1
|
Rynkiewicz-Szczepanska E, Kosciuczuk U, Maciejczyk M. Total Antioxidant Status in Critically Ill Patients with Traumatic Brain Injury and Secondary Organ Failure-A Systematic Review. Diagnostics (Basel) 2024; 14:2561. [PMID: 39594227 PMCID: PMC11593164 DOI: 10.3390/diagnostics14222561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Introduction: The available literature indicates that oxidant-antioxidant imbalance plays a significant role in the pathophysiology of traumatic brain injury and the subsequent secondary organ dysfunctions. However, there is a lack of studies summarizing the knowledge in this area, and no clear guidelines exist regarding the use of biomarkers of oxidative stress as diagnostics tools. Methods: The present work aims to provide a systematic review of the literature on the use of total antioxidant capacity (TAC) assays in predicting the outcomes of traumatic brain injury (TBI). A literature search was conducted up to 1 September 2024, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines, using the PubMed and Scopus databases. Based on the inclusion criteria, 24 studies were used for the final review. Results: Promising data indicate that TAC assays are useful in predicting 30-day mortality and neurological outcomes. Moreover, they correlate with radiological findings on CT scans in brain injury and the clinical classifications of injuries, as well as the parameters of organ failure. Conclusions: Total antioxidant capacity assays can be used to assess the extent of brain damage and prognosticate general vital functions. Future experiments should include long-term randomized clinical trials on larger populations of TBI patients.
Collapse
Affiliation(s)
- Ewa Rynkiewicz-Szczepanska
- Department of Anaesthesiology and Intensive Therapy, Medical University of Bialystok, Kilinskiego Street 1, 15-276 Bialystok, Poland;
| | - Urszula Kosciuczuk
- Department of Hygiene, Epidemiology, and Ergonomics, Medical University of Bialystok, Kilinskiego Street 1, 15-276 Bialystok, Poland;
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology, and Ergonomics, Medical University of Bialystok, Kilinskiego Street 1, 15-276 Bialystok, Poland;
| |
Collapse
|
2
|
Firdous SM, Khan SA, Maity A. Oxidative stress-mediated neuroinflammation in Alzheimer's disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8189-8209. [PMID: 38832985 DOI: 10.1007/s00210-024-03188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
Reactive oxygen species (ROS) are metabolic by-products that constitute an indispensable component of physiological processes, albeit their heightened presence may proffer substantial perils to biological entities. Such a proliferation gives rise to a gradual escalation of oxidative stress within the organism, thereby compromising mitochondrial functionality and inflicting harm upon various bodily systems, with a particular predilection for the central nervous system. In its nascent stages, it is plausible that inflammation has been a facilitator in the progression of the malady. The precise role of inflammation in Alzheimer's disease (AD) remains somewhat enigmatic, although it is conceivable that activated microglia and astrocytes might be implicated in the removal of amyloid-β (Aβ) deposits. Nonetheless, prolonged microglial activation is associated with Tau phosphorylation and Aβ aggregation. Research studies have indicated that AD brains upregulate complementary molecules, inflammatory cytokines, acute phase reacting agents, and other inflammatory mediators that may cause neurodegeneration. In this review, oxidative damage products will be discussed as potential peripheral biomarkers for AD and its early stages. The disordered excretion of pro-inflammatory cytokines, chemokines, oxygen, and nitrogen-reactive species, along with the stimulation of the complement system by glial cells, has the potential to disrupt the functionality of neuronal termini. This perturbation, in turn, culminates in compromised synaptic function, a phenomenon empirically linked to the manifestation of cognitive impairments. The management of neurodegenerative conditions in the context of dementia necessitates therapeutic interventions that specifically target the excessive production of inflammatory and oxidative agents. Furthermore, we shall deliberate upon the function of microglia and oxidative injury in the etiology of AD and the ensuing neurodegenerative processes.
Collapse
Affiliation(s)
- Sayed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, 711316, West Bengal, India.
| | - Sahabaj Ali Khan
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, 711316, West Bengal, India
| | - Amritangshu Maity
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, 711316, West Bengal, India
| |
Collapse
|
3
|
Nxumalo MB, Ntanzi N, Kumalo HM, Khan RB. Mitigating Hyperglycaemic Oxidative Stress in HepG2 Cells: The Role of Carica papaya Leaf and Root Extracts in Promoting Glucose Uptake and Antioxidant Defence. Nutrients 2024; 16:3496. [PMID: 39458491 PMCID: PMC11510471 DOI: 10.3390/nu16203496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Diabetes often goes undiagnosed, with 60% of people in Africa unaware of their condition. Type 2 diabetes mellitus (T2DM) is associated with insulin resistance and is treated with metformin, despite the undesirable side effects. Medicinal plants with therapeutic potential, such as Carica papaya, have shown promising anti-diabetic properties. This study explored the role of C. papaya leaf and root extracts compared to metformin in reducing hyperglycaemia-induced oxidative stress and their impact on liver function using HepG2 as a reference. Methods: The cytotoxicity was assessed through the MTT assay. At the same time, glucose uptake and metabolism (ATP and ∆Ψm) in HepG2 cells treated with C. papaya aqueous leaf and root extract were evaluated using a luminometry assay. Additionally, antioxidant properties (SOD2, GPx1, GSH, and Nrf2) were measured using qPCR and Western blot following the detection of MDA, NO, and iNOS, indicators of free radicals. Results: The MTT assay showed that C. papaya extracts did not exhibit toxicity in HepG2 cells and enhanced glucose uptake compared to the hyperglycaemic control (HGC) and metformin. The glucose levels in C. papaya-treated cells increased ATP production (p < 0.05), while the ∆Ψm was significantly increased in HGR1000-treated cells (p < 0.05). Furthermore, C. papaya leaf extract upregulated GPx1 (p < 0.05), GSH, and Nrf2 gene (p < 0.05), while SOD2 and Nrf2 proteins were reduced (p > 0.05), ultimately lowering ROS (p > 0.05). Contrarily, the root extract stimulated SOD2 (p > 0.05), GPx1 (p < 0.05), and GSH levels (p < 0.05), reducing Nrf2 gene and protein expression (p < 0.05) and resulting in high MDA levels (p < 0.05). Additionally, the extracts elevated NO levels and iNOS expression (p < 0.05), suggesting potential RNS activation. Conclusion: Taken together, the leaf extract stimulated glucose metabolism and triggered ROS production, producing a strong antioxidant response that was more effective than the root extract and metformin. However, the root extract, particularly at high concentrations, was less effective at neutralising free radicals as it did not stimulate Nrf2 production, but it did maintain elevated levels of SOD2, GSH, and GPx1 antioxidants.
Collapse
Affiliation(s)
- Mthokozisi Bongani Nxumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (N.N.); (H.M.K.); (R.B.K.)
| | | | | | | |
Collapse
|
4
|
Shao W, Wang JJ, Niu ZH, Zhang K, Wang S, Wang YH, Tang YH, Wang CC, Hou SQ, Zhou DR, Zhang C, Lin N. LFHP-1c improves cognitive function after TBI in mice by reducing oxidative stress through the PGAM5-NRF2-KEAP1 ternary complex. Heliyon 2024; 10:e36820. [PMID: 39263157 PMCID: PMC11388784 DOI: 10.1016/j.heliyon.2024.e36820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of disability and death. Thus, timely and effective secondary brain injury intervention is crucial, with potential to improve the prognosis of TBI. Oxidative stress contributes to post-traumatic secondary cognitive impairment, and the reduction of post-traumatic oxidative stress effectively enhances cognitive function. Phosphoglycerate-mutating enzyme 5 (PGAM5), a member of the phosphoglycerate transporter enzyme family, is upregulated in TBI and induces mitochondrial autophagy. This further exacerbates damage following TBI. The present study focused on the small molecule drug, LFHP-1c, which is a novel inhibitor of PGAM5. The present study used an in vivo mouse model incorporating a controlled cortical impact-induced TBI, to examine the impact of LFHP-1c on oxidative stress and cognitive function. The present study aimed to determine the impact of LFHP-1c on the PGAM5-Kelch-like ECH-associated protein 1 (KEAP1)- nuclear factor erythroid 2-related factor 2 (NRF2) ternary complex within the TBI context. Results of the present study indicated that LFHP-1c suppresses PGAM5 expression and inhibits the development of the PGAM5-KEAP1-NRF2 ternary complex, thereby promoting the release of NRF2 and KEAP1. This in turn promotes the entry of NRF2 into the nucleus following TBI, leading to increased expression of anti-oxidative stress downstream factors, such as heme oxygenase-1, glutathione peroxidase 1 and superoxide dismutase 1. In addition, LFHP-1c also released KEAP1, leading to mitochondrial Rho GTPase 2 degradation and reducing perinuclear aggregation of mitochondria in the cell, which reduced oxidative stress and ultimately improved cognitive function after TBI.
Collapse
Affiliation(s)
- Wei Shao
- Department of Emergency, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310000, China
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, Anhui, 239000, China
| | - Jia-Jun Wang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, Anhui, 239000, China
| | - Zi-Hui Niu
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, Anhui, 239000, China
| | - Kang Zhang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, Anhui, 239000, China
| | - Shuai Wang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, Anhui, 239000, China
| | - Yu-Hao Wang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, Anhui, 239000, China
| | - Yu-Hang Tang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, Anhui, 239000, China
| | - Cheng-Cheng Wang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, Anhui, 239000, China
| | - Shi-Qiang Hou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, Anhui, 239000, China
| | - Dong-Rui Zhou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, Anhui, 239000, China
| | - Chao Zhang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, Anhui, 239000, China
| | - Ning Lin
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, Anhui, 239000, China
| |
Collapse
|
5
|
Li Y, Xin X, Zhou X, Liu J, Liu H, Yuan S, Liu H, Hao W, Sun J, Wang Y, Gong W, Yang M, Li Z, Han Y, Gao C, Yang Y. ROS-responsive biomimetic nanosystem camouflaged by hybrid membranes of platelet-exosomes engineered with neuronal targeting peptide for TBI therapy. J Control Release 2024; 372:531-550. [PMID: 38851535 DOI: 10.1016/j.jconrel.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Recovery and survival following traumatic brain injury (TBI) depends on optimal amelioration of secondary injuries at lesion site. Delivering mitochondria-protecting drugs to neurons may revive damaged neurons at sites secondarily traumatized by TBI. Pioglitazone (PGZ) is a promising candidate for TBI treatment, limited by its low brain accumulation and poor targetability to neurons. Herein, we report a ROS-responsive nanosystem, camouflaged by hybrid membranes of platelets and engineered extracellular vesicles (EVs) (C3-EPm-|TKNPs|), that can be used for targeted delivery of PGZ for TBI therapy. Inspired by intrinsic ability of macrophages for inflammatory chemotaxis, engineered M2-like macrophage-derived EVs were constructed by fusing C3 peptide to EVs membrane integrator protein, Lamp2b, to confer them with ability to target neurons in inflamed lesions. Platelets provided hybridized EPm with capabilities to target hemorrhagic area caused by trauma via surface proteins. Consequently, C3-EPm-|PGZ-TKNPs| were orientedly delivered to neurons located in the traumatized hemisphere after intravenous administration, and triggered the release of PGZ from TKNPs via oxidative stress. The current work demonstrate that C3-EPm-|TKNPs| can effectively deliver PGZ to alleviate mitochondrial damage via mitoNEET for neuroprotection, further reversing behavioral deficits in TBI mice. Our findings provide proof-of-concept evidence of C3-EPm-|TKNPs|-derived nanodrugs as potential clinical approaches against neuroinflammation-related intracranial diseases.
Collapse
Affiliation(s)
- Yi Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Xin Xin
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Xun Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China; College of Pharmacy, Henan University, Kaifeng 475000, People's Republic of China
| | - Jingzhou Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Hangbing Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shuo Yuan
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Hanhan Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Wenyan Hao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Jiejie Sun
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Yuli Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Wei Gong
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Meiyan Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Zhiping Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Yang Han
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Chunsheng Gao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China.
| | - Yang Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China.
| |
Collapse
|
6
|
Oft HC, Simon DW, Sun D. New insights into metabolism dysregulation after TBI. J Neuroinflammation 2024; 21:184. [PMID: 39075578 PMCID: PMC11288120 DOI: 10.1186/s12974-024-03177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Traumatic brain injury (TBI) remains a leading cause of death and disability that places a great physical, social, and financial burden on individuals and the health system. In this review, we summarize new research into the metabolic changes described in clinical TBI trials, some of which have already shown promise for informing injury classification and staging. We focus our discussion on derangements in glucose metabolism, cell respiration/mitochondrial function and changes to ketone and lipid metabolism/oxidation to emphasize potentially novel biomarkers for clinical outcome prediction and intervention and offer new insights into possible underlying mechanisms from preclinical research of TBI pathology. Finally, we discuss nutrition supplementation studies that aim to harness the gut/microbiome-brain connection and manipulate systemic/cellular metabolism to improve post-TBI recovery. Taken together, this narrative review summarizes published TBI-associated changes in glucose and lipid metabolism, highlighting potential metabolite biomarkers for clinical use, the cellular processes linking these markers to TBI pathology as well as the limitations and future considerations for TBI "omics" work.
Collapse
Affiliation(s)
- Helena C Oft
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dennis W Simon
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
7
|
Zhang B, Song C, Tang X, Tian M, Liu Y, Yan Z, Duan R, Liu Y. Type 2 diabetes microenvironment promotes the development of Parkinson's disease by activating microglial cell inflammation. Front Cell Dev Biol 2024; 12:1422746. [PMID: 39050892 PMCID: PMC11266050 DOI: 10.3389/fcell.2024.1422746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Objective Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, and type 2 diabetes (T2DM) and PD are influenced by common genetic and environmental factors. Mitochondrial dysfunction and inflammation are common pathogenic mechanisms of both diseases. However, the close association between PD and T2DM and the specific relationship between them are not yet clear. This study aimed to reveal the specific connection between the two diseases by establishing a mouse model of comorbid PD and T2DM, as well as a Bv2 cell model. Methods C57BL/6 mouse were used to construct a model of PD with T2DM using streptozotocin and rotenone, while Bv2 cells were used to simulate the microenvironment of PD and T2DM using rotenone and palmitate. Behavioral tests were conducted to assess any differences in motor and cognitive functions in mouse. Immunohistochemistry was used to analyze the number of dopaminergic neurons in the substantia nigra region of mouse. Western blotting was used to detect the expression levels of TH, P-NFκB, NFκB, Cyclic GMP-AMP synthase (cGAS), and Stimulator of interferon genes (STING) proteins in the substantia nigra region of mouse and Bv2 cells. qRT-PCR was used to analyze the expression levels of IL1β, IL6, and TNF-α. Seahorse technology was used to assess mitochondrial function in Bv2 cells. Results T2DM exacerbated the motor and cognitive symptoms in mouse with PD. This effect may be mediated by disrupting mitochondrial function in microglial cells, leading to damaged mtDNA leakage into the cytoplasm, subsequently activating the cGAS-STING pathway and downstream P-NFκB/NFκB proteins, triggering an inflammatory response in microglial cells. Microglial cells release inflammatory factors such as IL1β, IL6, and TNF-α, exacerbating neuronal damage caused by PD. Conclusion Our study results suggest that T2DM may exacerbate the progression of PD by damaging mitochondrial function, and activating microglial cell inflammation. The detrimental effects on Parkinson's disease may be achieved through the activating of the cGAS-STING protein pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ruonan Duan
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Yiming Liu
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
8
|
Zheng F, Li W, Su S, Hui Q. Annexin A1 conveys neuroprotective function via inhibiting oxidative stress in diffuse axonal injury of rats. Neuroreport 2024; 35:466-475. [PMID: 38526918 DOI: 10.1097/wnr.0000000000002030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Diffuse axonal injury (DAI) is a critical pathological facet of traumatic brain injury (TBI). Oxidative stress plays a significant role in the progress of DAI. Annexin A1 (AnxA1) has been demonstrated to benefit from recovery of neurofunctional outcomes after TBI. However, whether AnxA1 exhibits neuronal protective function by modulating oxidative stress in DAI remains unknown. Expression of AnxA1 was evaluated via real-time PCR and western blotting in rat brainstem after DAI. The neurological effect of AnxA1 following DAI through quantification of modified neurologic severity score (mNSS) was compared between wild-type and AnxA1-knockout rats. Brain edema and neuronal apoptosis, as well as expression of oxidative factors and inflammatory cytokines, were analyzed between wild-type and AnxA1 deficiency rats after DAI. Furthermore, mNSS, oxidative and inflammatory cytokines were assayed after timely administration of recombinant AnxA1 for DAI rats. In the brainstem of DAI, the expression of AnxA1 remarkably increased. Ablation of AnxA1 increased the mNSS score and brain water content of rats after DAI. Neuron apoptosis in the brainstem after DAI was exaggerated by AnxA1 deficiency. In addition, AnxA1 deficiency significantly upregulated the level of oxidative and inflammatory factors in the brainstem of DAI rats. Moreover, mNSS decreased by AnxA1 treatment in rats following DAI. Expression of oxidative and inflammatory molecules in rat brainstem subjected to DAI inhibited by AnxA1 administration. AnxA1 exhibited neuronal protective function in the progression of DAI mainly dependent on suppressing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Fengwei Zheng
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University
| | - Weixin Li
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University
| | - Shaobo Su
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qiaoyan Hui
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Fesharaki-Zadeh A, Datta D. An overview of preclinical models of traumatic brain injury (TBI): relevance to pathophysiological mechanisms. Front Cell Neurosci 2024; 18:1371213. [PMID: 38682091 PMCID: PMC11045909 DOI: 10.3389/fncel.2024.1371213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of morbidity and mortality, affecting millions annually worldwide. Although the majority of TBI patients return to premorbid baseline, a subset of patient can develop persistent and often debilitating neurocognitive and behavioral changes. The etiology of TBI within the clinical setting is inherently heterogenous, ranging from sport related injuries, fall related injuries and motor vehicle accidents in the civilian setting, to blast injuries in the military setting. Objective Animal models of TBI, offer the distinct advantage of controlling for injury modality, duration and severity. Furthermore, preclinical models of TBI have provided the necessary temporal opportunity to study the chronic neuropathological sequelae of TBI, including neurodegenerative sequelae such as tauopathy and neuroinflammation within the finite experimental timeline. Despite the high prevalence of TBI, there are currently no disease modifying regimen for TBI, and the current clinical treatments remain largely symptom based. The preclinical models have provided the necessary biological substrate to examine the disease modifying effect of various pharmacological agents and have imperative translational value. Methods The current review will include a comprehensive survey of well-established preclinical models, including classic preclinical models including weight drop, blast injury, fluid percussion injury, controlled cortical impact injury, as well as more novel injury models including closed-head impact model of engineered rotational acceleration (CHIMERA) models and closed-head projectile concussive impact model (PCI). In addition to rodent preclinical models, the review will include an overview of other species including large animal models and Drosophila. Results There are major neuropathological perturbations post TBI captured in various preclinical models, which include neuroinflammation, calcium dysregulation, tauopathy, mitochondrial dysfunction and oxidative stress, axonopathy, as well as glymphatic system disruption. Conclusion The preclinical models of TBI continue to offer valuable translational insight, as well as essential neurobiological basis to examine specific disease modifying therapeutic regimen.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Department of Neurology and Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dibyadeep Datta
- Division of Aging and Geriatric Psychiatry, Alzheimer’s Disease Research Unit, Department of Psychiatry, New Haven, CT, United States
| |
Collapse
|
10
|
Muller CR, Courelli V, Govender K, Omert L, Yoshida T, Cabrales P. Hypoxically stored RBC resuscitation in a rat model of traumatic brain injury and severe hemorrhagic shock. Life Sci 2024; 340:122423. [PMID: 38278347 DOI: 10.1016/j.lfs.2024.122423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/23/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
This study aims to investigate the effects of hypoxically stored Red Blood Cells (RBCs) in a rat model of traumatic brain injury followed by severe hemorrhagic shock (HS) and resuscitation. RBCs were made hypoxic using an O2 depletion system (Hemanext Inc. Lexington, MA) and stored for 3 weeks. Experimental animals underwent craniotomy and blunt brain injury followed by severe HS. Rats were resuscitated with either fresh RBCs (FRBCs), 3-week-old hypoxically stored RBCs (HRBCs), or 3-week-old conventionally stored RBCs (CRBCs). Resuscitation was provided via RBCs transfusion equivalent to 70 % of the shed blood and animals were followed for 2 h. The control group was comprised of healthy animals that were not instrumented or injured. Post-resuscitation hemodynamics and lactate levels were improved with FRBCs and HRBCs, and markers of organ injury in the liver (Aspartate aminotransferase [AST]), lung (chemokine ligand 1 [CXCL-1] and Leukocytes count), and heart (cardiac troponin, Interleukin- 6 [IL-6] and Tumor Necrosis Factor Alpha[TNF-α]) were lower with FRBCs and HRBCs resuscitation compared to CRBCs. Following reperfusion, biomarkers for oxidative stress, lipid peroxidation, and RNA/DNA injury were assessed. Superoxide dismutase [SOD] levels in the HRBCs group were similar to the FRBCs group and levels in both groups were significantly higher than CRBCs. Catalase levels were not different than control values in the FRBCs and HRBCs groups but significantly lower with CRBCs. Thiobarbituric acid reactive substances [Tbars] levels were higher for both CRBCs and HRBCs. Hypoxically stored RBCs show few differences from fresh RBCs in resuscitation from TBI + HS and decreased organ injury and oxidative stress compared to conventionally stored RBCs.
Collapse
Affiliation(s)
- Cynthia R Muller
- Functional Cardiovascular Engineering Laboratory, Bioengineering Department, UC San Diego, La Jolla, CA 92093, United States of America
| | - Vasiliki Courelli
- Functional Cardiovascular Engineering Laboratory, Bioengineering Department, UC San Diego, La Jolla, CA 92093, United States of America
| | - Krianthan Govender
- Functional Cardiovascular Engineering Laboratory, Bioengineering Department, UC San Diego, La Jolla, CA 92093, United States of America
| | - Laurel Omert
- Hemanext, Lexington, MA, United States of America
| | | | - Pedro Cabrales
- Functional Cardiovascular Engineering Laboratory, Bioengineering Department, UC San Diego, La Jolla, CA 92093, United States of America.
| |
Collapse
|
11
|
Allen J, Dames SS, Foldi CJ, Shultz SR. Psychedelics for acquired brain injury: a review of molecular mechanisms and therapeutic potential. Mol Psychiatry 2024; 29:671-685. [PMID: 38177350 DOI: 10.1038/s41380-023-02360-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024]
Abstract
Acquired brain injury (ABI), such as traumatic brain injury and stroke, is a leading cause of disability worldwide, resulting in debilitating acute and chronic symptoms, as well as an increased risk of developing neurological and neurodegenerative disorders. These symptoms can stem from various neurophysiological insults, including neuroinflammation, oxidative stress, imbalances in neurotransmission, and impaired neuroplasticity. Despite advancements in medical technology and treatment interventions, managing ABI remains a significant challenge. Emerging evidence suggests that psychedelics may rapidly improve neurobehavioral outcomes in patients with various disorders that share physiological similarities with ABI. However, research specifically focussed on psychedelics for ABI is limited. This narrative literature review explores the neurochemical properties of psychedelics as a therapeutic intervention for ABI, with a focus on serotonin receptors, sigma-1 receptors, and neurotrophic signalling associated with neuroprotection, neuroplasticity, and neuroinflammation. The promotion of neuronal growth, cell survival, and anti-inflammatory properties exhibited by psychedelics strongly supports their potential benefit in managing ABI. Further research and translational efforts are required to elucidate their therapeutic mechanisms of action and to evaluate their effectiveness in treating the acute and chronic phases of ABI.
Collapse
Affiliation(s)
- Josh Allen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Shannon S Dames
- Psychedelic-Assisted Therapy Post-Graduate Program, Health Sciences and Human Services, Vancouver Island University, Nanaimo, BC, Canada
| | - Claire J Foldi
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Centre for Trauma and Mental Health Research, Health Sciences and Human Services, Vancouver Island University, Nanaimo, BC, Canada.
| |
Collapse
|
12
|
Simmons A, Mihalek O, Bimonte Nelson HA, Sirianni RW, Stabenfeldt SE. Acute brain injury and nanomedicine: sex as a biological variable. FRONTIERS IN BIOMATERIALS SCIENCE 2024; 3:1348165. [PMID: 39450372 PMCID: PMC11500709 DOI: 10.3389/fbiom.2024.1348165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Sex as a biological variable has been recognized for decades to be a critical aspect of the drug development process, as differences in drug pharmacology and toxicity in female versus male subjects can drive the success or failure of new therapeutics. These concepts in development of traditional drug systems have only recently begun to be applied for advancing nanomedicine systems that are designed for drug delivery or imaging in the central nervous system (CNS). This review provides a comprehensive overview of the current state of two fields of research - nanomedicine and acute brain injury-centering on sex as a biological variable. We highlight areas of each field that provide foundational understanding of sex as a biological variable in nanomedicine, brain development, immune response, and pathophysiology of traumatic brain injury and stroke. We describe current knowledge on female versus male physiology as well as a growing number of empirical reports that directly address sex as a biological variable in these contexts. In sum, the data make clear two key observations. First, the manner in which sex affects nanomedicine distribution, toxicity, or efficacy is important, complex, and depends on the specific nanoparticle system under considerations; second, although field knowledge is accumulating to enable us to understand sex as a biological variable in the fields of nanomedicine and acute brain injury, there are critical gaps in knowledge that will need to be addressed. We anticipate that understanding sex as a biological variable in the development of nanomedicine systems to treat acute CNS injury will be an important determinant of their success.
Collapse
Affiliation(s)
- Amberlyn Simmons
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Olivia Mihalek
- Department of Neurological Surgery, UMass Chan Medical School, Worcester, MA, United States
| | | | - Rachael W. Sirianni
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
- Department of Neurological Surgery, UMass Chan Medical School, Worcester, MA, United States
| | - Sarah E. Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
13
|
Karakaya E, Oleinik N, Edwards J, Tomberlin J, Barker RB, Berber B, Ericsson M, Alsudani H, Ergul A, Beyaz S, Lemasters JJ, Ogretmen B, Albayram O. p17/C18-ceramide-mediated mitophagy is an endogenous neuroprotective response in preclinical and clinical brain injury. PNAS NEXUS 2024; 3:pgae018. [PMID: 38328780 PMCID: PMC10847724 DOI: 10.1093/pnasnexus/pgae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Repeat concussions (or repetitive mild traumatic brain injury [rmTBI]) are complex pathological processes consisting of a primary insult and long-term secondary complications and are also a prerequisite for chronic traumatic encephalopathy (CTE). Recent evidence implies a significant role of autophagy-mediated dysfunctional mitochondrial clearance, mitophagy, in the cascade of secondary deleterious events resulting from TBI. C18-ceramide, a bioactive sphingolipid produced in response to cell stress and damage, and its synthesizing enzyme (CerS1) are precursors to selective stress-mediated mitophagy. A transporter, p17, mediates the trafficking of CerS1, induces C18-ceramide synthesis in the mitochondrial membrane, and acts as an elimination signal in cell survival. Whether p17-mediated mitophagy occurs in the brain and plays a causal role in mitochondrial quality control in secondary disease development after rmTBI are unknown. Using a novel repetitive less-than-mild TBI (rlmTBI) injury paradigm, ablation of mitochondrial p17/C18-ceramide trafficking in p17 knockout (KO) mice results in a loss of C18-ceramide-induced mitophagy, which contributes to susceptibility and recovery from long-term secondary complications associated with rlmTBI. Using a ceramide analog with lipid-selenium conjugate drug, LCL768 restored mitophagy and reduced long-term secondary complications, improving cognitive deficits in rlmTBI-induced p17KO mice. We obtained a significant reduction of p17 expression and a considerable decrease of CerS1 and C18-ceramide levels in cortical mitochondria of CTE human brains compared with age-matched control brains. These data demonstrated that p17/C18-ceramide trafficking is an endogenous neuroprotective mitochondrial stress response following rlmTBI, thus suggesting a novel prospective strategy to interrupt the CTE consequences of concussive TBI.
Collapse
Affiliation(s)
- Eda Karakaya
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Natalia Oleinik
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jazlyn Edwards
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jensen Tomberlin
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Randy Bent Barker
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Burak Berber
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Biology, Eskisehir Technical University, Tepebasi/Eskisehir 26555, Turkey
| | - Maria Ericsson
- Electron Microscopy Laboratory, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Habeeb Alsudani
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- College of Science, University of Basrah, Basra 61004, Iraq
| | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Jackson Department of Veterans Affairs Medical Center, Charleston, SC 29425, USA
| | - Semir Beyaz
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - John J Lemasters
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Onder Albayram
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Jackson Department of Veterans Affairs Medical Center, Charleston, SC 29425, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
14
|
Hasan GM, Anwar S, Shamsi A, Sohal SS, Hassan MI. The neuroprotective potential of phytochemicals in traumatic brain injury: mechanistic insights and pharmacological implications. Front Pharmacol 2024; 14:1330098. [PMID: 38239205 PMCID: PMC10794744 DOI: 10.3389/fphar.2023.1330098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024] Open
Abstract
Traumatic brain injury (TBI) leads to brain damage, comprising both immediate primary damage and a subsequent cascade of secondary injury mechanisms. The primary injury results in localized brain damage, while the secondary damage initiates inflammatory responses, followed by the disruption of the blood-brain barrier, infiltration of peripheral blood cells, brain edema, and the release of various immune mediators, including chemotactic factors and interleukins. TBI disrupts molecular signaling, cell structures, and functions. In addition to physical tissue damage, such as axonal injuries, contusions, and haemorrhages, TBI interferes with brain functioning, impacting cognition, decision-making, memory, attention, and speech capabilities. Despite a deep understanding of the pathophysiology of TBI, an intensive effort to evaluate the underlying mechanisms with effective therapeutic interventions is imperative to manage the repercussions of TBI. Studies have commenced to explore the potential of employing natural compounds as therapeutic interventions for TBI. These compounds are characterized by their low toxicity and limited interactions with conventional drugs. Moreover, many natural compounds demonstrate the capacity to target various aspects of the secondary injury process. While our understanding of the pathophysiology of TBI, there is an urgent need for effective therapeutic interventions to mitigate its consequences. Here, we aimed to summarize the mechanism of action and the role of phytochemicals against TBI progression. This review discusses the therapeutic implications of various phytonutrients and addresses primary and secondary consequences of TBI. In addition, we highlighted the roles of emerging phytochemicals as promising candidates for therapeutic intervention of TBI. The review highlights the neuroprotective roles of phytochemicals against TBI and the mechanistic approach. Furthermore, our efforts focused on the underlying mechanisms, providing a better understanding of the therapeutic potential of phytochemicals in TBI therapeutics.
Collapse
Affiliation(s)
- Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
15
|
Tu Y, Han D, Liu Y, Hong D, Chen R. Nicorandil attenuates cognitive impairment after traumatic brain injury via inhibiting oxidative stress and inflammation: Involvement of BDNF and NGF. Brain Behav 2024; 14:e3356. [PMID: 38376046 PMCID: PMC10757892 DOI: 10.1002/brb3.3356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/26/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND AND PURPOSE Cognitive impairment is a prevalent adverse consequence of traumatic brain injury (TBI). The neuroprotective effects of nicorandil (N-(2-hydroxyethyl)-nicotinamide nitrate) has been previously documented, yet its protective effects against cognitive dysfunction post-TBI remain unclear. Hence, the present study was aimed to evaluate whether nicorandil attenuates cognitive dysfunction in TBI rats and the underlying mechanism behind this process. METHODS The TBI model was established with a controlled cortical impact (CCI). The effects of nicorandil on cognitive dysfunction of rats with TBI were examined through Novel object recognition (NOR) test, Y-maze test, and Morris water maze (MWM) task. After behavioral tests, hippocampal tissue was collected for Quantitative real-time PCR, Western blot analysis, and Enzyme-linked immunosorbent assay (ELISA) assay. RESULTS We observed that nicorandil administration effectively ameliorates learning and memory impairment in TBI rats. Alongside, nicorandil treatment attenuated oxidative stress in the hippocampus of TBI rats, characterized by the decreased reactive oxygen species generation, malondialdehyde, and protein carbonyls levels, and concurrent promotion of antioxidant-related factors (including superoxide dismutase, glutathione peroxidase, and catalase) activities. Additionally, nicorandil treatment attenuated the inflammatory response in the hippocampus of TBI rat, as evidenced by the upregulated levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α), as well as the downregulated level of IL-10. Mechanistically, nicorandil treatment significantly enhanced the mRNA and protein levels of neurotrophic factors, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the hippocampus of TBI rats. CONCLUSION These findings suggest that nicorandil mitigates cognitive impairment after TBI by suppressing oxidative stress and inflammation, potentially through enhancing BDNF and NGF levels.
Collapse
Affiliation(s)
- Yaoyan Tu
- Department of Emergency and Trauma CenterNanchang First HospitalNanchangJiangxiChina
| | - Desen Han
- Department of Emergency and Trauma CenterNanchang First HospitalNanchangJiangxiChina
| | - Yanjun Liu
- Department of Emergency and Trauma CenterNanchang First HospitalNanchangJiangxiChina
| | - Dequan Hong
- Department of Emergency and Trauma CenterNanchang First HospitalNanchangJiangxiChina
| | - Rehua Chen
- Department of Emergency and Trauma CenterNanchang First HospitalNanchangJiangxiChina
| |
Collapse
|
16
|
Soltani A, Chugaeva UY, Ramadan MF, Saleh EAM, Al-Hasnawi SS, Romero-Parra RM, Alsaalamy A, Mustafa YF, Zamanian MY, Golmohammadi M. A narrative review of the effects of dexamethasone on traumatic brain injury in clinical and animal studies: focusing on inflammation. Inflammopharmacology 2023; 31:2955-2971. [PMID: 37843641 DOI: 10.1007/s10787-023-01361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
Traumatic brain injury (TBI) is a type of brain injury resulting from a sudden physical force to the head. TBI can range from mild, such as a concussion, to severe, which might result in long-term complications or even death. The initial impact or primary injury to the brain is followed by neuroinflammation, excitotoxicity, and oxidative stress, which are the hallmarks of the secondary injury phase, that can further damage the brain tissue. Dexamethasone (DXM) has neuroprotective effects. It reduces neuroinflammation, a critical factor in secondary injury-associated neuronal damage. DXM can also suppress the microglia activation and infiltrated macrophages, which are responsible for producing pro-inflammatory cytokines that contribute to neuroinflammation. Considering the outcomes of this research, some of the effects of DXM on TBI include: (1) DXM-loaded hydrogels reduce apoptosis, neuroinflammation, and lesion volume and improves neuronal cell survival and motor performance, (2) DXM treatment elevates the levels of Ndufs2, Gria3, MAOB, and Ndufv2 in the hippocampus following TBI, (3) DXM decreases the quantity of circulating endothelial progenitor cells, (4) DXM reduces the expression of IL1, (5) DXM suppresses the infiltration of RhoA + cells into primary lesions of TBI and (6) DXM treatment led to an increase in fractional anisotropy values and a decrease in apparent diffusion coefficient values, indicating improved white matter integrity. According to the study, the findings show that DXM treatment has neuroprotective effects in TBI. This indicates that DXM is a promising therapeutic approach to treating TBI.
Collapse
Affiliation(s)
- Afsaneh Soltani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, 11991, Wadi Al-Dawasir, Saudi Arabia
| | | | | | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Musyaju S, Modi HR, Flerlage WJ, Scultetus AH, Shear DA, Pandya JD. Revert total protein normalization method offers a reliable loading control for mitochondrial samples following TBI. Anal Biochem 2023; 680:115301. [PMID: 37673410 DOI: 10.1016/j.ab.2023.115301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Owing to evidence that mitochondrial dysfunction plays a dominant role in the traumatic brain injury (TBI) pathophysiology, the Western blot (WB) based immunoblotting method is widely employed to identify changes in the mitochondrial protein expressions after neurotrauma. In WB method, the housekeeping proteins (HKPs) expression is routinely used as an internal control for sample normalization. However, the traditionally employed HKPs can be susceptible to complex cascades of TBI pathogenesis, leading to their inconsistent expression. Remarkably, our data illustrated here that mitochondrial HKPs, including Voltage-dependent anion channels (VDAC), Complex-IV, Cytochrome C and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) yielded altered expressions following penetrating TBI (PTBI) as compared to Sham. Therefore, our goal was to identify more precise normalization procedure in WB. Adult male Sprague Dawley rats (N = 6 rats/group) were used to perform PTBI, and the novel REVERT Total Protein (RTP) method was used to quantify mitochondrial protein load consistency between samples at 6 h and 24 h post-injury. Notably, the RTP method displayed superior protein normalization compared to HKPs method with higher sensitivity at both time-points between experimental groups. Our data favors application of RTP based normalization to accurately quantify protein expression where inconsistent HKPs may be evident in neuroscience research.
Collapse
Affiliation(s)
- Sudeep Musyaju
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Hiren R Modi
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - William J Flerlage
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Anke H Scultetus
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Deborah A Shear
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Jignesh D Pandya
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| |
Collapse
|
18
|
Gowthami N, Pursotham N, Dey G, Ghose V, Sathe G, Pruthi N, Shukla D, Gayathri N, Santhoshkumar R, Padmanabhan B, Chandramohan V, Mahadevan A, Srinivas Bharath MM. Neuroanatomical zones of human traumatic brain injury reveal significant differences in protein profile and protein oxidation: Implications for secondary injury events. J Neurochem 2023; 167:218-247. [PMID: 37694499 DOI: 10.1111/jnc.15953] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
Traumatic brain injury (TBI) causes significant neurological deficits and long-term degenerative changes. Primary injury in TBI entails distinct neuroanatomical zones, i.e., contusion (Ct) and pericontusion (PC). Their dynamic expansion could contribute to unpredictable neurological deterioration in patients. Molecular characterization of these zones compared with away from contusion (AC) zone is invaluable for TBI management. Using proteomics-based approach, we were able to distinguish Ct, PC and AC zones in human TBI brains. Ct was associated with structural changes (blood-brain barrier (BBB) disruption, neuroinflammation, axonal injury, demyelination and ferroptosis), while PC was associated with initial events of secondary injury (glutamate excitotoxicity, glial activation, accumulation of cytoskeleton proteins, oxidative stress, endocytosis) and AC displayed mitochondrial dysfunction that could contribute to secondary injury events and trigger long-term degenerative changes. Phosphoproteome analysis in these zones revealed that certain differentially phosphorylated proteins synergistically contribute to the injury events along with the differentially expressed proteins. Non-synaptic mitochondria (ns-mito) was associated with relatively more differentially expressed proteins (DEPs) compared to synaptosomes (Syn), while the latter displayed increased protein oxidation including tryptophan (Trp) oxidation. Proteomic analysis of immunocaptured complex I (CI) from Syn revealed increased Trp oxidation in Ct > PC > AC (vs. control). Oxidized W272 in the ND1 subunit of CI, revealed local conformational changes in ND1 and the neighboring subunits, as indicated by molecular dynamics simulation (MDS). Taken together, neuroanatomical zones in TBI show distinct protein profile and protein oxidation representing different primary and secondary injury events with potential implications for TBI pathology and neurological status of the patients.
Collapse
Affiliation(s)
- Niya Gowthami
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Nithya Pursotham
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Gourav Dey
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Vivek Ghose
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Gajanan Sathe
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Nupur Pruthi
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Dhaval Shukla
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Rashmi Santhoshkumar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Balasundaram Padmanabhan
- Department of Biophysics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology (SIT), Tumakuru, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|
19
|
Wang ZG, Sharma A, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Huang H, Chen L, Manzhulo I, Wiklund L, Sharma HS. Co-administration of dl-3-n-butylphthalide and neprilysin is neuroprotective in Alzheimer disease associated with mild traumatic brain injury. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 172:145-185. [PMID: 37833011 DOI: 10.1016/bs.irn.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
dl-3-n-Butylphthalide is a potent synthetic Chinese celery extract that is highly efficient in inducing neuroprotection in concussive head injury (CHI), Parkinson's disease, Alzheimer's disease, stroke as well as depression, dementia, anxiety and other neurological diseases. Thus, there are reasons to believe that dl-3-n-butylphthalide could effectively prevent Alzheimer's disease brain pathology. Military personnel during combat operation or veterans are often the victims of brain injury that is a major risk factor for developing Alzheimer's disease in their later lives. In our laboratory we have shown that CHI exacerbates Alzheimer's disease brain pathology and reduces the amyloid beta peptide (AβP) inactivating enzyme neprilysin. We have used TiO2 nanowired-dl-3-n-butylphthalide in attenuating Parkinson's disease brain pathology exacerbated by CHI. Nanodelivery of dl-3-n-butylphthalide appears to be more potent as compared to the conventional delivery of the compound. Thus, it would be interesting to examine the effects of nanowired dl-3-n-butylphthalide together with nanowired delivery of neprilysin in Alzheimer's disease model on brain pathology. In this investigation we found that nanowired delivery of dl-3-n-butylphthalide together with nanowired neprilysin significantly attenuated brain pathology in Alzheimer's disease model with CHI, not reported earlier. The possible mechanism and clinical significance is discussed based on the current literature.
Collapse
Affiliation(s)
- Zhenguo G Wang
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, Hebei Province, P.R. China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston, MA, USA
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, P.R. China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, P.R. China
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden; LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.
| |
Collapse
|
20
|
Liu Z, Wang X, Wu Z, Yin G, Chu H, Zhao P. HBOT has a better cognitive outcome than NBH for patients with mild traumatic brain injury: A randomized controlled clinical trial. Medicine (Baltimore) 2023; 102:e35215. [PMID: 37713814 PMCID: PMC10508512 DOI: 10.1097/md.0000000000035215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Normobaric hyperoxia (NBH) and hyperbaric oxygen therapy (HBOT) are effective treatment plan for traumatic brain injury (TBI). The aim of this study was to compare cognitive outcome after mild TBI between NBH and HBOT so as to provide a more suitable treatment strategy for patients with mild TBI. METHODS A prospective research was conducted between October 2017 and March 2023, enrolling patients with mild TBI (Glasgow coma scale score: 13-15 points) within 24 hours of injury in Cangzhou Central Hospital. Patients were randomized into 3 groups: group control (C), group NBH and group HBOT. The patients in HBOT group received hyperbaric oxygen therapy in high pressure oxygen chamber and patients in NBH group received hyperbaric oxygen therapy. at 0 minute before NBH or HBOT (T1), 0 minute after NBH or HBOT (T2) and 30 days after NBH or HBOT (T3), level of S100β, NSE, GFAP, HIF-1α, and MDA were determined by ELISA. At the same time, the detection was performed for MoCA and MMSE scores, along with rSO2. RESULTS The results showed both NBH and HBOT could improve the score of MoCA and MMSE, as well as the decrease the level of S100β, NSE, GFAP, HIF-1α, MDA, and rSO2 compared with group C. Furthermore, the patients in group HBOT have higher score of MoCA and MMSE and lower level of S100β, NSE, GFAP, HIF-1α, MDA, and rSO2. CONCLUSION Both NBH and HBOT can effectively improve cognitive outcome for patients with mild TBI by improving cerebral hypoxia and alleviating brain injury, while HBOT exert better effect than NBH.
Collapse
Affiliation(s)
- Zhiguo Liu
- The Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, China
| | - Xirui Wang
- The Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, China
| | - Zhiyou Wu
- The Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, China
| | - Gangfeng Yin
- The Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, China
| | - Haibin Chu
- The Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, China
| | - Pengyue Zhao
- The Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, China
| |
Collapse
|
21
|
Karmanova E, Chernikov A, Usacheva A, Ivanov V, Bruskov V. Metformin counters oxidative stress and mitigates adverse effects of radiation exposure: An overview. Fundam Clin Pharmacol 2023. [PMID: 36852652 DOI: 10.1111/fcp.12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/19/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Metformin (1,1-dimethylbiguanidine hydrochloride) (MF) is a drug that has long been in use for the treatment of type 2 diabetes mellitus and recently is coming into use in the radiation therapy of cancer and other conditions. Exposure to ionizing radiation disturbs the redox homeostasis of cells and causes damage to proteins, membranes, and mitochondria, destroying a number of biological processes. After irradiation, MF activates cellular antioxidant and repair systems by signaling to eliminate the harmful consequences of disruption of redox homeostasis. The use of MF in the treatment of the negative effects of irradiation has great potential in medical patients after radiotherapy and in victims of nuclear accidents or radiologic terrorism.
Collapse
Affiliation(s)
- Ekaterina Karmanova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.,Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Federal Research Center of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Anatoly Chernikov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Anna Usacheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Vladimir Ivanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Vadim Bruskov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
22
|
Wang J, Shi Y, Cao S, Liu X, Martin LJ, Simoni J, Soltys BJ, Hsia CJC, Koehler RC. Polynitroxylated PEGylated hemoglobin protects pig brain neocortical gray and white matter after traumatic brain injury and hemorrhagic shock. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1074643. [PMID: 36896342 PMCID: PMC9988926 DOI: 10.3389/fmedt.2023.1074643] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/13/2023] [Indexed: 02/23/2023] Open
Abstract
Polynitroxylated PEGylated hemoglobin (PNPH, aka SanFlow) possesses superoxide dismutase/catalase mimetic activities that may directly protect the brain from oxidative stress. Stabilization of PNPH with bound carbon monoxide prevents methemoglobin formation during storage and permits it to serve as an anti-inflammatory carbon monoxide donor. We determined whether small volume transfusion of hyperoncotic PNPH is neuroprotective in a porcine model of traumatic brain injury (TBI) with and without accompanying hemorrhagic shock (HS). TBI was produced by controlled cortical impact over the frontal lobe of anesthetized juvenile pigs. Hemorrhagic shock was induced starting 5 min after TBI by 30 ml/kg blood withdrawal. At 120 min after TBI, pigs were resuscitated with 60 ml/kg lactated Ringer's (LR) or 10 or 20 ml/kg PNPH. Mean arterial pressure recovered to approximately 100 mmHg in all groups. A significant amount of PNPH was retained in the plasma over the first day of recovery. At 4 days of recovery in the LR-resuscitated group, the volume of frontal lobe subcortical white matter ipsilateral to the injury was 26.2 ± 7.6% smaller than homotypic contralateral volume, whereas this white matter loss was only 8.6 ± 12.0% with 20-ml/kg PNPH resuscitation. Amyloid precursor protein punctate accumulation, a marker of axonopathy, increased in ipsilateral subcortical white matter by 132 ± 71% after LR resuscitation, whereas the changes after 10 ml/kg (36 ± 41%) and 20 ml/kg (26 ± 15%) PNPH resuscitation were not significantly different from controls. The number of cortical neuron long dendrites enriched in microtubules (length >50 microns) decreased in neocortex by 41 ± 24% after LR resuscitation but was not significantly changed after PNPH resuscitation. The perilesion microglia density increased by 45 ± 24% after LR resuscitation but was unchanged after 20 ml/kg PNPH resuscitation (4 ± 18%). Furthermore, the number with an activated morphology was attenuated by 30 ± 10%. In TBI pigs without HS followed 2 h later by infusion of 10 ml/kg LR or PNPH, PNPH remained neuroprotective. These results in a gyrencephalic brain show that resuscitation from TBI + HS with PNPH protects neocortical gray matter, including dendritic microstructure, and white matter axons and myelin. This neuroprotective effect persists with TBI alone, indicating brain-targeting benefits independent of blood pressure restoration.
Collapse
Affiliation(s)
- Jun Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Yanrong Shi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Suyi Cao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Xiuyun Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Lee J. Martin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Jan Simoni
- AntiRadical Therapeutics LLC, Sioux Falls, SD, United States
| | | | | | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
23
|
Rauchman SH, Zubair A, Jacob B, Rauchman D, Pinkhasov A, Placantonakis DG, Reiss AB. Traumatic brain injury: Mechanisms, manifestations, and visual sequelae. Front Neurosci 2023; 17:1090672. [PMID: 36908792 PMCID: PMC9995859 DOI: 10.3389/fnins.2023.1090672] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Traumatic brain injury (TBI) results when external physical forces impact the head with sufficient intensity to cause damage to the brain. TBI can be mild, moderate, or severe and may have long-term consequences including visual difficulties, cognitive deficits, headache, pain, sleep disturbances, and post-traumatic epilepsy. Disruption of the normal functioning of the brain leads to a cascade of effects with molecular and anatomical changes, persistent neuronal hyperexcitation, neuroinflammation, and neuronal loss. Destructive processes that occur at the cellular and molecular level lead to inflammation, oxidative stress, calcium dysregulation, and apoptosis. Vascular damage, ischemia and loss of blood brain barrier integrity contribute to destruction of brain tissue. This review focuses on the cellular damage incited during TBI and the frequently life-altering lasting effects of this destruction on vision, cognition, balance, and sleep. The wide range of visual complaints associated with TBI are addressed and repair processes where there is potential for intervention and neuronal preservation are highlighted.
Collapse
Affiliation(s)
| | - Aarij Zubair
- NYU Long Island School of Medicine, Mineola, NY, United States
| | - Benna Jacob
- NYU Long Island School of Medicine, Mineola, NY, United States
| | - Danielle Rauchman
- Department of Neuroscience, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Aaron Pinkhasov
- NYU Long Island School of Medicine, Mineola, NY, United States
| | | | - Allison B Reiss
- NYU Long Island School of Medicine, Mineola, NY, United States
| |
Collapse
|
24
|
Dutysheva EA, Mikhaylova ER, Trestsova MA, Andreev AI, Apushkin DY, Utepova IA, Serebrennikova PO, Akhremenko EA, Aksenov ND, Bon’ EI, Zimatkin SM, Chupakhin ON, Margulis BA, Guzhova IV, Lazarev VF. Combination of a Chaperone Synthesis Inducer and an Inhibitor of GAPDH Aggregation for Rehabilitation after Traumatic Brain Injury: A Pilot Study. Pharmaceutics 2022; 15:pharmaceutics15010007. [PMID: 36678636 PMCID: PMC9867013 DOI: 10.3390/pharmaceutics15010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The recovery period after traumatic brain injury (TBI) is often complicated by secondary damage that may last for days or even months after trauma. Two proteins, Hsp70 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were recently described as modulating post-traumatic processes, and in this study, we test them as targets for combination therapy using an inhibitor of GAPDH aggregation (derivative of hydrocortisone RX624) and an inducer of Hsp70 synthesis (the pyrrolylazine derivative PQ-29). The protective effect of the combination on C6 rat glioblastoma cells treated with the cerebrospinal fluid of traumatized animals resulted in an increase in the cell index and in a reduced level of apoptosis. Using a rat weight drop model of TBI, we found that the combined use of both drugs prevented memory impairment and motor deficits, as well as a reduction of neurons and accumulation of GAPDH aggregates in brain tissue. In conclusion, we developed and tested a new approach to the treatment of TBI based on influencing distinct molecular mechanisms in brain cells.
Collapse
Affiliation(s)
| | - Elena R. Mikhaylova
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Maria A. Trestsova
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Ekaterinburg, Russia
| | - Alexander I. Andreev
- Laboratory of Experimental Pharmacology, Perm State University, 614990 Perm, Russia
- Perm State Pharmaceutical Academy, 614990 Perm, Russia
| | - Danila Yu. Apushkin
- Laboratory of Experimental Pharmacology, Perm State University, 614990 Perm, Russia
- Perm State Pharmaceutical Academy, 614990 Perm, Russia
| | - Irina A. Utepova
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Ekaterinburg, Russia
- Postovsky Institute of Organic Synthesis, Ural Branch, The Russian Academy of Sciences, 620108 Ekaterinburg, Russia
| | - Polina O. Serebrennikova
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Ekaterinburg, Russia
| | | | - Nikolay D. Aksenov
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Elizaveta I. Bon’
- Department of Histology, Cytology and Embryology, Grodno State Medical University, 230009 Grodno, Belarus
| | - Sergey M. Zimatkin
- Department of Histology, Cytology and Embryology, Grodno State Medical University, 230009 Grodno, Belarus
| | - Oleg N. Chupakhin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Ekaterinburg, Russia
- Postovsky Institute of Organic Synthesis, Ural Branch, The Russian Academy of Sciences, 620108 Ekaterinburg, Russia
| | - Boris A. Margulis
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Irina V. Guzhova
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Vladimir F. Lazarev
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-931-233-1811
| |
Collapse
|
25
|
Antioxidant Therapeutic Strategies in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23169328. [PMID: 36012599 PMCID: PMC9409201 DOI: 10.3390/ijms23169328] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 12/14/2022] Open
Abstract
The distinguishing pathogenic features of neurodegenerative diseases include mitochondrial dysfunction and derived reactive oxygen species generation. The neural tissue is highly sensitive to oxidative stress and this is a prominent factor in both chronic and acute neurodegeneration. Based on this, therapeutic strategies using antioxidant molecules towards redox equilibrium have been widely used for the treatment of several brain pathologies. Globally, polyphenols, carotenes and vitamins are among the most typical exogenous antioxidant agents that have been tested in neurodegeneration as adjunctive therapies. However, other types of antioxidants, including hormones, such as the widely used melatonin, are also considered neuroprotective agents and have been used in different neurodegenerative contexts. This review highlights the most relevant mitochondrial antioxidant targets in the main neurodegenerative disorders including Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease and also in the less represented amyotrophic lateral sclerosis, as well as traumatic brain injury, while summarizing the latest randomized placebo-controlled trials.
Collapse
|