1
|
Woraikat S, Chen D, Yang F, Tang C, He F, Qian K. Dexamethasone and Insulin Modulate Alanine Aminotransferase (ALT) Activity and Alanine Oxidation in C2C12 Cells in a Dose-Dependent Manner. Cureus 2024; 16:e59331. [PMID: 38817503 PMCID: PMC11137606 DOI: 10.7759/cureus.59331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND The muscle cells myocytes are differentiated for the purpose of contraction function, which plays a major role in body metabolism and energy haemostasis, through different metabolic pathways, such as glucose and protein metabolic pathways. Alanine aminotransferase (ALT) plays a crucial role by reversibly catalysing transamination between alanine and a-ketoglutarate to form pyruvate and glutamate and by mediating the conversion of these four major intermediate metabolites. ALT plays important roles for energy homeostasis during fasting and prolonged exercise anaerobically, when muscle protein must first be broken down into its constituent amino acids. METHODS Mouse skeletal myoblast cell line C2C12 was cultured in Dulbecco's modified eagle medium (DMEM) growth medium, supplied with 2% horse serum supplemented with 1 uM insulin, 2 mM glutamine and penicillin and streptomycin antibiotics for seven days. The differentiation medium is refreshed every 24 hours. Then, C2C12 cells were treated with insulin and dexamethasone to examine their effects on myocytes' ALT activity. RESULTS In our study, we found an impact on ALT activity under different influences, including C2C12 differentiation, dexamethasone and insulin treatments, which shed light on the dynamic interplay between ALT activity, alanine metabolism, and cellular states, like differentiation and stress responses. CONCLUSION The study provides valuable insights into the dynamic regulation of ALT activity and alanine metabolism in C2C12 cells across differentiation and drug treatments. Further research is encouraged to explore the underlying mechanisms and their implications for muscle function, differentiation and potential therapeutic interventions in metabolic disorders.
Collapse
Affiliation(s)
- Saed Woraikat
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, CHN
| | - Defei Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, CHN
| | - Fuyu Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, TCD
| | - Chenglin Tang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, CHN
| | - Fan He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, CHN
| | - Kun Qian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, CHN
| |
Collapse
|
2
|
Cui Y, Lanne A, Peng X, Browne E, Bhatt A, Coltman NJ, Craven P, Cox LR, Cundy NJ, Dale K, Feula A, Frampton J, Fung M, Morton M, Goff A, Salih M, Lang X, Li X, Moon C, Pascoe J, Portman V, Press C, Schulz-Utermoehl T, Lee S, Tortorella MD, Tu Z, Underwood ZE, Wang C, Yoshizawa A, Zhang T, Waddell SJ, Bacon J, Alderwick L, Fossey JS, Neagoie C. Azetidines Kill Multidrug-Resistant Mycobacterium tuberculosis without Detectable Resistance by Blocking Mycolate Assembly. J Med Chem 2024; 67:2529-2548. [PMID: 38331432 PMCID: PMC10895678 DOI: 10.1021/acs.jmedchem.3c01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Tuberculosis (TB) is the leading cause of global morbidity and mortality resulting from infectious disease, with over 10.6 million new cases and 1.4 million deaths in 2021. This global emergency is exacerbated by the emergence of multidrug-resistant MDR-TB and extensively drug-resistant XDR-TB; therefore, new drugs and new drug targets are urgently required. From a whole cell phenotypic screen, a series of azetidines derivatives termed BGAz, which elicit potent bactericidal activity with MIC99 values <10 μM against drug-sensitive Mycobacterium tuberculosis and MDR-TB, were identified. These compounds demonstrate no detectable drug resistance. The mode of action and target deconvolution studies suggest that these compounds inhibit mycobacterial growth by interfering with cell envelope biogenesis, specifically late-stage mycolic acid biosynthesis. Transcriptomic analysis demonstrates that the BGAz compounds tested display a mode of action distinct from the existing mycobacterial cell wall inhibitors. In addition, the compounds tested exhibit toxicological and PK/PD profiles that pave the way for their development as antitubercular chemotherapies.
Collapse
Affiliation(s)
- Yixin Cui
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Alice Lanne
- Institute
of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West
Midlands B15 2TT, U.K.
| | - Xudan Peng
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Edward Browne
- Sygnature
Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham NG1 1GR, U.K.
| | - Apoorva Bhatt
- Institute
of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West
Midlands B15 2TT, U.K.
| | - Nicholas J. Coltman
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Philip Craven
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Liam R. Cox
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Nicholas J. Cundy
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Katie Dale
- Institute
of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West
Midlands B15 2TT, U.K.
| | - Antonio Feula
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Jon Frampton
- College of
Medical and Dental Sciences, University
of Birmingham, Edgbaston, Birmingham, West
Midlands B15 2TT, U.K.
| | - Martin Fung
- Centre
for Regenerative Medicine and Health, Hong Kong Institute of Science
& Innovation, Chinese Academy of Sciences, 15 Science Park West Avenue NT, Hong Kong SAR
| | - Michael Morton
- ApconiX
Ltd, BIOHUB at Alderly Park, Nether Alderly, Cheshire SK10 4TG, U.K.
| | - Aaron Goff
- Department
of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9PX, U.K.
| | - Mariwan Salih
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Xingfen Lang
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Xingjian Li
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Chris Moon
- TB
Research Group, National Infection Service, Public Health England (UKHSA), Manor Farm Road, Porton, Salisbury SP4 0JG, U.K.
| | - Jordan Pascoe
- TB
Research Group, National Infection Service, Public Health England (UKHSA), Manor Farm Road, Porton, Salisbury SP4 0JG, U.K.
| | - Vanessa Portman
- Sygnature
Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham NG1 1GR, U.K.
| | - Cara Press
- Institute
of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West
Midlands B15 2TT, U.K.
| | - Timothy Schulz-Utermoehl
- Sygnature
Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham NG1 1GR, U.K.
| | - Suki Lee
- Centre
for Regenerative Medicine and Health, Hong Kong Institute of Science
& Innovation, Chinese Academy of Sciences, 15 Science Park West Avenue NT, Hong Kong SAR
| | - Micky D. Tortorella
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
- Centre
for Regenerative Medicine and Health, Hong Kong Institute of Science
& Innovation, Chinese Academy of Sciences, 15 Science Park West Avenue NT, Hong Kong SAR
| | - Zhengchao Tu
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Zoe E. Underwood
- TB
Research Group, National Infection Service, Public Health England (UKHSA), Manor Farm Road, Porton, Salisbury SP4 0JG, U.K.
| | - Changwei Wang
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Akina Yoshizawa
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Tianyu Zhang
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Simon J. Waddell
- Department
of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9PX, U.K.
| | - Joanna Bacon
- TB
Research Group, National Infection Service, Public Health England (UKHSA), Manor Farm Road, Porton, Salisbury SP4 0JG, U.K.
| | - Luke Alderwick
- Institute
of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West
Midlands B15 2TT, U.K.
- Discovery
Sciences, Charles River Laboratories, Chesterford Research Park, Saffron Walden CB10 1XL, U.K.
| | - John S. Fossey
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Cleopatra Neagoie
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
- Centre
for Regenerative Medicine and Health, Hong Kong Institute of Science
& Innovation, Chinese Academy of Sciences, 15 Science Park West Avenue NT, Hong Kong SAR
- Visiting
Scientist, School of Chemistry, University
of Birmingham, Edgbaston, Birmingham, West
Midlands B15 2TT, U.K.
| |
Collapse
|
3
|
Singha B, Murmu S, Nair T, Rawat RS, Sharma AK, Soni V. Metabolic Rewiring of Mycobacterium tuberculosis upon Drug Treatment and Antibiotics Resistance. Metabolites 2024; 14:63. [PMID: 38248866 PMCID: PMC10820029 DOI: 10.3390/metabo14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge, further compounded by the issue of antimicrobial resistance (AMR). AMR is a result of several system-level molecular rearrangements enabling bacteria to evolve with better survival capacities: metabolic rewiring is one of them. In this review, we present a detailed analysis of the metabolic rewiring of Mtb in response to anti-TB drugs and elucidate the dynamic mechanisms of bacterial metabolism contributing to drug efficacy and resistance. We have discussed the current state of AMR, its role in the prevalence of the disease, and the limitations of current anti-TB drug regimens. Further, the concept of metabolic rewiring is defined, underscoring its relevance in understanding drug resistance and the biotransformation of drugs by Mtb. The review proceeds to discuss the metabolic adaptations of Mtb to drug treatment, and the pleiotropic effects of anti-TB drugs on Mtb metabolism. Next, the association between metabolic changes and antimycobacterial resistance, including intrinsic and acquired drug resistance, is discussed. The review concludes by summarizing the challenges of anti-TB treatment from a metabolic viewpoint, justifying the need for this discussion in the context of novel drug discovery, repositioning, and repurposing to control AMR in TB.
Collapse
Affiliation(s)
- Biplab Singha
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Sumit Murmu
- Regional Centre of Biotechnology, Faridabad 121001, India;
| | - Tripti Nair
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA;
| | - Rahul Singh Rawat
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi 110067, India;
| | - Aditya Kumar Sharma
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
4
|
Kumar R, Sharma P, Chauhan A, Singh N, Prajapati VM, Singh SK. Malate:quinone oxidoreductase knockout makes Mycobacterium tuberculosis susceptible to stress and affects its in vivo survival. Microbes Infect 2024; 26:105215. [PMID: 37689346 DOI: 10.1016/j.micinf.2023.105215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Mycobacterium tuberculosis H37Ra (Mtb-Ra) ORF MRA_2875, annotated as malate:quinone oxidoreductase (mqo), is thought to have a role in TCA cycle in converting malate to oxaloacetate. To study its physiological relevance, we developed mqo knockout (KO) in Mtb-Ra. A KO complemented (KOC) strain was also developed by complementing the KO with mqo over-expressing construct. Under normal in vitro conditions, KO does not show any growth defect but showed reduced CFU burden in macrophages and in mice lungs. In vitro studies with KO showed reduced fitness under oxidative and low pH stress, and also increased susceptibility to levofloxacin and D-cycloserine. Transcript analysis of mqo showed increased expression levels under oxidative and low pH stress. This is the first study to show physiological relevance of mqo encoded by MRA_2875 in Mtb-Ra under oxidative and low pH stress. In summary, the present study shows that MRA_2875 encoded malate:quinone oxidoreductase is a functional enzyme which contributes to oxidative stress and low pH tolerance, and survival in macrophages and in mice.
Collapse
Affiliation(s)
- Ram Kumar
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Princi Sharma
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anu Chauhan
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nirbhay Singh
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - V M Prajapati
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sudheer Kumar Singh
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Pederick JL, Woolman JC, Bruning JB. Comparative functional and structural analysis of Pseudomonas aeruginosa d-alanine-d-alanine ligase isoforms as prospective antibiotic targets. FEBS J 2023; 290:5536-5553. [PMID: 37581574 DOI: 10.1111/febs.16932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/02/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Pseudomonas aeruginosa is a major human pathogen in the healthcare setting. The emergence of multi-drug-resistant and extensive drug-resistant P. aeruginosa is of great concern, and clearly indicates that new alternatives to current first-line antibiotics are required in the future. Inhibition of d-alanine-d-alanine production presents as a promising avenue as it is a key component in the essential process of cell wall biosynthesis. In P. aeruginosa, d-alanine-d-alanine production is facilitated by two isoforms, d-alanine-d-alanine ligase A (PaDdlA) and d-alanine-d-alanine ligase B (PaDdlA), but neither enzyme has been individually characterised to date. Here, we present the functional and structural characterisation of PaDdlA and PaDdlB, and assess their potential as antibiotic targets. This was achieved using a combination of in vitro enzyme-activity assays and X-ray crystallography. The former revealed that both isoforms effectively catalyse d-alanine-d-alanine production with near identical efficiency, and that this is effectively disrupted by the model d-alanine-d-alanine ligase inhibitor, d-cycloserine. Next, each isoform was co-crystallised with ATP and either d-alanine-d-alanine or d-cycloserine, allowing direct comparison of the key structural features. Both isoforms possess the same structural architecture and share a high level of conservation within the active site. Although residues forming the d-alanine pocket are completely conserved, the ATP-binding pocket possesses several amino acid substitutions resulting in a differing chemical environment around the ATP adenine base. Together, these findings support that the discovery of dual PaDdlA/PaDdlB competitive inhibitors is a viable approach for developing new antibiotics against P. aeruginosa.
Collapse
Affiliation(s)
- Jordan L Pederick
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, SA, Australia
| | - Jessica C Woolman
- School of Biological Sciences, The University of Adelaide, SA, Australia
| | - John B Bruning
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, SA, Australia
| |
Collapse
|
6
|
Kaur H, Modgil V, Chaudhary N, Mohan B, Taneja N. Computational Guided Drug Targets Identification against Extended-Spectrum Beta-Lactamase-Producing Multi-Drug Resistant Uropathogenic Escherichia coli. Biomedicines 2023; 11:2028. [PMID: 37509666 PMCID: PMC10377140 DOI: 10.3390/biomedicines11072028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Urinary tract infections (UTIs) are one of the most frequent bacterial infections in the world, both in the hospital and community settings. Uropathogenic Escherichia coli (UPEC) are the predominant etiological agents causing UTIs. Extended-spectrum beta-lactamase (ESBL) production is a prominent mechanism of resistance that hinders the antimicrobial treatment of UTIs caused by UPEC and poses a substantial danger to the arsenal of antibiotics now in use. As bacteria have several methods to counteract the effects of antibiotics, identifying new potential drug targets may help in the design of new antimicrobial agents, and in the control of the rising trend of antimicrobial resistance (AMR). The public availability of the entire genome sequences of humans and many disease-causing organisms has accelerated the hunt for viable therapeutic targets. Using a unique, hierarchical, in silico technique using computational tools, we discovered and described potential therapeutic drug targets against the ESBL-producing UPEC strain NA114. Three different sets of proteins (chokepoint, virulence, and resistance genes) were explored in phase 1. In phase 2, proteins shortlisted from phase 1 were analyzed for their essentiality, non-homology to the human genome, and gut flora. In phase 3, the further shortlisted putative drug targets were qualitatively characterized, including their subcellular location, broad-spectrum potential, and druggability evaluations. We found seven distinct targets for the pathogen that showed no similarity to the human proteome. Thus, possibilities for cross-reactivity between a target-specific antibacterial and human proteins were minimized. The subcellular locations of two targets, ECNA114_0085 and ECNA114_1060, were predicted as cytoplasmic and periplasmic, respectively. These proteins play an important role in bacterial peptidoglycan biosynthesis and inositol phosphate metabolism, and can be used in the design of drugs against these bacteria. Inhibition of these proteins will be helpful to combat infections caused by MDR UPEC.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vinay Modgil
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Naveen Chaudhary
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Balvinder Mohan
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Neelam Taneja
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
7
|
Kim HJ, Lee YJ, Song MJ, Kwon BS, Kim YW, Lim SY, Lee YJ, Park JS, Cho YJ, Lee CT, Lee JH. Real-world experience of adverse reactions-necessitated rifampicin-sparing treatment for drug-susceptible pulmonary tuberculosis. Sci Rep 2023; 13:11275. [PMID: 37438379 DOI: 10.1038/s41598-023-38394-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023] Open
Abstract
Rifampicin is an important agent for tuberculosis treatment; however, it is often discontinued because of adverse reactions. The treatment regimen then can be administered as that for rifampicin-resistant tuberculosis, which can be toxic. We retrospectively reviewed 114 patients with drug-susceptible pulmonary tuberculosis who discontinued rifampicin due to adverse reactions during an 18 year period at a tertiary referral center, of which 92 (80.7%) exhibited favorable response. Hepatotoxicity was the leading cause of intolerance. Patients with a favorable response were younger and less likely to have comorbidities. The majority of patients were administered four medications during the intensive phase and three to four during the consolidative phase. For those with a favorable response, the median duration of treatment was 10.2 months and the most common intensive regimen was a combination of isoniazid, ethambutol, pyrazinamide, and fluoroquinolone (25%). The most common consolidation regimen was a combination of isoniazid, ethambutol, and fluoroquinolone (22.8%). Among the patients with a favorable response, two (2.2%) experienced recurrence after a follow-up of 3.4 (interquartile range 1.8-6.8) years. For patients with drug-susceptible pulmonary tuberculosis who do not tolerate rifampicin owing to its toxicity, a shorter regimen may be a useful alternative.
Collapse
Affiliation(s)
- Hyung-Jun Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ye Jin Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Myung Jin Song
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byoung Soo Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yeon Wook Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Yoon Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yeon-Joo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong Sun Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young-Jae Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Choon-Taek Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Ho Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Italia A, Shaik MM, Peri F. Emerging Extracellular Molecular Targets for Innovative Pharmacological Approaches to Resistant Mtb Infection. Biomolecules 2023; 13:999. [PMID: 37371579 PMCID: PMC10296423 DOI: 10.3390/biom13060999] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Emerging pharmacological strategies that target major virulence factors of antibiotic-resistant Mycobacterium tuberculosis (Mtb) are presented and discussed. This review is divided into three parts corresponding to structures and functions important for Mtb pathogenicity: the cell wall, the lipoarabinomannan, and the secretory proteins. Within the cell wall, we further focus on three biopolymeric sub-components: mycolic acids, arabinogalactan, and peptidoglycan. We present a comprehensive overview of drugs and drug candidates that target cell walls, envelopes, and secretory systems. An understanding at a molecular level of Mtb pathogenesis is provided, and potential future directions in therapeutic strategies are suggested to access new drugs to combat the growing global threat of antibiotic-resistant Mtb infection.
Collapse
Affiliation(s)
| | | | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (A.I.); (M.M.S.)
| |
Collapse
|
9
|
Robbins L, Balaram A, Dejneka S, McMahon M, Najibi Z, Pawlowicz P, Conrad WH. Heterologous production of the D-cycloserine intermediate O-acetyl-L-serine in a human type II pulmonary cell model. Sci Rep 2023; 13:8551. [PMID: 37237156 DOI: 10.1038/s41598-023-35632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/21/2023] [Indexed: 05/28/2023] Open
Abstract
Tuberculosis (TB) is the second leading cause of death by a single infectious disease behind COVID-19. Despite a century of effort, the current TB vaccine does not effectively prevent pulmonary TB, promote herd immunity, or prevent transmission. Therefore, alternative approaches are needed. We seek to develop a cell therapy that produces an effective antibiotic in response to TB infection. D-cycloserine (D-CS) is a second-line antibiotic for TB that inhibits bacterial cell wall synthesis. We have determined D-CS to be the optimal candidate for anti-TB cell therapy due to its effectiveness against TB, relatively short biosynthetic pathway, and its low-resistance incidence. The first committed step towards D-CS synthesis is catalyzed by the L-serine-O-acetyltransferase (DcsE) which converts L-serine and acetyl-CoA to O-acetyl-L-serine (L-OAS). To test if the D-CS pathway could be an effective prophylaxis for TB, we endeavored to express functional DcsE in A549 cells as a human pulmonary model. We observed DcsE-FLAG-GFP expression using fluorescence microscopy. DcsE purified from A549 cells catalyzed the synthesis of L-OAS as observed by HPLC-MS. Therefore, human cells synthesize functional DcsE capable of converting L-serine and acetyl-CoA to L-OAS demonstrating the first step towards D-CS production in human cells.
Collapse
Affiliation(s)
- Laurel Robbins
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Ariane Balaram
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Stefanie Dejneka
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Matthew McMahon
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Zarina Najibi
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Peter Pawlowicz
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - William H Conrad
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA.
| |
Collapse
|
10
|
Paymal SB, Barale SS, Supanekar SV, Sonawane KD. Structure based virtual screening, molecular dynamic simulation to identify the oxadiazole derivatives as inhibitors of Enterococcus D-Ala-D-Ser ligase for combating vancomycin resistance. Comput Biol Med 2023; 159:106965. [PMID: 37119552 DOI: 10.1016/j.compbiomed.2023.106965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Vancomycin resistance in enterococci mainly arises due to alteration in terminal peptidoglycan dipeptide. A comprehensive structural analysis for substrate specificity of dipeptide modifying d-Alanine: d-Serine ligase (Ddls) is essential to screen its inhibitors for combating vancomycin resistance. In this study modeled 3D structure of EgDdls from E. gallinarum was used for structure based virtual screening (SBVS) of oxadiazole derivatives. Initially, fifteen oxadiazole derivatives were identified as inhibitors at the active site of EgDdls from PubChem database. Further, four EgDdls inhibitors were evaluated using pharmacokinetic profile and molecular docking. The results of molecular docking showed that oxadiazole inhibitors could bind preferentially at ATP binding pocket with the lowest binding energy. Further, molecular dynamics simulation results showed stable behavior of EgDdls in complex with screened inhibitors. The residues Phe172, Lys174, Glu217, Phe292, and Asn302 of EgDdls were mainly involved in interactions with screened inhibitors. Furthermore, MM-PBSA calculation showed electrostatic and van der Waals interactions mainly contribute to overall binding energy. The PCA analysis showed motion of central domain and omega loop of EgDdls. This is involved in the formation of native dipeptide and stabilized after binding of 2-(1-(Ethylsulfonyl) piperidin-4-yl)-5-(furan-2-yl)-1,3,4-oxadiazole, which could be reason for the inhibition of EgDdls. Hence, in this study we have screened inhibitors of EgDdls which could be useful to alleviate the vancomycin resistance problem in enterococci, involved in hospital-acquired infections, especially urinary tract infections (UTI).
Collapse
Affiliation(s)
- Sneha B Paymal
- Department of Microbiology, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India; Rayat Institute of Research and Development (RIRD), Satara, 415001, Maharashtra, India
| | - Sagar S Barale
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India
| | | | - Kailas D Sonawane
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India; Department of Microbiology, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India; Department of Chemistry, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India.
| |
Collapse
|
11
|
Finger V, Kufa M, Soukup O, Castagnolo D, Roh J, Korabecny J. Pyrimidine derivatives with antitubercular activity. Eur J Med Chem 2023; 246:114946. [PMID: 36459759 DOI: 10.1016/j.ejmech.2022.114946] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Small molecules with antitubercular activity containing the pyrimidine motif in their structure have gained more attention after three drugs, namely GSK 2556286 (GSK-286), TBA-7371 and SPR720, have entered clinical trials. This review provides an overview of recent advances in the hit-to-lead drug discovery studies of antitubercular pyrimidine-containing compounds with the aim to highlight their structural diversity. In the first part, the review discusses the pyrimidine compounds according to their targets, pinpointing the structure-activity relationships of each pyrimidine family. The second part of this review is concentrated on antitubercular pyrimidine derivatives with a yet unexplored or speculative target, dividing the compounds according to their structural types.
Collapse
Affiliation(s)
- Vladimir Finger
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec, Kralove, Czech Republic
| | - Martin Kufa
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec, Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec, Kralove, Czech Republic
| | - Daniele Castagnolo
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Jaroslav Roh
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic.
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec, Kralove, Czech Republic.
| |
Collapse
|
12
|
Xu X, Dong B, Peng L, Gao C, He Z, Wang C, Zeng J. Anti-tuberculosis drug development via targeting the cell envelope of Mycobacterium tuberculosis. Front Microbiol 2022; 13:1056608. [PMID: 36620019 PMCID: PMC9810820 DOI: 10.3389/fmicb.2022.1056608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis possesses a dynamic cell envelope, which consists of a peptidoglycan layer, a mycolic acid layer, and an arabinogalactan polysaccharide. This envelope possesses a highly complex and unique structure representing a barrier that protects and assists the growth of M. tuberculosis and allows its adaptation to the host. It regulates the immune response of the host cells, causing their damage. Therefore, the cell envelope of M. tuberculosis is an attractive target for vaccine and drug development. The emergence of multidrug-resistant as well as extensively drug resistant tuberculosis and co-infection with HIV prevented an effective control of this disease. Thus, the discovery and development of new drugs is a major keystone for TB treatment and control. This review mainly summarizes the development of drug enzymes involved in the biosynthesis of the cell wall in M. tuberculosis, and other potential drug targets in this pathway, to provide more effective strategies for the development of new drugs.
Collapse
Affiliation(s)
- Xinyue Xu
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Baoyu Dong
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lijun Peng
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chao Gao
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.,Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiqun He
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chuan Wang
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Kumar R, Singh N, Chauhan A, Kumar M, Bhatta RS, Singh SK. Mycobacterium tuberculosis survival and biofilm formation studies: effect of D-amino acids, D-cycloserine and its components. J Antibiot (Tokyo) 2022; 75:472-479. [PMID: 35650279 DOI: 10.1038/s41429-022-00534-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022]
Abstract
D-amino acids play an important role in cell wall peptidoglycan biosynthesis. Mycobacterium tuberculosis D-amino acid oxidase deletion led to reduced biofilm-forming ability. Other recent studies also suggest that the accumulation of D-amino acids blocks biofilm formation and could also disperse pre-formed biofilm. Biofilms are communities of bacterial cells protected by extracellular matrix and harbor drug-tolerant as well as persistent bacteria. In Mycobacterium tuberculosis, biofilm formation or its inhibition by D-amino acids is yet to be tested. In the present study, we used selected D-amino acids to study their role in the prevention of biofilm formation and also if D-cycloserine's activity was due to presence of D-Serine as a metabolite. It was observed that D-serine limits biofilm formation in Mycobacterium tuberculosis H37Ra (Mtb-Ra), but it shows no effect on pre-formed biofilm. Also, D-cycloserine and its metabolic product, hydroxylamine, individually and in combination, with D-Serine, limit biofilm formation in Mtb-Ra and also disrupts existing biofilm. In summary, we demonstrated that D-alanine, D-valine, D-phenylalanine, D-serine, and D-threonine had no disruptive effect on pre-formed biofilm of Mtb-Ra, either individually or in combination, and D-cycloserine and its metabolite hydroxylamine have potent anti-biofilm activity.
Collapse
Affiliation(s)
- Ram Kumar
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.,Jawaharlal Nehru University, New Mehrauli Road, JNU Ring Rd, New Delhi, 110067, India
| | - Nirbhay Singh
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.,Jawaharlal Nehru University, New Mehrauli Road, JNU Ring Rd, New Delhi, 110067, India
| | - Anu Chauhan
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mukesh Kumar
- Jawaharlal Nehru University, New Mehrauli Road, JNU Ring Rd, New Delhi, 110067, India.,Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sudheer Kumar Singh
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
14
|
Dwivedi M, Bajpai K. The chamber of secretome in Mycobacterium tuberculosis as a potential therapeutic target. Biotechnol Genet Eng Rev 2022; 39:1-44. [PMID: 35613080 DOI: 10.1080/02648725.2022.2076031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mycobacterium tuberculosis (MTB) causes one of the ancient diseases, Tuberculosis, affects people around the globe and its severity can be understood by its classification as a second infectious disease after COVID-19 and the 13th leading cause of death according to a WHO report. Despite having advanced diagnostic approaches and therapeutic strategies, unfortunately, TB is still spreading across the population due to the emergence of drug-resistance MTB and Latent TB infection (LTBI). We are seeking for effective approaches to overcome these hindrances and efficient treatment for this perilous disease. Therefore, there is an urgent need to develop drugs based on operative targeting of the bacterial system that could result in both efficient treatment and lesser emergence of MDR-TB. One such promising target could be the secretory systems and especially the Type 7 secretory system (T7SS-ESX) of Mycobacterium tuberculosis, which is crucial for the secretion of effector proteins as well as in establishing host-pathogen interactions of the tubercle bacilli. The five paralogous ESX systems (ESX-1 to EXS-5) have been observed by in silico genome analysis of MTB, among which ESX-1 and ESX-5 are substantial for virulence and mediating host cellular inflammasome. The bacterium growth and virulence can be modulated by targeting the T7SS. In the present review, we demonstrate the current status of therapeutics against MTB and focus on the function and cruciality of T7SS along with other secretory systems as a promising therapeutic target against Tuberculosis.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Kriti Bajpai
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| |
Collapse
|
15
|
Black KA, Duan L, Mandyoli L, Selbach BP, Xu W, Ehrt S, Sacchettini JC, Rhee KY. Metabolic bifunctionality of Rv0812 couples folate and peptidoglycan biosynthesis in Mycobacterium tuberculosis. J Exp Med 2021; 218:212052. [PMID: 33950161 PMCID: PMC8105722 DOI: 10.1084/jem.20191957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/16/2021] [Accepted: 03/30/2021] [Indexed: 11/04/2022] Open
Abstract
Comparative sequence analysis has enabled the annotation of millions of genes from organisms across the evolutionary tree. However, this approach has inherently biased the annotation of phylogenetically ubiquitous, rather than species-specific, functions. The ecologically unusual pathogen Mycobacterium tuberculosis (Mtb) has evolved in humans as its sole reservoir and emerged as the leading bacterial cause of death worldwide. However, the physiological factors that define Mtb’s pathogenicity are poorly understood. Here, we report the structure and function of a protein that is required for optimal in vitro fitness and bears homology to two distinct enzymes, Rv0812. Despite diversification of related orthologues into biochemically distinct enzyme families, rv0812 encodes a single active site with aminodeoxychorismate lyase and D–amino acid transaminase activities. The mutual exclusivity of substrate occupancy in this active site mediates coupling between nucleic acid and cell wall biosynthesis, prioritizing PABA over D-Ala/D-Glu biosynthesis. This bifunctionality reveals a novel, enzymatically encoded fail-safe mechanism that may help Mtb and other bacteria couple replication and division.
Collapse
Affiliation(s)
| | - Lijun Duan
- Texas A&M University, College Station, TX
| | | | | | | | | | | | | |
Collapse
|
16
|
Sørensen KI, Kjærbølling I, Neves AR, Machielsen R, Johansen E. Use of Cell Envelope Targeting Antibiotics and Antimicrobial Agents as a Powerful Tool to Select for Lactic Acid Bacteria Strains With Improved Texturizing Ability in Milk Fermentations. Front Bioeng Biotechnol 2021; 8:623700. [PMID: 33520973 PMCID: PMC7839403 DOI: 10.3389/fbioe.2020.623700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/07/2020] [Indexed: 12/03/2022] Open
Abstract
Many antibiotics and antimicrobial agents have the bacterial cell envelope as their primary target, interfering with functions such as synthesis of peptidoglycan, membrane stability and permeability, and attachment of surface components. The cell envelope is the outermost barrier of the bacterial cell, conferring protection against environmental stresses, and maintaining structural integrity and stability of the growing cell, while still allowing for required metabolism. In this work, inhibitory concentrations of several different cell envelope targeting antibiotics and antimicrobial agents were used to select for derivatives of lactic acid bacteria (LAB) with improved properties for dairy applications. Interestingly, we observed that for several LAB species a fraction of the isolates had improved milk texturizing capabilities. To further improve our understanding of the mechanisms underlying the improved rheology and to validate the efficacy of this method for strain improvement, genetic and physiological characterization of several improved derivatives was performed. The results showed that the identified genetic changes are diverse and affect also other cellular functions than the targeted cell surface. In short, this study describes a new versatile and powerful toolbox based on targeting of the cell envelope to select for LAB derivatives with improved phenotypic traits for dairy applications.
Collapse
Affiliation(s)
- Kim I Sørensen
- Discovery, Research and Development, Chr. Hansen A/S, Hørsholm, Denmark
| | - Inge Kjærbølling
- Discovery, Research and Development, Chr. Hansen A/S, Hørsholm, Denmark
| | - Ana Rute Neves
- Discovery, Research and Development, Chr. Hansen A/S, Hørsholm, Denmark
| | - Ronnie Machielsen
- Discovery, Research and Development, Chr. Hansen A/S, Hørsholm, Denmark
| | - Eric Johansen
- Emerging Technology, Chr. Hansen A/S, Hørsholm, Denmark
| |
Collapse
|
17
|
c-di-AMP Accumulation Impairs Muropeptide Synthesis in Listeria monocytogenes. J Bacteriol 2020; 202:JB.00307-20. [PMID: 33020220 DOI: 10.1128/jb.00307-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Cyclic di-AMP (c-di-AMP) is an essential and ubiquitous second messenger among bacteria. c-di-AMP regulates many cellular pathways through direct binding to several molecular targets in bacterial cells. c-di-AMP depletion is well known to destabilize the bacterial cell wall, resulting in increased bacteriolysis and enhanced susceptibility to cell wall targeting antibiotics. Using the human pathogen Listeria monocytogenes as a model, we found that c-di-AMP accumulation also impaired cell envelope integrity. An L. monocytogenes mutant deleted for c-di-AMP phosphodiesterases (pdeA pgpH mutant) exhibited a 4-fold increase in c-di-AMP levels and several cell wall defects. For instance, the pdeA pgpH mutant was defective for the synthesis of peptidoglycan muropeptides and was susceptible to cell wall-targeting antimicrobials. Among different muropeptide precursors, we found that the pdeA pgpH strain was particularly impaired in the synthesis of d-Ala-d-Ala, which is required to complete the pentapeptide stem associated with UDP-N-acetylmuramic acid (MurNAc). This was consistent with an increased sensitivity to d-cycloserine, which inhibits the d-alanine branch of peptidoglycan synthesis. Finally, upon examining d-Ala:d-Ala ligase (Ddl), which catalyzes the conversion of d-Ala to d-Ala-d-Ala, we found that its activity was activated by K+ Based on previous reports that c-di-AMP inhibits K+ uptake, we propose that c-di-AMP accumulation impairs peptidoglycan synthesis, partially through the deprivation of cytoplasmic K+ levels, which are required for cell wall-synthetic enzymes.IMPORTANCE The bacterial second messenger c-di-AMP is produced by a large number of bacteria and conditionally essential to many species. Conversely, c-di-AMP accumulation is also toxic to bacterial physiology and pathogenesis, but its mechanisms are largely undefined. We found that in Listeria monocytogenes, elevated c-di-AMP levels diminished muropeptide synthesis and increased susceptibility to cell wall-targeting antimicrobials. Cell wall defects might be an important mechanism for attenuated virulence in bacteria with high c-di-AMP levels.
Collapse
|
18
|
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium that can cause trachoma, cervicitis, urethritis, salpingitis, and pelvic inflammatory disease. To establish infection in host cells, Chlamydia must complete a multiple-cell-type developmental cycle. The developmental cycle consists of specialized cells, the EB cell, which mediates infection of new host cells, and the RB cell, which replicates and eventually produces more EB cells to mediate the next round of infection. By developing and testing mathematical models to discriminate between two competing hypotheses for the nature of the signal controlling RB-to-EB cell type switching, we demonstrate that RB-to-EB development follows a cell-autonomous program that does not respond to environmental cues. Additionally, we show that RB-to-EB development is a function of chlamydial growth and division. This study serves to further our understanding of the chlamydial developmental cycle that is central to the bacterium’s pathogenesis. The obligate intracellular bacterial pathogen Chlamydia trachomatis is reliant on a developmental cycle consisting of two cell forms, termed the elementary body (EB) and the reticulate body (RB). The EB is infectious and utilizes a type III secretion system and preformed effector proteins during invasion, but it does not replicate. The RB replicates in the host cell but is noninfectious. This developmental cycle is central to chlamydial pathogenesis. In this study, we developed mathematical models of the developmental cycle that account for potential factors influencing RB-to-EB cell type switching during infection. Our models predicted that two categories of regulatory signals for RB-to-EB development could be differentiated experimentally, an “intrinsic” cell-autonomous program inherent to each RB and an “extrinsic” environmental signal to which RBs respond. To experimentally differentiate between mechanisms, we tracked the expression of C. trachomatis development-specific promoters in individual inclusions using fluorescent reporters and live-cell imaging. These experiments indicated that EB production was not influenced by increased multiplicity of infection or by superinfection, suggesting the cycle follows an intrinsic program that is not directly controlled by environmental factors. Additionally, live-cell imaging revealed that EB development is a multistep process linked to RB growth rate and cell division. The formation of EBs followed a progression with expression from the euo and ihtA promoters evident in RBs, while expression from the promoter for hctA was apparent in early EBs/IBs. Finally, expression from the promoters for the true late genes, hctB, scc2, and tarp, was evident in the maturing EB. IMPORTANCEChlamydia trachomatis is an obligate intracellular bacterium that can cause trachoma, cervicitis, urethritis, salpingitis, and pelvic inflammatory disease. To establish infection in host cells, Chlamydia must complete a multiple-cell-type developmental cycle. The developmental cycle consists of specialized cells, the EB cell, which mediates infection of new host cells, and the RB cell, which replicates and eventually produces more EB cells to mediate the next round of infection. By developing and testing mathematical models to discriminate between two competing hypotheses for the nature of the signal controlling RB-to-EB cell type switching, we demonstrate that RB-to-EB development follows a cell-autonomous program that does not respond to environmental cues. Additionally, we show that RB-to-EB development is a function of chlamydial growth and division. This study serves to further our understanding of the chlamydial developmental cycle that is central to the bacterium’s pathogenesis.
Collapse
|
19
|
Zhang Y, Gong S, Wang X, Muhammad M, Li Y, Meng S, Li Q, Liu D, Zhang H. Insights into the Inhibition of Aeromonas hydrophila d-Alanine-d-Alanine Ligase by Integration of Kinetics and Structural Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7509-7519. [PMID: 32609505 DOI: 10.1021/acs.jafc.0c00682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aeromonas hydrophila, a pathogenic bacterium, is harmful to humans, domestic animals, and fishes and, moreover, of public health concern due to the emergence of multiple drug-resistant strains. The cell wall has been discovered as a novel and efficient drug target against bacteria, and d-alanine-d-alanine ligase (Ddl) is considered as an essential enzyme in bacterial cell wall biosynthesis. Herein, we studied the A. hydrophila HBNUAh01 Ddl (AhDdl) enzyme activity and kinetics and determined the crystal structure of AhDdl/d-Ala complex at 2.7 Å resolution. An enzymatic assay showed that AhDdl exhibited higher affinity to ATP (Km: 54.1 ± 9.1 μM) compared to d-alanine (Km: 1.01 ± 0.19 mM). The kinetic studies indicated a competitive inhibition of AhDdl by d-cycloserine (DCS), with an inhibition constant (Ki) of 120 μM and the 50% inhibitory concentrations (IC50) value of 0.5 mM. Meanwhile, structural analysis indicated that the AhDdl/d-Ala complex structure adopted a semi-closed conformation form, and the active site was extremely conserved. Noteworthy is that the substrate d-Ala occupied the second d-Ala position, not the first d-Ala position. These results provided more insights for understanding the details of the catalytic mechanism and resources for the development of novel drugs against the diseases caused by A. hydrophila.
Collapse
Affiliation(s)
- Yingli Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Siyu Gong
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Xuan Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Murtala Muhammad
- Department of Biochemistry, Kano University of Science and Technology, Wudil 713281, Nigeria
| | - Yangyang Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Shuaishuai Meng
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; College of Life Sciences, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Qin Li
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; College of Life Sciences, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Dong Liu
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Huaidong Zhang
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; College of Life Sciences, Fujian Normal University, Fuzhou 350117, P. R. China
| |
Collapse
|
20
|
Maitra A, Munshi T, Healy J, Martin LT, Vollmer W, Keep NH, Bhakta S. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles' heel for the TB-causing pathogen. FEMS Microbiol Rev 2020; 43:548-575. [PMID: 31183501 PMCID: PMC6736417 DOI: 10.1093/femsre/fuz016] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB), caused by the intracellular pathogen Mycobacterium tuberculosis, remains one of the leading causes of mortality across the world. There is an urgent requirement to build a robust arsenal of effective antimicrobials, targeting novel molecular mechanisms to overcome the challenges posed by the increase of antibiotic resistance in TB. Mycobacterium tuberculosis has a unique cell envelope structure and composition, containing a peptidoglycan layer that is essential for maintaining cellular integrity and for virulence. The enzymes involved in the biosynthesis, degradation, remodelling and recycling of peptidoglycan have resurfaced as attractive targets for anti-infective drug discovery. Here, we review the importance of peptidoglycan, including the structure, function and regulation of key enzymes involved in its metabolism. We also discuss known inhibitors of ATP-dependent Mur ligases, and discuss the potential for the development of pan-enzyme inhibitors targeting multiple Mur ligases.
Collapse
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Tulika Munshi
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Jess Healy
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Liam T Martin
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Nicholas H Keep
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
21
|
Shetye GS, Franzblau SG, Cho S. New tuberculosis drug targets, their inhibitors, and potential therapeutic impact. Transl Res 2020; 220:68-97. [PMID: 32275897 DOI: 10.1016/j.trsl.2020.03.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/18/2022]
Abstract
The current tuberculosis (TB) predicament poses numerous challenges and therefore every incremental scientific work and all positive socio-political engagements, are steps taken in the right direction to eradicate TB. Progression of the late stage TB-drug pipeline into the clinics is an immediate deliverable of this global effort. At the same time, fueling basic research and pursuing early discovery work must be sustained to maintain a healthy TB-drug pipeline. This review encompasses a broad analysis of chemotherapeutic strategies that target the DNA replication, protein synthesis, cell wall biosynthesis, energy metabolism and proteolysis of Mycobacterium tuberculosis (Mtb). It includes a status check of the current TB-drug pipeline with a focus on the associated biology, emerging targets, and their promising chemical inhibitors. Potential synergies and/or gaps within or across different chemotherapeutic strategies are systematically reviewed as well.
Collapse
Affiliation(s)
- Gauri S Shetye
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Sanghyun Cho
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
22
|
Pederick JL, Thompson AP, Bell SG, Bruning JB. d-Alanine-d-alanine ligase as a model for the activation of ATP-grasp enzymes by monovalent cations. J Biol Chem 2020; 295:7894-7904. [PMID: 32335509 DOI: 10.1074/jbc.ra120.012936] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
The ATP-grasp superfamily of enzymes shares an atypical nucleotide-binding site known as the ATP-grasp fold. These enzymes are involved in many biological pathways in all domains of life. One ATP-grasp enzyme, d-alanine-d-alanine ligase (Ddl), catalyzes ATP-dependent formation of the d-alanyl-d-alanine dipeptide essential for bacterial cell wall biosynthesis and is therefore an important antibiotic drug target. Ddl is activated by the monovalent cation (MVC) K+, but despite its clinical relevance and decades of research, how this activation occurs has not been elucidated. We demonstrate here that activating MVCs bind adjacent to the active site of Ddl from Thermus thermophilus and used a combined biochemical and structural approach to characterize MVC activation. We found that TtDdl is a type II MVC-activated enzyme, retaining activity in the absence of MVCs. However, the efficiency of TtDdl increased ∼20-fold in the presence of activating MVCs, and it was maximally activated by K+ and Rb+ ions. A strict dependence on ionic radius of the MVC was observed, with Li+ and Na+ providing little to no TtDdl activation. To understand the mechanism of MVC activation, we solved crystal structures of TtDdl representing distinct catalytic stages in complex with K+, Rb+, or Cs+ Comparison of these structures with apo TtDdl revealed no evident conformational change on MVC binding. Of note, the identified MVC binding site is structurally conserved within the ATP-grasp superfamily. We propose that MVCs activate Ddl by altering the charge distribution of its active site. These findings provide insight into the catalytic mechanism of ATP-grasp enzymes.
Collapse
Affiliation(s)
- Jordan L Pederick
- Institute for Photonics and Advanced Sensing, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew P Thompson
- Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Stephen G Bell
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, Australia
| | - John B Bruning
- Institute for Photonics and Advanced Sensing, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia .,Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
23
|
Mycobacterial Cell Wall: A Source of Successful Targets for Old and New Drugs. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072278] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Eighty years after the introduction of the first antituberculosis (TB) drug, the treatment of drug-susceptible TB remains very cumbersome, requiring the use of four drugs (isoniazid, rifampicin, ethambutol and pyrazinamide) for two months followed by four months on isoniazid and rifampicin. Two of the drugs used in this “short”-course, six-month chemotherapy, isoniazid and ethambutol, target the mycobacterial cell wall. Disruption of the cell wall structure can enhance the entry of other TB drugs, resulting in a more potent chemotherapy. More importantly, inhibition of cell wall components can lead to mycobacterial cell death. The complexity of the mycobacterial cell wall offers numerous opportunities to develop drugs to eradicate Mycobacterium tuberculosis, the causative agent of TB. In the past 20 years, researchers from industrial and academic laboratories have tested new molecules to find the best candidates that will change the face of TB treatment: drugs that will shorten TB treatment and be efficacious against active and latent, as well as drug-resistant TB. Two of these new TB drugs block components of the mycobacterial cell wall and have reached phase 3 clinical trial. This article reviews TB drugs targeting the mycobacterial cell wall in use clinically and those in clinical development.
Collapse
|
24
|
A Screen for Antibiotic Resistance Determinants Reveals a Fitness Cost of the Flagellum in Pseudomonas aeruginosa. J Bacteriol 2020; 202:JB.00682-19. [PMID: 31871033 DOI: 10.1128/jb.00682-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/18/2019] [Indexed: 01/09/2023] Open
Abstract
The intrinsic resistance of Pseudomonas aeruginosa to many antibiotics limits treatment options for pseudomonal infections. P. aeruginosa's outer membrane is highly impermeable and decreases antibiotic entry into the cell. We used an unbiased high-throughput approach to examine mechanisms underlying outer membrane-mediated antibiotic exclusion. Insertion sequencing (INSeq) identified genes that altered fitness in the presence of linezolid, rifampin, and vancomycin, antibiotics to which P. aeruginosa is intrinsically resistant. We reasoned that resistance to at least one of these antibiotics would depend on outer membrane barrier function, as previously demonstrated in Escherichia coli and Vibrio cholerae This approach demonstrated a critical role of the outer membrane barrier in vancomycin fitness, while efflux pumps were primary contributors to fitness in the presence of linezolid and rifampin. Disruption of flagellar assembly or function was sufficient to confer a fitness advantage to bacteria exposed to vancomycin. These findings clearly show that loss of flagellar function alone can confer a fitness advantage in the presence of an antibiotic.IMPORTANCE The cell envelopes of Gram-negative bacteria render them intrinsically resistant to many classes of antibiotics. We used insertion sequencing to identify genes whose disruption altered the fitness of a highly antibiotic-resistant pathogen, Pseudomonas aeruginosa, in the presence of antibiotics usually excluded by the cell envelope. This screen identified gene products involved in outer membrane biogenesis and homeostasis, respiration, and efflux as important contributors to fitness. An unanticipated fitness cost of flagellar assembly and function in the presence of the glycopeptide antibiotic vancomycin was further characterized. These findings have clinical relevance for individuals with cystic fibrosis who are infected with P. aeruginosa and undergo treatment with vancomycin for a concurrent Staphylococcus aureus infection.
Collapse
|
25
|
Meng J, Gao P, Wang X, Guan Y, Liu Y, Xiao C. Digging Deeper to Save the Old Anti-tuberculosis Target: D-Alanine-D-Alanine Ligase With a Novel Inhibitor, IMB-0283. Front Microbiol 2020; 10:3017. [PMID: 32010089 PMCID: PMC6974524 DOI: 10.3389/fmicb.2019.03017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/16/2019] [Indexed: 01/11/2023] Open
Abstract
The emergence of drug-resistant Mycobacterium tuberculosis (Mtb) has hampered treatments for tuberculosis, which consequently now require novel agents to overcome such drug resistance. The genetically stable D-alanine-D-alanine ligase A (DdlA) has been deemed as an excellent therapeutic target for tuberculosis. In the present study, a competitive inhibitor (IMB-0283) of DdlA was obtained via high-throughput screening. The minimum inhibitory concentrations (MIC) of IMB-0283 for the standard and clinical drug-resistant Mtb strains ranged from 0.25 to 4.00 μg/mL, whereas the conventional inhibitor of DdlA, D-cycloserine (DCS), only inhibited the growth of the standard Mtb strain at 16 μg/mL. The lethal effect of IMB-0283 on Mtb was found to act intracellularly in a DdlA-dependent manner. Specifically, IMB-0283 prevented the synthesis of neonatal cell walls but did not damage mature cell walls. Compared with those of DCS, IMB-0283 exhibited lower cytotoxicity and a higher selective index (SI). At the same dosages of treatment, IMB-0283 reduced bacterial load (log CFU/mL) in an acute animal model from 5.58 to 4.40, while DCS did not yield any such treatment efficacy. Taken together, the lower cytotoxicity and more efficacious in vivo activity of IMB-0283 suggest that it is a promising lead compound for antituberculosis drug development.
Collapse
Affiliation(s)
- Jianzhou Meng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Gao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiao Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Guan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yishuang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunling Xiao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Díaz‐Sáez L, Torrie LS, McElroy SP, Gray D, Hunter WN. Burkholderia pseudomallei d-alanine-d-alanine ligase; detailed characterisation and assessment of a potential antibiotic drug target. FEBS J 2019; 286:4509-4524. [PMID: 31260169 PMCID: PMC6899670 DOI: 10.1111/febs.14976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/27/2019] [Accepted: 06/27/2019] [Indexed: 02/02/2023]
Abstract
Burkholderia pseudomallei is a serious, difficult to treat Gram-negative pathogen and an increase in the occurrence of drug-resistant strains has been detected. We have directed efforts to identify and to evaluate potential drug targets relevant to treatment of infection by B. pseudomallei. We have selected and characterised the essential enzyme d-alanine-d-alanine ligase (BpDdl), required for the ATP-assisted biosynthesis of a peptidoglycan precursor. A recombinant supply of protein supported high-resolution crystallographic and biophysical studies with ligands (AMP and AMP+d-Ala-d-Ala), and comparisons with orthologues enzymes suggest a ligand-induced conformational change occurring that might be relevant to the catalytic cycle. The detailed biochemical characterisation of the enzyme, development and optimisation of ligand binding assays supported the search for novel inhibitors by screening of selected compound libraries. In a similar manner to that observed previously in other studies, we note a paucity of hits that are worth follow-up and then in combination with a computational analysis of the active site, we conclude that this ligase represents a difficult target for drug discovery. Nevertheless, our reagents, protocols and data can underpin future efforts exploiting more diverse chemical libraries and structure-based approaches.
Collapse
Affiliation(s)
- Laura Díaz‐Sáez
- Division of Biological Chemistry and Drug DiscoverySchool of Life SciencesUniversity of DundeeUK
| | - Leah S. Torrie
- Drug Discovery UnitWellcome Centre for Anti‐Infectives ResearchSchool of Life SciencesUniversity of DundeeUK
| | - Stuart P. McElroy
- European Screening Centre Newhouse, Biocity ScotlandUniversity of DundeeNewhouseUK
- Present address:
BioAscent Discovery LtdBo'ness RoadNewhouseLanarkshireML1 5UHUK
| | - David Gray
- Drug Discovery UnitWellcome Centre for Anti‐Infectives ResearchSchool of Life SciencesUniversity of DundeeUK
| | - William N. Hunter
- Division of Biological Chemistry and Drug DiscoverySchool of Life SciencesUniversity of DundeeUK
| |
Collapse
|
27
|
Antibiotic resistance genes in the Actinobacteria phylum. Eur J Clin Microbiol Infect Dis 2019; 38:1599-1624. [PMID: 31250336 DOI: 10.1007/s10096-019-03580-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023]
Abstract
The Actinobacteria phylum is one of the oldest bacterial phyla that have a significant role in medicine and biotechnology. There are a lot of genera in this phylum that are causing various types of infections in humans, animals, and plants. As well as antimicrobial agents that are used in medicine for infections treatment or prevention of infections, they have been discovered of various genera in this phylum. To date, resistance to antibiotics is rising in different regions of the world and this is a global health threat. The main purpose of this review is the molecular evolution of antibiotic resistance in the Actinobacteria phylum.
Collapse
|
28
|
Martins GB, Giacomelli G, Goldbeck O, Seibold GM, Bramkamp M. Substrate-dependent cluster density dynamics of Corynebacterium glutamicum phosphotransferase system permeases. Mol Microbiol 2019; 111:1335-1354. [PMID: 30748039 PMCID: PMC6850760 DOI: 10.1111/mmi.14224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2019] [Indexed: 11/29/2022]
Abstract
Many bacteria take up carbohydrates by membrane‐integral sugar specific phosphoenolpyruvate‐dependent carbohydrate:phosphotransferase systems (PTS). Although the PTS is centrally involved in regulation of carbon metabolism in different bacteria, little is known about localization and putative oligomerization of the permease subunits (EII). Here, we analyzed localization of the fructose specific PtsF and the glucose specific PtsG transporters, as well as the general components EI and HPr from Corynebacterium glutamicum using widefield and single molecule localization microscopy. PtsF and PtsG form membrane embedded clusters that localize in a punctate pattern. Size, number and fluorescence of the membrane clusters change upon presence or absence of the transported substrate, and a direct influence of EI and HPr was not observed. In presence of the transport substrate, EII clusters significantly increased in size. Photo‐activated localization microscopy data revealed that, in presence of different carbon sources, the number of EII proteins per cluster remains the same, however, the density of these clusters reduces. Our work reveals a simple mechanism for efficient membrane occupancy regulation. Clusters of PTS EII transporters are densely packed in absence of a suitable substrate. In presence of a transported substrate, the EII proteins in individual clusters occupy larger membrane areas.
Collapse
Affiliation(s)
- Gustavo Benevides Martins
- Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, Planegg-Martinsried, 82152, Germany
| | - Giacomo Giacomelli
- Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, Planegg-Martinsried, 82152, Germany
| | - Oliver Goldbeck
- Institute of Microbiology and Biotechnology, Ulm University, Albert-Einstein Allee 11, Ulm, 89081, Germany
| | - Gerd M Seibold
- Institute of Microbiology and Biotechnology, Ulm University, Albert-Einstein Allee 11, Ulm, 89081, Germany
| | - Marc Bramkamp
- Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
29
|
Catalão MJ, Filipe SR, Pimentel M. Revisiting Anti-tuberculosis Therapeutic Strategies That Target the Peptidoglycan Structure and Synthesis. Front Microbiol 2019; 10:190. [PMID: 30804921 PMCID: PMC6378297 DOI: 10.3389/fmicb.2019.00190] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/23/2019] [Indexed: 12/27/2022] Open
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), is one of the leading cause of death by an infectious diseases. The biosynthesis of the mycobacterial cell wall (CW) is an area of increasing research significance, as numerous antibiotics used to treat TB target biosynthesis pathways of essential CW components. The main feature of the mycobacterial cell envelope is an intricate structure, the mycolyl-arabinogalactan-peptidoglycan (mAGP) complex responsible for its innate resistance to many commonly used antibiotics and involved in virulence. A hallmark of mAGP is its unusual peptidoglycan (PG) layer, which has subtleties that play a key role in virulence by enabling pathogenic species to survive inside the host and resist antibiotic pressure. This dynamic and essential structure is not a target of currently used therapeutics as Mtb is considered naturally resistant to most β-lactam antibiotics due to a highly active β-lactamase (BlaC) that efficiently hydrolyses many β-lactam drugs to render them ineffective. The emergence of multidrug- and extensive drug-resistant strains to the available antibiotics has become a serious health threat, places an immense burden on health care systems, and poses particular therapeutic challenges. Therefore, it is crucial to explore additional Mtb vulnerabilities that can be used to combat TB. Remodeling PG enzymes that catalyze biosynthesis and recycling of the PG are essential to the viability of Mtb and are therefore attractive targets for novel antibiotics research. This article reviews PG as an alternative antibiotic target for TB treatment, how Mtb has developed resistance to currently available antibiotics directed to PG biosynthesis, and the potential of targeting this essential structure to tackle TB by attacking alternative enzymatic activities involved in Mtb PG modifications and metabolism.
Collapse
Affiliation(s)
- Maria João Catalão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sérgio R. Filipe
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Caparica, Portugal
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Madalena Pimentel
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
30
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
31
|
Khosravi AD, Mirsaeidi M, Farahani A, Tabandeh MR, Mohajeri P, Shoja S, Hoseini Lar KhosroShahi SR. Prevalence of nontuberculous mycobacteria and high efficacy of d-cycloserine and its synergistic effect with clarithromycin against Mycobacterium fortuitum and Mycobacterium abscessus. Infect Drug Resist 2018; 11:2521-2532. [PMID: 30573983 PMCID: PMC6290872 DOI: 10.2147/idr.s187554] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background The prevalence of pulmonary disease caused by nontuberculous mycobacteria (NTM) is reportedly on the rise in the world. Some of the species are resistant to various antibiotics; hence, limited treatment options are available. The aims of this study were to investigate the prevalence of NTM and to determine the effect of d-cycloserine against Mycobacterium fortuitum and Mycobacterium abscessus isolated from clinical specimens to find out the synergistic effect of d-cycloserine and clarithromycin. Methods A total of 95 nonduplicate pulmonary isolates of NTM were collected from three major Regional Tuberculosis (TB) Centers. NTM isolates were identified by conventional tests and PCR sequence analysis of the rpoB gene. PCR sequencing of erm-41 was performed for detecting the inducible resistance to macrolides. In vitro susceptibilities and activities of d-cycloserine-clarithromycin combinations were accessed using the broth microdilution method. Results Among 714-positive acid-fast bacilli from TB-suspected cases, 95 isolates were identified as NTM (13.3%). The prevalence of identified isolates was as follows: M. fortuitum 46 (48.4%), Mycobacterium simiae 16 (16.8%), Mycobacterium kansasii 15 (15.7%), M. abscessus 7 (7.3%), Mycobacterium thermoresistibile 4 (4.2%), Mycobacterium elephantis 3 (3.2%), Mycobacterium porcinum 2 (2.1%), and Mycobacterium chimaera 2 (2.1%). In addition, rpoB sequence analysis could identify all NTM isolates. The effect of d-cycloserine was better than that of clarithromycin. The synergistic effect of d-cycloserine with clarithromycin was observed for six (100%) and five (71.5%) strains of M. fortuitum and M. abscessus, respectively. Conclusion In the present study, we demonstrated a wide range of NTM in processed samples from different provinces of Iran. Our observations indicated that d-cycloserine was very active against M. abscessus and M. fortuitum; hence, d-cycloserine, either alone or in combination with clarithromycin, may be promising for the treatment of M. abscessus- and M. fortuitum-associated diseases.
Collapse
Affiliation(s)
- Azar Dokht Khosravi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, .,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
| | - Mehdi Mirsaeidi
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Abbas Farahani
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, .,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
| | - Mohammad Reza Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Parviz Mohajeri
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Nosocomial Infection Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Shoja
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | |
Collapse
|
32
|
Shetty A, Xu Z, Lakshmanan U, Hill J, Choong ML, Chng SS, Yamada Y, Poulsen A, Dick T, Gengenbacher M. Novel Acetamide Indirectly Targets Mycobacterial Transporter MmpL3 by Proton Motive Force Disruption. Front Microbiol 2018; 9:2960. [PMID: 30564212 PMCID: PMC6289072 DOI: 10.3389/fmicb.2018.02960] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/16/2018] [Indexed: 02/05/2023] Open
Abstract
To identify novel inhibitors of Mycobacterium tuberculosis cell envelope biosynthesis, we employed a two-step approach. First, we screened the diverse synthetic small molecule 71,544-compound Enamine library for growth inhibitors using the non-pathogenic surrogate Mycobacterium bovis BCG as screening strain and turbidity as readout. Second, 16 confirmed hits were tested for their ability to induce the cell envelope stress responsive promoter piniBAC controlling expression of red fluorescent protein in an M. bovis BCG reporter strain. Using a fluorescence readout, the acetamide E11 was identified. Resistant mutant selection and whole genome sequencing revealed the mycolic acid transporter Mmpl3 as a candidate target of E11. Biochemical analysis using mycobacterial spheroplasts and various membrane assays suggest that E11 indirectly inhibits MmpL3-facilitated translocation of trehalose monomycolates by proton motive force disruption. E11 showed potent bactericidal activity against growing and non-growing M. tuberculosis, low cytotoxic, and hemolytic activity and a dynamic structure activity relationship. In addition to activity against M. tuberculosis, E11 was active against the non-tuberculous mycobacterium M. abscessus, an emerging opportunistic pathogen. In conclusion, we identified a novel bactericidal anti-mycobacterial lead compound targeting MmpL3 providing an attractive starting point for optimization.
Collapse
Affiliation(s)
- Annanya Shetty
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Antimicrobial Drug Discovery Laboratory, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhujun Xu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | | | - Jeffrey Hill
- Experimental Therapeutics Center, ASTAR, Singapore, Singapore
| | | | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore, Singapore.,Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yoshiyuki Yamada
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anders Poulsen
- Experimental Therapeutics Center, ASTAR, Singapore, Singapore
| | - Thomas Dick
- Antimicrobial Drug Discovery Laboratory, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Martin Gengenbacher
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
33
|
Ameryckx A, Thabault L, Pochet L, Leimanis S, Poupaert JH, Wouters J, Joris B, Van Bambeke F, Frédérick R. 1-(2-Hydroxybenzoyl)-thiosemicarbazides are promising antimicrobial agents targeting d-alanine-d-alanine ligase in bacterio. Eur J Med Chem 2018; 159:324-338. [DOI: 10.1016/j.ejmech.2018.09.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/09/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022]
|
34
|
Drug targets exploited in Mycobacterium tuberculosis: Pitfalls and promises on the horizon. Biomed Pharmacother 2018; 103:1733-1747. [PMID: 29864964 DOI: 10.1016/j.biopha.2018.04.176] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 01/10/2023] Open
Abstract
Tuberculosis is an ever evolving infectious disease that still claims about 1.8 million human lives each year around the globe. Although modern chemotherapy has played a pivotal role in combating TB, the increasing emergence of drug-resistant TB aligned with HIV pandemic threaten its control. This highlights both the need to understand how our current drugs work and the need to develop new and more effective drugs. TB drug discovery is revisiting the clinically validated drug targets in Mycobacterium tuberculosis using whole-cell phenotypic assays in search of better therapeutic scaffolds. Herein, we review the promises of current TB drug regimens, major pitfalls faced, key drug targets exploited so far in M. tuberculosis along with the status of newly discovered drugs against drug resistant forms of TB. New antituberculosis regimens that use lesser number of drugs, require shorter duration of treatment, are equally effective against susceptible and resistant forms of disease, have acceptable toxicity profiles and behave friendly with anti-HIV regimens remains top most priority in TB drug discovery.
Collapse
|
35
|
Liu X, Meiresonne NY, Bouhss A, den Blaauwen T. FtsW activity and lipid II synthesis are required for recruitment of MurJ to midcell during cell division in Escherichia coli. Mol Microbiol 2018; 109:855-884. [PMID: 30112777 DOI: 10.1111/mmi.14104] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2018] [Indexed: 12/28/2022]
Abstract
Peptidoglycan (PG) is the unique cell shape-determining component of the bacterial envelope, and is a key target for antibiotics. PG synthesis requires the transmembrane movement of the precursor lipid II, and MurJ has been shown to provide this activity in Escherichia coli. However, how MurJ functions in vivo has not been reported. Here we show that MurJ localizes both in the lateral membrane and at midcell, and is recruited to midcell simultaneously with late-localizing divisome proteins and proteins MraY and MurG. MurJ septal localization is dependent on the presence of a complete and active divisome, lipid II synthesis and PBP3/FtsW activities. Inactivation of MurJ, either directly by mutation or through binding with MTSES, did not affect the midcell localization of MurJ. Our study visualizes MurJ localization in vivo and reveals a possible mechanism of MurJ recruitment during cell division.
Collapse
Affiliation(s)
- Xiaolong Liu
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Nils Y Meiresonne
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Ahmed Bouhss
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.,Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | - Tanneke den Blaauwen
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Raghavendra T, Patil S, Mukherjee R. Peptidoglycan in Mycobacteria: chemistry, biology and intervention. Glycoconj J 2018; 35:421-432. [DOI: 10.1007/s10719-018-9842-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/20/2018] [Accepted: 09/05/2018] [Indexed: 01/07/2023]
|
37
|
Antibiotic treatment modulates protein components of cytotoxic outer membrane vesicles of multidrug-resistant clinical strain, Acinetobacter baumannii DU202. Clin Proteomics 2018; 15:28. [PMID: 30186054 PMCID: PMC6118003 DOI: 10.1186/s12014-018-9204-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022] Open
Abstract
Background Outer membrane vesicles (OMVs) of Acinetobacter baumannii are cytotoxic and elicit a potent innate immune response. OMVs were first identified in A. baumannii DU202, an extensively drug-resistant clinical strain. Herein, we investigated protein components of A. baumannii DU202 OMVs following antibiotic treatment by proteogenomic analysis. Methods Purified OMVs from A. baumannii DU202 grown in different antibiotic culture conditions were screened for pathogenic and immunogenic effects, and subjected to quantitative proteomic analysis by one-dimensional electrophoresis and liquid chromatography combined with tandem mass spectrometry (1DE-LC-MS/MS). Protein components modulated by imipenem were identified and discussed. Results OMV secretion was increased > twofold following imipenem treatment, and cytotoxicity toward A549 human lung carcinoma cells was elevated. A total of 277 proteins were identified as components of OMVs by imipenem treatment, among which β-lactamase OXA-23, various proteases, outer membrane proteins, β-barrel assembly machine proteins, peptidyl-prolyl cis–trans isomerases and inherent prophage head subunit proteins were significantly upregulated. Conclusion In vitro stress such as antibiotic treatment can modulate proteome components in A. baumannii OMVs and thereby influence pathogenicity. Electronic supplementary material The online version of this article (10.1186/s12014-018-9204-2) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Singh P, Rameshwaram NR, Ghosh S, Mukhopadhyay S. Cell envelope lipids in the pathophysiology of Mycobacterium tuberculosis. Future Microbiol 2018; 13:689-710. [PMID: 29771143 DOI: 10.2217/fmb-2017-0135] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mycobacterium tuberculosis is an intracellular bacterium that persists and replicates inside macrophages. The bacterium possesses an unusual lipid-rich cell envelope that provides a hydrophobic impermeable barrier against many environmental stressors and allows it to survive extremely hostile intracellular surroundings. Since the lipid-rich envelope is crucial for M. tuberculosis virulence, the components of the cell wall lipid biogenesis pathways constitute an attractive target for the development of vaccines and antimycobacterial chemotherapeutics. In this review, we provide a detailed description of the mycobacterial cell envelope lipid components and their contributions to the physiology and pathogenicity of mycobacteria. We also discussed the current status of the antimycobacterial drugs that target biosynthesis, export and regulation of cell envelope lipids.
Collapse
Affiliation(s)
- Parul Singh
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500 039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| | - Nagender Rao Rameshwaram
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500 039, India
| | - Sudip Ghosh
- Molecular Biology Division, National Institute of Nutrition (ICMR), Jamai-Osmania PO, Hyderabad, 500 007, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500 039, India
| |
Collapse
|
39
|
Bhat ZS, Rather MA, Maqbool M, Lah HU, Yousuf SK, Ahmad Z. Cell wall: A versatile fountain of drug targets in Mycobacterium tuberculosis. Biomed Pharmacother 2017; 95:1520-1534. [PMID: 28946393 DOI: 10.1016/j.biopha.2017.09.036] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/07/2017] [Accepted: 09/10/2017] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis is the leading infectious disease responsible for an estimated one and a half million human deaths each year around the globe. HIV-TB coinfection and rapid increase in the emergence of drug resistant forms of TB is a dangerous scenario. This underlines the urgent need for new drugs with novel mechanism of action. A plethora of literature exist that highlight the importance of enzymes involved in the biosynthesis of mycobacterial cell wall responsible for its survival, growth, permeability, virulence and resistance to antibiotics. Therefore, assembly of cell wall components is an attractive target for the development of chemotherapeutics against Mycobacterium tuberculosis. The aim of this review is to highlight novel sets of enzyme inhibitors that disrupt its cell wall biosynthetic pathway. These include the currently approved first and second line drugs, candidates in clinical trials and current structure activity guided endeavors of scientific community to identify new potent inhibitors with least cytotoxicity and better efficacy against emergence of drug resistance till date.
Collapse
Affiliation(s)
- Zubair Shanib Bhat
- Clinical Microbiology and PK/PD Division, Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India.
| | - Muzafar Ahmad Rather
- Clinical Microbiology and PK/PD Division, Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India; Department of Biochemistry, University of Kashmir, Srinagar, Jammu & Kashmir 190006, India
| | - Mubashir Maqbool
- Clinical Microbiology and PK/PD Division, Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India; Department of Zoology, University of Kashmir, Srinagar, Jammu & Kashmir 190006, India
| | - Hafiz Ul Lah
- Medicinal Chemistry Division, Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India
| | - Syed Khalid Yousuf
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India; Medicinal Chemistry Division, Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India
| | - Zahoor Ahmad
- Clinical Microbiology and PK/PD Division, Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India.
| |
Collapse
|
40
|
Na ES, De Jesús-Cortés H, Martinez-Rivera A, Kabir ZD, Wang J, Ramesh V, Onder Y, Rajadhyaksha AM, Monteggia LM, Pieper AA. D-cycloserine improves synaptic transmission in an animal model of Rett syndrome. PLoS One 2017; 12:e0183026. [PMID: 28813484 PMCID: PMC5559075 DOI: 10.1371/journal.pone.0183026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/30/2017] [Indexed: 01/24/2023] Open
Abstract
Rett syndrome (RTT), a leading cause of intellectual disability in girls, is predominantly caused by mutations in the X-linked gene MECP2. Disruption of Mecp2 in mice recapitulates major features of RTT, including neurobehavioral abnormalities, which can be reversed by re-expression of normal Mecp2. Thus, there is reason to believe that RTT could be amenable to therapeutic intervention throughout the lifespan of patients after the onset of symptoms. A common feature underlying neuropsychiatric disorders, including RTT, is altered synaptic function in the brain. Here, we show that Mecp2tm1.1Jae/y mice display lower presynaptic function as assessed by paired pulse ratio, as well as decreased long term potentiation (LTP) at hippocampal Schaffer–collateral-CA1 synapses. Treatment of Mecp2tm1.1Jae/y mice with D-cycloserine (DCS), an FDA-approved analog of the amino acid D-alanine with antibiotic and glycinergic activity, corrected the presynaptic but not LTP deficit without affecting deficient hippocampal BDNF levels. DCS treatment did, however, partially restore lower BDNF levels in the brain stem and striatum. Thus, treatment with DCS may mitigate the severity of some of the neurobehavioral symptoms experienced by patients with Rett syndrome.
Collapse
Affiliation(s)
- Elisa S. Na
- Department of Psychology & Philosophy, Texas Woman’s University, Denton, TX, United States of America
| | - Héctor De Jesús-Cortés
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Arlene Martinez-Rivera
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
- Weill Cornell Autism Research Program, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
| | - Zeeba D. Kabir
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
- Weill Cornell Autism Research Program, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
| | - Jieqi Wang
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Vijayashree Ramesh
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Yasemin Onder
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Anjali M. Rajadhyaksha
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
- Weill Cornell Autism Research Program, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
- * E-mail: (AMR); (LMM); (AAP)
| | - Lisa M. Monteggia
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail: (AMR); (LMM); (AAP)
| | - Andrew A. Pieper
- Weill Cornell Autism Research Program, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Department of Free Radical and Radiation Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Department of Veterans Affairs, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- * E-mail: (AMR); (LMM); (AAP)
| |
Collapse
|
41
|
Tabuchi F, Matsumoto Y, Ishii M, Tatsuno K, Okazaki M, Sato T, Moriya K, Sekimizu K. D-cycloserine increases the effectiveness of vancomycin against vancomycin-highly resistant Staphylococcus aureus. J Antibiot (Tokyo) 2017; 70:907-910. [PMID: 28588223 DOI: 10.1038/ja.2017.56] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 01/07/2023]
Abstract
Vancomycin is a widely used clinical drug to treat for infection by methicillin-resistant Staphylococcus aureus. Some patients show a weak response to vancomycin treatment. We previously reported that β-lactams increase the susceptibility to vancomycin by vancomycin-highly resistant S. aureus (VRSA) strains obtained following repeated in vitro mutagenesis and vancomycin selection. Here we found that the susceptibility of the VRSA strains to vancomycin was remarkably increased by combined treatment with D-cycloserine. On the other hand, VRSA did not show increased susceptibility to vancomycin in combination with bacitracin, fosfomycin, erythromycin, lincomycin, gentamicin, levofloxacin or nisin. Furthermore, in an in vivo infection model with silkworms, combined treatment with vancomycin and D-cycloserine exhibited therapeutic effects, whereas treatment with each compound alone did not. These findings suggest that combined treatment with vancomycin and D-cycloserine could be therapeutically effective against infectious diseases caused by VRSA.
Collapse
Affiliation(s)
- Fumiaki Tabuchi
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Masaki Ishii
- Teikyo University Institute of Medical Mycology, Tokyo, Japan.,Genome Pharmaceuticals Institute Co. Ltd, Tokyo, Japan
| | - Keita Tatsuno
- Faculty of Medicine, Department of Infection Control and Prevention, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Okazaki
- Department of Medical Technology, School of Health Sciences, Tokyo University of Technology, Tokyo, Japan
| | - Tomoaki Sato
- Faculty of Medicine, Department of Infection Control and Prevention, The University of Tokyo, Tokyo, Japan
| | - Kyoji Moriya
- Faculty of Medicine, Department of Infection Control and Prevention, The University of Tokyo, Tokyo, Japan
| | - Kazuhisa Sekimizu
- Teikyo University Institute of Medical Mycology, Tokyo, Japan.,Genome Pharmaceuticals Institute Co. Ltd, Tokyo, Japan
| |
Collapse
|
42
|
Waldman AJ, Ng TL, Wang P, Balskus EP. Heteroatom-Heteroatom Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5784-5863. [PMID: 28375000 PMCID: PMC5534343 DOI: 10.1021/acs.chemrev.6b00621] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Natural products that contain functional groups with heteroatom-heteroatom linkages (X-X, where X = N, O, S, and P) are a small yet intriguing group of metabolites. The reactivity and diversity of these structural motifs has captured the interest of synthetic and biological chemists alike. Functional groups containing X-X bonds are found in all major classes of natural products and often impart significant biological activity. This review presents our current understanding of the biosynthetic logic and enzymatic chemistry involved in the construction of X-X bond containing functional groups within natural products. Elucidating and characterizing biosynthetic pathways that generate X-X bonds could both provide tools for biocatalysis and synthetic biology, as well as guide efforts to uncover new natural products containing these structural features.
Collapse
Affiliation(s)
- Abraham J. Waldman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Tai L. Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Peng Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
43
|
Sarkar P, Yarlagadda V, Ghosh C, Haldar J. A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics. MEDCHEMCOMM 2017; 8:516-533. [PMID: 30108769 DOI: 10.1039/c6md00585c] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/18/2017] [Indexed: 01/24/2023]
Abstract
Cell wall biosynthesis inhibitors (CBIs) have historically been one of the most effective classes of antibiotics. They are the most extensively used class of antibiotics and their importance is exemplified by the β-lactams and glycopeptide antibiotics. However, this class of antibiotics has not received impunity from resistance development. In the wake of this predicament, this review presents the progress of CBIs, especially glycopeptide derivatives as antibiotics to confront antibacterial resistance. The various strategies used for the development of CBIs, their clinical status and possible directions in which this field can evolve have also been discussed.
Collapse
Affiliation(s)
- Paramita Sarkar
- Chemical Biology and Medicinal Chemistry Laboratory , New Chemistry Unit , Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur , Bengaluru 5600064 , Karnataka , India .
| | - Venkateswarlu Yarlagadda
- Chemical Biology and Medicinal Chemistry Laboratory , New Chemistry Unit , Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur , Bengaluru 5600064 , Karnataka , India .
| | - Chandradhish Ghosh
- Chemical Biology and Medicinal Chemistry Laboratory , New Chemistry Unit , Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur , Bengaluru 5600064 , Karnataka , India .
| | - Jayanta Haldar
- Chemical Biology and Medicinal Chemistry Laboratory , New Chemistry Unit , Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur , Bengaluru 5600064 , Karnataka , India .
| |
Collapse
|
44
|
Abstract
Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis (TB), is recognized as a global health emergency as promoted by the World Health Organization. Over 1 million deaths per year, along with the emergence of multi- and extensively-drug resistant strains of Mtb, have triggered intensive research into the pathogenicity and biochemistry of this microorganism, guiding the development of anti-TB chemotherapeutic agents. The essential mycobacterial cell wall, sharing some common features with all bacteria, represents an apparent ‘Achilles heel’ that has been targeted by TB chemotherapy since the advent of TB treatment. This complex structure composed of three distinct layers, peptidoglycan, arabinogalactan and mycolic acids, is vital in supporting cell growth, virulence and providing a barrier to antibiotics. The fundamental nature of cell wall synthesis and assembly has rendered the mycobacterial cell wall as the most widely exploited target of anti-TB drugs. This review provides an overview of the biosynthesis of the prominent cell wall components, highlighting the inhibitory mechanisms of existing clinical drugs and illustrating the potential of other unexploited enzymes as future drug targets.
Collapse
|
45
|
New antibiotics from Nature’s chemical inventory. Bioorg Med Chem 2016; 24:6227-6252. [DOI: 10.1016/j.bmc.2016.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/07/2016] [Indexed: 01/07/2023]
|
46
|
Development of a one-pot assay for screening and identification of Mur pathway inhibitors in Mycobacterium tuberculosis. Sci Rep 2016; 6:35134. [PMID: 27734910 PMCID: PMC5062083 DOI: 10.1038/srep35134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 09/23/2016] [Indexed: 01/21/2023] Open
Abstract
The cell wall of Mycobacterium tuberculosis (Mtb) consists of peptidoglycan, arabinogalactan and mycolic acids. The cytoplasmic steps in the peptidoglycan biosynthetic pathway, catalyzed by the Mur (A-F) enzymes, involve the synthesis of UDP-n-acetylmuramyl pentapeptide, a key precursor molecule required for the formation of the peptidoglycan monomeric building blocks. Mur enzymes are indispensable for cell integrity and their lack of counterparts in eukaryotes suggests them to be promising Mtb drug targets. However, the caveat is that most of the current assays utilize a single Mur enzyme, thereby identifying inhibitors against only one of the enzymes. Here, we report development of a one-pot assay that reconstructs the entire Mtb Mur pathway in vitro and has the advantage of eliminating the requirement for nucleotide intermediates in the pathway as substrates. The MurA-MurF enzymes were purified and a one-pot assay was developed through optimization of successive coupled enzyme assays using UDP-n-acetylglucosamine as the initial sugar substrate. The assay is biochemically characterized and optimized for high-throughput screening of molecules that could disrupt multiple targets within the pathway. Furthermore, we have validated the assay by performing it to identify D-Cycloserine and furan-based benzene-derived compounds with known Mur ligase inhibition as inhibitors of Mtb MurE and MurF.
Collapse
|
47
|
Aminov R. History of antimicrobial drug discovery: Major classes and health impact. Biochem Pharmacol 2016; 133:4-19. [PMID: 27720719 DOI: 10.1016/j.bcp.2016.10.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022]
Abstract
The introduction of antibiotics into clinical practice revolutionized the treatment and management of infectious diseases. Before the introduction of antibiotics, these diseases were the leading cause of morbidity and mortality in human populations. This review presents a brief history of discovery of the main antimicrobial classes (arsphenamines, β-lactams, sulphonamides, polypeptides, aminoglycosides, tetracyclines, amphenicols, lipopeptides, macrolides, oxazolidinones, glycopeptides, streptogramins, ansamycins, quinolones, and lincosamides) that have changed the landscape of contemporary medicine. Given within a historical timeline context, the review discusses how the introduction of certain antimicrobial classes affected the morbidity and mortality rates due to bacterial infectious diseases in human populations. Problems of resistance to antibiotics of different classes are also extensively discussed.
Collapse
Affiliation(s)
- Rustam Aminov
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom.
| |
Collapse
|
48
|
Glutamate Racemase Is the Primary Target of β-Chloro-d-Alanine in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2016; 60:6091-9. [PMID: 27480853 PMCID: PMC5038272 DOI: 10.1128/aac.01249-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/21/2016] [Indexed: 01/18/2023] Open
Abstract
The increasing global prevalence of drug resistance among many leading human pathogens necessitates both the development of antibiotics with novel mechanisms of action and a better understanding of the physiological activities of preexisting clinically effective drugs. Inhibition of peptidoglycan (PG) biosynthesis and cross-linking has traditionally enjoyed immense success as an antibiotic target in multiple bacterial pathogens, except in Mycobacterium tuberculosis, where it has so far been underexploited. d-Cycloserine, a clinically approved antituberculosis therapeutic, inhibits enzymes within the d-alanine subbranch of the PG-biosynthetic pathway and has been a focus in our laboratory for understanding peptidoglycan biosynthesis inhibition and for drug development in studies of M. tuberculosis. During our studies on alternative inhibitors of the d-alanine pathway, we discovered that the canonical alanine racemase (Alr) inhibitor β-chloro–d-alanine (BCDA) is a very poor inhibitor of recombinant M. tuberculosis Alr, despite having potent antituberculosis activity. Through a combination of enzymology, microbiology, metabolomics, and proteomics, we show here that BCDA does not inhibit the d-alanine pathway in intact cells, consistent with its poor in vitro activity, and that it is instead a mechanism-based inactivator of glutamate racemase (MurI), an upstream enzyme in the same early stage of PG biosynthesis. This is the first report to our knowledge of inhibition of MurI in M. tuberculosis and thus provides a valuable tool for studying this essential and enigmatic enzyme and a starting point for future MurI-targeted antibacterial development.
Collapse
|
49
|
Ankisettypalli K, Cheng JJY, Baker EN, Bashiri G. PdxH proteins of mycobacteria are typical members of the classical pyridoxine/pyridoxamine 5'-phosphate oxidase family. FEBS Lett 2016; 590:453-60. [PMID: 26823273 DOI: 10.1002/1873-3468.12080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 11/08/2022]
Abstract
Pyridoxal 5'-phosphate (PLP) biosynthesis is essential for the survival and virulence of Mycobacterium tuberculosis (Mtb). PLP functions as a cofactor for 58 putative PLP-binding proteins encoded by the Mtb genome and could also act as a potential antioxidant. De novo biosynthesis of PLP in Mtb takes place through the 'deoxyxylulose 5'-phosphate (DXP)-independent' pathway, whereas PdxH enzymes, possessing pyridoxine/pyridoxamine 5'-phosphate oxidase (PNPOx) activity, are involved in the PLP salvage pathway. In this study, we demonstrate that the annotated PdxH enzymes from various mycobacterial species are bona fide members of the classical PNPOx enzyme family, capable of producing PLP using both pyridoxine 5'-phosphate (PNP) and pyridoxamine 5'-phosphate (PMP) substrates.
Collapse
Affiliation(s)
- Karthik Ankisettypalli
- Structural Biology Laboratory and Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, New Zealand
| | - Jasmin Jo-Yu Cheng
- Structural Biology Laboratory and Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, New Zealand
| | - Edward N Baker
- Structural Biology Laboratory and Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, New Zealand
| | - Ghader Bashiri
- Structural Biology Laboratory and Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, New Zealand
| |
Collapse
|
50
|
Tran HT, Hong MK, Ngo HPT, Huynh KH, Ahn YJ, Wang Z, Kang LW. Structure of D-alanine-D-alanine ligase from Yersinia pestis: nucleotide phosphate recognition by the serine loop. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:12-21. [PMID: 26894530 DOI: 10.1107/s2059798315021671] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/15/2015] [Indexed: 01/14/2023]
Abstract
D-Alanyl-D-alanine is an essential precursor of bacterial peptidoglycan and is synthesized by D-alanine-D-alanine ligase (DDL) with hydrolysis of ATP; this reaction makes DDL an important drug target for the development of antibacterial agents. Five crystal structures of DDL from Yersinia pestis (YpDDL) were determined at 1.7-2.5 Å resolution: apo, AMP-bound, ADP-bound, adenosine 5'-(β,γ-imido)triphosphate-bound, and D-alanyl-D-alanine- and ADP-bound structures. YpDDL consists of three domains, in which four loops, loop 1, loop 2 (the serine loop), loop 3 (the ω-loop) and loop 4, constitute the binding sites for two D-alanine molecules and one ATP molecule. Some of them, especially the serine loop and the ω-loop, show flexible conformations, and the serine loop is mainly responsible for the conformational change in substrate nucleotide phosphates. Enzyme-kinetics assays were carried out for both the D-alanine and ATP substrates and a substrate-binding mechanism was proposed for YpDDL involving conformational changes of the loops.
Collapse
Affiliation(s)
- Huyen Thi Tran
- Department of Biological Sciences, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Myoung Ki Hong
- Department of Biological Sciences, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Ho Phuong Thuy Ngo
- Department of Biological Sciences, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Kim Hung Huynh
- Department of Biological Sciences, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Yeh Jin Ahn
- Department of Life Science, Sangmyung University, 7 Hongji-dong, Jongno-gu, Seoul 110-743, Republic of Korea
| | - Zhong Wang
- Center for Cellular & Structural Biology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Lin Woo Kang
- Department of Biological Sciences, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| |
Collapse
|