1
|
Liu Q, Li J, Li X, Zhang L, Yao S, Wang Y, Tuo B, Jin H. Advances in the understanding of the role and mechanism of action of PFKFB3‑mediated glycolysis in liver fibrosis (Review). Int J Mol Med 2024; 54:105. [PMID: 39301662 PMCID: PMC11448561 DOI: 10.3892/ijmm.2024.5429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Liver fibrosis is a pathophysiologic manifestation of chronic liver disease and a precursor to cirrhosis and hepatocellular carcinoma. Glycolysis provides intermediate metabolites as well as energy support for cell proliferation and phenotypic transformation in liver fibers. 6‑Phosphofructo‑2‑kinase/fructose‑2,6‑bisphosphatase 3 (PFKFB3) is a key activator of glycolysis and plays an important role in the process of glycolysis. The role of PFKFB3‑mediated glycolysis in myocardial fibrosis, renal fibrosis and pulmonary fibrosis has been demonstrated, and the role of PFKFB3 in the activation of hepatic stellate cells by aerobic glycolysis has been proven by relevant experiments. The present study reviews the research progress on the role and mechanism of action of PFKFB3‑mediated glycolysis in the progression of hepatic fibrosis to discuss the role of PFKFB3‑mediated glycolysis in hepatic fibrosis and to provide new ideas for research on PFKFB3 as a target for the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Qian Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jiajia Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xin Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
2
|
Zhao M, Chen YL, Yang LH. Advancements in the study of glucose metabolism in relation to tumor progression and treatment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 192:11-18. [PMID: 39111717 DOI: 10.1016/j.pbiomolbio.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Sugar serves as the primary energy source for mammals, with glucose metabolism facilitating energy acquisition in human cells. The proper functioning of intracellular glucose metabolism is essential for the maintenance of orderly and healthy physiological activities. Tumor cells, characterized by uncontrolled growth, exhibit dysregulated proliferation and apoptosis processes, leading to abnormal alterations in glucose metabolism. Specifically, tumor cells exhibit a shift towards aerobic glycolysis, resulting in the production of lactic acid that can be utilized as a metabolic intermediate for sustained tumor cell growth. This article provides a comprehensive overview of the enzymes involved in glucose metabolism and the alterations in gene expression that occur during tumor progression. It also examines the current research on targeting abnormal glucose metabolism processes for tumor treatment and discusses potential future directions for utilizing glucose metabolism as a therapeutic target.
Collapse
Affiliation(s)
- Meng Zhao
- Clinical Biochemistry Teaching and Research Office, Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yu-Long Chen
- Department of Pathophysiology, College of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| | - Lian-He Yang
- Clinical Biochemistry Teaching and Research Office, Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
3
|
Jirapongwattana N, Thongchot S, Pongpaibul A, Trakarnsanga A, Quinn J, Thuwajit P, Thuwajit C, Edwards J. The combined tumour-based Fascin/Snail and stromal periostin reveals the effective prognosis prediction in colorectal cancer patients. PLoS One 2024; 19:e0304666. [PMID: 38935747 PMCID: PMC11210851 DOI: 10.1371/journal.pone.0304666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/16/2024] [Indexed: 06/29/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy cause of cancer-related mortality worldwide. Epithelial-mesenchymal transition (EMT) promotes cancer metastasis and a tumour-based Glasgow EMT score was associated with adverse clinical features and poor prognosis. In this study, the impact of using the established five tumour-based EMT markers consisting of E-cadherin (E-cad), β-catenin (β-cat), Snail, Zeb-1, and Fascin in combination with the stromal periostin (PN) on the prediction of CRC patients' prognosis were invesigated. Formalin-fixed paraffin-embedded tissues of 202 CRC patients were studies the expressions of E-cad, β-cat, Snail, Zeb-1, Fascin, and PN by immunohistochemistry. Individually, cytoplasmic Fascin (Fc), cytoplasmic Snail (Sc), nuclear Snail (Sn), stromal Snail (Ss), and stromal PN (Ps) were significantly associated with reduced survival. A combination of Ps with Fc, Fs, and Sn was observed in 2 patterns including combined Fc, Fs, and Ps (FcFsPs) and Fc, Sn, and Ps (FcSnPs). These combinations enhanced the prognostic power compared to individual EMT markers and were independent prognostic markers. As the previously established scoring method required five markers and stringent criteria, its clinical use might be limited. Therefore, using these novel combined prognostic markers, either FcFsPs or FcSnPs, may be useful in predicting CRC patient outcomes.
Collapse
Affiliation(s)
- Niphat Jirapongwattana
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ananya Pongpaibul
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Atthaphorn Trakarnsanga
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jean Quinn
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| |
Collapse
|
4
|
Ioannou IA, Brooks NJ, Kuimova MK, Elani Y. Visualizing Actin Packing and the Effects of Actin Attachment on Lipid Membrane Viscosity Using Molecular Rotors. JACS AU 2024; 4:2041-2049. [PMID: 38818078 PMCID: PMC11134356 DOI: 10.1021/jacsau.4c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 06/01/2024]
Abstract
The actin cytoskeleton and its elaborate interplay with the plasma membrane participate in and control numerous biological processes in eukaryotic cells. Malfunction of actin networks and changes in their dynamics are related to various diseases, from actin myopathies to uncontrolled cell growth and tumorigenesis. Importantly, the biophysical and mechanical properties of actin and its assemblies are deeply intertwined with the biological functions of the cytoskeleton. Novel tools to study actin and its associated biophysical features are, therefore, of prime importance. Here we develop a new approach which exploits fluorescence lifetime imaging microscopy (FLIM) and environmentally sensitive fluorophores termed molecular rotors, acting as quantitative microviscosity sensors, to monitor dynamic viscoelastic properties of both actin structures and lipid membranes. In order to reproduce a minimal actin cortex in synthetic cell models, we encapsulated and attached actin networks to the lipid bilayer of giant unilamellar vesicles (GUVs). Using a cyanine-based molecular rotor, DiSC2(3), we show that different types of actin bundles are characterized by distinct packing, which can be spatially resolved using FLIM. Similarly, we show that a lipid bilayer-localized molecular rotor can monitor the effects of attaching cross-linked actin networks to the lipid membrane, revealing an increase in membrane viscosity upon actin attachment. Our approach bypasses constraints associated with existing methods for actin imaging, many of which lack the capability for direct visualization of biophysical properties. It can therefore contribute to a deeper understanding of the role that actin plays in fundamental biological processes and help elucidate the underlying biophysics of actin-related diseases.
Collapse
Affiliation(s)
- Ion A. Ioannou
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, London W12 0BZ, U.K.
- Department
of Chemical Engineering, Imperial College
London, South Kensington, London SW7 2AZ, U.K.
| | - Nickolas J. Brooks
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, London W12 0BZ, U.K.
| | - Marina K. Kuimova
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, London W12 0BZ, U.K.
| | - Yuval Elani
- Department
of Chemical Engineering, Imperial College
London, South Kensington, London SW7 2AZ, U.K.
| |
Collapse
|
5
|
Wang J, Peng J, Chen Y, Nasser MI, Qin H. The role of stromal cells in epithelial-mesenchymal plasticity and its therapeutic potential. Discov Oncol 2024; 15:13. [PMID: 38244071 PMCID: PMC10799841 DOI: 10.1007/s12672-024-00867-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a critical tumor invasion and metastasis process. EMT enables tumor cells to migrate, detach from their original location, enter the circulation, circulate within it, and eventually exit from blood arteries to colonize in foreign sites, leading to the development of overt metastases, ultimately resulting in death. EMT is intimately tied to stromal cells around the tumor and is controlled by a range of cytokines secreted by stromal cells. This review summarizes recent research on stromal cell-mediated EMT in tumor invasion and metastasis. We also discuss the effects of various stromal cells on EMT induction and focus on the molecular mechanisms by which several significant stromal cells convert from foes to friends of cancer cells to fuel EMT processes via their secretions in the tumor microenvironment (TME). As a result, a better knowledge of the role of stromal cells in cancer cells' EMT may pave the path to cancer eradication.
Collapse
Affiliation(s)
- Juanjing Wang
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Pharmaceutical Science, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Junmei Peng
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Pharmaceutical Science, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yonglin Chen
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, China
| | - M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China.
| | - Hui Qin
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
6
|
Turpin A, Delliaux C, Parent P, Chevalier H, Escudero-Iriarte C, Bonardi F, Vanpouille N, Flourens A, Querol J, Carnot A, Leroy X, Herranz N, Lanel T, Villers A, Olivier J, Touzet H, de Launoit Y, Tian TV, Duterque-Coquillaud M. Fascin-1 expression is associated with neuroendocrine prostate cancer and directly suppressed by androgen receptor. Br J Cancer 2023; 129:1903-1914. [PMID: 37875732 PMCID: PMC10703930 DOI: 10.1038/s41416-023-02449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/11/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Neuroendocrine prostate cancer (NEPC) is an aggressive form of prostate cancer, arising from resistance to androgen-deprivation therapies. However, the molecular mechanisms associated with NEPC development and invasiveness are still poorly understood. Here we investigated the expression and functional significance of Fascin-1 (FSCN1), a pro-metastasis actin-bundling protein associated with poor prognosis of several cancers, in neuroendocrine differentiation of prostate cancer. METHODS Differential expression analyses using Genome Expression Omnibus (GEO) database, clinical samples and cell lines were performed. Androgen or antagonist's cellular treatments and knockdown experiments were used to detect changes in cell morphology, molecular markers, migration properties and in vivo tumour growth. Chromatin immunoprecipitation-sequencing (ChIP-Seq) data and ChIP assays were analysed to decipher androgen receptor (AR) binding. RESULTS We demonstrated that FSCN1 is upregulated during neuroendocrine differentiation of prostate cancer in vitro, leading to phenotypic changes and NEPC marker expression. In human prostate cancer samples, FSCN1 expression is restricted to NEPC tumours. We showed that the androgen-activated AR downregulates FSCN1 expression and works as a transcriptional repressor to directly suppress FSCN1 expression. AR antagonists alleviate this repression. In addition, FSCN1 silencing further impairs in vivo tumour growth. CONCLUSION Collectively, our findings identify FSCN1 as an AR-repressed gene. Particularly, it is involved in NEPC aggressiveness. Our results provide the rationale for the future clinical development of FSCN1 inhibitors in NEPC patients.
Collapse
Affiliation(s)
- Anthony Turpin
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
- Department of Medical Oncology, Lille University Hospital, F-59000, Lille, France
| | - Carine Delliaux
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Pauline Parent
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
- Department of Medical Oncology, Lille University Hospital, F-59000, Lille, France
| | - Hortense Chevalier
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
- Department of Medical Oncology, Centre Oscar Lambret, 3, rue Frederic Combemale, 59000, Lille, France
| | | | - Franck Bonardi
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000, Lille, France
| | - Nathalie Vanpouille
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Anne Flourens
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Jessica Querol
- Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - Aurélien Carnot
- Department of Medical Oncology, Centre Oscar Lambret, 3, rue Frederic Combemale, 59000, Lille, France
| | - Xavier Leroy
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
- Institut de Pathologie, CHU Lille, Avenue Oscar Lambret, F-59000, Lille, France
| | - Nicolás Herranz
- Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - Tristan Lanel
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
- Institut de Pathologie, CHU Lille, Avenue Oscar Lambret, F-59000, Lille, France
| | - Arnauld Villers
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
- Department of Urology, Hospital Claude Huriez, CHU Lille, Lille, France
| | - Jonathan Olivier
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
- Department of Urology, Hospital Claude Huriez, CHU Lille, Lille, France
| | - Hélène Touzet
- University Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000, Lille, France
| | - Yvan de Launoit
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Tian V Tian
- Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - Martine Duterque-Coquillaud
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France.
| |
Collapse
|
7
|
Hayashi Y, Yamamoto Y, Murakami I. Micromorphological observation of HLE cells under knockdown of Fascin using LV-SEM. Med Mol Morphol 2023; 56:257-265. [PMID: 37526656 DOI: 10.1007/s00795-023-00362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/19/2023] [Indexed: 08/02/2023]
Abstract
Liver cancer is one of the most prevalent cancers in Japan with hepatocellular carcinoma (HCC) as the major histological subtype. Successful novel treatments for HCC have been reported; however, recurrences or metastasis may occur, which results in poor prognoses and high mortality of HCC patients. Fascin, an actin-bundling protein, regulates cell adhesion, migration, and invasion. Its overexpression positively correlates with poor prognosis of malignant tumors, and Fascin is considered as one of the tumor biomarkers and therapeutic target proteins. In this study, we attempted to reveal the relationship between Fascin and HCC using HLE, one of the human HCC cell lines. We performed the study with classical immunocytochemistry and recently developed techniques, such as wound-healing assay, spheroid cultivation, and low-vacuum scanning electron microscopy (LV-SEM). Non-Fascin-knockdown (FKD) cell spheroid had a regular spherical appearance with tight cell-cell connections, while FKD cell spheroid had an irregular shape with loose cell-cell connections. Cells of non-FKD spheroid presented fibrous protrusions on the cell surface, contrarily, cells of FKD spheroids showed bulbous-shaped protrusions. Morphological observation of FKD and non-FKD HLE spheroids were performed using LV-SEM. Our study may help to reveal the roles of Fascin in the process of HCC formation and its malignancy.
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Department of Pathology, School of Medicine, Kochi University, 185-1, Kohasu, Oko-Cho, Nankoku, 783-8505, Japan
- Equipment of Support Planning Office, Kochi University, 185-1, Kohasu, Oko-Cho, Nankoku, 783-8505, Japan
| | - Yumiko Yamamoto
- Department of Diagnostic Pathology, Kochi University Hospital, Kochi University, 185-1, Kohasu, Oko-Cho, Nankoku, 783-8505, Japan.
| | - Ichiro Murakami
- Department of Pathology, School of Medicine, Kochi University, 185-1, Kohasu, Oko-Cho, Nankoku, 783-8505, Japan
- Department of Diagnostic Pathology, Kochi University Hospital, Kochi University, 185-1, Kohasu, Oko-Cho, Nankoku, 783-8505, Japan
| |
Collapse
|
8
|
Zeyn Y, Hobernik D, Wilk U, Pöhmerer J, Hieber C, Medina-Montano C, Röhrig N, Strähle CF, Thoma-Kress AK, Wagner E, Bros M, Berger S. Transcriptional Targeting of Dendritic Cells Using an Optimized Human Fascin1 Gene Promoter. Int J Mol Sci 2023; 24:16938. [PMID: 38069260 PMCID: PMC10706967 DOI: 10.3390/ijms242316938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Deeper knowledge about the role of the tumor microenvironment (TME) in cancer development and progression has resulted in new strategies such as gene-based cancer immunotherapy. Whereas some approaches focus on the expression of tumoricidal genes within the TME, DNA-based vaccines are intended to be expressed in antigen-presenting cells (e.g., dendritic cells, DCs) in secondary lymphoid organs, which in turn induce anti-tumor T cell responses. Besides effective delivery systems and the requirement of appropriate adjuvants, DNA vaccines themselves need to be optimized regarding efficacy and selectivity. In this work, the concept of DC-focused transcriptional targeting was tested by applying a plasmid encoding for the luciferase reporter gene under the control of a derivative of the human fascin1 gene promoter (pFscnLuc), comprising the proximal core promoter fused to the normally more distantly located DC enhancer region. DC-focused activity of this reporter construct was confirmed in cell culture in comparison to a standard reporter vector encoding for luciferase under the control of the strong ubiquitously active cytomegalovirus promoter and enhancer (pCMVLuc). Both plasmids were also compared upon intravenous administration in mice. The organ- and cell type-specific expression profile of pFscnLuc versus pCMVLuc demonstrated favorable activity especially in the spleen as a central immune organ and within the spleen in DCs.
Collapse
Affiliation(s)
- Yanira Zeyn
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Dominika Hobernik
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Ulrich Wilk
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany; (U.W.); (J.P.); (E.W.)
| | - Jana Pöhmerer
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany; (U.W.); (J.P.); (E.W.)
| | - Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Carolina Medina-Montano
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Nadine Röhrig
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Caroline F. Strähle
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.F.S.); (A.K.T.-K.)
| | - Andrea K. Thoma-Kress
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.F.S.); (A.K.T.-K.)
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany; (U.W.); (J.P.); (E.W.)
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany; (U.W.); (J.P.); (E.W.)
| |
Collapse
|
9
|
Rajan S, Yoon J, Wu H, Srapyan S, Baskar R, Ahmed G, Yang T, Grintsevich EE, Reisler E, Terman JR. Disassembly of bundled F-actin and cellular remodeling via an interplay of Mical, cofilin, and F-actin crosslinkers. Proc Natl Acad Sci U S A 2023; 120:e2309955120. [PMID: 37725655 PMCID: PMC10523612 DOI: 10.1073/pnas.2309955120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023] Open
Abstract
Cellular form and function are controlled by the assembly and stability of actin cytoskeletal structures-but disassembling/pruning these structures is equally essential for the plasticity and remodeling that underlie behavioral adaptations. Importantly, the mechanisms of actin assembly have been well-defined-including that it is driven by actin's polymerization into filaments (F-actin) and then often bundling by crosslinking proteins into stable higher-order structures. In contrast, it remains less clear how these stable bundled F-actin structures are rapidly disassembled. We now uncover mechanisms that rapidly and extensively disassemble bundled F-actin. Using biochemical, structural, and imaging assays with purified proteins, we show that F-actin bundled with one of the most prominent crosslinkers, fascin, is extensively disassembled by Mical, the F-actin disassembly enzyme. Furthermore, the product of this Mical effect, Mical-oxidized actin, is poorly bundled by fascin, thereby further amplifying Mical's disassembly effects on bundled F-actin. Moreover, another critical F-actin regulator, cofilin, also affects fascin-bundled filaments, but we find herein that it synergizes with Mical to dramatically amplify its disassembly of bundled F-actin compared to the sum of their individual effects. Genetic and high-resolution cellular assays reveal that Mical also counteracts crosslinking proteins/bundled F-actin in vivo to control cellular extension, axon guidance, and Semaphorin/Plexin cell-cell repulsion. Yet, our results also support the idea that fascin-bundling serves to dampen Mical's F-actin disassembly in vitro and in vivo-and that physiologically relevant cellular remodeling requires a fine-tuned interplay between the factors that build bundled F-actin networks and those that disassemble them.
Collapse
Affiliation(s)
- Sudeepa Rajan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Jimok Yoon
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| | - Heng Wu
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| | - Sargis Srapyan
- Department of Chemistry and Biochemistry, California State University, Long Beach, CA90840
| | - Raju Baskar
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| | - Giasuddin Ahmed
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| | - Taehong Yang
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| | - Elena E. Grintsevich
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- Department of Chemistry and Biochemistry, California State University, Long Beach, CA90840
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| | - Jonathan R. Terman
- Department of Neuroscience, The University of Texas of Southwestern Medical Center, Dallas, TX75390
- Department of Pharmacology, The University of Texas of Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
10
|
Izdebska M, Zielińska W, Krajewski A, Grzanka A. Fascin in migration and metastasis of breast cancer cells - A review. Adv Med Sci 2023; 68:290-297. [PMID: 37660543 DOI: 10.1016/j.advms.2023.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/20/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Cancer cell migration and metastasis are the biggest problems in the treatment of cancer patients. The most aggressive breast cancer (BC) is the triple-negative type. Therefore, effective therapeutic targets that limit cell migration are sought. One such target may be fascin, as its overexpression is characteristic to triple-negative breast cancer. The high level of fascin enables the formation of protrusion and thus promotes the invasion of cancer cells. Fascin also shows co-localization or functional relationships with other proteins. These are proteins involved in the epithelial-mesenchymal transition process, vimentin, cadherins, β-catenin, and matrix metalloproteinases 2/9 (MMP-2/9). Fascin is also involved in many signaling pathways protein kinase C-δ (PKCδ), Wnt/β-catenin, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and phosphatidylinositol 3-kinase (PI3K)-Akt. Therefore, in this article, we review currently available in vitro studies and compare them with The Cancer Genome Atlas (TCGA) data analysis of BC patients to demonstrate the role of fascin in the migration and invasion of cancer cells.
Collapse
Affiliation(s)
- Magdalena Izdebska
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland
| | - Wioletta Zielińska
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland
| | - Adrian Krajewski
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland.
| | - Alina Grzanka
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland
| |
Collapse
|
11
|
Wang HJ, Jiang YP, Zhang JY, Tang XQ, Lou JS, Huang XY. Roles of Fascin in Dendritic Cells. Cancers (Basel) 2023; 15:3691. [PMID: 37509352 PMCID: PMC10378208 DOI: 10.3390/cancers15143691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that play a crucial role in activating naive T cells through presenting antigen information, thereby influencing immunity and anti-cancer responses. Fascin, a 55-kDa actin-bundling protein, is highly expressed in mature DCs and serves as a marker protein for their identification. However, the precise role of fascin in intratumoral DCs remains poorly understood. In this review, we aim to summarize the role of fascin in both normal and intratumoral DCs. In normal DCs, fascin promotes immune effects through facilitating DC maturation and migration. Through targeting intratumoral DCs, fascin inhibitors enhance anti-tumor immune activity. These roles of fascin in different DC populations offer valuable insights for future research in immunotherapy and strategies aimed at improving cancer treatments.
Collapse
Affiliation(s)
- Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ya-Ping Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun-Ying Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiao-Qi Tang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
12
|
Ruggiero C, Tamburello M, Rossini E, Zini S, Durand N, Cantini G, Cioppi F, Hantel C, Kiseljak-Vassiliades K, Wierman ME, Landwehr LS, Weigand I, Kurlbaum M, Zizioli D, Turtoi A, Yang S, Berruti A, Luconi M, Sigala S, Lalli E. FSCN1 as a new druggable target in adrenocortical carcinoma. Int J Cancer 2023; 153:210-223. [PMID: 36971100 DOI: 10.1002/ijc.34526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a high risk of relapse and metastatic spread. The actin-bundling protein fascin (FSCN1) is overexpressed in aggressive ACC and represents a reliable prognostic indicator. FSCN1 has been shown to synergize with VAV2, a guanine nucleotide exchange factor for the Rho/Rac GTPase family, to enhance the invasion properties of ACC cancer cells. Based on those results, we investigated the effects of FSCN1 inactivation by CRISPR/Cas9 or pharmacological blockade on the invasive properties of ACC cells, both in vitro and in an in vivo metastatic ACC zebrafish model. Here, we showed that FSCN1 is a transcriptional target for β-catenin in H295R ACC cells and that its inactivation resulted in defects in cell attachment and proliferation. FSCN1 knock-out modulated the expression of genes involved in cytoskeleton dynamics and cell adhesion. When Steroidogenic Factor-1 (SF-1) dosage was upregulated in H295R cells, activating their invasive capacities, FSCN1 knock-out reduced the number of filopodia, lamellipodia/ruffles and focal adhesions, while decreasing cell invasion in Matrigel. Similar effects were produced by the FSCN1 inhibitor G2-044, which also diminished the invasion of other ACC cell lines expressing lower levels of FSCN1 than H295R. In the zebrafish model, metastases formation was significantly reduced in FSCN1 knock-out cells and G2-044 significantly reduced the number of metastases formed by ACC cells. Our results indicate that FSCN1 is a new druggable target for ACC and provide the rationale for future clinical trials with FSCN1 inhibitors in patients with ACC.
Collapse
Affiliation(s)
- Carmen Ruggiero
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, 06560, Valbonne, France
- Université Côte d'Azur, 06560, Valbonne, France
| | - Mariangela Tamburello
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124, Brescia, Italy
| | - Elisa Rossini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124, Brescia, Italy
| | - Silvia Zini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124, Brescia, Italy
| | - Nelly Durand
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, 06560, Valbonne, France
- Université Côte d'Azur, 06560, Valbonne, France
| | - Giulia Cantini
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50134, Florence, Italy
| | - Francesca Cioppi
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50134, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091, Zürich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307, Dresden, Germany
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, 80045, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, 80045, Aurora, Colorado, USA
| | - Margaret E Wierman
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, 80045, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, 80045, Aurora, Colorado, USA
| | - Laura-Sophie Landwehr
- Division of Endocrinology and Diabetology-Department of Internal Medicine I, University Hospital, University of Würzburg, 97080, Würzburg, Germany
| | - Isabel Weigand
- Division of Endocrinology and Diabetology-Department of Internal Medicine I, University Hospital, University of Würzburg, 97080, Würzburg, Germany
- Department of Medicine IV, University Hospital Munich, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Max Kurlbaum
- Division of Endocrinology and Diabetology-Department of Internal Medicine I, University Hospital, University of Würzburg, 97080, Würzburg, Germany
| | - Daniela Zizioli
- Section of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, 25124, Brescia, Italy
| | - Andrei Turtoi
- Tumor Microenvironment and Resistance to Therapy Laboratory, Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier-INSERM U1194, 34090, Montpellier, France
- Platform for Translational Oncometabolomics, Biocampus, CNRS-INSERM-Université de Montpellier, 34090, Montpellier, France
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, 17033, Hershey, Pennsylvania, USA
| | - Alfredo Berruti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and ASST Spedali Civili di Brescia, 25123, Brescia, Italy
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50134, Florence, Italy
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124, Brescia, Italy
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, 06560, Valbonne, France
- Université Côte d'Azur, 06560, Valbonne, France
- Inserm, 06560, Valbonne, France
| |
Collapse
|
13
|
Wu Z, Uhl B, Gires O, Reichel CA. A transcriptomic pan-cancer signature for survival prognostication and prediction of immunotherapy response based on endothelial senescence. J Biomed Sci 2023; 30:21. [PMID: 36978029 PMCID: PMC10045484 DOI: 10.1186/s12929-023-00915-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The microvascular endothelium inherently controls nutrient delivery, oxygen supply, and immune surveillance of malignant tumors, thus representing both biological prerequisite and therapeutic vulnerability in cancer. Recently, cellular senescence emerged as a fundamental characteristic of solid malignancies. In particular, tumor endothelial cells have been reported to acquire a senescence-associated secretory phenotype, which is characterized by a pro-inflammatory transcriptional program, eventually promoting tumor growth and formation of distant metastases. We therefore hypothesize that senescence of tumor endothelial cells (TEC) represents a promising target for survival prognostication and prediction of immunotherapy efficacy in precision oncology. METHODS Published single-cell RNA sequencing datasets of different cancer entities were analyzed for cell-specific senescence, before generating a pan-cancer endothelial senescence-related transcriptomic signature termed EC.SENESCENCE.SIG. Utilizing this signature, machine learning algorithms were employed to construct survival prognostication and immunotherapy response prediction models. Machine learning-based feature selection algorithms were applied to select key genes as prognostic biomarkers. RESULTS Our analyses in published transcriptomic datasets indicate that in a variety of cancers, endothelial cells exhibit the highest cellular senescence as compared to tumor cells or other cells in the vascular compartment of malignant tumors. Based on these findings, we developed a TEC-associated, senescence-related transcriptomic signature (EC.SENESCENCE.SIG) that positively correlates with pro-tumorigenic signaling, tumor-promoting dysbalance of immune cell responses, and impaired patient survival across multiple cancer entities. Combining clinical patient data with a risk score computed from EC.SENESCENCE.SIG, a nomogram model was constructed that enhanced the accuracy of clinical survival prognostication. Towards clinical application, we identified three genes as pan-cancer biomarkers for survival probability estimation. As therapeutic perspective, a machine learning model constructed on EC.SENESCENCE.SIG provided superior pan-cancer prediction for immunotherapy response than previously published transcriptomic models. CONCLUSIONS We here established a pan-cancer transcriptomic signature for survival prognostication and prediction of immunotherapy response based on endothelial senescence.
Collapse
Affiliation(s)
- Zhengquan Wu
- Department of Otorhinolaryngology, Ludwigs-Maximilians-University Medical Centre, Marchioninistr. 15, 81377, Munich, Germany
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Bernd Uhl
- Department of Otorhinolaryngology, Ludwigs-Maximilians-University Medical Centre, Marchioninistr. 15, 81377, Munich, Germany
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, Ludwigs-Maximilians-University Medical Centre, Marchioninistr. 15, 81377, Munich, Germany
| | - Christoph A Reichel
- Department of Otorhinolaryngology, Ludwigs-Maximilians-University Medical Centre, Marchioninistr. 15, 81377, Munich, Germany.
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
14
|
Esmaeilniakooshkghazi A, Pham E, George SP, Ahrorov A, Villagomez FR, Byington M, Mukhopadhyay S, Patnaik S, Conrad JC, Naik M, Ravi S, Tebbutt N, Mooi J, Reehorst CM, Mariadason JM, Khurana S. In colon cancer cells fascin1 regulates adherens junction remodeling. FASEB J 2023; 37:e22786. [PMID: 36786724 DOI: 10.1096/fj.202201454r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/21/2022] [Accepted: 01/10/2023] [Indexed: 02/15/2023]
Abstract
Adherens junctions (AJs) are a defining feature of all epithelial cells. They regulate epithelial tissue architecture and integrity, and their dysregulation is a key step in tumor metastasis. AJ remodeling is crucial for cancer progression, and it plays a key role in tumor cell survival, growth, and dissemination. Few studies have examined AJ remodeling in cancer cells consequently, it remains poorly understood and unleveraged in the treatment of metastatic carcinomas. Fascin1 is an actin-bundling protein that is absent from the normal epithelium but its expression in colon cancer is linked to metastasis and increased mortality. Here, we provide the molecular mechanism of AJ remodeling in colon cancer cells and identify for the first time, fascin1's function in AJ remodeling. We show that in colon cancer cells fascin1 remodels junctional actin and actomyosin contractility which makes AJs less stable but more dynamic. By remodeling AJs fascin1 drives mechanoactivation of WNT/β-catenin signaling and generates "collective plasticity" which influences the behavior of cells during cell migration. The impact of mechanical inputs on WNT/β-catenin activation in cancer cells remains poorly understood. Our findings highlight the role of AJ remodeling and mechanosensitive WNT/β-catenin signaling in the growth and dissemination of colorectal carcinomas.
Collapse
Affiliation(s)
| | - Eric Pham
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Sudeep P George
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Afzal Ahrorov
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Fabian R Villagomez
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Michael Byington
- Department of Chemical and Bimolecular Engineering, University of Houston, Houston, Texas, USA
| | - Srijita Mukhopadhyay
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - Srinivas Patnaik
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Jacinta C Conrad
- Department of Chemical and Bimolecular Engineering, University of Houston, Houston, Texas, USA
| | - Monali Naik
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Saathvika Ravi
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Niall Tebbutt
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Jennifer Mooi
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Camilla M Reehorst
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - John M Mariadason
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Seema Khurana
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA.,School of Health Professions, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
15
|
Rajan S, Kudryashov DS, Reisler E. Actin Bundles Dynamics and Architecture. Biomolecules 2023; 13:450. [PMID: 36979385 PMCID: PMC10046292 DOI: 10.3390/biom13030450] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Cells use the actin cytoskeleton for many of their functions, including their division, adhesion, mechanosensing, endo- and phagocytosis, migration, and invasion. Actin bundles are the main constituent of actin-rich structures involved in these processes. An ever-increasing number of proteins that crosslink actin into bundles or regulate their morphology is being identified in cells. With recent advances in high-resolution microscopy and imaging techniques, the complex process of bundles formation and the multiple forms of physiological bundles are beginning to be better understood. Here, we review the physiochemical and biological properties of four families of highly conserved and abundant actin-bundling proteins, namely, α-actinin, fimbrin/plastin, fascin, and espin. We describe the similarities and differences between these proteins, their role in the formation of physiological actin bundles, and their properties-both related and unrelated to their bundling abilities. We also review some aspects of the general mechanism of actin bundles formation, which are known from the available information on the activity of the key actin partners involved in this process.
Collapse
Affiliation(s)
- Sudeepa Rajan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Han X, Du S, Chen X, Min X, Dong Z, Wang Y, Zhu C, Wei F, Gao S, Cai Q. Lactate-mediated Fascin protrusions promote cell adhesion and migration in cervical cancer. Theranostics 2023; 13:2368-2383. [PMID: 37153736 PMCID: PMC10157738 DOI: 10.7150/thno.83938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 05/10/2023] Open
Abstract
Background: Lactate is associated with the poor prognosis of many human malignancies. Cervical cancer, one of main causes of women mortality worldwide, is aggressive and absent of effective pharmacological treatment, and its underlying mechanisms of progression remain elusive. Methods: The regulation of β-catenin to fascin protrusion formation upon acidic lactate (Lactic acid [LA]) stimulation was evaluated through in β-catenin or fascin deficiency cell line models by immunofluorescence assays, and subcellular fractionation. The effect of β-catenin and fascin relocation by LA and its antagonist were evaluated by immunohistochemistry assay in patient tissues and mouse tumor xenograft model. Trypsin digestion, Transwell assay, cell proliferation in vitro was performed to explore the role of LA in the cell growth, adhesion and migration. Results: Low concentration of LA significantly promotes cytoskeleton remodeling via `protrusion formation to increase cell adhesion and migration. Mechanistically, upon LA stimulation, β-catenin diffuses from the cytoplasmic membrane into the nucleus, which in turn induces fascin nuclear-cytoplasm redistribution to the protrusion compartment. Moreover, the antagonist of LA sufficiently blocks the LA-mediated β-catenin nuclear import, fascin nuclear export, and the growth and invasion of cervical cancer cells in vitro and in vivo using a murine xenograft model. Conclusions: This study uncovers β-catenin-fascin axis as a key signal in response to extracellular lactate and indicates that antagonist of LA may serve as a potential clinical intervention for cancer development.
Collapse
Affiliation(s)
- Xiao Han
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Shujuan Du
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Xiaoting Chen
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Xuehua Min
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Zhongwei Dong
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Yuyan Wang
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Caixia Zhu
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- ✉ Corresponding author: (QC); (SG); (FW)
| | - Shujun Gao
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- ✉ Corresponding author: (QC); (SG); (FW)
| | - Qiliang Cai
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- ✉ Corresponding author: (QC); (SG); (FW)
| |
Collapse
|
17
|
Zhang N, Bian Q, Gao Y, Wang Q, Shi Y, Li X, Ma X, Chen H, Zhao Z, Yu H. The Role of Fascin-1 in Human Urologic Cancers: A Promising Biomarker or Therapeutic Target? Technol Cancer Res Treat 2023; 22:15330338231175733. [PMID: 37246525 PMCID: PMC10240877 DOI: 10.1177/15330338231175733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/30/2023] Open
Abstract
Human cancer statistics show that an increased incidence of urologic cancers such as bladder cancer, prostate cancer, and renal cell carcinoma. Due to the lack of early markers and effective therapeutic targets, their prognosis is poor. Fascin-1 is an actin-binding protein, which functions in the formation of cell protrusions by cross-linking with actin filaments. Studies have found that fascin-1 expression is elevated in most human cancers and is related to outcomes such as neoplasm metastasis, reduced survival, and increased aggressiveness. Fascin-1 has been considered as a potential therapeutic target for urologic cancers, but there is no comprehensive review to evaluate these studies. This review aimed to provide an enhanced literature review, outline, and summarize the mechanism of fascin-1 in urologic cancers and discuss the therapeutic potential of fascin-1 and the possibility of its use as a potential marker. We also focused on the correlation between the overexpression of fascin-1 and clinicopathological parameters. Mechanistically, fascin-1 is regulated by several regulators and signaling pathways (such as long noncoding RNA, microRNA, c-Jun N-terminal kinase, and extracellular regulated protein kinases). The overexpression of fascin-1 is related to clinicopathologic parameters such as pathological stage, bone or lymph node metastasis, and reduced disease-free survival. Several fascin-1 inhibitors (G2, NP-G2-044) have been evaluated in vitro and in preclinical models. The study proved the promising potential of fascin-1 as a newly developing biomarker and a potential therapeutic target that needs further investigation. The data also highlight the inadequacy of fascin-1 to serve as a novel biomarker for prostate cancer.
Collapse
Affiliation(s)
- Naibin Zhang
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
- Clinical Medical College, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Qiang Bian
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
- Department of Pathophysiology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Yankun Gao
- Clinical Medical College, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Qianqian Wang
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Ying Shi
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Xiangling Li
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Xiaolei Ma
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Huiyuan Chen
- College of Radiology, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Zhankui Zhao
- The Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Honglian Yu
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong, People's Republic of China
| |
Collapse
|
18
|
Basu A, Paul MK, Weiss S. The actin cytoskeleton: Morphological changes in pre- and fully developed lung cancer. BIOPHYSICS REVIEWS 2022; 3:041304. [PMID: 38505516 PMCID: PMC10903407 DOI: 10.1063/5.0096188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/09/2022] [Indexed: 03/21/2024]
Abstract
Actin, a primary component of the cell cytoskeleton can have multiple isoforms, each of which can have specific properties uniquely suited for their purpose. These monomers are then bound together to form polymeric filaments utilizing adenosine triphosphate hydrolysis as a source of energy. Proteins, such as Arp2/3, VASP, formin, profilin, and cofilin, serve important roles in the polymerization process. These filaments can further be linked to form stress fibers by proteins called actin-binding proteins, such as α-actinin, myosin, fascin, filamin, zyxin, and epsin. These stress fibers are responsible for mechanotransduction, maintaining cell shape, cell motility, and intracellular cargo transport. Cancer metastasis, specifically epithelial mesenchymal transition (EMT), which is one of the key steps of the process, is accompanied by the formation of thick stress fibers through the Rho-associated protein kinase, MAPK/ERK, and Wnt pathways. Recently, with the advent of "field cancerization," pre-malignant cells have also been demonstrated to possess stress fibers and related cytoskeletal features. Analytical methods ranging from western blot and RNA-sequencing to cryo-EM and fluorescent imaging have been employed to understand the structure and dynamics of actin and related proteins including polymerization/depolymerization. More recent methods involve quantifying properties of the actin cytoskeleton from fluorescent images and utilizing them to study biological processes, such as EMT. These image analysis approaches exploit the fact that filaments have a unique structure (curvilinear) compared to the noise or other artifacts to separate them. Line segments are extracted from these filament images that have assigned lengths and orientations. Coupling such methods with statistical analysis has resulted in development of a new reporter for EMT in lung cancer cells as well as their drug responses.
Collapse
Affiliation(s)
| | | | - Shimon Weiss
- Author to whom correspondence should be addressed:
| |
Collapse
|
19
|
Zhang ZD, Li RR, Chen JY, Huang HX, Cheng YW, Xu LY, Li EM. The post-translational modification of Fascin: impact on cell biology and its associations with inhibiting tumor metastasis. Amino Acids 2022; 54:1541-1552. [PMID: 35939077 DOI: 10.1007/s00726-022-03193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023]
Abstract
The post-translational modifications (PTMs), which are crucial in the regulation of protein functions, have great potential as biomarkers of cancer status. Fascin (Fascin actin-bundling protein 1, FSCN1), a key protein in the formation of filopodia that is structurally based on actin filaments (F-actin), is significantly associated with tumor invasion and metastasis. Studies have revealed various regulatory mechanisms of human Fascin, including PTMs. Although a number of Fascin PTM sites have been identified, their exact functions and clinical significance are much less explored. This review explores studies on the functions of Fascin and briefly discusses the regulatory mechanisms of Fascin. Next, to review the role of Fascin PTMs in cell biology and their associations with metastatic disease, we discuss the advances in the characterization of Fascin PTMs, including phosphorylation, ubiquitination, sumoylation, and acetylation, and the main regulatory mechanisms are discussed. Fascin PTMs may be potential targets for therapy for metastatic disease.
Collapse
Affiliation(s)
- Zhi-Da Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, China
| | - Rong-Rong Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, China
| | - Jia-You Chen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, China
| | - Hong-Xin Huang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, China
| | - Yin-Wei Cheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, China
| |
Collapse
|
20
|
Li Y, Wang D, Ge H, Güngör C, Gong X, Chen Y. Cytoskeletal and Cytoskeleton-Associated Proteins: Key Regulators of Cancer Stem Cell Properties. Pharmaceuticals (Basel) 2022; 15:1369. [PMID: 36355541 PMCID: PMC9698833 DOI: 10.3390/ph15111369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 08/08/2023] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells possessing stemness characteristics that are closely associated with tumor proliferation, recurrence and resistance to therapy. Recent studies have shown that different cytoskeletal components and remodeling processes have a profound impact on the behavior of CSCs. In this review, we outline the different cytoskeletal components regulating the properties of CSCs and discuss current and ongoing therapeutic strategies targeting the cytoskeleton. Given the many challenges currently faced in targeted cancer therapy, a deeper comprehension of the molecular events involved in the interaction of the cytoskeleton and CSCs will help us identify more effective therapeutic strategies to eliminate CSCs and ultimately improve patient survival.
Collapse
Affiliation(s)
- Yuqiang Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dan Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Heming Ge
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Cenap Güngör
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Xuejun Gong
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yongheng Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
21
|
Alexandrova A, Lomakina M. How does plasticity of migration help tumor cells to avoid treatment: Cytoskeletal regulators and potential markers. Front Pharmacol 2022; 13:962652. [PMID: 36278174 PMCID: PMC9582651 DOI: 10.3389/fphar.2022.962652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor shrinkage as a result of antitumor therapy is not the only and sufficient indicator of treatment success. Cancer progression leads to dissemination of tumor cells and formation of metastases - secondary tumor lesions in distant organs. Metastasis is associated with acquisition of mobile phenotype by tumor cells as a result of epithelial-to-mesenchymal transition and further cell migration based on cytoskeleton reorganization. The main mechanisms of individual cell migration are either mesenchymal, which depends on the activity of small GTPase Rac, actin polymerization, formation of adhesions with extracellular matrix and activity of proteolytic enzymes or amoeboid, which is based on the increase in intracellular pressure caused by the enhancement of actin cortex contractility regulated by Rho-ROCK-MLCKII pathway, and does not depend on the formation of adhesive structures with the matrix, nor on the activity of proteases. The ability of tumor cells to switch from one motility mode to another depending on cell context and environmental conditions, termed migratory plasticity, contributes to the efficiency of dissemination and often allows the cells to avoid the applied treatment. The search for new therapeutic targets among cytoskeletal proteins offers an opportunity to directly influence cell migration. For successful treatment it is important to assess the likelihood of migratory plasticity in a particular tumor. Therefore, the search for specific markers that can indicate a high probability of migratory plasticity is very important.
Collapse
|
22
|
Zhang N, Gao Y, Bian Q, Wang Q, Shi Y, Zhao Z, Yu H. The role of fascin-1 in the pathogenesis, diagnosis and management of respiratory related cancers. Front Oncol 2022; 12:948110. [PMID: 36033434 PMCID: PMC9404296 DOI: 10.3389/fonc.2022.948110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
Human cancer statistics report that respiratory related cancers such as lung, laryngeal, oral and nasopharyngeal cancers account for a large proportion of tumors, and tumor metastasis remains the major reason for patient death. The metastasis of tumor cells requires actin cytoskeleton remodeling, in which fascin-1 plays an important role. Fascin-1 can cross-link F-actin microfilaments into bundles and form finger-like cell protrusions. Some studies have shown that fascin-1 is overexpressed in human tumors and is associated with tumor growth, migration and invasion. The role of fascin-1 in respiratory related cancers is not very clear. The main purpose of this study was to provide an updated literature review on the role of fascin-1 in the pathogenesis, diagnosis and management of respiratory related cancers. These studies suggested that fascin-1 can serve as an emerging biomarker and potential therapeutic target, and has attracted widespread attention.
Collapse
Affiliation(s)
- Naibin Zhang
- Department of biochemistry, Jining Medical University, Jining, China
| | - Yankun Gao
- Department of biochemistry, Jining Medical University, Jining, China
| | - Qiang Bian
- Collaborative Innovation Center, Jining Medical University, Jining, China
- Department of Pathophysiology, Weifang Medical University, Weifang, China
| | - Qianqian Wang
- Department of biochemistry, Jining Medical University, Jining, China
| | - Ying Shi
- Department of biochemistry, Jining Medical University, Jining, China
| | - Zhankui Zhao
- The Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Honglian Yu
- Department of biochemistry, Jining Medical University, Jining, China
- Collaborative Innovation Center, Jining Medical University, Jining, China
- *Correspondence: Honglian Yu,
| |
Collapse
|
23
|
Zeng F, Cheng Y, He J, Xu X, Liao L, Xu L, Li E. Fascin lysine 471 acetylation cooperates with serine 39 phosphorylation to inhibit actin-bundling activity and tumor metastasis in esophageal squamous cell carcinoma. Cancer Commun (Lond) 2022; 42:668-672. [PMID: 35514194 PMCID: PMC9257986 DOI: 10.1002/cac2.12297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/18/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- Fa‐Min Zeng
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, 515041 P. R. China
- Department of Pathology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000 P. R. China
| | - Yin‐Wei Cheng
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, 515041 P. R. China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, 515041 P. R. China
| | - Jian‐Zhong He
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaDepartment of Biochemistry and Molecular BiologyShantou University Medical CollegeShantouGuangdong515041P. R. China
- Department of Pathologythe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000P. R. China
| | - Xiu‐E Xu
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaDepartment of Biochemistry and Molecular BiologyShantou University Medical CollegeShantouGuangdong515041P. R. China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyInstitute of Basic Medical ScienceCancer Research CenterShantou University Medical CollegeShantouGuangdong515041P. R. China
| | - Lian‐Di Liao
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaDepartment of Biochemistry and Molecular BiologyShantou University Medical CollegeShantouGuangdong515041P. R. China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyInstitute of Basic Medical ScienceCancer Research CenterShantou University Medical CollegeShantouGuangdong515041P. R. China
| | - Li‐Yan Xu
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, 515041 P. R. China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, 515041 P. R. China
| | - En‐Min Li
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, 515041 P. R. China
| |
Collapse
|
24
|
Wang X, Li Y, Li Z, Lin S, Wang H, Sun J, Lan C, Wu L, Sun D, Huang C, Singh PK, Hempel N, Trebak M, DeNicola GM, Hao J, Yang S. Mitochondrial Calcium Uniporter Drives Metastasis and Confers a Targetable Cystine Dependency in Pancreatic Cancer. Cancer Res 2022; 82:2254-2268. [PMID: 35413105 PMCID: PMC9203979 DOI: 10.1158/0008-5472.can-21-3230] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease with few effective treatments. Here we show that the mitochondrial calcium uniporter (MCU) promotes PDAC cell migration, invasion, metastasis, and metabolic stress resistance by activating the Keap1-Nrf2 antioxidant program. The cystine transporter SLC7A11 was identified as a druggable target downstream of the MCU-Nrf2 axis. Paradoxically, despite the increased ability to uptake cystine, MCU-overexpressing PDAC demonstrated characteristics typical of cystine-deprived cells and were hypersensitive to cystine deprivation-induced ferroptosis. Pharmacologic inhibitors of SLC7A11 effectively induced tumor regression and abrogated MCU-driven metastasis in PDAC. In patient-derived organoid models in vitro and patient-derived xenograft models in vivo, MCU-high PDAC demonstrated increased sensitivity to SLC7A11 inhibition compared with MCU-low tumors. These data suggest that MCU is able to promote resistance to metabolic stress and to drive PDAC metastasis in a cystine-dependent manner. MCU-mediated cystine addiction could be exploited as a therapeutic vulnerability to inhibit PDAC tumor growth and to prevent metastasis. SIGNIFICANCE Elevated mitochondrial calcium uptake in PDAC promotes metastasis but exposes cystine addiction and ferroptosis sensitivity that could be targeted to improve pancreatic cancer treatment.
Collapse
Affiliation(s)
- Xiuchao Wang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yunzhan Li
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Zekun Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Shengchen Lin
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Hongwei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Jianwei Sun
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life-Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Chungen Lan
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Liangliang Wu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Dongxiao Sun
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Chongbiao Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Pankaj K. Singh
- Eppley Institute for Research in Cancer and Allied Diseases, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Nadine Hempel
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Gina M. DeNicola
- Department of Cancer Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
25
|
Zeyn Y, Harms G, Tubbe I, Montermann E, Röhrig N, Hartmann M, Grabbe S, Bros M. Inhibitors of the Actin-Bundling Protein Fascin-1 Developed for Tumor Therapy Attenuate the T-Cell Stimulatory Properties of Dendritic Cells. Cancers (Basel) 2022; 14:cancers14112738. [PMID: 35681718 PMCID: PMC9179534 DOI: 10.3390/cancers14112738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Expression of the actin-bundling protein Fascin-1 (Fscn1) is largely restricted to neuronal cells and to activated dendritic cells (DCs). DCs are important inducers of (antitumor) immune responses. In tumor cells, de novo expression of Fscn-1 correlates with their invasive and metastatic activities. Pharmacological Fscn1 inhibitors, which are currently under clinical trials for tumor therapy, were demonstrated to counteract tumor metastasis. Within this study, we were interested in better understanding the effects of Fscn1 inhibitors on DCs and discovered that two distinct Fascin-1 inhibitors affect the immune-phenotype and T-cell stimulatory activity of DCs. Our results suggest that systemic application of Fscn1 inhibitors for tumor therapy may also modulate antitumor immune responses. Abstract Background: Stimulated dendritic cells (DCs), which constitute the most potent population of antigen-presenting cells (APCs), express the actin-bundling protein Fascin-1 (Fscn1). In tumor cells, de novo expression of Fscn1 correlates with their invasive and metastatic properties. Therefore, Fscn1 inhibitors have been developed to serve as antitumor agents. In this study, we were interested in better understanding the impact of Fscn1 inhibitors on DCs. Methods: In parallel settings, murine spleen cells and bone-marrow-derived DCs (BMDCs) were stimulated with lipopolysaccharide in the presence of Fscn1 inhibitors (NP-G2-044 and BDP-13176). An analysis of surface expression of costimulatory and coinhibitory receptors, as well as cytokine production, was performed by flow cytometry. Cytoskeletal alterations were assessed by confocal microscopy. The effects on the interactions of BMDCs with antigen-specific T cells were monitored by time lapse microscopy. The T-cell stimulatory and polarizing capacity of BMDCs were measured in proliferation assays and cytokine studies. Results: Administration of Fscn1 inhibitors diminished Fscn1 expression and the formation of dendritic processes by stimulated BMDCs and elevated CD273 (PD-L2) expression. Fscn1 inhibition attenuated the interaction of DCs with antigen-specific T cells and concomitant T-cell proliferation. Conclusions: Systemic administration of Fscn1 inhibitors for tumor therapy may also modulate DC-induced antitumor immune responses.
Collapse
Affiliation(s)
- Yanira Zeyn
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (Y.Z.); (I.T.); (E.M.); (N.R.); (M.H.); (S.G.)
| | - Gregory Harms
- Cell Biology Unit, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
- Departments of Biology and Physics, Wilkes University, 84 W. South St., Wilkes Barre, PA 18766, USA
| | - Ingrid Tubbe
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (Y.Z.); (I.T.); (E.M.); (N.R.); (M.H.); (S.G.)
| | - Evelyn Montermann
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (Y.Z.); (I.T.); (E.M.); (N.R.); (M.H.); (S.G.)
| | - Nadine Röhrig
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (Y.Z.); (I.T.); (E.M.); (N.R.); (M.H.); (S.G.)
| | - Maike Hartmann
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (Y.Z.); (I.T.); (E.M.); (N.R.); (M.H.); (S.G.)
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (Y.Z.); (I.T.); (E.M.); (N.R.); (M.H.); (S.G.)
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (Y.Z.); (I.T.); (E.M.); (N.R.); (M.H.); (S.G.)
- Correspondence: ; Tel.: +49-6131-17-9846
| |
Collapse
|
26
|
Sulfiredoxin Promotes Cancer Cell Invasion through Regulation of the miR143-Fascin Axis. Mol Cell Biol 2022; 42:e0005122. [PMID: 35412358 DOI: 10.1128/mcb.00051-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intracellular antioxidant enzymes are critical for maintenance of redox homeostasis, but whether and how they contribute to the malignancy of cancer cells remains poorly understood. Sulfiredoxin (Srx) is a unique oxidoreductase in that it not only restores peroxidase activity of peroxiredoxins (Prxs) but also functions as a pivotal stimulator of oncogenic signaling. We found that abnormally high level of Srx promotes colorectal cancer (CRC) malignancy by stimulating gelatin degradation, invadopodia formation, and cell invasion. Fascin, an actin-bundling protein, was discovered and validated as one of the critical downstream targets of Srx activation. We demonstrated that depletion of Srx in CRC cells leads to upregulation of miR-143-3p, which mediates degradation of fascin mRNA through binding to conserved sites within the 3' untranslated region (UTR). Depletion of fascin in CRC cells recapitulates the effect of Srx loss, and restoration of fascin in Srx-depleted cells by miR-143-3p inhibitor or overexpression rescues defects in cell invasion. Therefore, our data demonstrate that the Srx-miR143-fascin axis plays a key role in promoting the malignancy of human CRC cells. In the future, the Srx-miR143-fascin axis can be used as a functional pathway to evaluate the efficacy of therapeutic drugs or be targeted to develop promising chemotherapeutics for treatment of CRC patients.
Collapse
|
27
|
Chen C, Xie B, Li Z, Chen L, Chen Y, Zhou J, Ju S, Zhou Y, Zhang X, Zhuo W, Yang J, Mao M, Xu L, Wang L. Fascin enhances the vulnerability of breast cancer to erastin-induced ferroptosis. Cell Death Dis 2022; 13:150. [PMID: 35165254 PMCID: PMC8844358 DOI: 10.1038/s41419-022-04579-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/31/2021] [Accepted: 01/21/2022] [Indexed: 01/09/2023]
Abstract
Ferroptosis, which is characterized by intracellular iron accumulation and lipid peroxidation, is a newly described form of regulated cell death that may play a key role in tumour suppression. In the present study, we investigated the expression profiles and biological effects of fascin actin-bundling protein 1 (Fascin, gene name FSCN1) in breast cancer. In addition, bioinformatics analysis of the TCGA cancer database and gain- and loss-of-function studies showed that Fascin enhances sensitivity to erastin-induced ferroptosis. Mechanistically, Fascin directly interacts with cysteine/glutamate transporter (xCT, gene name SLC7A11) and decreases its stability via the ubiquitin-mediated proteasome degradation pathway. Furthermore, we observed that Fascin is substantially upregulated in tamoxifen-resistant breast cancer cell lines, and drug-resistant cells were also more vulnerable to erastin-induced ferroptosis. Taken together, our findings reveal a previously unidentified role of Fascin in ferroptosis by regulating xCT. Thus, ferroptosis activation in breast cancer with high Fascin level may serve as a potential treatment.
Collapse
Affiliation(s)
- Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Bojian Xie
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China.,Department of Surgical Oncology, Taizhou Hospital, Wenzhou Medical University, Taizhou, China
| | - Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Siwei Ju
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Yulu Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Xun Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Wenying Zhuo
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Ling Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
28
|
Sinha A, Mehta P, Fan C, Zhang J, Marvin DL, van Dinther M, Ritsma L, Boukany PE, Ten Dijke P. Visualizing Dynamic Changes During TGF-β-Induced Epithelial to Mesenchymal Transition. Methods Mol Biol 2022; 2488:47-65. [PMID: 35347682 DOI: 10.1007/978-1-0716-2277-3_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is crucial during embryonic development, tissue fibrosis, and cancer progression. Epithelial cells that display a cobblestone-like morphology can undergo a switch to mesenchymal-like phenotype, displaying an elongated spindle shape or a fibroblast-like morphology. EMT is characterized by timely and reversible alterations of molecular and cellular processes. The changes include loss of epithelial and gain of mesenchymal marker expression, loss of polarity, increased cell migratory and invasive properties. Epithelial cells can progress unevenly during this transition and attain hybrid E/M states or metastable EMT states, referred to as epithelial cell plasticity. To gain a deeper insight into the mechanism of EMT, understanding the dynamic aspects of this process is essential. One of the most prominent factors to induce EMT is the cytokine transforming growth factor-β (TGF-β). This chapter discusses molecular and cellular techniques to monitor TGF-β-induced signaling and EMT changes in normal and cancer cell lines. These methods include measuring the TGF-β-induced activation of its intracellular SMAD effectors proteins and changes in epithelial/mesenchymal marker expression and localization. Moreover, we describe assays of cell migration and dynamic reorganization of the actin cytoskeleton and stress filaments that are frequently part of the TGF-β-induced EMT cellular response.
Collapse
Affiliation(s)
- Abhishek Sinha
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Pranav Mehta
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Chuannan Fan
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Jing Zhang
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Dieuwke L Marvin
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten van Dinther
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Laila Ritsma
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
29
|
Pu J, Huang Y, Fang Q, Wang J, Li W, Xu Z, Wu X, Lu Y, Wei H. Hypoxia-induced Fascin-1 upregulation is regulated by Akt/Rac1 axis and enhances malignant properties of liver cancer cells via mediating actin cytoskeleton rearrangement and Hippo/YAP activation. Cell Death Discov 2021; 7:385. [PMID: 34897283 PMCID: PMC8665929 DOI: 10.1038/s41420-021-00778-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
In solid tumors, hypoxia facilitates malignant progression of cancer cells by triggering epithelial-mesenchymal transition (EMT) and cancer stemness. Fascin-1, an actin-bundling protein, takes part in the formation of many actin-based cellular structures. In the present study, we explored the potential functions of hypoxia-induced upregulation of Fascin-1 in liver cancer. Transcriptome RNA-sequencing was conducted to identify hypoxia-related genes. The potential functions of Fascin-1 were evaluated by western blot, transwell migration and invasion assays, sphere-formation assay, tumor xenograft growth, gelatin zymography analysis, immunofluorescence, cell viability assay, soft agar assay, and flow cytometry. We found that Fascin-1 was upregulated by hypoxia in liver cancer cell lines, elevated in liver cancer patients and correlated with larger tumor size, lymph node metastasis, distant metastasis, and shorter overall survival. Knockdown of Fascin-1 suppressed migration, invasion, EMT, stemness, and tumor xenograft growth of liver cancer cells under both normoxia and hypoxia conditions, while forced Fascin-1 expression showed opposite effects. Moreover, hypoxia-induced upregulation of Fascin-1 was regulated by the Akt/Rac1 signaling, and inhibition of Akt/Rac1 signaling by EHop-016 and MK-2206 restrained migration, invasion, EMT, and stemness of liver cancer cells under hypoxia. Furthermore, Fascin-1 knockdown suppressed MMP-2 and MMP-9 expression, impaired actin cytoskeleton rearrangement, inactivated Hippo/YAP signaling, and increased Sorafenib sensitivity in liver cancer cells. Our study provided a novel insight of Fascin-1 in regulating migration, invasion, EMT, and stemness of liver cancer cells under normoxia and hypoxia conditions.
Collapse
Affiliation(s)
- Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Youguan Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Quan Fang
- Graduate College of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Wenchuan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Zuoming Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Xianjian Wu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Yuan Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
30
|
Gupta I, Vranic S, Al-Thawadi H, Al Moustafa AE. Fascin in Gynecological Cancers: An Update of the Literature. Cancers (Basel) 2021; 13:cancers13225760. [PMID: 34830909 PMCID: PMC8616296 DOI: 10.3390/cancers13225760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Fascin, an actin-binding protein, is upregulated in different types of human cancers. It is reportedly responsible for increasing the invasive and metastatic ability of cancer cells by reducing cell–cell adhesions. This review provides a brief overview of fascin and its interactions with other genes and oncoviruses to induce the onset and progression of cancer. Abstract Fascin is an actin-binding protein that is encoded by the FSCN1 gene (located on chromosome 7). It triggers membrane projections and stimulates cell motility in cancer cells. Fascin overexpression has been described in different types of human cancers in which its expression correlated with tumor growth, migration, invasion, and metastasis. Moreover, overexpression of fascin was found in oncovirus-infected cells, such as human papillomaviruses (HPVs) and Epstein-Barr virus (EBV), disrupting the cell–cell adhesion and enhancing cancer progression. Based on these findings, several studies reported fascin as a potential biomarker and a therapeutic target in various cancers. This review provides a brief overview of the FSCN1 role in various cancers with emphasis on gynecological malignancies. We also discuss fascin interactions with other genes and oncoviruses through which it might induce cancer development and progression.
Collapse
Affiliation(s)
- Ishita Gupta
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (I.G.); (S.V.); (H.A.-T.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Semir Vranic
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (I.G.); (S.V.); (H.A.-T.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Hamda Al-Thawadi
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (I.G.); (S.V.); (H.A.-T.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Ala-Eddin Al Moustafa
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (I.G.); (S.V.); (H.A.-T.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
- Biomedical Research Centre, QU Health, Qatar University, Doha 2713, Qatar
- Correspondence: ; Tel.: +974-4403-7817
| |
Collapse
|
31
|
Pu J, Zhang Y, Wang A, Qin Z, Zhuo C, Li W, Xu Z, Tang Q, Wang J, Wei H. ADORA2A-AS1 Restricts Hepatocellular Carcinoma Progression via Binding HuR and Repressing FSCN1/AKT Axis. Front Oncol 2021; 11:754835. [PMID: 34733789 PMCID: PMC8558402 DOI: 10.3389/fonc.2021.754835] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies. Increasing evidence revealed that long noncoding RNAs (lncRNAs) were frequently involved in various malignancies. Here, we explored the clinical significances, roles, and mechanisms of lncRNA ADORA2A antisense RNA 1 (ADORA2A-AS1) in HCC. Methods The clinical significances of ADORA2A-AS1 in HCC were analyzed using RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA) project. The expressions of ADORA2A-AS1, Fascin Actin-Bundling Protein 1 (FSCN1), Matrix Metallopeptidase 2 (MMP2), and Baculoviral IAP Repeat Containing 7 (BIRC7) in HCC tissues and cells were measured by qRT-PCR. Cell Counting Kit-8 (CCK-8), 5-ethynyl-2’-deoxyuridine (EdU), caspase-3 activity assay, transwell migration and invasion assays, and xenograft growth and metastasis experiments were performed to evaluate the roles of ADORA2A-AS1 in HCC. RNA pull-down, RNA immunoprecipitation, qRT-PCR, Western blot, and RNA stability assay were performed to elucidate the mechanisms of ADORA2A-AS1 in HCC. Results ADORA2A-AS1 was identified as an HCC-related lncRNA, whose low expression was correlated with advanced stage and poor outcome in HCC. Gain- and loss-of functional experiments demonstrated that ADORA2A-AS1 inhibited HCC cell proliferation, induced cell apoptosis, repressed cell migration and invasion, and repressed xenograft growth and metastasis in vivo. Mechanistically, ADORA2A-AS1 competitively bound HuR (Hu Antigen R), repressed the binding of HuR to FSCN1 transcript, decreased FSCN1 transcript stability, and downregulated FSCN1 expression. The expression of FSCN1 was negatively correlated with ADORA2A-AS1 in HCC tissues. Through downregulating FSCN1, ADORA2A-AS1 repressed AKT pathway activation. Functional rescue assays showed that blocking of FSCN1/AKT axis abrogated the roles of ADORA2A-AS1 in HCC. Conclusion Low-expression ADORA2A-AS1 is correlated with poor survival of HCC patients. ADORA2A-AS1 exerts tumor-suppressive roles in HCC via binding HuR and repressing FSCN1/AKT axis.
Collapse
Affiliation(s)
- Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Ya Zhang
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Anmin Wang
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Zebang Qin
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Chenyi Zhuo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Wenchuan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zuoming Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Qianli Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
32
|
Peng Y, Yang H, Li S. The role of glycometabolic plasticity in cancer. Pathol Res Pract 2021; 226:153595. [PMID: 34481210 DOI: 10.1016/j.prp.2021.153595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022]
Abstract
Dysregulated glycometabolism represented by the Warburg effect is well recognized as a hallmark of cancer that can be driven by oncogenes (e.g., c-Myc, K-ras, and BRAF) and contribute to cellular malignant transformation. The Warburg effect reveals the different glycometabolic patterns of cancer cells, but this unique glycometabolic pattern has the characteristic of plasticity rather than changeless which can vary with different internal or external stimuli during evolution. Glycometabolic plasticity enables cancer cells to modulate glycometabolism to support progression, metastasis, treatment resistance and recurrence. In this review, we report the characteristics of glycometabolic plasticity during different stages of cancer evolution, providing insight into the molecular mechanisms of glycometabolic plasticity in cancer. In addition, we discussed the challenges and future research directions of glycometabolism research in cancer.
Collapse
Affiliation(s)
- Yuyang Peng
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Yang
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Song Li
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
33
|
Lin S, Li Y, Wang D, Huang C, Marino D, Bollt O, Wu C, Taylor MD, Li W, DeNicola GM, Hao J, Singh PK, Yang S. Fascin promotes lung cancer growth and metastasis by enhancing glycolysis and PFKFB3 expression. Cancer Lett 2021; 518:230-242. [PMID: 34303764 DOI: 10.1016/j.canlet.2021.07.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 01/23/2023]
Abstract
Fascin is a pro-metastatic actin-bundling protein that is upregulated in all metastatic carcinomas. Fascin promotes cancer cell migration and invasion by facilitating membrane protrusions, such as filopodia and invadopodia. Aerobic glycolysis is a key feature of cancer metabolism and provides critical intermediate metabolites for tumor growth. Here, we report that fascin increases glycolysis in lung cancer to promote tumor growth and metastasis. Fascin promotes glycolytic flux by increasing the expression and activities of phosphofructose-kinases 1 and 2 (PFK1 and 2). Fascin mediates glycolytic functions via activation of yes-associated protein 1 (YAP1) through its canonical actin-bundling activity by promoting the binding of YAP1 to a TEAD1/4 binding motif located 30 bp upstream of the PFKFB3 transcription start site to activate its transcription. Examination of the TCGA database suggests that the fascin-YAP1-PFKFB3 axis is likely conserved across different types of cancers. Importantly, pharmacological inhibitors of fascin suppressed YAP1-PFKFB3 signaling and glycolysis in cancer cell lines, organoid cultures, and xenograft metastasis models. Taken together, our data reveal that the glycolytic function of fascin is essential for the promotion of lung cancer growth and metabolism, and suggest that pharmacological inhibitors of fascin may be used to reprogram cancer metabolism in lung and potentially other cancers with fascin upregulation.
Collapse
Affiliation(s)
- Shengchen Lin
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Yunzhan Li
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Dezhen Wang
- Eppley Institute for Research in Cancer and Allied Diseases, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Chongbiao Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - David Marino
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Oana Bollt
- Department of Surgery, Penn State College of Medicine, Hershey, PA, USA
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Matthew D Taylor
- Department of Surgery, Penn State College of Medicine, Hershey, PA, USA
| | - Wei Li
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA; Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL, USA
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
34
|
Zhao Z, Wang Y, Zhang JJ, Huang XY. Fascin Inhibitors Decrease Cell Migration and Adhesion While Increase Overall Survival of Mice Bearing Bladder Cancers. Cancers (Basel) 2021; 13:cancers13112698. [PMID: 34070777 PMCID: PMC8199464 DOI: 10.3390/cancers13112698] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Fascin is an actin-bundling protein, and is highly expressed in metastatic tumor cells. Small molecule fascin inhibitors have been recently developed to block tumor cell migration, invasion, and metastasis. Here we have tested a new fascin inhibitor on bladder cancer cells, and showed the inhibitory effects of the fascin inhibitor on bladder cancer cell migration, adhesion, and primary tumor growth. Therefore, fascin inhibitors might provide clinical benefits to bladder cancer patients. Abstract Bladder cancer is one of the most common cancers in the world. Early stage bladder tumors can be surgically removed, but these patients usually have relapses. When bladder cancer becomes metastatic, survival is very low. There is an urgent need for new treatments for metastatic bladder cancers. Here, we report that a new fascin inhibitor decreases the migration and adhesion of bladder cancer cells. Furthermore, this inhibitor decreases the primary tumor growth and increases the overall survival of mice bearing bladder cancers, alone, as well as in combination with the chemotherapy medication, cisplatin, or the immune checkpoint inhibitor, anti-PD-1 antibody. These data suggest that fascin inhibitors can be explored as a new treatment for bladder cancers.
Collapse
Affiliation(s)
- Zhankui Zhao
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA; (Z.Z.); (Y.W.)
| | - Yufeng Wang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA; (Z.Z.); (Y.W.)
| | | | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA; (Z.Z.); (Y.W.)
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
- Correspondence: ; Tel.: +1-212-746-6362
| |
Collapse
|
35
|
Targeting p53 for Melanoma Treatment: Counteracting Tumour Proliferation, Dissemination and Therapeutic Resistance. Cancers (Basel) 2021; 13:cancers13071648. [PMID: 33916029 PMCID: PMC8037490 DOI: 10.3390/cancers13071648] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary Melanoma is a highly metastatic and therapy-resistant cancer and is therefore associated with low survival rates of patients. In melanoma, the inactivation of the wild-type form of the p53 tumour suppressor protein is a frequent event, mainly through interactions with MDM2 and MDMX. In this work, our recently disclosed p53-activating agent, SLMP53-2, displayed promising in vitro and in vivo antitumour activity, with particular impacts on melanoma migration and invasion. Moreover, SLMP53-2 (re)sensitized melanoma cells to clinically used chemotherapeutic agents, potentially overcoming the therapeutic resistance issue. As a whole, the p53 activator SLMP53-2 may represent a new therapeutic opportunity for melanoma, particularly in combination with MAPK pathway-targeting drugs. Abstract Melanoma is the deadliest form of skin cancer, primarily due to its high metastatic propensity and therapeutic resistance in advanced stages. The frequent inactivation of the p53 tumour suppressor protein in melanomagenesis may predict promising outcomes for p53 activators in melanoma therapy. Herein, we aimed to investigate the antitumor potential of the p53-activating agent SLMP53-2 against melanoma. Two- and three-dimensional cell cultures and xenograft mouse models were used to unveil the antitumor activity and the underlying molecular mechanism of SLMP53-2 in melanoma. SLMP53-2 inhibited the growth of human melanoma cells in a p53-dependent manner through induction of cell cycle arrest and apoptosis. Notably, SLMP53-2 induced p53 stabilization by disrupting the p53–MDM2 interaction, enhancing p53 transcriptional activity. It also promoted the expression of p53-regulated microRNAs (miRNAs), including miR-145 and miR-23a. Moreover, it displayed anti-invasive and antimigratory properties in melanoma cells by inhibiting the epithelial-to-mesenchymal transition (EMT), angiogenesis and extracellular lactate production. Importantly, SLMP53-2 did not induce resistance in melanoma cells. Additionally, it synergized with vemurafenib, dacarbazine and cisplatin, and resensitized vemurafenib-resistant cells. SLMP53-2 also exhibited antitumor activity in human melanoma xenograft mouse models by repressing cell proliferation and EMT while stimulating apoptosis. This work discloses the p53-activating agent SLMP53-2 which has promising therapeutic potential in advanced melanoma, either as a single agent or in combination therapy. By targeting p53, SLMP53-2 may counteract major features of melanoma aggressiveness.
Collapse
|
36
|
Liu H, Zhang Y, Li L, Cao J, Guo Y, Wu Y, Gao W. Fascin actin-bundling protein 1 in human cancer: promising biomarker or therapeutic target? Mol Ther Oncolytics 2021; 20:240-264. [PMID: 33614909 PMCID: PMC7873579 DOI: 10.1016/j.omto.2020.12.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fascin actin-bundling protein 1 (FSCN1) is a highly conserved actin-bundling protein that cross links F-actin microfilaments into tight, parallel bundles. Elevated FSCN1 levels have been reported in many types of human cancers and have been correlated with aggressive clinical progression, poor prognosis, and survival outcomes. The overexpression of FSCN1 in cancer cells has been associated with tumor growth, migration, invasion, and metastasis. Currently, FSCN1 is recognized as a candidate biomarker for multiple cancer types and as a potential therapeutic target. The aim of this study was to provide a brief overview of the FSCN1 gene and protein structure and elucidate on its actin-bundling activity and physiological functions. The main focus was on the role of FSCN1 and its upregulatory mechanisms and significance in cancer cells. Up-to-date studies on FSCN1 as a novel biomarker and therapeutic target for human cancers are reviewed. It is shown that FSCN1 is an unusual biomarker and a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Yu Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Li Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| |
Collapse
|
37
|
Alburquerque-González B, Bernabé-García Á, Bernabé-García M, Ruiz-Sanz J, López-Calderón FF, Gonnelli L, Banci L, Peña-García J, Luque I, Nicolás FJ, Cayuela-Fuentes ML, Luchinat E, Pérez-Sánchez H, Montoro-García S, Conesa-Zamora P. The FDA-Approved Antiviral Raltegravir Inhibits Fascin1-Dependent Invasion of Colorectal Tumor Cells In Vitro and In Vivo. Cancers (Basel) 2021; 13:cancers13040861. [PMID: 33670655 PMCID: PMC7921938 DOI: 10.3390/cancers13040861] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 01/29/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. Serrated adenocarcinoma (SAC) has been recently recognized by the WHO as a histological CRC with bad prognosis. Consistent with previous evidence, our group identified Fascin1 as a protein directly related to the invasiveness of tumor cells, overexpressed and positively correlated with worse survival in various carcinomas, including SAC. Therefore, Fascin1 has emerged as an ideal target for cancer treatment. In the present study, virtual screening has been carried out from a library of 9591 compounds, thus identifying the FDA-approved anti-retroviral raltegravir (RAL) as a potential Fascin1 blocker. In vitro and in vivo results show that RAL exhibits Fascin1-binding activity and Fascin1-dependent anti-invasive and anti-metastatic properties against CRC cells both in vitro and in vivo. Abstract Background: Fascin1 is the key actin-bundling protein involved in cancer invasion and metastasis whose expression is associated with bad prognosis in tumor from different origins. Methods: In the present study, virtual screening (VS) was performed for the search of Fascin1 inhibitors and RAL, an FDA-approved inhibitor of human immunodeficiency virus-1 (HIV-1) integrase, was identified as a potential Fascin1 inhibitor. Biophysical techniques including nuclear magnetic resonance (NMR) and differential scanning fluorimetry (DSF) were carried out in order to confirm RAL as a Fascin1 blocker. The effect of RAL on actin-bundling activity Fascin1 was assessed by transmission electron microscopy (TEM), immunofluorescence, migration, and invasion assays on two human colorectal adenocarcinoma cell lines: HCT-116 and DLD-1. In addition, the anti-metastatic potential of RAL was in vivo evaluated by using the zebrafish animal model. Results: NMR and DSF confirmed in silico predictions and TEM demonstrated the RAL-induced disorganization of the actin structure compared to control conditions. The protrusion of lamellipodia in cancer cell line overexpressing Fascin1 (HCT-116) was abolished in the presence of this drug. By following the addition of RAL, migration of HCT-116 and DLD-1 cell lines was significantly inhibited. Finally, using endogenous and exogenous models of Fascin1 expression, the invasive capacity of colorectal tumor cells was notably impaired in the presence of RAL in vivo assays; without undesirable cytotoxic effects. Conclusion: The current data show the in vitro and in vivo efficacy of the antiretroviral drug RAL in inhibiting human colorectal cancer cells invasion and metastasis in a Fascin1-dependent manner.
Collapse
Affiliation(s)
- Begoña Alburquerque-González
- Department of Pathology and Histology, Campus de los Jerónimos, UCAM Universidad Católica San Antonio de Murcia, s/n, 30107 Murcia, Spain; (B.A.-G.); (F.F.L.-C.)
| | - Ángel Bernabé-García
- Laboratorio de Regeneración, Oncología Molecular y TGF-ß, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Carretera Madrid-Cartagena, El Palmar, 30120 Murcia, Spain; (Á.B.-G.); (F.J.N.)
| | - Manuel Bernabé-García
- Telomerase, Cancer and Aging Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (M.B.-G.); (M.L.C.-F.)
| | - Javier Ruiz-Sanz
- Department of Physical Chemistry, Institute of Biotechnology and Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment, Spain Campus Fuentenueva s/n, University of Granada, 18071 Granada, Spain; (J.R.-S.); (I.L.)
| | - Fernando Feliciano López-Calderón
- Department of Pathology and Histology, Campus de los Jerónimos, UCAM Universidad Católica San Antonio de Murcia, s/n, 30107 Murcia, Spain; (B.A.-G.); (F.F.L.-C.)
| | - Leonardo Gonnelli
- CERM—Magnetic Resonance Center, Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy; (L.G.); (L.B.); (E.L.)
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- CERM—Magnetic Resonance Center, Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy; (L.G.); (L.B.); (E.L.)
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Jorge Peña-García
- Structural Bioinformatics and High Performance Computing (BIO-HPC) Research Group, Campus de los Jerónimos, s/n, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain; (J.P.-G.); (H.P.-S.)
| | - Irene Luque
- Department of Physical Chemistry, Institute of Biotechnology and Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment, Spain Campus Fuentenueva s/n, University of Granada, 18071 Granada, Spain; (J.R.-S.); (I.L.)
| | - Francisco José Nicolás
- Laboratorio de Regeneración, Oncología Molecular y TGF-ß, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Carretera Madrid-Cartagena, El Palmar, 30120 Murcia, Spain; (Á.B.-G.); (F.J.N.)
| | - María Luisa Cayuela-Fuentes
- Telomerase, Cancer and Aging Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (M.B.-G.); (M.L.C.-F.)
| | - Enrico Luchinat
- CERM—Magnetic Resonance Center, Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy; (L.G.); (L.B.); (E.L.)
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase—CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing (BIO-HPC) Research Group, Campus de los Jerónimos, s/n, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain; (J.P.-G.); (H.P.-S.)
| | - Silvia Montoro-García
- Cell Culture Lab, Facultad de Ciencias de la Salud, Campus de los Jerónimos, s/n, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain
- Correspondence: (S.M.-G.); (P.C.-Z.); Tel.: +34-9681-286-02 (Ext. 951615) (P.C.-Z.)
| | - Pablo Conesa-Zamora
- Laboratory Medicine Department, Group of Molecular Pathology and Pharmacogenetics, Biomedical Research Institute from Murcia (IMIB), Hospital Universitario Santa Lucía, c/Mezquita sn, 30202 Cartagena, Spain
- Correspondence: (S.M.-G.); (P.C.-Z.); Tel.: +34-9681-286-02 (Ext. 951615) (P.C.-Z.)
| |
Collapse
|
38
|
Lamb MC, Tootle TL. Fascin in Cell Migration: More Than an Actin Bundling Protein. BIOLOGY 2020; 9:biology9110403. [PMID: 33212856 PMCID: PMC7698196 DOI: 10.3390/biology9110403] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
Simple Summary Cell migration is an essential biological process that regulates both development and diseases, such as cancer metastasis. Therefore, understanding the factors that promote cell migration is crucial. One of the factors known to regulate cell migration is the actin-binding protein, Fascin. Fascin is typically thought to promote cell migration through bundling actin to form migratory structures such as filopodia and invadapodia. However, Fascin has many other functions in the cell that may contribute to cell migration. How these novel functions promote cell migration and are regulated is still not well understood. Here, we review the structure of Fascin, the many functions of Fascin and how they may promote cell migration, how Fascin is regulated, and Fascin’s role in diseases such as cancer metastasis. Abstract Fascin, an actin-binding protein, regulates many developmental migrations and contributes to cancer metastasis. Specifically, Fascin promotes cell motility, invasion, and adhesion by forming filopodia and invadopodia through its canonical actin bundling function. In addition to bundling actin, Fascin has non-canonical roles in the cell that are thought to promote cell migration. These non-canonical functions include regulating the activity of other actin-binding proteins, binding to and regulating microtubules, mediating mechanotransduction to the nucleus via interaction with the Linker of the Nucleoskeleton and Cytoskeleton (LINC) Complex, and localizing to the nucleus to regulate nuclear actin, the nucleolus, and chromatin modifications. The many functions of Fascin must be coordinately regulated to control cell migration. While much remains to be learned about such mechanisms, Fascin is regulated by post-translational modifications, prostaglandin signaling, protein–protein interactions, and transcriptional means. Here, we review the structure of Fascin, the various functions of Fascin and how they contribute to cell migration, the mechanisms regulating Fascin, and how Fascin contributes to diseases, specifically cancer metastasis.
Collapse
|
39
|
Abstract
Simple Summary Cell migration is an essential process from embryogenesis to cell death. This is tightly regulated by numerous proteins that help in proper functioning of the cell. In diseases like cancer, this process is deregulated and helps in the dissemination of tumor cells from the primary site to secondary sites initiating the process of metastasis. For metastasis to be efficient, cytoskeletal components like actin, myosin, and intermediate filaments and their associated proteins should co-ordinate in an orderly fashion leading to the formation of many cellular protrusions-like lamellipodia and filopodia and invadopodia. Knowledge of this process is the key to control metastasis of cancer cells that leads to death in 90% of the patients. The focus of this review is giving an overall understanding of these process, concentrating on the changes in protein association and regulation and how the tumor cells use it to their advantage. Since the expression of cytoskeletal proteins can be directly related to the degree of malignancy, knowledge about these proteins will provide powerful tools to improve both cancer prognosis and treatment. Abstract Successful metastasis depends on cell invasion, migration, host immune escape, extravasation, and angiogenesis. The process of cell invasion and migration relies on the dynamic changes taking place in the cytoskeletal components; actin, tubulin and intermediate filaments. This is possible due to the plasticity of the cytoskeleton and coordinated action of all the three, is crucial for the process of metastasis from the primary site. Changes in cellular architecture by internal clues will affect the cell functions leading to the formation of different protrusions like lamellipodia, filopodia, and invadopodia that help in cell migration eventually leading to metastasis, which is life threatening than the formation of neoplasms. Understanding the signaling mechanisms involved, will give a better insight of the changes during metastasis, which will eventually help targeting proteins for treatment resulting in reduced mortality and longer survival.
Collapse
|