1
|
Boaru DL, Fraile-Martinez O, De Leon-Oliva D, Garcia-Montero C, De Castro-Martinez P, Miranda-Gonzalez A, Saez MA, Muñon-Zamarron L, Castillo-Ruiz E, Barrena-Blázquez S, Cañonez-Zafra R, Alvarez-Mon MÁ, Toledo-Lobo MV, Minaya-Bravo AM, Lopez-Gonzalez L, Diaz-Pedrero R, Saz JV, Albillos A, Alvarez-Mon M, Guijarro LG, Ortega MA. Harnessing the Anti-Inflammatory Properties of Polyphenols in the Treatment of Inflammatory Bowel Disease. Int J Biol Sci 2024; 20:5608-5672. [PMID: 39494333 PMCID: PMC11528451 DOI: 10.7150/ijbs.98107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/25/2024] [Indexed: 11/05/2024] Open
Abstract
Inflammatory bowel disease (IBD) encompasses a spectrum of chronic inflammatory conditions affecting the gastrointestinal tract, notably ulcerative colitis (UC) and Crohn's disease (CD). Both UC and CD result from the interplay between genetic and environmental factors that trigger an exacerbated immune response against gut microorganisms, leading to non-resolving inflammatory damage in the mucosa of specific zones in the intestine. Despite extensive research, current treatments often entail invasive interventions with considerable adverse effects on patient well-being. Consequently, there is a pressing need to find alternative and complementary therapeutic strategies aimed at ameliorating chronic inflammation and restoring intestinal barrier integrity. Polyphenols are plant-based compounds formed naturally or as semi-synthetic/synthetic derivatives with proven health-promoting effects and translational applications in a broad spectrum of chronic diseases. Preclinical models of IBD largely support the efficacy of a broad variety of polyphenols due to their well-documented antioxidant and modulatory properties on the immune system and gut microbiota. Likewise, a growing number of studies using distinct types of polyphenols are being conducted in humans, although more efforts are still warranted. In the present review, the main polyphenols investigated in vitro and in vivo models of IBD will be summarized, as well as the available trials or observational data accessible in humans. Finally, the role of polyphenols in the clinical context of IBDs, along with the main problematics regarding their translational issues and concerns will be discussed, including bioavailability, their inclusion in healthy dietary patterns and foods, interaction with other drugs, and other important points to be addressed by future research.
Collapse
Affiliation(s)
- Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Alejandro Miranda-Gonzalez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Leticia Muñon-Zamarron
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Elisa Castillo-Ruiz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Rafael Cañonez-Zafra
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
| | - Miguel Ángel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Maria V Toledo-Lobo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Biomedicine and Biotechnology, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Ana M Minaya-Bravo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias University Hospital, Alcalá de Henares, Spain
| | - Jose V Saz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Biomedicine and Biotechnology, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Agustin Albillos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Gastroenterology and Hepatology Departament. Ramón y Cajal University Hospital, Madrid, Spain; Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain; Network Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain; University of Alcalá, Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Departament and Internal Medicine (CIBEREHD), Príncipe de Asturias University Hospital, Alcalá de Henares, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, Alcalá de Henares, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| |
Collapse
|
2
|
Zhang B, Zhang J, Chen H, Qiao D, Guo F, Hu X, Qin C, Jin X, Zhang K, Wang C, Cui H, Li S. Role of FMRP in AKT/mTOR pathway-mediated hippocampal autophagy in fragile X syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111036. [PMID: 38823765 DOI: 10.1016/j.pnpbp.2024.111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Fragile X syndrome (FXS) is caused by epigenetic silencing of the Fmr1 gene, leading to the deletion of the coding protein FMRP. FXS induces abnormal hippocampal autophagy and mTOR overactivation. However, it remains unclear whether FMRP regulates hippocampal autophagy through the AKT/mTOR pathway, which influences the neural behavior of FXS. Our study revealed that FMRP deficiency increased the protein levels of p-ULK-1 and p62 and decreased LC3II/LC3I level in Fmr1 knockout (KO) mice. The mouse hippocampal neuronal cell line HT22 with knockdown of Fmr1 by lentivirus showed that the protein levels of p-ULK-1 and p62 were increased, whereas LC3II/LC3I was unchanged. Further observations revealed that FMRP deficiency obstructed autophagic flow in HT22 cells. Therefore, FMRP deficiency inhibited autophagy in the mouse hippocampus and HT22 cells. Moreover, FMRP deficiency increased reactive oxygen species (ROS) level, decreased the co-localization between the mitochondrial outer membrane proteins TOM20 and LC3 in HT22 cells, and caused a decrease in the mitochondrial autophagy protein PINK1 in HT22 cells and Fmr1 KO mice, indicating that FMRP deficiency caused mitochondrial autophagy disorder in HT22 cells and Fmr1 KO mice. To explore the mechanism by which FMRP deficiency inhibits autophagy, we examined the AKT/mTOR signaling pathway in the hippocampus of Fmr1 KO mice, found that FMRP deficiency caused overactivation of the AKT/mTOR pathway. Rapamycin-mediated mTOR inhibition activated and enhanced mitochondrial autophagy. Finally, we examined whether rapamycin affected the neurobehavior of Fmr1 KO mice. The Fmr1 KO mice exhibited stereotypical behavior, impaired social ability, and learning and memory impairment, while rapamycin treatment improved behavioral disorders in Fmr1 KO mice. Thus, our study revealed the molecular mechanism by which FMRP regulates autophagy function, clarifying the role of hippocampal neuron mitochondrial autophagy in the pathogenesis of FXS, and providing novel insights into potential therapeutic targets of FXS.
Collapse
Affiliation(s)
- Bohan Zhang
- Department of Human Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| | - Jingbao Zhang
- Grade 2020, Basic Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Huan Chen
- Department of Human Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| | - Dan Qiao
- Department of Human Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| | - Fangzhen Guo
- Department of Human Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiangting Hu
- Grade 2020, Basic Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Chao Qin
- Grade 2021, Basic Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Xiaowen Jin
- Grade 2021, Basic Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Kaixi Zhang
- Grade 2021, 5+3 Integrated pediatrics, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Chang Wang
- Department of Human Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| | - Huixian Cui
- Department of Human Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China.
| | - Sha Li
- Department of Human Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China; The Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China.
| |
Collapse
|
3
|
Zhang WJ, Guo ZX, Wang YD, Fang SY, Wan CM, Yu XL, Guo XF, Chen YY, Zhou X, Huang JQ, Li XJ, Chen JX, Fan LL. From Perspective of Hippocampal Plasticity: Function of Antidepressant Chinese Medicine Xiaoyaosan. Chin J Integr Med 2024; 30:747-758. [PMID: 38900227 DOI: 10.1007/s11655-024-3908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 06/21/2024]
Abstract
The hippocampus is one of the most commonly studied brain regions in the context of depression. The volume of the hippocampus is significantly reduced in patients with depression, which severely disrupts hippocampal neuroplasticity. However, antidepressant therapies that target hippocampal neuroplasticity have not been identified as yet. Chinese medicine (CM) can slow the progression of depression, potentially by modulating hippocampal neuroplasticity. Xiaoyaosan (XYS) is a CM formula that has been clinically used for the treatment of depression. It is known to protect Gan (Liver) and Pi (Spleen) function, and may exert its antidepressant effects by regulating hippocampal neuroplasticity. In this review, we have summarized the association between depression and aberrant hippocampal neuroplasticity. Furthermore, we have discussed the researches published in the last 30 years on the effects of XYS on hippocampal neuroplasticity in order to elucidate the possible mechanisms underlying its therapeutic action against depression. The results of this review can aid future research on XYS for the treatment of depression.
Collapse
Affiliation(s)
- Wu-Jing Zhang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Ze-Xuan Guo
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yi-di Wang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Shao-Yi Fang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Chun-Miao Wan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiao-Long Yu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiao-Fang Guo
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yue-Yue Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xuan Zhou
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiao-Juan Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Li-Li Fan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Huang M, Tao X, Bao J, Wang J, Gong X, Luo L, Pan S, Yang R, Gui Y, Zhou H, Xia Y, Yang Y, Sun B, Liu W, Shu X. GADD45B in the ventral hippocampal CA1 modulates aversive memory acquisition and spatial cognition. Life Sci 2024; 346:122618. [PMID: 38614306 DOI: 10.1016/j.lfs.2024.122618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
AIMS This study was designed to investigate the role of growth arrest and DNA damage-inducible β (GADD45B) in modulating fear memory acquisition and elucidate its underlying mechanisms. MAIN METHODS Adeno-associated virus (AAV) that knockdown or overexpression GADD45B were injected into ventral hippocampal CA1 (vCA1) by stereotactic, and verified by fluorescence and Western blot. The contextual fear conditioning paradigm was employed to examine the involvement of GADD45B in modulating aversive memory acquisition. The Y-maze and novel location recognition (NLR) tests were used to examine non-aversive cognition. The synaptic plasticity and electrophysiological properties of neurons were measured by slice patch clamp. KEY FINDINGS Knockdown of GADD45B in the vCA1 significantly enhanced fear memory acquisition, accompanied by an upregulation of long-term potentiation (LTP) expression and intrinsic excitability of vCA1 pyramidal neurons (PNs). Conversely, overexpression of GADD45B produced the opposite effects. Notably, silencing the activity of vCA1 neurons abolished the impact of GADD45B knockdown on fear memory development. Moreover, mice with vCA1 GADD45B overexpression exhibited impaired spatial cognition, whereas mice with GADD45B knockdown did not display such impairment. SIGNIFICANCE These results provided compelling evidence for the crucial involvement of GADD45B in the formation of aversive memory and spatial cognition.
Collapse
Affiliation(s)
- Mengbing Huang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiaoqing Tao
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Jian Bao
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Ji Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiaokang Gong
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Laijie Luo
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Sijie Pan
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Rong Yang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Yuran Gui
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - HongYan Zhou
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Yiyuan Xia
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Youhua Yang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Wei Liu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China.
| | - Xiji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
5
|
Severino L, Kim J, Nam MH, McHugh TJ. From synapses to circuits: What mouse models have taught us about how autism spectrum disorder impacts hippocampal function. Neurosci Biobehav Rev 2024; 158:105559. [PMID: 38246230 DOI: 10.1016/j.neubiorev.2024.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that impacts a variety of cognitive and behavioral domains. While a genetic component of ASD has been well-established, none of the numerous syndromic genes identified in humans accounts for more than 1% of the clinical patients. Due to this large number of target genes, numerous mouse models of the disorder have been generated. However, the focus on distinct brain circuits, behavioral phenotypes and diverse experimental approaches has made it difficult to synthesize the overwhelming number of model animal studies into concrete throughlines that connect the data across levels of investigation. Here we chose to focus on one circuit, the hippocampus, and one hypothesis, a shift in excitatory/inhibitory balance, to examine, from the level of the tripartite synapse up to the level of in vivo circuit activity, the key commonalities across disparate models that can illustrate a path towards a better mechanistic understanding of ASD's impact on hippocampal circuit function.
Collapse
Affiliation(s)
- Leandra Severino
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Division of Bio-Medical Science & Technology, KIST-School, University of Science and Technology, Seoul, South Korea
| | - Jinhyun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Division of Bio-Medical Science & Technology, KIST-School, University of Science and Technology, Seoul, South Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Division of Bio-Medical Science & Technology, KIST-School, University of Science and Technology, Seoul, South Korea.
| | - Thomas J McHugh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi Saitama, Japan.
| |
Collapse
|
6
|
Sharifi M, Oryan S, Komaki A, Barkley V, Sarihi A, Mirnajafi-Zadeh J. Comparing the synaptic potentiation in schaffer collateral-CA1 synapses in dorsal and intermediate regions of the hippocampus in normal and kindled rats. IBRO Neurosci Rep 2023; 15:252-261. [PMID: 37841086 PMCID: PMC10570600 DOI: 10.1016/j.ibneur.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/17/2023] Open
Abstract
There is growing evidence that the hippocampus comprises diverse neural circuits that exhibit longitudinal variation in their properties, however, the intermediate region of the hippocampus has received comparatively little attention. Therefore, this study was designed to compared short- and long-term synaptic plasticity between the dorsal and intermediate regions of the hippocampus in normal and PTZ-kindled rats. Short-term plasticity was assessed by measuring the ratio of field excitatory postsynaptic potentials' (fEPSPs) slope in response to paired-pulse stimulation at three different inter-pulse intervals (20, 80, and 160 ms), while long-term plasticity was assessed using primed burst stimulation (PBS). The results showed that the basal synaptic strength differed between the dorsal and intermediate regions of the hippocampus in both control and kindled rats. In the control group, paired-pulse stimulation of Schaffer collaterals resulted in a significantly lower fEPSP slope in the intermediate part of the hippocampus compared to the dorsal region. Additionally, the magnitude of long-term potentiation (LTP) was significantly lower in the intermediate part of the hippocampus compared to the dorsal region. In PTZ-kindled rats, both short-term facilitation and long-term potentiation were impaired in both regions of the hippocampus. Interestingly, there was no significant difference in synaptic plasticity between the dorsal and intermediate regions in PTZ-kindled rats, despite impairments in both regions. This suggests that seizures eliminate the regional difference between the dorsal and intermediate parts of the hippocampus, resulting in similar electrophysiological activity in both regions in kindled animals. Future studies should consider this when investigating the responses of the dorsal and intermediate regions of the hippocampus following PTZ kindling.
Collapse
Affiliation(s)
- Maryam Sharifi
- Department of Animal Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrbanoo Oryan
- Department of Animal Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Victoria Barkley
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Li Y, Ma Y, Gao L, Wang T, Zhuang Y, Zhang Y, Zheng L, Liu X. Upregulation of Microglial Sirt6 and Inhibition of Microglial Activation by Vitamin D3 in Lipopolysaccharide-stimulated Mice and BV-2 Cells. Neuroscience 2023; 526:85-96. [PMID: 37352968 DOI: 10.1016/j.neuroscience.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
Vitamin D3 may suppress microglial activation and neuroinflammation, which play a central role in the pathophysiology of many neurological disorders. Sirt6 can remove histone 3 lysine 9 acetylation (H3K9ac) to repress expression of pathological genes and produce anti-inflammatory effects. However, whether vitamin D3 upregulates microglial Sirt6 to exert its protective effects against microglial activation and neuroinflammation is unclear. The effects of lower, normal, and higher dosages (1, 10 and 100 μg/kg/day) of vitamin D3 on behavioral and neuromorphological changes, brain inflammatory factors, Sirt6 and H3K9ac levels, and microglial Sirt6 distribution in hippocampus were evaluated in lipopolysaccharide (LPS)-stimulated mice. In addition, the effects of vitamin D3 on inflammatory factors, reactive oxygen species, Sirt6, and H3K9ac were confirmed in LPS-stimulated BV-2 cells. We verified that vitamin D3 ameliorated the impaired sociability of LPS-stimulated mice by three-chamber test. In addition, vitamin D3 upregulated brain Sirt6 generation, reduced H3K9ac levels and inhibited generation of brain inflammatory factors. Moreover, vitamin D3 promoted microglial Sirt6 distribution and attenuated microglia displaying an activated morphology in the hippocampus of LPS-stimulated mice. Similarly, vitamin D3 upregulated Sirt6 generation and intensity, reduced H3K9ac levels, and inhibited the inflammatory activation of LPS-stimulated BV-2 cells. In conclusion, vitamin D3 may upregulate microglial Sirt6 to reduce H3K9ac and inhibit microglial activation, thereby antagonizing neuroinflammation.
Collapse
Affiliation(s)
- Yanning Li
- Center for Drug Discovery Innovation, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China; Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China.
| | - Yujie Ma
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Lijie Gao
- Center for Drug Discovery Innovation, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China
| | - Ting Wang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Yuchen Zhuang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Yuping Zhang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Long Zheng
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Xifu Liu
- Center for Drug Discovery Innovation, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China.
| |
Collapse
|