1
|
Bohnacker S, Henkel FDR, Hartung F, Geerlof A, Riemer S, Prodjinotho UF, Salah EB, Mourão ASD, Bohn S, Teder T, Thomas D, Gurke R, Boeckel C, Ud-Dean M, König AC, Quaranta A, Alessandrini F, Lechner A, Spitzlberger B, Kabat AM, Pearce E, Haeggström JZ, Hauck SM, Wheelock CE, Jakobsson PJ, Sattler M, Voehringer D, Feige MJ, da Costa CP, Esser-von Bieren J. A helminth enzyme subverts macrophage-mediated immunity by epigenetic targeting of prostaglandin synthesis. Sci Immunol 2024; 9:eadl1467. [PMID: 39642243 DOI: 10.1126/sciimmunol.adl1467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/13/2024] [Indexed: 12/08/2024]
Abstract
The molecular mechanisms by which worm parasites evade host immunity are incompletely understood. In a mouse model of intestinal helminth infection using Heligmosomoides polygyrus bakeri (Hpb), we show that helminthic glutamate dehydrogenase (heGDH) drives parasite chronicity by suppressing macrophage-mediated host defense. Combining RNA-seq, ChIP-seq, and targeted lipidomics, we identify prostaglandin E2 (PGE2) as a major immune regulatory mechanism of heGDH. The induction of PGE2 and other immunoregulatory factors, including IL-12 family cytokines and indoleamine 2,3-dioxygenase 1, by heGDH required p300-mediated histone acetylation, whereas the enzyme's catalytic activity suppressed the synthesis of type 2-promoting leukotrienes by macrophages via 2-hydroxyglutarate. By contrast, the induction of immunoregulatory factors involved the heGDH N terminus by potentially mediating interactions with cellular targets (CD64 and GPNMB) identified by proteomics. Type 2 cytokines counteracted suppressive effects of heGDH on host defense, indicating that type 2 immunity can limit helminth-driven immune evasion. Thus, helminths harness a ubiquitous metabolic enzyme to epigenetically target type 2 macrophage activation and establish chronicity.
Collapse
Affiliation(s)
- Sina Bohnacker
- Department of Immunobiology, Université de Lausanne, Epalinges, Switzerland
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Fiona D R Henkel
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Franziska Hartung
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Arie Geerlof
- Protein Expression and Purification Facility (PEPF), Institute of Structural Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sandra Riemer
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Ulrich F Prodjinotho
- Institute for Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
- Center for Global Health, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Eya Ben Salah
- Department of Immunobiology, Université de Lausanne, Epalinges, Switzerland
| | - André Santos Dias Mourão
- Protein Expression and Purification Facility (PEPF), Institute of Structural Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefan Bohn
- Department of CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Cryo-Electron Microscopy Platform and Institute of Structural Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tarvi Teder
- Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Christiane Boeckel
- Institute of Computational Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Minhaz Ud-Dean
- Institute of Computational Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ann-Christine König
- Metabolomics and Proteomics Core, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alessandro Quaranta
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Antonie Lechner
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Benedikt Spitzlberger
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Agnieszka M Kabat
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Edward Pearce
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Department of Medicine, Division of Rheumatology, Karolinska Institutet and Karolinska University Hospital at Solna, Stockholm, Sweden
| | - Michael Sattler
- Cryo-Electron Microscopy Platform and Institute of Structural Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Bavarian NMR-Center, Department Chemie, Technische Universität München, Garching, Germany
| | - David Voehringer
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany
| | - Matthias J Feige
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Clarissa Prazeres da Costa
- Institute for Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
- Center for Global Health, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Julia Esser-von Bieren
- Department of Immunobiology, Université de Lausanne, Epalinges, Switzerland
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| |
Collapse
|
2
|
Wang X, Liu D. Macrophage Polarization: A Novel Target and Strategy for Pathological Scarring. Tissue Eng Regen Med 2024; 21:1109-1124. [PMID: 39352458 PMCID: PMC11589044 DOI: 10.1007/s13770-024-00669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Abnormal scarring imposes considerable challenges and burdens on the lives of patients and healthcare system. Macrophages at the wound site are found to be of great concern to overall wound healing. There have been many studies indicating an inextricably link between dysfunctional macrophages and fibrotic scars. Macrophages are not only related to pathogen destruction and phagocytosis of apoptotic cells, but also involved in angiogenesis, keratinization and collagen deposition. These abundant cell functions are attributed to specific heterogeneity and plasticity of macrophages, which also add an extra layer of complexity to correlational researches. METHODS This article summarizes current understanding of macrophage polarization in scar formation and several prevention and treatment strategies on pathological scarring related to regulation of macrophage behaviors by utilizing databases such as PubMed, Google Scholar and so on. RESULTS There are many studies proving that macrophages participate in the course of wound healing by converting their predominant phenotype. The potential of macrophages in managing hypertrophic scars and keloid lesions have been underscored. CONCLUSION Macrophage polarization offers new prevention strategies for pathological scarring. Learning about and targeting at macrophages may be helpful in achieving optimum wound healing.
Collapse
Affiliation(s)
- Xinyi Wang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
- Queen Mary Academy, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Dewu Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
3
|
Patsalos A, Halasz L, Oleksak D, Wei X, Nagy G, Tzerpos P, Conrad T, Hammers DW, Sweeney HL, Nagy L. Spatiotemporal transcriptomic mapping of regenerative inflammation in skeletal muscle reveals a dynamic multilayered tissue architecture. J Clin Invest 2024; 134:e173858. [PMID: 39190487 PMCID: PMC11473166 DOI: 10.1172/jci173858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Tissue regeneration is orchestrated by macrophages that clear damaged cells and promote regenerative inflammation. How macrophages spatially adapt and diversify their functions to support the architectural requirements of actively regenerating tissue remains unknown. In this study, we reconstructed the dynamic trajectories of myeloid cells isolated from acutely injured and early stage dystrophic muscles. We identified divergent subsets of monocytes/macrophages and DCs and validated markers (e.g., glycoprotein NMB [GPNMB]) and transcriptional regulators associated with defined functional states. In dystrophic muscle, specialized repair-associated subsets exhibited distinct macrophage diversity and reduced DC heterogeneity. Integrating spatial transcriptomics analyses with immunofluorescence uncovered the ordered distribution of subpopulations and multilayered regenerative inflammation zones (RIZs) where distinct macrophage subsets are organized in functional zones around damaged myofibers supporting all phases of regeneration. Importantly, intermittent glucocorticoid treatment disrupted the RIZs. Our findings suggest that macrophage subtypes mediated the development of the highly ordered architecture of regenerative tissues, unveiling the principles of the structured yet dynamic nature of regenerative inflammation supporting effective tissue repair.
Collapse
Affiliation(s)
- Andreas Patsalos
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Darby Oleksak
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Xiaoyan Wei
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Petros Tzerpos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Thomas Conrad
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - David W. Hammers
- Myology Institute and Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, USA
| | - H. Lee Sweeney
- Myology Institute and Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, USA
| | - Laszlo Nagy
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
4
|
Yong R, Mu R, Han C, Chao T, Liu Y, Dong L, Wang C. Optimizing a five-factor cocktail to prepare reparative macrophages for wound healing. J Leukoc Biol 2024:qiae096. [PMID: 38630870 DOI: 10.1093/jleuko/qiae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/14/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024] Open
Abstract
The treatment of non-healing wounds, such as diabetic ulcers, remains a critical clinical challenge. Recent breakthroughs in cell therapy have shown great promise, with one primary focus on preparing cells with comprehensive reparative functions and foreseeable safety. In our previous study, we recapitulated the pro-regenerative and immunosuppressive functions of tumor-associated macrophages (TAMs) in non-tumor-derived macrophages, endowing the latter with characteristics for promoting diabetic wound healing - termed TAMs-educated macrophages (TAMEMs). To eliminate the use of tumor-derived sources and devise a more controllable method to prepare TAMEM-like cells, in this study, we identify a cocktail comprising five recombinant proteins as an essential condition to induce non-polarized macrophages (termed TAMEMs5) into therapeutic cells with pro-healing functions. The screened five factors are osteopontin (OPN), macrophage inflammatory protein (MIP)-2, chemokine (C-C motif) ligand 8 (CCL8), vascular endothelial growth factor (VEGF)-B, and macrophage colony-stimulating factor (M-CSF). We demonstrate the rationale for screening these factors and the phenotype of TAMEMs5 prepared from murine bone marrow-derived macrophages, which exhibit angiogenic and immunomodulatory effects in vitro. Then, we induce primary human monocytes from periphery blood into TAMEMs5, which show pro-healing effects in a human primary cell-based ex vivo model (T-SkinTM). Our study demonstrates a simple, effective, and controllable approach to induce primary macrophages to possess repairing activities, which may provide insights for developing cell-based therapeutics for non-healing wounds clinically.
Collapse
Affiliation(s)
- Rong Yong
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR, China
| | - Ruoyu Mu
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR, China
| | - Congwei Han
- School of Life Sciences & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Tzuwei Chao
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR, China
| | - Yu Liu
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR, China
| | - Lei Dong
- School of Life Sciences & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovative Center, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chunming Wang
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
5
|
Chen YF. Temporal Single-Cell Sequencing Analysis Reveals That GPNMB-Expressing Macrophages Potentiate Muscle Regeneration. RESEARCH SQUARE 2024:rs.3.rs-4108866. [PMID: 38585871 PMCID: PMC10996783 DOI: 10.21203/rs.3.rs-4108866/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Macrophages play a crucial role in coordinating the skeletal muscle repair response, but their phenotypic diversity and the transition of specialized subsets to resolution-phase macrophages remain poorly understood. To address this issue, we induced injury and performed single-cell RNA sequencing on individual cells in skeletal muscle at different time points. Our analysis revealed a distinct macrophage subset that expressed high levels of Gpnmb and that coexpressed critical factors involved in macrophage-mediated muscle regeneration, including Igf1, Mertk, and Nr1h3. Gpnmb gene knockout inhibited macrophage-mediated efferocytosis and impaired skeletal muscle regeneration. Functional studies demonstrated that GPNMB acts directly on muscle cells in vitro and improves muscle regeneration in vivo. These findings provide a comprehensive transcriptomic atlas of macrophages during muscle injury, highlighting the key role of the GPNMB macrophage subset in regenerative processes. Targeting GPNMB signaling in macrophages could have therapeutic potential for restoring skeletal muscle integrity and homeostasis.
Collapse
Affiliation(s)
- Yu-Fan Chen
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taiwan
| |
Collapse
|
6
|
Yu L, Yan J, Zhan Y, Li A, Zhu L, Qian J, Zhou F, Lu X, Fan X. Single-cell RNA sequencing reveals the dynamics of hepatic non-parenchymal cells in autoprotection against acetaminophen-induced hepatotoxicity. J Pharm Anal 2023; 13:926-941. [PMID: 37719199 PMCID: PMC10499594 DOI: 10.1016/j.jpha.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 09/19/2023] Open
Abstract
Gaining a better understanding of autoprotection against drug-induced liver injury (DILI) may provide new strategies for its prevention and therapy. However, little is known about the underlying mechanisms of this phenomenon. We used single-cell RNA sequencing to characterize the dynamics and functions of hepatic non-parenchymal cells (NPCs) in autoprotection against DILI, using acetaminophen (APAP) as a model drug. Autoprotection was modeled through pretreatment with a mildly hepatotoxic dose of APAP in mice, followed by a higher dose in a secondary challenge. NPC subsets and dynamic changes were identified in the APAP (hepatotoxicity-sensitive) and APAP-resistant (hepatotoxicity-resistant) groups. A chemokine (C-C motif) ligand 2+ endothelial cell subset almost disappeared in the APAP-resistant group, and an R-spondin 3+ endothelial cell subset promoted hepatocyte proliferation and played an important role in APAP autoprotection. Moreover, the dendritic cell subset DC-3 may protect the liver from APAP hepatotoxicity by inducing low reactivity and suppressing the autoimmune response and occurrence of inflammation. DC-3 cells also promoted angiogenesis through crosstalk with endothelial cells via vascular endothelial growth factor-associated ligand-receptor pairs and facilitated liver tissue repair in the APAP-resistant group. In addition, the natural killer cell subsets NK-3 and NK-4 and the Sca-1-CD62L+ natural killer T cell subset may promote autoprotection through interferon-γ-dependent pathways. Furthermore, macrophage and neutrophil subpopulations with anti-inflammatory phenotypes promoted tolerance to APAP hepatotoxicity. Overall, this study reveals the dynamics of NPCs in the resistance to APAP hepatotoxicity and provides novel insights into the mechanism of autoprotection against DILI at a high resolution.
Collapse
Affiliation(s)
- Lingqi Yu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
| | - Jun Yan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingqi Zhan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Anyao Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
| | - Lidan Zhu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingyang Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
| | - Fanfan Zhou
- School of Pharmacy, The University of Sydney, Sydney, 2006, Australia
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321016, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321016, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Harbin, 150023, China
| |
Collapse
|
7
|
Hassanshahi A, Moradzad M, Ghalamkari S, Fadaei M, Cowin AJ, Hassanshahi M. Macrophage-Mediated Inflammation in Skin Wound Healing. Cells 2022; 11:cells11192953. [PMID: 36230913 PMCID: PMC9564023 DOI: 10.3390/cells11192953] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are key immune cells that respond to infections, and modulate pathophysiological conditions such as wound healing. By possessing phagocytic activities and through the secretion of cytokines and growth factors, macrophages are pivotal orchestrators of inflammation, fibrosis, and wound repair. Macrophages orchestrate the process of wound healing through the transitioning from predominantly pro-inflammatory (M1-like phenotypes), which present early post-injury, to anti-inflammatory (M2-like phenotypes), which appear later to modulate skin repair and wound closure. In this review, different cellular and molecular aspects of macrophage-mediated skin wound healing are discussed, alongside important aspects such as macrophage subtypes, metabolism, plasticity, and epigenetics. We also highlight previous studies demonstrating interactions between macrophages and these factors for optimal wound healing. Understanding and harnessing the activity and capability of macrophages may help to advance new approaches for improving healing of the skin.
Collapse
Affiliation(s)
- Alireza Hassanshahi
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia
| | - Mohammad Moradzad
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj 66179-13446, Iran
| | - Saman Ghalamkari
- Department of Biology, Islamic Azad University, Arsanjan 61349-37333, Iran
| | - Moosa Fadaei
- Department of Biology, Islamic Azad University, Arsanjan 61349-37333, Iran
| | - Allison J. Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia
- Correspondence: (A.J.C.); (M.H.)
| | - Mohammadhossein Hassanshahi
- Vascular Research Centre, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
- Correspondence: (A.J.C.); (M.H.)
| |
Collapse
|
8
|
Gilson Sena IF, Fernandes LL, Lorandi LL, Santana TV, Cintra L, Lima IF, Iwai LK, Kramer JM, Birbrair A, Heller D. Identification of early biomarkers in saliva in genetically engineered mouse model C(3)1-TAg of breast cancer. Sci Rep 2022; 12:11544. [PMID: 35798767 PMCID: PMC9263110 DOI: 10.1038/s41598-022-14514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
Breast cancer is one of leading causes of death worldwide in the female population. Deaths from breast cancer could be reduced significantly through earlier and more efficient detection of the disease. Saliva, an oral fluid that contains an abundance of protein biomarkers, has been recognized as a promising diagnostic biofluid that is easy to isolate through non-invasive techniques. Assays on saliva can be performed rapidly and are cost-effective. Therefore, our work aimed to identify salivary biomarkers present in the initial stages of breast cancer, where cell alterations are not yet detectable by histopathological analysis. Using state-of-the-art techniques, we employed a transgenic mouse model of mammary cancer to identify molecular changes in precancerous stage breast cancer through protein analysis in saliva. Through corroborative molecular approaches, we established that proteins related to metabolic changes, inflammatory process and cell matrix degradation are detected in saliva at the onset of tumor development. Our work demonstrated that salivary protein profiles can be used to identify cellular changes associated with precancerous stage breast cancer through non-invasive means even prior to biopsy-evident disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Ismael Feitosa Lima
- Laboratory of Applied Toxicology, Center of Toxins, Immune-Response and Cell Signaling (LETA/CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Leo Kei Iwai
- Laboratory of Applied Toxicology, Center of Toxins, Immune-Response and Cell Signaling (LETA/CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Jill M Kramer
- Department of Oral Biology, School of Dental Medicine, The University of Buffalo, State University of New York, Buffalo, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. .,Department of Dermatology, Medical Sciences Center, University of Wisconsin-Madison, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA. .,Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| | - Débora Heller
- Post Graduate Program in Dentistry, Cruzeiro do Sul University, São Paulo, Brazil. .,Hospital Israelita Albert Einstein, São Paulo, Brazil. .,Department of Periodontology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
9
|
Ye Z, Fan Y, Zhu T, Cao D, Hu X, Xiang S, Li J, Guo Z, Chen X, Tan K, Zheng N. Preparation of Two-Dimensional Pd@Ir Nanosheets and Application in Bacterial Infection Treatment by the Generation of Reactive Oxygen Species. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23194-23205. [PMID: 35576507 DOI: 10.1021/acsami.2c03952] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Noble metal nanozymes have shown great promise in biomedicine; however, developing novel and high-performance noble metal nanozymes is still highly pressing and challenging. Herein, we, for the first time, prepared two-dimensional (2D) Pd@Ir bimetal nanosheets (NSs) with well-defined size and composition by a facile seed-mediated growth strategy. Enzyme-mimicked investigations find that the Pd@Ir NSs possess oxidase (OXD)-, peroxidase (POD)-, and catalase (CAT)-like multienzyme-mimetic activities. Especially, they exhibited much higher OXD- and POD-like activities than individual Pd NSs and Ir nanoparticles (NPs). The density functional theory (DFT) calculations reveal that the adsorption energy of O2 on Pd@Ir NSs is lower than that on the pure Pd NSs, which is more favorable for the conversion of O2 molecules from the triplet state (3O2) into the singlet state (1O2). Finally, based on the outstanding nanozyme activities to yield highly active singlet oxygen (1O2) and hydroxyl radicals (•OH) as well as excellent biosafety, the as-prepared Pd@Ir NSs were applied to treat bacteria-infected wounds, and satisfactory therapeutic outcomes were achieved. We believe that the highly efficient 2D Pd@Ir nanozyme will be an effective therapeutic reagent for various biomedical applications.
Collapse
Affiliation(s)
- Zichen Ye
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yiyang Fan
- Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tianbao Zhu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongxu Cao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinyan Hu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sijin Xiang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingchao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaolan Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kai Tan
- Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
10
|
Peng J, Chen H, Zhang B. Nerve–stem cell crosstalk in skin regeneration and diseases. Trends Mol Med 2022; 28:583-595. [DOI: 10.1016/j.molmed.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
|
11
|
Bernardes SS, Pinto MCX, Amorim JH, Azevedo VADC, Resende RR, Mintz A, Birbrair A. Glioma Pericytes Promote Angiogenesis by Producing Periostin. Cell Mol Neurobiol 2022; 42:557-564. [PMID: 33010018 PMCID: PMC8018985 DOI: 10.1007/s10571-020-00975-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/27/2020] [Indexed: 12/14/2022]
Abstract
Glioma is the prevalent aggressive primary brain tumor, with a very poor prognosis. The absence of advanced understanding of the roles played by the cells within the glioma microenvironment limits the development of effective drugs. A recent study indicates that periostin expressed by pericytes is crucial for glioma angiogenesis. Here, we describe succinctly the results and implications of this discovery in what we know about pericytes within the glioma microenvironment. The emerging knowledge from this work will benefit the development of therapies for gliomas.
Collapse
Affiliation(s)
- Sara Santos Bernardes
- Tissue Microenvironment Laboratory, Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro Cunha Xavier Pinto
- Laboratory of Neuropharmacology and Neurochemistry, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Jaime Henrique Amorim
- Center of Biological Sciences and Health, Federal University of West Bahia, Barreiras, BA, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Cellular and Molecular Genetics Laboratory, Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo Ribeiro Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Tissue Microenvironment Laboratory, Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
- Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
12
|
Patsalos A, Halasz L, Medina-Serpas MA, Berger WK, Daniel B, Tzerpos P, Kiss M, Nagy G, Fischer C, Simandi Z, Varga T, Nagy L. A growth factor-expressing macrophage subpopulation orchestrates regenerative inflammation via GDF-15. J Exp Med 2022; 219:e20210420. [PMID: 34846534 PMCID: PMC8635277 DOI: 10.1084/jem.20210420] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/03/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Muscle regeneration is the result of the concerted action of multiple cell types driven by the temporarily controlled phenotype switches of infiltrating monocyte-derived macrophages. Pro-inflammatory macrophages transition into a phenotype that drives tissue repair through the production of effectors such as growth factors. This orchestrated sequence of regenerative inflammatory events, which we termed regeneration-promoting program (RPP), is essential for proper repair. However, it is not well understood how specialized repair-macrophage identity develops in the RPP at the transcriptional level and how induced macrophage-derived factors coordinate tissue repair. Gene expression kinetics-based clustering of blood circulating Ly6Chigh, infiltrating inflammatory Ly6Chigh, and reparative Ly6Clow macrophages, isolated from injured muscle, identified the TGF-β superfamily member, GDF-15, as a component of the RPP. Myeloid GDF-15 is required for proper muscle regeneration following acute sterile injury, as revealed by gain- and loss-of-function studies. Mechanistically, GDF-15 acts both on proliferating myoblasts and on muscle-infiltrating myeloid cells. Epigenomic analyses of upstream regulators of Gdf15 expression identified that it is under the control of nuclear receptors RXR/PPARγ. Finally, immune single-cell RNA-seq profiling revealed that Gdf15 is coexpressed with other known muscle regeneration-associated growth factors, and their expression is limited to a unique subpopulation of repair-type macrophages (growth factor-expressing macrophages [GFEMs]).
Collapse
Affiliation(s)
- Andreas Patsalos
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Miguel A. Medina-Serpas
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Wilhelm K. Berger
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Bence Daniel
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Petros Tzerpos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Máté Kiss
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Zoltan Simandi
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL
| | - Tamas Varga
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Nagy
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
13
|
Li M, Hou Q, Zhong L, Zhao Y, Fu X. Macrophage Related Chronic Inflammation in Non-Healing Wounds. Front Immunol 2021; 12:681710. [PMID: 34220830 PMCID: PMC8242337 DOI: 10.3389/fimmu.2021.681710] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
Persistent hyper-inflammation is a distinguishing pathophysiological characteristic of chronic wounds, and macrophage malfunction is considered as a major contributor thereof. In this review, we describe the origin and heterogeneity of macrophages during wound healing, and compare macrophage function in healing and non-healing wounds. We consider extrinsic and intrinsic factors driving wound macrophage dysregulation, and review systemic and topical therapeutic approaches for the restoration of macrophage response. Multidimensional analysis is highlighted through the integration of various high-throughput technologies, used to assess the diversity and activation states as well as cellular communication of macrophages in healing and non-healing wound. This research fills the gaps in current literature and provides the promising therapeutic interventions for chronic wounds.
Collapse
Affiliation(s)
- Meirong Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
- Central Laboratory, Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Lingzhi Zhong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Yali Zhao
- Central Laboratory, Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Plikus MV, Krieg T. More than just bricks and mortar: Fibroblasts and ECM in skin health and disease. Exp Dermatol 2021; 30:4-9. [PMID: 33349992 PMCID: PMC9911308 DOI: 10.1111/exd.14257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Maksim V. Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA,Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA,NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA,Authors for correspondence: Maksim V. Plikus, Ph.D., Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA, and Thomas Krieg, M.D., FRCP, Translational Matrix Biology, University of Cologne, Jospeh-Stelzmann-Str. 52, D-50931 Cologne, Germany,
| | - Thomas Krieg
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany,Authors for correspondence: Maksim V. Plikus, Ph.D., Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA, and Thomas Krieg, M.D., FRCP, Translational Matrix Biology, University of Cologne, Jospeh-Stelzmann-Str. 52, D-50931 Cologne, Germany,
| |
Collapse
|
15
|
Picoli CC, Costa AC, Rocha BGS, Silva WN, Santos GSP, Prazeres PHDM, Costa PAC, Oropeza A, da Silva RA, Azevedo VAC, Resende RR, Cunha TM, Mintz A, Birbrair A. Sensory nerves in the spotlight of the stem cell niche. Stem Cells Transl Med 2020; 10:346-356. [PMID: 33112056 PMCID: PMC7900586 DOI: 10.1002/sctm.20-0284] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/27/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022] Open
Abstract
Niches are specialized tissue microenvironments that control stem cells functioning. The bone marrow mesenchymal stem cell niche defines a location within the marrow in which mesenchymal stem cells are retained and produce new cells throughout life. Deciphering the signaling mechanisms by which the niche regulates stem cell fate will facilitate the use of these cells for therapy. Recent studies, by using state-of-the-art methodologies, including sophisticated in vivo inducible genetic techniques, such as lineage-tracing Cre/loxP mediated systems, in combination with pharmacological inhibition, provide evidence that sensory neuron is an important component of the bone marrow mesenchymal stem cell niche. Strikingly, knockout of a specific receptor in sensory neurons blocked stem cell function in the bone marrow. The knowledge arising from these discoveries will be crucial for stem cell manipulation in the future. Here, we review recent progress in our understanding of sensory nerves biology in the stem cell niche.
Collapse
Affiliation(s)
- Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro H D M Prazeres
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro A C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson Oropeza
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo A da Silva
- Department of Dentistry, University of Taubaté, Taubaté, São Paulo, Brazil
| | - Vasco A C Azevedo
- Cellular and Molecular Genetics Laboratory, Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, New York, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of Radiology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
16
|
Muneeb F, Hardman JA, Paus R. Hair growth control by innate immunocytes: Perifollicular macrophages revisited. Exp Dermatol 2020; 28:425-431. [PMID: 30920018 DOI: 10.1111/exd.13922] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/04/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022]
Abstract
The role of innate immunocytes such as mast cells, γδ T cells, NK cells and macrophages (MACs) in hair growth control under physiological and pathological conditions has recently begun to be re-explored. Here, we revisit the role of resident perifollicular macrophages (pfMACs) located in the hair follicle (HF) mesenchyme (CTS). Substantial, stringently timed fluctuations in the number and localization of pfMACs were first observed long ago during murine HF morphogenesis and cycling. This already suggested some involvement of these innate immunocytes, with a recognized role in tissue remodelling and in hair growth control. The relatively recent demonstration of a Wnt signalling-driven crosstalk between these immunocytes and HF epithelial stem cells in telogen HFs, which promotes anagen induction, has reinvigorated interest in the role that pfMAC plays in hair biology. Besides the apoptosis-associated secretion of stem cell-activating Wnts and the differential secretion of HF-targeting growth factors such as FGF-5 and FGF5s from pfMACs, we also explore how MAC polarization, and thus function, may be influenced by the local metabolic and immune environment. Moreover, we examine how pfMACs may contribute to hair cycle-associated angiogenesis, vascular remodelling, HF immune privilege and immunopathology. On this basis, we discuss why targeting pfMACs may be relevant in the management of hair growth disorders. Finally, we argue that studying pfMACs offers an excellent, clinically relevant model system for characterizing and experimentally manipulating MAC interactions with an easily accessible mammalian, continuously remodelled (mini-)organ under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Ferhan Muneeb
- School of Medicine, The University of Manchester, Manchester, UK
| | - Jonathan A Hardman
- Centre for Dermatology Research, University of Manchester, and the NIHR Manchester Biomedical Research Centre, Manchester, UK
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, and the NIHR Manchester Biomedical Research Centre, Manchester, UK.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
17
|
Biswas KB, Takahashi A, Mizutani Y, Takayama S, Ishitsuka A, Yang L, Yang F, Iddamalgoda A, Katayama I, Inoue S. GPNMB is expressed in human epidermal keratinocytes but disappears in the vitiligo lesional skin. Sci Rep 2020; 10:4930. [PMID: 32188902 PMCID: PMC7080742 DOI: 10.1038/s41598-020-61931-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
GPNMB is involved in multiple cellular functions including cell adhesion, stress protection and stem cell maintenance. In skin, melanocyte-GPNMB is suggested to mediate pigmentation through melanosome formation, but details of keratinocyte-GPNMB have yet to be well understood. We confirmed the expression of GPNMB in normal human epidermal keratinocytes (NHEKs) by reducing the expression using siRNA. A higher calcium concentration of over 1.25 mM decreased the GPNMB expression. Histological staining showed that GPNMB was expressed in the basal layer of normal skins but completely absent in vitiligo skins. The normal expression of GPNMB in nevus depigmentosus skin suggested that lack of GPNMB is characteristic of vitiligo lesional skins. IFN-γ and IL-17A, two cytokines with possible causal roles in vitiligo development, inhibited GPNMB expression in vitro. Approximately 4–8% of the total GPNMB expressed on NHEKs were released possibly by ADAM 10 as a soluble form, but the process of release was not affected by the cytokines. The suppressive effect of IFN-γ on GPNMB was partially via IFN-γ/JAK2/STAT1 signaling axis. Decreased GPNMB expression in keratinocytes may affect melanocyte maintenance or survival against oxidative stress although further studies are needed. These findings indicate a new target for vitiligo treatment, focusing on the novel role of IFN-γ and IL-17 in downregulating keratinocyte-GPNMB.
Collapse
Affiliation(s)
- Kazal Boron Biswas
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.,Department of Research and Development, Ichimaru Pharcos Co. Ltd., Motosu, Gifu, Japan
| | - Aya Takahashi
- Department of Dermatology, Osaka University School of Medicine, Osaka, Japan
| | - Yukiko Mizutani
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Satoru Takayama
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.,Department of Research and Development, Ichimaru Pharcos Co. Ltd., Motosu, Gifu, Japan
| | - Asako Ishitsuka
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Lingli Yang
- Department of Dermatology, Osaka University School of Medicine, Osaka, Japan
| | - Fei Yang
- Department of Dermatology, Osaka University School of Medicine, Osaka, Japan
| | - Arunasiri Iddamalgoda
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.,Department of Research and Development, Ichimaru Pharcos Co. Ltd., Motosu, Gifu, Japan
| | - Ichiro Katayama
- Department of Dermatology, Osaka University School of Medicine, Osaka, Japan.
| | - Shintaro Inoue
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
18
|
27 TH Fondation René Touraine Annual SCIENTIFIC MEETING 2019: Skin Appendages - Developmental and Pathophysiological Aspects. Exp Dermatol 2019; 28:1353-1367. [PMID: 31854035 DOI: 10.1111/exd.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Plikus MV, Paus R. Getting ready for the next decade of Experimental Dermatology. Exp Dermatol 2019; 28:1199-1200. [PMID: 31854036 DOI: 10.1111/exd.14052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maksim V Plikus
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.,Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, USA.,Center for Complex Biological Systems, University of California Irvine, Irvine, CA, USA.,NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, Irvine, CA, USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK.,Monasterium Laboratory-Skin & Hair Research Solutions GmbH, Münster, Germany
| |
Collapse
|
20
|
Andreotti JP, Silva WN, Costa AC, Picoli CC, Bitencourt FCO, Coimbra-Campos LMC, Resende RR, Magno LAV, Romano-Silva MA, Mintz A, Birbrair A. Neural stem cell niche heterogeneity. Semin Cell Dev Biol 2019; 95:42-53. [PMID: 30639325 PMCID: PMC6710163 DOI: 10.1016/j.semcdb.2019.01.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/02/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
Abstract
In mammals, new neurons can be generated from neural stem cells in specific regions of the adult brain. Neural stem cells are characterized by their abilities to differentiate into all neural lineages and to self-renew. The specific microenvironments regulating neural stem cells, commonly referred to as neurogenic niches, comprise multiple cell populations whose precise contributions are under active current exploration. Understanding the cross-talk between neural stem cells and their niche components is essential for the development of therapies against neurological disorders in which neural stem cells function is altered. In this review, we describe and discuss recent studies that identified novel components in the neural stem cell niche. These discoveries bring new concepts to the field. Here, we evaluate these recent advances that change our understanding of the neural stem cell niche heterogeneity and its influence on neural stem cell function.
Collapse
Affiliation(s)
- Julia P Andreotti
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávia C O Bitencourt
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz A V Magno
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marco A Romano-Silva
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
21
|
Leonel C, Sena IFG, Silva WN, Prazeres PHDM, Fernandes GR, Mancha Agresti P, Martins Drumond M, Mintz A, Azevedo VAC, Birbrair A. Staphylococcus epidermidis role in the skin microenvironment. J Cell Mol Med 2019; 23:5949-5955. [PMID: 31278859 PMCID: PMC6714221 DOI: 10.1111/jcmm.14415] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/12/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
Wound healing is a complex dynamic physiological process in response to cutaneous destructive stimuli that aims to restore the cutaneous' barrier role. Deciphering the underlying mechanistic details that contribute to wound healing will create novel therapeutic strategies for skin repair. Recently, by using state-of-the-art technologies, it was revealed that the cutaneous microbiota interact with skin immune cells. Strikingly, commensal Staphylococcus epidermidis-induced CD8+ T cells induce re-epithelization of the skin after injury, accelerating wound closure. From a drug development perspective, the microbiota may provide new therapeutic candidate molecules to accelerate skin healing. Here, we summarize and evaluate recent advances in the understanding of the microbiota in the skin microenvironment.
Collapse
Affiliation(s)
- Caroline Leonel
- Departamento de PatologiaUniversidade Federal de Minas GeraisBelo HorizonteBrasil
| | - Isadora F. G. Sena
- Departamento de PatologiaUniversidade Federal de Minas GeraisBelo HorizonteBrasil
| | - Walison N. Silva
- Departamento de PatologiaUniversidade Federal de Minas GeraisBelo HorizonteBrasil
| | | | | | - Pamela Mancha Agresti
- Departamento de Biologia GeralUniversidade Federal de Minas GeraisBelo HorizonteBrasil
| | | | - Akiva Mintz
- Department of RadiologyColumbia University Medical CenterNew YorkNew York
| | - Vasco A. C. Azevedo
- Departamento de Biologia GeralUniversidade Federal de Minas GeraisBelo HorizonteBrasil
| | - Alexander Birbrair
- Departamento de PatologiaUniversidade Federal de Minas GeraisBelo HorizonteBrasil
- Department of RadiologyColumbia University Medical CenterNew YorkNew York
| |
Collapse
|
22
|
Santos GSP, Magno LAV, Romano-Silva MA, Mintz A, Birbrair A. Pericyte Plasticity in the Brain. Neurosci Bull 2019; 35:551-560. [PMID: 30367336 PMCID: PMC6527663 DOI: 10.1007/s12264-018-0296-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
Cerebral pericytes are perivascular cells that stabilize blood vessels. Little is known about the plasticity of pericytes in the adult brain in vivo. Recently, using state-of-the-art technologies, including two-photon microscopy in combination with sophisticated Cre/loxP in vivo tracing techniques, a novel role of pericytes was revealed in vascular remodeling in the adult brain. Strikingly, after pericyte ablation, neighboring pericytes expand their processes and prevent vascular dilatation. This new knowledge provides insights into pericyte plasticity in the adult brain.
Collapse
Affiliation(s)
- Gabryella S P Santos
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Luiz A V Magno
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, 30130-100, Brazil
| | - Marco A Romano-Silva
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, 30130-100, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Alexander Birbrair
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
- Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
23
|
Azevedo PO, Paiva AE, Santos GSP, Lousado L, Andreotti JP, Sena IFG, Tagliati CA, Mintz A, Birbrair A. Cross-talk between lung cancer and bones results in neutrophils that promote tumor progression. Cancer Metastasis Rev 2019; 37:779-790. [PMID: 30203108 DOI: 10.1007/s10555-018-9759-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer is the leading cause of cancer mortality around the world. The lack of detailed understanding of the cellular and molecular mechanisms participating in the lung tumor progression restrains the development of efficient treatments. Recently, by using state-of-the-art technologies, including in vivo sophisticated Cre/loxP technologies in combination with lung tumor models, it was revealed that osteoblasts activate neutrophils that promote tumor growth in the lung. Strikingly, genetic ablation of osteoblasts abolished lung tumor progression via interruption of SiglecFhigh-expressing neutrophils supply to the tumor microenvironment. Interestingly, SiglecFhigh neutrophil signature was associated with worse lung adenocarcinoma patients outcome. This study identifies novel cellular targets for lung cancer treatment. Here, we summarize and evaluate recent advances in our understanding of lung tumor microenvironment.
Collapse
Affiliation(s)
- Patrick O Azevedo
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana E Paiva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiza Lousado
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Julia P Andreotti
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isadora F G Sena
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos A Tagliati
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
24
|
Picoli CC, Coimbra-Campos LMC, Guerra DAP, Silva WN, Prazeres PHDM, Costa AC, Magno LAV, Romano-Silva MA, Mintz A, Birbrair A. Pericytes Act as Key Players in Spinal Cord Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1327-1337. [PMID: 31014955 DOI: 10.1016/j.ajpath.2019.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 03/08/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023]
Abstract
Spinal cord injury results in locomotor impairment attributable to the formation of an inhibitory fibrous scar, which prevents axonal regeneration after trauma. The scarcity of knowledge about the molecular and cellular mechanisms involved in scar formation after spinal cord lesion impede the design of effective therapies. Recent studies, by using state-of-the-art technologies, including genetic tracking and blockage of pericytes in combination with optogenetics, reveal that pericyte blockage facilitates axonal regeneration and neuronal integration into the local neural circuitry. Strikingly, a pericyte subset is essential during scarring after spinal cord injury, and its arrest results in motor performance improvement. The arising knowledge from current research will contribute to novel approaches to develop therapies for spinal cord injury. We review novel advances in our understanding of pericyte biology in the spinal cord.
Collapse
Affiliation(s)
- Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Daniel A P Guerra
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Pedro H D M Prazeres
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luiz A V Magno
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marco A Romano-Silva
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, New York
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Radiology, Columbia University Medical Center, New York, New York.
| |
Collapse
|
25
|
Zhang GY, Langan EA, Meier NT, Funk W, Siemers F, Paus R. Thyroxine (T4) may promote re-epithelialisation and angiogenesis in wounded human skin ex vivo. PLoS One 2019; 14:e0212659. [PMID: 30925152 PMCID: PMC6440638 DOI: 10.1371/journal.pone.0212659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Abstract
There is a pressing need for improved preclinical model systems in which to study human skin wound healing. Here, we report the development and application of a serum-free full thickness human skin wound healing model. Not only can re-epithelialization (epidermal repair) and angiogenesis be studied in this simple and instructive model, but the model can also be used to identify clinically relevant wound-healing promoting agents, and to dissect underlying candidate mechanisms of action in the target tissue. We present preliminary ex vivo data to suggest that Thyroxine (T4), which reportedly promotes skin wound healing in rodents in vivo, may promote key features of human skin wound healing. Namely, T4 stimulates re-epithelialisation and angiogenesis, and modulates both wound healing-associated epidermal keratin expression and energy metabolism in experimentally wound human skin. Functionally, the wound healing-promoting effects of T4 are at least partially mediated via fibroblast growth factor/fibroblast growth factor receptor-mediated signalling, since they could be significantly antagonized by bFGF-neutralizing antibody. Thus, this pragmatic, easy-to-use full-thickness human skin wound healing model provides a useful preclinical research tool in the search for clinically relevant candidate wound healing-promoting agents. These ex vivo data encourage further pre-clinical testing of topical T4 as a cost-efficient, novel agent in the management of chronic human skin wounds.
Collapse
Affiliation(s)
- Guo-You Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ewan A. Langan
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| | | | | | - Frank Siemers
- Department of Plastic and Hand Surgery, BG Klinikum Bergmannstrost, Halle/Salle, Germany
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Morikawa S, Iribar H, Gutiérrez-Rivera A, Ezaki T, Izeta A. Pericytes in Cutaneous Wound Healing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:1-63. [DOI: 10.1007/978-3-030-16908-4_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Guerra DAP, Paiva AE, Sena IFG, Azevedo PO, Silva WN, Mintz A, Birbrair A. Targeting glioblastoma-derived pericytes improves chemotherapeutic outcome. Angiogenesis 2018; 21:667-675. [PMID: 29761249 PMCID: PMC6238207 DOI: 10.1007/s10456-018-9621-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
Abstract
Glioblastoma is the most common malignant brain cancer in adults, with poor prognosis. The blood-brain barrier limits the arrival of several promising anti-glioblastoma drugs, and restricts the design of efficient therapies. Recently, by using state-of-the-art technologies, including thymidine kinase targeting system in combination with glioblastoma xenograft mouse models, it was revealed that targeting glioblastoma-derived pericytes improves chemotherapy efficiency. Strikingly, ibrutinib treatment enhances chemotherapeutic effectiveness, by targeting pericytes, improving blood-brain barrier permeability, and prolonging survival. This study identifies glioblastoma-derived pericyte as a novel target in the brain tumor microenvironment during carcinogenesis. Here, we summarize and evaluate recent advances in the understanding of pericyte's role in the glioblastoma microenvironment.
Collapse
Affiliation(s)
- Daniel A P Guerra
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana E Paiva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isadora F G Sena
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Patrick O Azevedo
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
- Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
28
|
Silva WN, Leonel C, Prazeres PHDM, Sena IFG, Guerra DAP, Heller D, Diniz IMA, Fortuna V, Mintz A, Birbrair A. Role of Schwann cells in cutaneous wound healing. Wound Repair Regen 2018; 26:392-397. [PMID: 30098299 PMCID: PMC6289698 DOI: 10.1111/wrr.12647] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022]
Abstract
Dermal wound healing is the process of repairing and remodeling skin following injury. Delayed or aberrant cutaneous healing poses a challenge for the health care system. The lack of detailed understanding of cellular and molecular mechanisms involved in this process hampers the development of effective targeted treatments. In a recent study, Parfejevs et al.-using state-of-the-art technologies, including in vivo sophisticated Cre/loxP techniques in combination with a mouse model of excisional cutaneous wounding-reveal that Schwann cells induce adult dermal wound healing. Strikingly, genetic ablation of Schwann cells delays wound contraction and closure, decreases myofibroblast formation, and impairs skin re-epithelization after injury. From a drug development perspective, Schwann cells are a new cellular candidate to be activated to accelerate skin healing. Here, we summarize and evaluate recent advances in the understanding of Schwann cells roles in the skin microenvironment.
Collapse
Affiliation(s)
- Walison N. Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline Leonel
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Isadora F. G. Sena
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniel A. P. Guerra
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Debora Heller
- Experimental Research Center, Albert Einstein Israeli Hospital, São Paulo, SP, Brazil
- School of Dentistry, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Ivana M. A. Diniz
- Department of Restorative Dentistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vitor Fortuna
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
29
|
de Alvarenga EC, Silva WN, Vasconcellos R, Paredes-Gamero EJ, Mintz A, Birbrair A. Promyelocytic leukemia protein in mesenchymal stem cells is essential for leukemia progression. Ann Hematol 2018; 97:1749-1755. [PMID: 30069705 DOI: 10.1007/s00277-018-3463-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 07/25/2018] [Indexed: 12/28/2022]
Abstract
The dynamic interactions between leukemic cells and cells resident within the bone marrow microenvironment are vital for leukemia progression. The lack of detailed knowledge about the cellular and molecular mechanisms involved in this cross-talk restricts the design of effective treatments. Guarnerio et al. (2018) by using state-of-the-art techniques, including sophisticated Cre/loxP technologies in combination with leukemia mouse models, reveal that mesenchymal stem cells via promyelocytic leukemia protein (Pml) maintain leukemic cells in the bone marrow niche. Strikingly, genetic deletion of Pml in mesenchymal stem cells raised survival of leukemic mice under chemotherapeutic treatment. The emerging knowledge from this research provides a novel target in the bone marrow niche for therapeutic benefit in leukemia.
Collapse
Affiliation(s)
- Erika Costa de Alvarenga
- Department of Natural Sciences, Federal University of São João del Rei, São João Del Rey, MG, Brazil
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rebecca Vasconcellos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Edgar J Paredes-Gamero
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, Brazil.,Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
30
|
Prazeres PHDM, Turquetti AOM, Azevedo PO, Barreto RSN, Miglino MA, Mintz A, Delbono O, Birbrair A. Perivascular cell αv integrins as a target to treat skeletal muscle fibrosis. Int J Biochem Cell Biol 2018; 99:109-113. [PMID: 29627438 PMCID: PMC6159891 DOI: 10.1016/j.biocel.2018.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023]
Abstract
Fibrosis following injury leads to aberrant regeneration and incomplete functional recovery of skeletal muscle, but the lack of detailed knowledge about the cellular and molecular mechanisms involved hampers the design of effective treatments. Using state-of-the-art technologies, Murray et al. (2017) found that perivascular PDGFRβ-expressing cells generate fibrotic cells in the skeletal muscle. Strikingly, genetic deletion of αv integrins from perivascular PDGFRβ-expressing cells significantly inhibited skeletal muscle fibrosis without affecting muscle vascularization or regeneration. In addition, the authors showed that a small molecule inhibitor of αv integrins, CWHM 12, attenuates skeletal muscle fibrosis. From a drug-development perspective, this study identifies a new cellular and molecular target to treat skeletal muscle fibrosis.
Collapse
Affiliation(s)
- Pedro H D M Prazeres
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anaelise O M Turquetti
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Patrick O Azevedo
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo S N Barreto
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Maria A Miglino
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil; Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
31
|
Paiva AE, Lousado L, Guerra DAP, Azevedo PO, Sena IFG, Andreotti JP, Santos GSP, Gonçalves R, Mintz A, Birbrair A. Pericytes in the Premetastatic Niche. Cancer Res 2018; 78:2779-2786. [PMID: 29789421 PMCID: PMC6044472 DOI: 10.1158/0008-5472.can-17-3883] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/29/2018] [Accepted: 03/09/2018] [Indexed: 12/20/2022]
Abstract
The premetastatic niche formed by primary tumor-derived molecules contributes to fixation of cancer metastasis. The design of efficient therapies is limited by the current lack of knowledge about the details of cellular and molecular mechanisms involved in the premetastatic niche formation. Recently, the role of pericytes in the premetastatic niche formation and lung metastatic tropism was explored by using state-of-the-art techniques, including in vivo lineage-tracing and mice with pericyte-specific KLF4 deletion. Strikingly, genetic inactivation of KLF4 in pericytes inhibits pulmonary pericyte expansion and decreases metastasis in the lung. Here, we summarize and evaluate recent advances in the understanding of pericyte contribution to premetastatic niche formation. Cancer Res; 78(11); 2779-86. ©2018 AACR.
Collapse
Affiliation(s)
- Ana E Paiva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiza Lousado
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel A P Guerra
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Patrick O Azevedo
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Isadora F G Sena
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Julia P Andreotti
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Gonçalves
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, New York
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
- Department of Radiology, Columbia University Medical Center, New York, New York
| |
Collapse
|