFSC Fisheries Ecology Division/UC Santa Cruz 110 McAllister Way Santa Cruz California95060USA
| | - Brendan M. Lehman
- NOAA‐SWFSC Fisheries Ecology Division/UC Santa Cruz 110 McAllister Way Santa Cruz California95060USA
| | - David D. Huff
- NOAA‐NWFSC Fish Ecology Division Newport Research Station Bldg. 955, 2032 S.E. OSU Drive Newport Oregon97365USA
| |
Collapse
|
48
|
Chapman JM, Teffer AK, Bass AL, Hinch SG, Patterson DA, Miller KM, Cooke SJ. Handling, infectious agents and physiological condition influence survival and post-release behaviour in migratory adult coho salmon after experimental displacement. CONSERVATION PHYSIOLOGY 2020; 8:coaa033. [PMID: 32440351 PMCID: PMC7233283 DOI: 10.1093/conphys/coaa033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/24/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
For Pacific salmon captured and released by fisheries, post-release behaviour and survival may be influenced by their health and condition at time of capture. We sought to characterize the interactions between infectious agent burden, fish immune and stress physiology and fisheries stressors to investigate the potential for capture-mediated pathogen-induced mortality in adult coho salmon Oncorhynchus kisutch. We used radio-telemetry paired with high-throughput qPCR of non-lethal gill biopsies for infectious agents and host biomarkers from 200 tagged fish experimentally displaced and exposed to various experimental fisheries treatments (gill net entanglement, recreational angling and recreational angling with air exposure vs. non-sampled control). We characterized relationships among post-release behaviour and survival, infectious agent presence and loads, physiological parameters and transcription profiles of stress and immune genes. All infectious agents detected were endemic and in loads consistent with previous adult Pacific salmon monitoring. Individuals exposed to fisheries treatments were less likely to reach spawning habitat compared to controls, and handling duration independent of fisheries gear had a negative effect on survival. High infectious agent burden was associated with accelerated migration initiation post-release, revealing behavioural plasticity in response to deteriorating condition in this semelparous species. Prevalence and load of infectious agents increased post-migration as well as transcription signatures reflected changes in immune and stress profiles consistent with senescence. Results from this study further our understanding of factors associated with fisheries that increase risk of post-release mortality and characterize some physiological mechanisms that underpin migratory behaviour.
Collapse
Affiliation(s)
- J M Chapman
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6 Canada
| | - A K Teffer
- Pacific Salmon Ecology Laboratory, Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada. Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - A L Bass
- Pacific Salmon Ecology Laboratory, Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada. Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - S G Hinch
- Pacific Salmon Ecology Laboratory, Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada. Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - D A Patterson
- Pacific Salmon Ecology Laboratory, Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada. Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Cooperative Resource Management Institute, School of Resource and Environmental Management, Fisheries and Oceans Canada, Burnaby, BC, Canada. Fisheries and Oceans Canada, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - K M Miller
- Fisheries and Oceans Canada, Molecular Genetics Section, Pacific Biological Station, Nanaimo, BC V9T 6N7, Canada
| | - S J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6 Canada
| |
Collapse
|
49
|
Birnie-Gauvin K, Lennox RJ, Guglielmo CG, Teffer AK, Crossin GT, Norris DR, Aarestrup K, Cooke SJ. The Value of Experimental Approaches in Migration Biology. Physiol Biochem Zool 2020; 93:210-226. [DOI: 10.1086/708455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Jia B, Delphino MKVC, Awosile B, Hewison T, Whittaker P, Morrison D, Kamaitis M, Siah A, Milligan B, Johnson SC, Gardner IA. Review of infectious agent occurrence in wild salmonids in British Columbia, Canada. JOURNAL OF FISH DISEASES 2020; 43:153-175. [PMID: 31742733 DOI: 10.1111/jfd.13084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Wild Pacific salmonids (WPS) are economically and culturally important to the Pacific North region. Most recently, some populations of WPS have been in decline. Of hypothesized factors contributing to the decline, infectious agents have been postulated to increase the risk of mortality in Pacific salmon. We present a literature review of both published journal and unpublished data to describe the distribution of infectious agents reported in wild Pacific salmonid populations in British Columbia (BC), Canada. We targeted 10 infectious agents, considered to potentially cause severe economic losses in Atlantic salmon or be of conservation concern for wild salmon in BC. The findings indicated a low frequency of infectious hematopoietic necrosis virus, piscine orthoreovirus, viral haemorrhagic septicaemia virus, Aeromonas salmonicida, Renibacterium salmoninarum, Piscirickettsia salmonis and other Rickettsia-like organisms, Yersinia ruckeri, Tenacibaculum maritimum and Moritella viscosa. No positive results were reported for infestations with Paramoeba perurans in peer-reviewed papers and the DFO Fish Pathology Program database. This review synthesizes existing information, as well as gaps therein, that can support the design and implementation of a long-term surveillance programme of infectious agents in wild salmonids in BC.
Collapse
Affiliation(s)
- Beibei Jia
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Marina K V C Delphino
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Babafela Awosile
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Tim Hewison
- Grieg Seafood BC Ltd., Campbell River, BC, Canada
| | | | | | | | - Ahmed Siah
- British Columbia Centre for Aquatic Health Sciences, Campbell River, BC, Canada
| | | | - Stewart C Johnson
- Pacific Biological Station, Fisheries and Oceans Canada (DFO), Nanaimo, BC, Canada
| | - Ian A Gardner
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|