1
|
Al-Qthanin R, Radwan AM, Donia AM, Balah MA. Potentials of invasive Bidens pilosa, Conyza bonariensis and Parthenium hysterophorus species based on germination patterns and growth traits. PLoS One 2024; 19:e0309568. [PMID: 39236016 PMCID: PMC11376588 DOI: 10.1371/journal.pone.0309568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Invasive alien species drive extensive ecological changes and cause unexpected risks worldwide. Perceptive germination requirements and the growth function of invasive species are crucial for understanding their invasion and subsequent dissemination in various environmental conditions. Therefore, the germination response of invasive Conyza bonariensis, Parthenium hysterophorus, and Bidens pilosa of Asteraceae family were examined under alternating temperature regimes and some environmental factors. The prevailing germination ability occurs highest at moderate-temperature regimes at 20/30°C attained by 94.83% (C. bonariensis) and at 20/25 SS by 96.28% (P. hysterophorus) and high-temperature regimes at 25/30°C reached 92.94% (B. pilosa) respectively. The half germination percentage (G50) was -0.406 MPa and 2878.35 ppm (B. pilosa), -0.579 MPa and 2490.9 ppm (C. bonariensis), and-0.32 MPa and 2490.8 ppm (P. hysterophorus) affected by osmotic pressure and salt stress (NaCl) respectively. The highest growth plasticity characteristics were identified in total dry mass attained at 0.968 (C. bonariensis), 0.985 (B. pilosa) and 0.957 (P. hysterophorus) respectively. The relative growth, net assimilation and plasticity index appeared higher in both B. pilosa, and C. bonariensis than P. hysterophorus in the invaded area. In conclusion, germination and growth traits are precisely functional factors that correlate to invasion success under stressed conditions, and zones, and also lead to successful control plans for invasive species and ecological protection.
Collapse
Affiliation(s)
- Rahmah Al-Qthanin
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Prince Sultan Bin-Abdul-Aziz for Environmental Research and Natural Resources Sustainability Center, King Khalid University, Abha, Saudi Arabia
| | - Asmaa M Radwan
- Faculty of Science, Girls Branch, Al-Azhar University, Cairo, Egypt
| | | | | |
Collapse
|
2
|
Zhou XH, Li JJ, Peng PH, He WM. Climate warming impacts chewing Spodoptera litura negatively but sucking Corythucha marmorata positively on native Solidago canadensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171504. [PMID: 38460690 DOI: 10.1016/j.scitotenv.2024.171504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Insect-plant interactions are among importantly ecological processes, and rapid environmental changes such as temperature and resource fluctuations can disrupt long-standing insect-plant interactions. While individual impacts of climate warming, atmospheric nitrogen (N) deposition, and plant provenance on insect-plant interactions are well studied, their joint effects on insect-plant interactions are less explored in ecologically realistic settings. To this end, we performed five experiments with native and invasive Solidago canadensis populations from home and introduced ranges and two insect herbivores (leaf-chewing Spodoptera litura and sap-sucking Corythucha marmorata) in the context of climate warming and N deposition. We determined leaf defensive traits, feeding preference, and insect growth and development, and quantified the possible associations among climate change, host-plant traits, and insect performance with structural equation modeling. First, native S. canadensis populations experienced higher damage by S. litura but lower damage by C. marmorata than invasive S. canadensis populations in the ambient environment. Second, warming decreased the leaf consumption, growth, and survival of S. litura on native S. canadensis populations, but did not affect these traits on invasive S. canadensis populations; warming increased the number of C. marmorata on native S. canadensis populations via direct facilitation, but decreased that on invasive S. canadensis populations via indirect suppression. Third, N addition enhanced the survival of S. litura on native S. canadensis populations, and its feeding preference and leaf consumption on invasive S. canadensis populations. Finally, warming plus N addition exhibited non-additive effects on insect-plant interactions. Based on these results, we tentatively conclude that climate warming could have contrasting effects on insect-plant interactions depending on host-plant provenance and that the effects of atmospheric N deposition on insects might be relatively weak compared to climate warming. Future studies should focus on the molecular mechanisms underlying these different patterns.
Collapse
Affiliation(s)
- Xiao-Hui Zhou
- College of Forestry, Hebei Agricultural University, Baoding, China; Institute of Botany, Chinese Academy of Sciences, Beijing, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Jing-Ji Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Pei-Hao Peng
- Institute of Ecological Resources and Landscape Architecture, Chengdu University of Technology, Chengdu, China
| | - Wei-Ming He
- College of Forestry, Hebei Agricultural University, Baoding, China; Institute of Botany, Chinese Academy of Sciences, Beijing, China; Hebei Urban Forest Health Technology Innovation Center, Baoding, China.
| |
Collapse
|
3
|
Skovmand L, O'Dea RE, Greig KA, Amato KR, Hendry AP. Effects of leaf herbivory and autumn seasonality on plant secondary metabolites: A meta-analysis. Ecol Evol 2024; 14:e10912. [PMID: 38357594 PMCID: PMC10864732 DOI: 10.1002/ece3.10912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Plant secondary metabolites (PSMs) are produced by plants to overcome environmental challenges, both biotic and abiotic. We were interested in characterizing how autumn seasonality in temperate and subtropical climates affects overall PSM production in comparison to herbivory. Herbivory is commonly measured between spring to summer when plants have high resource availability and prioritize growth and reproduction. However, autumn seasonality also challenges plants as they cope with limited resources and prepare survival for winter. This suggests a potential gap in our understanding of how herbivory affects PSM production in autumn compared to spring/summer. Using meta-analysis, we recorded overall production of 22 different PSM subgroups from 58 published papers to calculate effect sizes from herbivory studies (absence to presence) and temperate to subtropical seasonal studies (summer to autumn), while considering other variables (e.g., plant type, increase in time since herbivory, temperature, and precipitation). We also compared production of five phenolic PSM subgroups - hydroxybenzoic acids, flavan-3-ols, flavonols, hydrolysable tannins, and condensed tannins. We wanted to detect a shared response across all PSMs and found that herbivory increased overall PSM production in herbaceous plants. Herbivory was also found to have a positive effect on individual PSM subgroups, such as flavonol production, while autumn seasonality was found to have a positive effect on flavan-3-ol and condensed tannin production. We discuss how these responses might stem from plants producing some PSMs constitutively, whereas others are induced only after herbivory, and how plants produce metabolites with higher costs only during seasons when other resources for growth and reproduction are less available, while other phenolic PSM subgroups serve more than one function for plants and such functions can be season dependent. The outcome of our meta-analysis is that autumn seasonality changes some PSM production differently from herbivory, and we see value in further investigating seasonality-herbivory interactions with plant chemical defense.
Collapse
Affiliation(s)
- Lota Skovmand
- Redpath Museum & Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Rose E. O'Dea
- School of Agriculture, Food, and Ecosystem SciencesUniversity of MelbourneMelbourneVictoriaAustralia
| | - Keri A. Greig
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexasUSA
| | | | - Andrew P. Hendry
- Redpath Museum & Department of BiologyMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
4
|
Chen J. Editorial: Aphids as plant pests: from biology to green control technology. FRONTIERS IN PLANT SCIENCE 2024; 14:1337558. [PMID: 38259912 PMCID: PMC10800563 DOI: 10.3389/fpls.2023.1337558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024]
Affiliation(s)
- Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Brian JI, Catford JA. A mechanistic framework of enemy release. Ecol Lett 2023; 26:2147-2166. [PMID: 37921034 DOI: 10.1111/ele.14329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
The enemy release hypothesis (ERH) is the best-known hypothesis explaining high performance (e.g. rapid population growth) of exotic species. However, the current framing of the ERH does not explicitly link evidence of enemy release with exotic performance. This leads to uncertainty regarding the role of enemy release in biological invasions. Here, we demonstrate that the effect of enemy release on exotic performance is the product of three factors: enemy impact, enemy diversity, and host adaptation. These factors are modulated by seven contexts: time since introduction, resource availability, phylogenetic relatedness of exotic and native species, host-enemy asynchronicity, number of introduction events, type of enemy, and strength of growth-defence trade-offs. ERH-focused studies frequently test different factors under different contexts. This can lead to inconsistent findings, which typifies current evidence for the ERH. For example, over 80% of meta-analyses fail to consider ecological contexts which can alter study findings; we demonstrate this by re-analysing a recent ERH synthesis. Structuring the ERH around factors and contexts promotes generalisable predictions about when and where exotic species may benefit from enemy release, empowering effective management. Our mechanistic factor-context framework clearly lays out the evidence required to support the ERH, unifies many enemy-related invasion hypotheses, and enhances predictive capacity.
Collapse
Affiliation(s)
- Joshua I Brian
- Department of Geography, King's College London, London, UK
| | - Jane A Catford
- Department of Geography, King's College London, London, UK
- Fenner School of Environment & Society, The Australian National University, Canberra, Australia
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
6
|
Qi Y, Xian X, Zhao H, Yang M, Zhang Y, Yu W, Liu W. World Spread of Tropical Soda Apple ( Solanum viarum) under Global Change: Historical Reconstruction, Niche Shift, and Potential Geographic Distribution. BIOLOGY 2023; 12:1179. [PMID: 37759579 PMCID: PMC10525411 DOI: 10.3390/biology12091179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Solanum viarum has become extensively invasive owing to international trade, climate change, and land-use change. As it is classified as a quarantine weed by countries such as the U.S. and Mexico, it is critical to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. We reconstructed the historical invasion countries and analyzed the ecological niche shift of S. viarum. Using MaxEnt based on the conservativeness of ecological niches, we studied variations in the potential geographical distributions (PGDs) of S. viarum in ecosystems and variations in suitability probabilities along latitudinal gradients. The invasion history in six continents involved three phases: lag (before 1980), spread (1980-2010), and equilibrium (2010-present). The ecological niche remains conserved. The area of S. viarum PGDs had increased by 259 km2; the PGDs will expand to reach a maximum in the 2050s, SSP5-8.5. The PGDs of S. viarum will migrate to higher latitudes under the same future climate scenarios. The latitudes subject to high threats range from 20° to 30° in forest and cropland ecosystems, 15.5° to 27.5° (northern hemisphere) and 33.1° to 42.8° (southern hemisphere) in grassland ecosystems, and 20° to 35° in urban ecosystems. Global change has led to an increased threat of S. viarum at high latitudes. These findings provide a theoretical basis to monitor and control S. viarum.
Collapse
Affiliation(s)
- Yuhan Qi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| | - Xiaoqing Xian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| | - Haoxiang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| | - Ming Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| | - Yu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| | - Wentao Yu
- Fujian Key Laboratory for Technology Research of Inspection and Quarantine, Technology Centre of Fuzhou Customs, Fuzhou 350001, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| |
Collapse
|
7
|
Li X, Zhang Y, Kong FL, Naz M, Zhou JY, Qi SS, Dai ZC, Du DL. Invasive Plant Alternanthera philoxeroides Benefits More Competition Advantage from Rhizosphere Bacteria Regardless of the Host Source. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112085. [PMID: 37299065 DOI: 10.3390/plants12112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
The rhizosphere plays a vital role in the exchange of materials in the soil-plant ecosystem, and rhizosphere microorganisms are crucial for plant growth and development. In this study, we isolated two strains of Pantoea rhizosphere bacteria separately from invasive Alternanthera philoxeroides and native A. sessilis. We conducted a control experiment to test the effects of these bacteria on the growth and competition of the two plant species using sterile seedlings. Our findings showed that the rhizobacteria strain isolated from A. sessilis significantly promoted the growth of invasive A. philoxeroides in monoculture compared to native A. sessilis. Both strains significantly enhanced the growth and competitiveness of invasive A. philoxeroides under competition conditions, regardless of their host source. Our study suggests that rhizosphere bacteria, including those from different host sources, can contribute to the invasion of A. philoxeroides by significantly enhancing its competitiveness.
Collapse
Affiliation(s)
- Xu Li
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Zhang
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fang-Li Kong
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Misbah Naz
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jian-Yu Zhou
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan-Shan Qi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhi-Cong Dai
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Dao-Lin Du
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Gao L, Wei C, He Y, Tang X, Chen W, Xu H, Wu Y, Wilschut RA, Lu X. Aboveground herbivory can promote exotic plant invasion through intra- and interspecific aboveground-belowground interactions. THE NEW PHYTOLOGIST 2023; 237:2347-2359. [PMID: 36200166 DOI: 10.1111/nph.18520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant-soil feedbacks (PSFs) remains unclear. To explore how herbivory by the introduced beetle Agasicles hygrophila affects Alternanthera philoxeroides invasions in China, we integrated multiyear field surveys and a 2-yr PSF experiment, in which we examined how herbivory affects PSFs on the performance of native and invasive plants and the introduced beetles. Despite increased herbivory from A. hygrophila, A. philoxeroides dominance over co-occurring congeneric native Alternanthera sessilis remained constant from 2014 to 2019. While occurring at lower abundances, A. sessilis experienced similar herbivore damage, suggesting apparent competitive effects. Our experiments revealed that herbivory on A. philoxeroides altered soil microbial communities, prolonged its negative PSF on A. sessilis, and decreased A. hygrophila larvae performance on the next-generation invasive plants. Consequently, A. hygrophila larvae performed better on leaves of natives than those of invasives when grown in soils conditioned by invasive plants defoliated by the introduced beetles. Our findings suggest that aboveground herbivory might promote rather than suppress A. philoxeroides invasion by enhancing its soil-mediated self-reinforcement, providing a novel mechanistic understanding of plant invasions. These findings highlight the need to incorporate an aboveground-belowground perspective during the assessment of potential biocontrol agents.
Collapse
Affiliation(s)
- Lunlun Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| | - Chunqiang Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Guangxi Institute of Botany, Chinese Academy of Science, 540016, Guilin, China
| | - Yifan He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| | - Xuefei Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
| | - Wei Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| | - Hao Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| | - Yuqing Wu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, 450002, Henan, China
| | - Rutger A Wilschut
- Ecology Group, Department of Biology, University of Konstanz, 78464, Konstanz, Germany
- Department of Nematology, Wageningen University and Research, 6708PB, Wageningen, the Netherlands
| | - Xinmin Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| |
Collapse
|
9
|
Xian X, Zhao H, Wang R, Huang H, Chen B, Zhang G, Liu W, Wan F. Climate change has increased the global threats posed by three ragweeds (Ambrosia L.) in the Anthropocene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160252. [PMID: 36427731 DOI: 10.1016/j.scitotenv.2022.160252] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Invasive alien plants (IAPs) substantially affect the native biodiversity, agriculture, industry, and human health worldwide. Ambrosia (ragweed) species, which are major IAPs globally, produce a significant impact on human health and the natural environment. In particular, invasion of A. artemisiifolia, A. psilostachya, and A. trifida in non-native continents is more extensive and severe than that of other species. Here, we used biomod2 ensemble model based on environmental and species occurrence data to predict the potential geographical distribution, overlapping geographical distribution areas, and the ecological niche dynamics of these three ragweeds and further explored the environmental variables shaping the observed patterns to assess the impact of these IAPs on the natural environment and public health. The ecological niche has shifted in the invasive area compared with that in the native area, which increased the invasion risk of three Ambrosia species during the invasion process in the world. The potential geographical distribution and overlapping geographical distribution areas of the three Ambrosia species are primarily distributed in Asia, North America, and Europe, and are expected to increase under four representative concentration pathways in the 2050s. The centers of potential geographical distributions of the three Ambrosia species showed a tendency to shift poleward from the current time to the 2050s. Bioclimatic variables and the human influence index were more significant in shaping these patterns than other factors. In brief, climate change has facilitated the expansion of the geographical distribution and overlapping geographical distribution areas of the three Ambrosia species. Ecomanagement and cross-country management strategies are warranted to mitigate the future effects of the expansion of these ragweed species worldwide in the Anthropocene on the natural environment and public health.
Collapse
Affiliation(s)
- Xiaoqing Xian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Haoxiang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Rui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Hongkun Huang
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Baoxiong Chen
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Guifen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China.
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| |
Collapse
|
10
|
Wu H, Dong S, Rao B. Latitudinal trends in the structure, similarity and beta diversity of plant communities invaded by Alternanthera philoxeroides in heterogeneous habitats. FRONTIERS IN PLANT SCIENCE 2022; 13:1021337. [PMID: 36275507 PMCID: PMC9583019 DOI: 10.3389/fpls.2022.1021337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Variations in latitudinal gradients could lead to changes in the performance and ecological effects of invasive plants and thus may affect the species composition, distribution and interspecific substitution of native plant communities. However, variations in structure, similarity and beta (β) diversity within invaded communities across latitudinal gradients in heterogeneous habitats remain unclear. In this study, we conducted a two-year field survey along 21°N to 37°N in China, to examine the differential effects of the amphibious invasive plant Alternanthera philoxeroides on native plant communities in terrestrial and aquatic habitats. We compared the differences in the invasion importance value (IV), species distribution, community similarity (Jaccard index and Sorenson index) and β diversity (Bray-Curtis index and βsim index) between terrestrial and aquatic communities invaded by A. philoxeroides, as well as analyzed their latitudinal trends. We found that the IV of A. philoxeroides and β diversity in aquatic habitats were all significantly higher than that of terrestrial, while the terrestrial habitat had a higher community similarity values. The aquatic A. philoxeroides IV increased with increasing latitude, while the terrestrial IV had no significant latitudinal trend. With increasing latitude, the component proportion of cold- and drought-tolerant species in the terrestrial communities increased, and the dominant accompanying species in the aquatic communities gradually changed from hygrophytes and floating plants to emerged and submerged plants. In addition, the aquatic communities had lower community similarity values and higher β diversity in higher latitudinal regions, while terrestrial communities had the opposite parameters in these regions. Our study indicates that the bioresistance capacities of the native communities to invasive A. philoxeroides in heterogeneous habitats are different; A. philoxeroides invasion leads to higher community homogenization in terrestrial habitats than in aquatic habitats, and terrestrial communities experience more severe homogenization in higher latitudinal regions. These findings are crucial for predicting the dynamics of invasive plant communities under rapid global change.
Collapse
Affiliation(s)
- Hao Wu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Sijin Dong
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Benqiang Rao
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
11
|
Huang X, Ke F, Li Q, Zhao Y, Guan B, Li K. Functional traits underlying performance variations in the overwintering of the cosmopolitan invasive plant water hyacinth ( Eichhornia crassipes) under climate warming and water drawdown. Ecol Evol 2022; 12:e9181. [PMID: 35949531 PMCID: PMC9353122 DOI: 10.1002/ece3.9181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
Abstract
Reports of the Intergovernmental Panel on Climate Change (IPCC) indicate that temperature rise is still the general trend of the global climate in the 21st century. Invasive species may benefit from the increase in temperature, as climate can be viewed as a resource, and the increase in the available resources favors the invasibility of invasive species. This study aimed to assess the overwintering growth of the cosmopolitan invasive plant water hyacinth (Eichhornia crassipes) at its northern boundary. Using E. crassipes as a model plant, a cross-year mesocosm experiment was conducted to determine 17 plant functional traits, including growth, morphological, root topological, photosynthetic, and stoichiometric traits, under climate warming (ambient, temperature rises of 1.5°C and 3.0°C), and water drawdown or water withdrawal (water depths of 1, 10, and 20 cm) treatments. The overwintering growth of E. crassipes was facilitated by climate warming and proper water drawdown, and climate warming played a leading role. A temperature rises of 3.0°C and a water depth of 10 cm were the most suitable conditions for the overwintering and rooting behavior of the plant. Controlling the temperature to within 1.5°C, an ambitious goal for China, still facilitated the overwintering of E. crassipes. With climate warming, the plant can overwinter successfully, which possibly assists it in producing and spreading new ramets in the vernal flood season. The new rooting behavior induced by ambient low temperature may be viewed as a unique growth adaptation strategy for a niche change, as it helps these plants invade empty niches left by dead free-floating plants on the water surface following winter freezes. With continued global warming, the distribution of the plant may expand northward, and eradication of the plant during the winter water drawdown period may be a more effective strategy.
Collapse
Affiliation(s)
- Xiaolong Huang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
| | - Fan Ke
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
| | - Qisheng Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
| | - Yu Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
| | - Baohua Guan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
| | - Kuanyi Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
- Sino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijingChina
- College of Environmental and Chemical EngineeringChongqing Three Gorges UniversityWanzhouChina
| |
Collapse
|
12
|
Dai ZC, Zhu B, Wan JSH, Rutherford S. Editorial: Global Changes and Plant Invasions. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.845816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Zhang X, Yu H, Lv T, Yang L, Liu C, Fan S, Yu D. Effects of different scenarios of temperature rise and biological control agents on interactions between two noxious invasive plants. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Xiaoliang Zhang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake College of Ecology Wuhan University Wuhan China
| | - Haihao Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake College of Ecology Wuhan University Wuhan China
| | - Tian Lv
- The National Field Station of Freshwater Ecosystem of Liangzi Lake College of Ecology Wuhan University Wuhan China
| | - Lei Yang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake College of Ecology Wuhan University Wuhan China
| | - Chunhua Liu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake College of Ecology Wuhan University Wuhan China
| | - Shufeng Fan
- The National Field Station of Freshwater Ecosystem of Liangzi Lake College of Ecology Wuhan University Wuhan China
| | - Dan Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake College of Ecology Wuhan University Wuhan China
| |
Collapse
|
14
|
Liu M, Pan Y, Pan X, Sosa A, Blumenthal DM, Van Kleunen M, Li B. Plant invasion alters latitudinal pattern of plant-defense syndromes. Ecology 2021; 102:e03511. [PMID: 34355383 DOI: 10.1002/ecy.3511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/08/2021] [Accepted: 05/17/2021] [Indexed: 11/07/2022]
Abstract
The relationship between herbivory and latitude may differ between native and introduced populations of invasive plants, which can generate latitudinal heterogeneity in the strength of enemy release. However, still little is known about how latitudinal heterogeneity in herbivore pressure influences latitudinal variation in defense phenotypes of invasive plants. We tested how latitudinal patterns in multi-variate defense syndromes differed between native (Argentinian) and introduced (Chinese) populations of the invasive herb Alternanthera philoxeroides. In addition, to better understand the drivers underlying latitudinal patterns, we also tested whether associations of defense syndromes with climate and herbivory differed between native and introduced ranges. We found that native plant populations clustered into three main defense syndromes associated with latitude. In contrast, we only found two defense syndromes in the introduced range. One matched the high-latitude syndrome from the native range, but was distributed at both the northern and southern range limits in the introduced range. The other was unique to the introduced range and occurred at mid-latitudes. Climatic conditions were associated with variation in syndromes in the native range, and climatic conditions and herbivory were associated with variation in syndromes in the introduced range. Together, our results demonstrate that plants may under the new environmental conditions in the introduced range show latitudinal patterns of defense syndromes that are different from those in their native range. This emphasizes that geographical dependence of population differentiation should be explicitly considered in studies on the evolution of defense in invasive plants.
Collapse
Affiliation(s)
- Mu Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuanfei Pan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China.,School of Public Health, Fudan University, Shanghai, 200032, China
| | - Xiaoyun Pan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Research Center for Ecology, College of Science, Tibet University, Lhasa, 850000, China.,Tibet University - Fudan University Joint Laboratory for Biodiversity and Global Change, Fudan University, Shanghai, 200438, China
| | - Alejandro Sosa
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, 999071, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, 999071, Argentina
| | - Dana M Blumenthal
- Rangeland Resources & Systems Research Unit, USDA Agricultural Research Service, Fort Collins, Colorado, 80526, USA
| | - Mark Van Kleunen
- Ecology, Department of Biology, University of Konstanz, Konstanz, 78464, Germany.,Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Bo Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
15
|
Gao L, Wei C, Xu H, Liu X, Siemann E, Lu X. Latitudinal variation in the diversity and composition of various organisms associated with an exotic plant: the role of climate and plant invasion. THE NEW PHYTOLOGIST 2021; 231:1559-1569. [PMID: 34018617 DOI: 10.1111/nph.17479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Climate and plant invasion can shape biotic communities at large spatial scales. Yet, how diverse groups of organisms associated with an invasive plant change simultaneously with latitude and the roles of climate and plant invasion remains unclear. We conducted a field survey of plants (native vs exotic), soil fungi (pathogenic, saprotrophic, arbuscular mycorrhiza fungi (AMF) and ectomycorrhizal (EcM) fungi) and arthropods (herbivores, predators and detritivores) associated with the invasive plant Alternanthera philoxeroides at 49 sites spanning 14 latitudinal degrees in China. Results showed that diversity and composition of these functional groups changed differently with latitude, partially due to their specific responses to climate, invasion of A. philoxeroides and other biotic environments. Moreover, A. philoxeroides invasion and/or composition of other plants, rather than climate, predicted the diversity and richness of major functional groups and partly explained variance in composition of putative fungal pathogens. Our results suggest that climate and plant invasion could affect the diversity and composition of diverse groups of organisms simultaneously and their relative importance might vary among functional groups. Thus, it is necessary to explore latitudinal patterns and underlying drivers of diverse groups of organisms simultaneously to improve our ability to predict and mitigate threats posed by plant invasion and climate change.
Collapse
Affiliation(s)
- Lunlun Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei, 430070, China
- Institute of Invasion Biology, Agriculture & Ecological Safety, Huazhong Agricultural University, Hubei, 430070, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, Hubei, 430070, China
| | - Chunqiang Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei, 430070, China
- School of Life Sciences, Central China Normal University, Hubei, 430079, China
- Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin, Guangxi, 541006, China
| | - Hao Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei, 430070, China
- Institute of Invasion Biology, Agriculture & Ecological Safety, Huazhong Agricultural University, Hubei, 430070, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, Hubei, 430070, China
| | - Xiaoyan Liu
- Institute of Invasion Biology, Agriculture & Ecological Safety, Huazhong Agricultural University, Hubei, 430070, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, Hubei, 430070, China
| | - Evan Siemann
- Biosciences Department, Rice University, Houston, TX, 77005, USA
| | - Xinmin Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei, 430070, China
- Institute of Invasion Biology, Agriculture & Ecological Safety, Huazhong Agricultural University, Hubei, 430070, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, Hubei, 430070, China
| |
Collapse
|
16
|
Multi-generational effects of simulated herbivory and habitat types on the invasive weed Alternanthera philoxeroides: implications for biological control. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02491-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Yang Y, Liu M, Pan Y, Huang H, Pan X, Sosa A, Hou Y, Zhu Z, Li B. Rapid evolution of latitudinal clines in growth and defence of an invasive weed. THE NEW PHYTOLOGIST 2021; 230:845-856. [PMID: 33454953 DOI: 10.1111/nph.17193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Re-establishment of heritable latitudinal clines in growth-related traits has been recognised as evidence for adaptive evolution in invasive plants. However, less information is known about latitudinal clines in defence and joint clinal evolution of growth and defence in invasive plants. We planted 14 native Argentinean populations and 14 introduced Chinese populations of Alternanthera philoxeroides in replicate common gardens in China. We investigated the latitudinal clines of traits related to growth and defence, and plasticity of these traits in relation to experiment site and soil nitrogen. We found that chemical defence decreased with latitude in introduced populations but increased with latitude in native populations. For growth rate, latitudinal clines were positive in introduced populations but nonexistent in native populations. There were also parallel positive latitudinal clines in total/shoot biomass and specific leaf area. Experiment site affected the occurrence or magnitude of latitudinal clines in growth rate, branch intensity and triterpenoid saponins concentration. Introduced populations were more plastic to experiment site and soil nitrogen than native populations. We provide evidence for rapid evolution of clines in growth and defence in an invasive plant. Altered herbivory gradients and trade-off between growth and defence may explain nonparallel clines between the native and introduced ranges.
Collapse
Affiliation(s)
- Yang Yang
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
| | - Mu Liu
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
| | - Yuanfei Pan
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Heyan Huang
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
| | - Xiaoyun Pan
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
- Research Center for Ecology, College of Science, Tibet University, Lhasa, 850000, China
- Tibet University - Fudan University Joint Laboratory for Biodiversity and Global Change, Fudan University, Shanghai, 200032, China
| | - Alejandro Sosa
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, 999071, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, 999071, Argentina
| | - Yuping Hou
- College of Life Sciences, Ludong University, Yantai, 264025, China
| | - Zhengcai Zhu
- Guangzhou Zengcheng Institute of Forestry and Landscape Architecture, Guangzhou, 511300, China
| | - Bo Li
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
18
|
Sentis A, Montoya JM, Lurgi M. Warming indirectly increases invasion success in food webs. Proc Biol Sci 2021; 288:20202622. [PMID: 33726601 PMCID: PMC8059653 DOI: 10.1098/rspb.2020.2622] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Climate warming and biological invasions are key drivers of biodiversity change. Their combined effects on ecological communities remain largely unexplored. We investigated the direct and indirect influences of temperature on invasion success, and their synergistic effects on community structure and dynamics. Using size-structured food web models, we found that higher temperatures increased invasion success. The direct physiological effects of temperature on invasions were minimal in comparison with indirect effects mediated by changes on food web structure and stability. Warmer communities with less connectivity, shortened food chains and reduced temporal variability were more susceptible to invasions. The directionality and magnitude of invasions effects on food webs varied across temperature regimes. When invaded, warmer communities became smaller, more connected and with more predator species than their colder counterparts. They were also less stable and their species more abundant. Considering food web structure is crucial to predict invasion success and its impacts along temperature gradients.
Collapse
Affiliation(s)
- Arnaud Sentis
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200 Moulis, France,INRAE, Aix-Marseille University, UMR RECOVER, 3275 route Cézanne, 13182 Aix-en-Provence, France
| | - Jose M. Montoya
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200 Moulis, France
| | - Miguel Lurgi
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200 Moulis, France,Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| |
Collapse
|
19
|
Hamann E, Denney D, Day S, Lombardi E, Jameel MI, MacTavish R, Anderson JT. Review: Plant eco-evolutionary responses to climate change: Emerging directions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110737. [PMID: 33568289 DOI: 10.1016/j.plantsci.2020.110737] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 05/14/2023]
Abstract
Contemporary climate change is exposing plant populations to novel combinations of temperatures, drought stress, [CO2] and other abiotic and biotic conditions. These changes are rapidly disrupting the evolutionary dynamics of plants. Despite the multifactorial nature of climate change, most studies typically manipulate only one climatic factor. In this opinion piece, we explore how climate change factors interact with each other and with biotic pressures to alter evolutionary processes. We evaluate the ramifications of climate change across life history stages,and examine how mating system variation influences population persistence under rapid environmental change. Furthermore, we discuss how spatial and temporal mismatches between plants and their mutualists and antagonists could affect adaptive responses to climate change. For example, plant-virus interactions vary from highly pathogenic to mildly facilitative, and are partly mediated by temperature, moisture availability and [CO2]. Will host plants exposed to novel, stressful abiotic conditions be more susceptible to viral pathogens? Finally, we propose novel experimental approaches that could illuminate how plants will cope with unprecedented global change, such as resurrection studies combined with experimental evolution, genomics or epigenetics.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Derek Denney
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Samantha Day
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Elizabeth Lombardi
- Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - M Inam Jameel
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Rachel MacTavish
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
20
|
Torre Cerro R, Holloway P. A review of the methods for studying biotic interactions in phenological analyses. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rubén Torre Cerro
- Department of Geography University College Cork Cork Ireland
- Environmental Research Institute University College Cork Cork Ireland
| | - Paul Holloway
- Department of Geography University College Cork Cork Ireland
- Environmental Research Institute University College Cork Cork Ireland
| |
Collapse
|
21
|
Luo L, Kong X, Gao Z, Zheng Y, Yang Y, Li X, Yang D, Geng Y, Yang Y. Comparative transcriptome analysis reveals ecological adaption of cold tolerance in northward invasion of Alternanthera philoxeroides. BMC Genomics 2020; 21:532. [PMID: 32741374 PMCID: PMC7430914 DOI: 10.1186/s12864-020-06941-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/23/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Alternanthera philoxeroides (alligator weed) is a highly invasive alien plant that has continuously and successfully expanded from the tropical to the temperate regions of China via asexual reproduction. During this process, the continuous decrease in temperature has been a key limiting environmental factor. RESULTS In this study, we provide a comprehensive analysis of the cold tolerance of alligator weed via transcriptomics. The transcriptomic differences between the southernmost population and the northernmost population of China were compared at different time points of cold treatments. GO enrichment and KEGG pathway analyses showed that the alligator weed transcriptional response to cold stress is associated with genes encoding protein kinases, transcription factors, plant-pathogen interactions, plant hormone signal transduction and metabolic processes. Although members of the same gene family were often expressed in both populations, the levels of gene expression between them varied. Further ChIP experiments indicated that histone epigenetic modification changes at the candidate transcription factor gene loci are accompanied by differences in gene expression in response to cold, without variation in the coding sequences of these genes in these two populations. These results suggest that histone changes may contribute to the cold-responsive gene expression divergence between these two populations to provide the most beneficial response to chilling stimuli. CONCLUSION We demonstrated that the major alterations in gene expression levels belonging to the main cold-resistance response processes may be responsible for the divergence in the cold resistance of these two populations. During this process, histone modifications in cold-responsive genes have the potential to drive the major alterations in cold adaption necessary for the northward expansion of alligator weed.
Collapse
Affiliation(s)
- Landi Luo
- School of Ecology and Environmental Science, Institute of Ecology and Geobotany, Yunnan University, Kunming, 650504, China
| | - Xiangxiang Kong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zean Gao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Zheng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunqiang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiong Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Danni Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yupeng Geng
- School of Ecology and Environmental Science, Institute of Ecology and Geobotany, Yunnan University, Kunming, 650504, China.
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China. .,Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
22
|
Comparison of allelopathic effects of two typical invasive plants: Mikania micrantha and Ipomoea cairica in Hainan island. Sci Rep 2020; 10:11332. [PMID: 32647288 PMCID: PMC7347892 DOI: 10.1038/s41598-020-68234-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/08/2020] [Indexed: 11/08/2022] Open
Abstract
Mikania micrantha and Ipomoea cairica are two invasive plants widely distribute and seriously damage in Hainan island. In this study, the leaves extracts of two weeds were collected and determined for their allelopathic potentials on Chrysanthemum coronarium. The phytotoxicity bioassay showed that when the extract concentration was 50 and 100 mg/ml, the inhibited effects of M. micrantha on growth of C. coronarium were greater than by I. cairica. However, when the extract concertation at 400 mg/ml, the opposite inhibited effects were observed. We speculated this phenomenon was caused by different allelopathic compounds. Therefore, using gas chromatography-mass spectrometry, 19 and 23 compounds were identified respectively, benzoic acid and cinnamic acid were the main components in the two leaves extracts, which were selected to carry out the further bioassays. Subsequent bioassay results showed the effects of two allelochemicals on morphological index and chlorophyll content and POD activity were all negative to C. coronarium, whereas the content of MDA and activity of SOD, CAT represented adverse changes. Moreover, the inhibitions by cinnamic acid were generally greater than those by benzoic acid. Thus, the phenolic acids played the most crucial roles in the allelopathic effccts of M. micrantha and I. cairica leaves extracts.
Collapse
|
23
|
Croy JR, Meyerson LA, Allen WJ, Bhattarai GP, Cronin JT. Lineage and latitudinal variation inPhragmites australistolerance to herbivory: implications for invasion success. OIKOS 2020. [DOI: 10.1111/oik.07260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jordan R. Croy
- Dept of Biological Sciences, Louisiana State Univ. Baton Rouge LA 70803 USA
- Dept of Ecology and Evolutionary Biology, Univ. of California Irvine CA 92697 USA
| | - Laura A. Meyerson
- Dept of Natural Resource Sciences, Univ. of Rhode Island Kingston RI USA
| | - Warwick J. Allen
- Dept of Biological Sciences, Louisiana State Univ. Baton Rouge LA 70803 USA
- The Bio‐Protection Research Centre, School of Biological Sciences, Univ. of Canterbury Christchurch New Zealand
| | - Ganesh P. Bhattarai
- Dept of Biological Sciences, Louisiana State Univ. Baton Rouge LA 70803 USA
- Dept of Entomology, Kansas State Univ. Manhattan KS USA
| | - James T. Cronin
- Dept of Biological Sciences, Louisiana State Univ. Baton Rouge LA 70803 USA
| |
Collapse
|
24
|
Li LQ, Lyu CC, Li JH, Wan CY, Liu L, Xie MQ, Zuo RJ, Ni S, Liu F, Zeng FC, Lu YF, Yu LP, Huang XL, Wang XY, Lu LM. Quantitative Proteomic Analysis of Alligator Weed Leaves Reveals That Cationic Peroxidase 1 Plays Vital Roles in the Potassium Deficiency Stress Response. Int J Mol Sci 2020; 21:ijms21072537. [PMID: 32268484 PMCID: PMC7177825 DOI: 10.3390/ijms21072537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 11/26/2022] Open
Abstract
Alligator weed is reported to have a strong ability to adapt to potassium deficiency (LK) stress. Leaves are the primary organs responsible for photosynthesis of plants. However, quantitative proteomic changes in alligator weed leaves in response to LK stress are largely unknown. In this study, we investigated the physiological and proteomic changes in leaves of alligator weed under LK stress. We found that chloroplast and mesophyll cell contents in palisade tissue increased, and that the total chlorophyll content, superoxide dismutase (SOD) activity and net photosynthetic rate (PN) increased after 15 day of LK treatment, but the soluble protein content decreased. Quantitative proteomic analysis suggested that a total of 119 proteins were differentially abundant proteins (DAPs). KEGG analysis suggested that most represented DAPs were associated with secondary metabolism, the stress response, photosynthesis, protein synthesis, and degradation pathway. The proteomic results were verified using parallel reaction monitoring mass spectrometry (PRM–MS) analysis and quantitative real-time PCR (qRT-PCR)assays. Additional research suggested that overexpression of cationic peroxidase 1 of alligator weed (ApCPX1) in tobacco increased LK tolerance. The seed germination rate, peroxidase (POD) activity, and K+ content increased, and the hydrogen peroxide (H2O2) content decreased in the three transgenic tobacco lines after LK stress. The number of root hairs of the transgenic line was significantly higher than that of WT, and net K efflux rates were severely decreased in the transgenic line under LK stress. These results confirmed that ApCPX1 played positive roles in low-K+ signal sensing. These results provide valuable information on the adaptive mechanisms in leaves of alligator weed under LK stress and will help identify vital functional genes to apply to the molecular breeding of LK-tolerant plants in the future.
Collapse
Affiliation(s)
- Li-Qin Li
- Correspondence: (L.-Q.L.); (L.-M.L.); Tel.: +86-28-8629-0867 (L.-Q.L.); +86-28-8629-0867 (L.-M.L.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Li-Ming Lu
- Correspondence: (L.-Q.L.); (L.-M.L.); Tel.: +86-28-8629-0867 (L.-Q.L.); +86-28-8629-0867 (L.-M.L.)
| |
Collapse
|
25
|
Sun Y, Ding J, Siemann E, Keller SR. Biocontrol of invasive weeds under climate change: progress, challenges and management implications. CURRENT OPINION IN INSECT SCIENCE 2020; 38:72-78. [PMID: 32200301 DOI: 10.1016/j.cois.2020.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Climate change is predicted to increase the frequency and impact of plant invasions, creating a need for new control strategies as part of mitigation planning. The complex interactions between invasive plants and biocontrol agents have created distinct policy and management challenges, including the effectiveness and risk assessment of biocontrol under different climate change scenarios. In this brief review, we synthesize recent studies describing the potential ecological and evolutionary outcomes for biocontrol agents/candidates for plant invaders under climate change. We also discuss potential methodologies that can be used as a framework for predicting ecological and evolutionary responses of plant-natural enemy interactions under climate change, and for refining our understanding of the efficacy and risk of using biocontrol on invasive plants.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biology/Ecology & Evolution, University of Fribourg, 1700 Fribourg, Switzerland.
| | - Jianqing Ding
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Evan Siemann
- Biosciences Department, Rice University, Houston, TX USA
| | | |
Collapse
|
26
|
Wu H, Ding J. Abiotic and Biotic Determinants of Plant Diversity in Aquatic Communities Invaded by Water Hyacinth [ Eichhornia crassipes (Mart.) Solms]. FRONTIERS IN PLANT SCIENCE 2020; 11:1306. [PMID: 32983196 PMCID: PMC7477091 DOI: 10.3389/fpls.2020.01306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/11/2020] [Indexed: 05/08/2023]
Abstract
Rapid global environmental changes could exacerbate the impacts of invasive plants on indigenous plant diversity, especially for freshwater ecosystems characterized by relatively simple plant community structures with low bioresistance. However, the abiotic and biotic determinants of plant diversity in aquatic invaded habitats remain unclear. In this study, we measured four α-species diversity indices (the Patrick richness index, Shannon-Wiener diversity index, Simpson diversity index, and Pielou evenness index) in aquatic plant communities invaded by Eichhornia crassipes in southern China. We also recorded eight environmental parameters of these communities (longitude, latitude, elevation, dissolved oxygen, water conductivity, nitrate nitrogen, temperature, and precipitation), together with nine biotic traits of E. crassipes [abundance, invasion cover, height, total carbon (C) content of the leaves and stems, total nitrogen (N) content of the leaves and stems, and the C:N ratio of leaves and stems]. We then used regression analysis and redundancy analysis (RDA) to determine the dominant factors related to plant diversity. We found that the environment significantly affected E. crassipes abundance, height, coverage, stem carbon, and tissue nitrogen, while the leaf C:N stoichiometric ratio was relatively stable. Increasing longitude significantly increased plant diversity, while elevated dissolved oxygen and precipitation slightly improved plant diversity, but increased elevation caused negative effects. E. crassipes invasion significantly decreased all four diversity indices. Increases in E. crassipes coverage and leaf C:N strongly decreased plant diversity, and increased abundance slightly decreased diversity. Our study indicates that both the changing water environment and the properties of the aquatic invasive plants could have significant impacts on plant diversity. Thus, more attention should be paid to aquatic invasion assessment in lower longitudinal regions with lower native hydrophyte diversity.
Collapse
Affiliation(s)
- Hao Wu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jianqing Ding
- School of Life Sciences, Henan University, Kaifeng, China
- *Correspondence: Jianqing Ding,
| |
Collapse
|
27
|
Han Z, Tan X, Wang Y, Xu Q, Zhang Y, Harwood JD, Chen J. Effects of simulated climate warming on the population dynamics of Sitobion avenae (Fabricius) and its parasitoids in wheat fields. PEST MANAGEMENT SCIENCE 2019; 75:3252-3259. [PMID: 30993856 DOI: 10.1002/ps.5447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/14/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Climate warming has considerable effects on crop development and pest population dynamics. Crucially, the tri-trophic responses of plants, herbivores and their natural enemies to warming are poorly understood. To delineate these interactive properties, a three-system approach and integrating life table methodology were used to examine the responses of wheat plants, English grain aphid and parasitoids under open-field infrared heating to simulate warming. RESULTS Warming significantly increased wheat biomass and grain weight, causing a phenological shift in plant growth. Importantly, warming significantly increased the number of aphids and the reproductive period, coupled with a higher net reproductive rate and intrinsic growth rate. Otherwise, duration of development, generation span, and population doubling time all decreased significantly. Warming had no effect on parasitoid abundance but resulted in a significant decrease in the rate of parasitism. CONCLUSION Warming may strengthen bottom-up effects on aphids by increasing wheat biomass, resulting in reduced regulation of aphid populations. Warming had a different effect on parasitoids between 2015 and 2016. These findings provide an important characterization of ecological mechanisms in plant-herbivore-parasitoid systems and give a theoretical foundation for improved forecasting of aphid population dynamics under climate change. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zongli Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoling Tan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingxuan Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - James D Harwood
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
28
|
Lu X, He M, Tang S, Wu Y, Shao X, Wei H, Siemann E, Ding J. Herbivory may promote a non-native plant invasion at low but not high latitudes. ANNALS OF BOTANY 2019; 124:819-827. [PMID: 31318017 PMCID: PMC6868397 DOI: 10.1093/aob/mcz121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/12/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS The strengths of biotic interactions such as herbivory are expected to decrease with increasing latitude for native species. To what extent this applies to invasive species and what the consequences of this variation are for competition among native and invasive species remain unexplored. Here, herbivore impacts on the invasive plant Alternanthera philoxeroides and its competition with the native congener A. sessilis were estimated across latitudes in China. METHODS An common garden experiment spanning ten latitudinal degrees was conducted to test how herbivore impacts on A. philoxeroides and A. sessilis, and competition between them change with latitude. In addition, a field survey was conducted from 21°N to 36.8°N to test whether A. philoxeroides invasiveness changes with latitude in nature as a result of variations in herbivory. KEY RESULTS In the experiment, A. sessilis cover was significantly higher than A. philoxeroides cover when they competed in the absence of herbivores, but otherwise their cover was comparable at low latitude. However, A. philoxeroides cover was always higher on average than A. sessilis cover at middle latitude. At high latitude, only A. sessilis emerged in the second year. Herbivore abundance decreased with latitude and A. philoxeroides emerged earlier than A. sessilis at middle latitude. In the field survey, the ratio of A. philoxeroides to A. sessilis cover was hump shaped with latitude. CONCLUSION These results indicate that herbivory may promote A. philoxeroides invasion only at low latitude by altering the outcome of competition in favour of the invader and point to the importance of other factors, such as earlier emergence, in A. philoxeroides invasion at higher latitudes. These results suggest that the key factors promoting plant invasions might change with latitude, highlighting the importance of teasing apart the roles of multiple factors in plant invasions within a biogeographic framework.
Collapse
Affiliation(s)
- Xinmin Lu
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
- For correspondence. E-mail ,
| | - Minyan He
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Saichun Tang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin, Guangxi, China
| | - Yuqing Wu
- Institute of Plant Protection, Henan Academy of Agriculture Sciences, Zhengzhou, Henan, China
| | - Xu Shao
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hui Wei
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
- Pearl River Fisheries Research Institute, Guangzhou, Guangdong, China
| | - Evan Siemann
- Biosciences Department, Rice University, Houston, TX, USA
| | - Jianqing Ding
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
29
|
Zhang K, Pan Q, Yu D, Wang L, Liu Z, Li X, Liu X. Systemically modeling the relationship between climate change and wheat aphid abundance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:392-400. [PMID: 31005841 DOI: 10.1016/j.scitotenv.2019.04.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/21/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Climate change influences all living beings. Wheat aphids deplete the nutritional value of wheat and affect the production of wheat in changing climate. In this study, we attempt to explain the ecological mechanisms of how climate change affects wheat aphids by simulating the relationship between climate and the abundance of wheat aphids, which will not only aid in improving wheat aphid forecasting and the effectiveness of prevention and treatment, but also help mitigate food crises. Fuzzy cognitive maps (FCM) are an effective tool for portraying complex systems. Using Sitobion avenae and climatological data collected in China, we made use of differential evolution (DE) algorithms to construct FCM models that directly illustrate the effect of climate on wheat aphid abundance. The relationships among climate and wheat aphids at different growth stages (I-III instar larvae, IV instar larvae with wings, IV instar larvae without wings, adult with wings, adult without wings) were established. The analysis results from the FCM models show that temperature positively influences wheat aphids most. Moreover, these models can be used to determine the numerical value of each climate factor and the abundance of wheat aphids quantitatively. Furthermore, the two overall relationship models between climate and wheat aphids were constructed and the experimental results show that natural enemies and highest daily temperature affect wheat aphids most. Natural enemies and highest daily temperature exert negative and positive impacts on wheat aphids respectively. Some interrelationships among wheat aphids at all growth stages and the internal relationships among climate factors were also shown.
Collapse
Affiliation(s)
- Kai Zhang
- School of Computer Science and Technology, Xidian University, Xi'an 710071, China
| | - Qiong Pan
- School of Telecommunications Engineering, Xidian University, Xi'an 710071, China; School of Science, Northwestern A&F University, Yangling, Shaanxi 712100, China
| | - Deying Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Liming Wang
- School of Computer Science and Technology, Xidian University, Xi'an 710071, China; Institute of Software Engineering, Xidian University, Xi'an 710071, China
| | - Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xue Li
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiyang Liu
- School of Computer Science and Technology, Xidian University, Xi'an 710071, China; Institute of Software Engineering, Xidian University, Xi'an 710071, China.
| |
Collapse
|
30
|
Wu H, Ding J. Global Change Sharpens the Double-Edged Sword Effect of Aquatic Alien Plants in China and Beyond. FRONTIERS IN PLANT SCIENCE 2019; 10:787. [PMID: 31249587 PMCID: PMC6582753 DOI: 10.3389/fpls.2019.00787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/29/2019] [Indexed: 05/23/2023]
Abstract
Many alien aquatic plants are deliberately introduced because they have economic, ornamental, or environmental values; however, they may also negatively affect aquatic ecosystems, by blocking rivers, restricting aquatic animals and plants by decreasing dissolved oxygen, and reducing native biodiversity. These positive and/or negative ecological effects may be enhanced under global change. Here, we examine the impacts of global change on aquatic alien plant introduction and/or invasions by reviewing their introduction pathways, distributions, and ecological effects. We focus on how climate change, aquatic environmental pollution, and China's rapid economic growth in recent decades affect their uses and invasiveness in China. Among 55 species of alien aquatic plants in China, 10 species are invasive, such as Eichhornia crassipes, Alternanthera philoxeroides, and Pistia stratiotes. Most of these invaders were intentionally introduced and dispersed across the country but are now widely distributed and invasive. Under climate warming, many species have expanded their distributions to areas where it was originally too cold for their survival. Thus, these species are (and will be) considered to be beneficial plants in aquaculture and for the restoration of aquatic ecosystems (for water purification) across larger areas. However, for potential invasive species, climate warming is (and will be) increasing their invasion risk in more areas. In addition, nitrogen deposition and phosphorus inputs may also alter the status of some alien species. Furthermore, climate warming has shifted the interactions between alien aquatic plants and herbivores, thus impacting their future spreads. Under climate change, more precipitation in North China and more frequent flooding in South China will increase the uncertainties of ecological effects of alien aquatic plants in these regions. We also predict that, under the continuing booming economy in China, more and more alien aquatic plants will be used for aquatic landscaping and water purification. In conclusion, our study indicates that both human activities under rapid economic growth and climate change can either increase the potential uses of alien aquatic plants or make the aquatic invaders worse in China and other areas in the world. These findings are critical for future risk assessment of aquatic plant introduction and aquatic ecosystem restoration.
Collapse
Affiliation(s)
- Hao Wu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jianqing Ding
- School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
31
|
Tian B, Yu Z, Pei Y, Zhang Z, Siemann E, Wan S, Ding J. Elevated temperature reduces wheat grain yield by increasing pests and decreasing soil mutualists. PEST MANAGEMENT SCIENCE 2019; 75:466-475. [PMID: 29998550 DOI: 10.1002/ps.5140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Climate warming is known to affect species' phenology, abundance, and their interactions with other species. Understanding how cultivated plants, their associated community members (including pest insects, natural enemies, soil microbes), and their interactions respond to warming to influence crop yields is critical to current and future food security. We conducted a two-year field study on the effects of elevated temperature on winter wheat growth and grain quality, insect pests, natural enemies, ground arthropods, weeds, and arbuscular mycorrhizal fungi (AMF). RESULTS Elevated temperature shortened the period of wheat growth, decreased grain yield, and reduced grain quality by increasing fiber and decreasing wet gluten, protein, total soluble sugars, and starch. Elevated temperature also increased aphid abundance while decreasing AMF colonization rates. Structural equation modeling indicated that the direct negative effect of warming on wheat yield was augmented by indirect negative effects via increased aphid and weed abundances along with decreased AMF colonization. CONCLUSION Climate change can potentially affect crop production and quality both directly and indirectly by modifying interactions with aboveground and belowground organisms. Future studies on the effects of climate change on crops should consider the responses of aboveground and belowground biotic community members and their interactions with crop plants. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baoliang Tian
- College of Life Sciences, Henan University, Kaifeng, China
| | - Zhenzhen Yu
- College of Life Sciences, Henan University, Kaifeng, China
| | - Yingchun Pei
- College of Life Sciences, Henan University, Kaifeng, China
| | - Zhen Zhang
- College of Life Sciences, Henan University, Kaifeng, China
| | - Evan Siemann
- Biosciences Department, Rice University, Houston, TX, USA
| | - Shiqiang Wan
- College of Life Sciences, Henan University, Kaifeng, China
| | - Jianqing Ding
- College of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
32
|
Mu X, Xu M, Ricciardi A, Dick JTA, Luo D, Wei H, Hu Y, Wei Q. The influence of warming on the biogeographic and phylogenetic dependence of herbivore-plant interactions. Ecol Evol 2019; 9:2231-2241. [PMID: 30847107 PMCID: PMC6392400 DOI: 10.1002/ece3.4918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 11/14/2018] [Accepted: 12/28/2018] [Indexed: 11/12/2022] Open
Abstract
Evolutionary experience and the phylogenetic relationships of plants have both been proposed to influence herbivore-plant interactions and plant invasion success. However, the direction and magnitude of these effects, and how such patterns are altered with increasing temperature, are rarely studied. Through laboratory functional response experiments, we tested whether the per capita feeding efficiency of an invasive generalist herbivore, the golden apple snail, Pomacea canaliculata, is dependent on the biogeographic origin and phylogenetic relatedness of host plants, and how increasing temperature alters these dependencies. The feeding efficiency of the herbivore was highest on plant species with which it had no shared evolutionary history, that is, novel plants. Further, among evolutionarily familiar plants, snail feeding efficiency was higher on those species more closely related to the novel plants. However, these biogeographic dependencies became less pronounced with increasing temperature, whereas the phylogenetic dependence was unaffected. Collectively, our findings indicate that the susceptibility of plants to this invasive herbivore is mediated by both biogeographic origin and phylogenetic relatedness. We hypothesize that warming erodes the influence of evolutionary exposure, thereby altering herbivore-plant interactions and perhaps the invasion success of plants.
Collapse
Affiliation(s)
- Xidong Mu
- College of FisheriesHuazhong Agricultural UniversityWuhanChina
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Recreational FisheriesMinistry of Agriculture and Rural Areas, Guangdong Engineering Technology Research Center for Advanced Recreational FisheriesGuangzhouChina
| | - Meng Xu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Recreational FisheriesMinistry of Agriculture and Rural Areas, Guangdong Engineering Technology Research Center for Advanced Recreational FisheriesGuangzhouChina
| | | | - Jaimie T. A. Dick
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| | - Du Luo
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Recreational FisheriesMinistry of Agriculture and Rural Areas, Guangdong Engineering Technology Research Center for Advanced Recreational FisheriesGuangzhouChina
| | - Hui Wei
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Recreational FisheriesMinistry of Agriculture and Rural Areas, Guangdong Engineering Technology Research Center for Advanced Recreational FisheriesGuangzhouChina
| | - Yinchang Hu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Recreational FisheriesMinistry of Agriculture and Rural Areas, Guangdong Engineering Technology Research Center for Advanced Recreational FisheriesGuangzhouChina
| | - Qiwei Wei
- College of FisheriesHuazhong Agricultural UniversityWuhanChina
- Ministry of Agriculture Key Laboratory of Freshwater Biodiversity Conservation, Yangtze River Fisheries Research InstituteChinese Academy of Fishery SciencesWuhanChina
| |
Collapse
|
33
|
Zhang H, Zhao M, Liu Y, Zhou Z, Guo J. Identification of cytochrome P450 monooxygenase genes and their expression in response to high temperature in the alligatorweed flea beetle Agasicles hygrophila (Coleoptera: Chrysomelidae). Sci Rep 2018; 8:17847. [PMID: 30552348 PMCID: PMC6294762 DOI: 10.1038/s41598-018-35993-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/08/2018] [Indexed: 01/21/2023] Open
Abstract
Cytochrome P450 monooxygenases (P450s) are a large class of enzymes that play essential roles in metabolic processes such as hormone synthesis and the catabolism of toxins and other chemicals in insects. In the present study, we identified 82 P450 genes using comprehensive RNA sequencing in the flea beetle Agasicles hygrophila, and all of the sequences were validated by cloning and sequencing. Phylogenetic analysis showed that the P450 genes in A. hygrophila fell into the mitochondrial clan, CYP2 clan, CYP3 clan and CYP4 clan and were classified into 20 families and 48 subfamilies. Most A. hygrophila P450 genes had high sequence homology with those from other coleopteran insects. To understand the effects of high temperatures on the metabolic processes of female and male adults, we studied the effects of two temperature regimes (constant temperature of 28 °C for 20 h with a 4-h period of high temperatures of 30 °C and 39 °C) on the expression levels of P450 genes in A. hygrophila using RT-PCR and qRT-PCR. The results showed that there were no differences in expression in 30 P450 genes between the control and high-temperature-treated A. hygrophila adults, while 22 P450 genes showed up-regulated expression and 19 P450 genes were down-regulated in A. hygrophila female adults after high-temperature treatment. For A. hygrophila male adults exposed to high temperatures, we found that 8 P450 genes had higher expression levels and 12 P450 genes had lower expression levels under the same conditions. The P450 genes are candidates that showed significantly different expression levels after high-temperature treatments in A. hygrophila adults, and further studies are needed to determine their possible roles in metabolic processes during the response to elevated temperatures.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meiting Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiran Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
34
|
Lu X, He M, Ding J, Siemann E. Latitudinal variation in soil biota: testing the biotic interaction hypothesis with an invasive plant and a native congener. THE ISME JOURNAL 2018; 12:2811-2822. [PMID: 30013163 PMCID: PMC6246596 DOI: 10.1038/s41396-018-0219-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 02/04/2023]
Abstract
Soil biota community structure can change with latitude, but the effects of changes on native plants, invasive plants, and their herbivores remain unclear. Here, we examined latitudinal variation in the soil biota community associated with the invasive plant Alternanthera philoxeroides and its native congener A. sessilis, and the effects of soil biota community variation on these plants and the beetle Agasicles hygrophila. We characterized the soil bacterial and fungal communities and root-knot nematodes of plant rhizospheres collected from 22 °N to 36.6 °N in China. Soil biota community structure changed with latitude as a function of climate and soil properties. Root-knot nematode abundance and potential soil fungal pathogen diversity (classified with FUNGuild) decreased with latitude, apparently due to higher soil pH and lower temperatures. A greenhouse experiment and lab bioassay showed native plant mass, seed production, and mass of beetles fed native foliage increased with soil collection latitude. However, there were no latitudinal patterns for the invasive plant. These results suggest that invasive and native plants and, consequently, their herbivores have different responses to latitudinal changes in soil-borne enemies, potentially creating spatial variation in enemy release or biotic resistance. This highlights the importance of linking above- and below-ground multitrophic interactions to explore the role of soil biota in non-native plant invasions with a biogeographic approach.
Collapse
Affiliation(s)
- Xinmin Lu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China.
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China.
| | - Minyan He
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jianqing Ding
- College of Life Sciences, Henan University, Kaifeng, Henan, China.
| | - Evan Siemann
- Biosciences Department, Rice University, Houston, TX, USA
| |
Collapse
|
35
|
Li XR, Jia RL, Zhang ZS, Zhang P, Hui R. Hydrological response of biological soil crusts to global warming: A ten-year simulative study. GLOBAL CHANGE BIOLOGY 2018; 24:4960-4971. [PMID: 29957890 DOI: 10.1111/gcb.14378] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Biological soil crusts across the desert regions play a key role in regional ecological security and ecological health. They are vital biotic components of desert ecosystems that maintain soil stability, fix carbon and nitrogen, influence the establishment of vascular plants, and serve as habitats for a large number of arthropods and microorganisms, as well as influencing soil hydrological processes. Changes in temperature and precipitation are expected to influence the functioning of desert ecosystems by altering biotic components such as the species composition of biological soil crusts. However, it remains unclear how these important components will respond to the prolonged warming and reduced precipitation that is predicted to occur with climate change. To evaluate how the hydrological properties of these biological soil crusts respond to these alterations, we used open-top chambers over a 10-year period to simulate warming and reduced precipitation. Infiltration, dew entrapment, and evaporation were measured as surrogates of the hydrological functioning of biological soil crusts. It was found that the ongoing warming coupled with reduced precipitation will more strongly affect moss in crustal communities than lichens and cyanobacteria, which will lead to a direct alteration of the hydrological performance of biological soil crusts. Reductions in moss abundance, surface cover, and biomass resulted in a change in structure and function of crustal communities, decreased dew entrapment, and increased infiltration and evaporation of biological soil crusts in desert ecosystems, which further impacted on the desert soil water balance.
Collapse
Affiliation(s)
- Xin-Rong Li
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Gansu Provincial Key Laboratory of Stress Eco-physiology in Cold and Arid Regions, Lanzhou, China
| | - Rong-Liang Jia
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Gansu Provincial Key Laboratory of Stress Eco-physiology in Cold and Arid Regions, Lanzhou, China
| | - Zhi-Shan Zhang
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Gansu Provincial Key Laboratory of Stress Eco-physiology in Cold and Arid Regions, Lanzhou, China
| | - Peng Zhang
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Gansu Provincial Key Laboratory of Stress Eco-physiology in Cold and Arid Regions, Lanzhou, China
| | - Rong Hui
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Gansu Provincial Key Laboratory of Stress Eco-physiology in Cold and Arid Regions, Lanzhou, China
| |
Collapse
|
36
|
Dong BC, Wang MZ, Liu RH, Luo FL, Li HL, Yu FH. Direct and legacy effects of herbivory on growth and physiology of a clonal plant. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1801-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Wu H, Carrillo J, Ding J. Species diversity and environmental determinants of aquatic and terrestrial communities invaded by Alternanthera philoxeroides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:666-675. [PMID: 28069304 DOI: 10.1016/j.scitotenv.2016.12.177] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/07/2016] [Accepted: 12/28/2016] [Indexed: 05/13/2023]
Abstract
The impact of invasive species on native biodiversity varies across environments, with invasion effects of amphibious plant species across terrestrial and aquatic systems especially poorly understood. In this study, we established 29 terrestrial plots and 23 aquatic plots which were invaded by the alien plant alligator weed, Alternanthera philoxeroides in Southern China. We measured α-species diversity (Shannon-Wiener and Simpson index), species richness and evenness, species cover and the importance value (a comprehensive index of cover, height and abundance) of A. philoxeroides in invaded communities in both aquatic and terrestrial habitats. We recorded seven environmental factors (longitude, latitude, elevation above sea level, temperature, precipitation, ammonia and nitrate) across habitats. We then used Redundancy Analysis (RDA) to determine which factors best explain A. philoxeroides invasion in either environment type. We found that terrestrial habitats had greater species diversity (Shannon index) than aquatic habitats, and the biotic resistance of aquatic plant communities to the A. philoxeroides invasion was weaker than terrestrial plant communities. Accumulated ammonia improved some indices of species diversity (Shannon-Weiner, Simpson) and evenness, but decreased species cover of A. philoxeroides in both aquatic and terrestrial environments. Precipitation increased species richness in terrestrial habitats but decreased richness in aquatic habitats. Precipitation increased A. philoxeroides cover in both environment types, while elevated nitrate increased A. philoxeroides cover in terrestrial habitats only. In aquatic habitats, species richness increased but A. philoxeroides cover decreased with increasing longitude. Our study indicates that increased precipitation may accelerate A. philoxeroides spread across aquatic and terrestrial habitats, while reducing nitrate inputs could inhibit terrestrial A. philoxeroides invasion. Aquatic communities appear to be more vulnerable to invasion by A. philoxeroides than terrestrial communities, likely due to low native species diversity. We need to intensify invasion assessment of water ecosystems in lower longitudinal regions of China and elsewhere where diversity is low.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juli Carrillo
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jianqing Ding
- School of Life Science, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
38
|
Sardans J, Bartrons M, Margalef O, Gargallo-Garriga A, Janssens IA, Ciais P, Obersteiner M, Sigurdsson BD, Chen HYH, Peñuelas J. Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments. GLOBAL CHANGE BIOLOGY 2017; 23:1282-1291. [PMID: 27272953 DOI: 10.1111/gcb.13384] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/27/2016] [Indexed: 05/13/2023]
Abstract
Plant invasion is an emerging driver of global change worldwide. We aimed to disentangle its impacts on plant-soil nutrient concentrations. We conducted a meta-analysis of 215 peer-reviewed articles and 1233 observations. Invasive plant species had globally higher N and P concentrations in photosynthetic tissues but not in foliar litter, in comparison with their native competitors. Invasive plants were also associated with higher soil C and N stocks and N, P, and K availabilities. The differences in N and P concentrations in photosynthetic tissues and in soil total C and N, soil N, P, and K availabilities between invasive and native species decreased when the environment was richer in nutrient resources. The results thus suggested higher nutrient resorption efficiencies in invasive than in native species in nutrient-poor environments. There were differences in soil total N concentrations but not in total P concentrations, indicating that the differences associated to invasive plants were related with biological processes, not with geochemical processes. The results suggest that invasiveness is not only a driver of changes in ecosystem species composition but that it is also associated with significant changes in plant-soil elemental composition and stoichiometry.
Collapse
Affiliation(s)
- Jordi Sardans
- Global Ecology Unit CREAF-CEAB-UAB, CSIC, Cerdanyola del Vallès, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Mireia Bartrons
- Global Ecology Unit CREAF-CEAB-UAB, CSIC, Cerdanyola del Vallès, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
- BETA Technological Centre (Tecnio), Aquatic Ecology Group, University of Vic-Central University of Catalonia, Catalonia, 08500, Vic, Spain
| | - Olga Margalef
- Global Ecology Unit CREAF-CEAB-UAB, CSIC, Cerdanyola del Vallès, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Albert Gargallo-Garriga
- Global Ecology Unit CREAF-CEAB-UAB, CSIC, Cerdanyola del Vallès, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Ivan A Janssens
- Research Group of Plant and Vegetation Ecology (PLECO), Department of Biology, University of Antwerp, B-2610, Wilrijk, Belgium
| | - Phillipe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, IPSL, 91191, Gif-sur-Yvette, France
| | - Michael Obersteiner
- International Institute for Applied Systems Analysis (IIASA), Ecosystems Services and Management, Schlossplatz 1, A-2361, Laxenburg, Austria
| | | | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7G 1A6, Canada
| | - Josep Peñuelas
- Global Ecology Unit CREAF-CEAB-UAB, CSIC, Cerdanyola del Vallès, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| |
Collapse
|
39
|
Abstract
Plant-herbivore interactions shape community dynamics across marine, freshwater, and terrestrial habitats. From amphipods to elephants and from algae to trees, plant-herbivore relationships are the crucial link generating animal biomass (and human societies) from mere sunlight. These interactions are, thus, pivotal to understanding the ecology and evolution of virtually any ecosystem. Here, we briefly highlight recent advances in four areas of plant-herbivore interactions: (1) plant defense theory, (2) herbivore diversity and ecosystem function, (3) predation risk aversion and herbivory, and (4) how a changing climate impacts plant-herbivore interactions. Recent advances in plant defense theory, for example, highlight how plant life history and defense traits affect and are affected by multiple drivers, including enemy pressure, resource availability, and the local plant neighborhood, resulting in trait-mediated feedback loops linking trophic interactions with ecosystem nutrient dynamics. Similarly, although the positive effect of consumer diversity on ecosystem function has long been recognized, recent advances using DNA barcoding to elucidate diet, and Global Positioning System/remote sensing to determine habitat selection and impact, have shown that herbivore communities are probably even more functionally diverse than currently realized. Moreover, although most diversity-function studies continue to emphasize plant diversity, herbivore diversity may have even stronger impacts on ecosystem multifunctionality. Recent studies also highlight the role of risk in plant-herbivore interactions, and risk-driven trophic cascades have emerged as landscape-scale patterns in a variety of ecosystems. Perhaps not surprisingly, many plant-herbivore interactions are currently being altered by climate change, which affects plant growth rates and resource allocation, expression of chemical defenses, plant phenology, and herbivore metabolism and behavior. Finally, we conclude by noting that although the field is advancing rapidly, the world is changing even more rapidly, challenging our ability to manage these pivotal links in the food chain.
Collapse
Affiliation(s)
- Deron E. Burkepile
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - John D. Parker
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| |
Collapse
|
40
|
Abstract
Apparent feeding damage by insects on plants is often slight. Thus, the influences of insect herbivores on plant populations are likely minor. The role of insects on host-plant populations can be elucidated via several methods: stage-structured life tables of plant populations manipulated by herbivore exclusion and seed-addition experiments, tests of the enemy release hypothesis, studies of the effects of accidentally and intentionally introduced insect herbivores, and observations of the impacts of insect species that show outbreak population dynamics. These approaches demonstrate that some, but not all, insect herbivores influence plant population densities. At times, insect-feeding damage kills plants, but more often, it reduces plant size, growth, and seed production. Plant populations for which seed germination is site limited will not respond at the population level to reduced seed production. Insect herbivores can influence rare plant species and need to be considered in conservation programs. Alterations due to climate change in the distributions of insect herbivores indicate the possibility of new influences on host plants. Long-term studies are required to show if density-related insect behavior stabilizes plant populations or if environmental variation drives most temporal fluctuations in plant densities. Finally, insects can influence plant populations and communities through changing the diversity of nonhost species, modifying nutrient fluxes, and rejuvenating over mature forests.
Collapse
Affiliation(s)
- Judith H Myers
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada;
- Biodiversity Research Center, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Rana M Sarfraz
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada;
- Biodiversity Research Center, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
41
|
Wu H, Ismail M, Ding J. Global warming increases the interspecific competitiveness of the invasive plant alligator weed, Alternanthera philoxeroides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:1415-1422. [PMID: 27720597 DOI: 10.1016/j.scitotenv.2016.09.226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 05/21/2023]
Abstract
Global warming could accelerate the spread of invasive species to higher latitudes and intensify their effects on native species. Here, we report results of two years of field surveys along a latitudinal gradient (21°N to 31°N) in southern China, to determine the species structure of the invasive plant Alternanthera philoxeroides community. We also performed a replacement series experiment (mono and mixed) to evaluate the effects of elevated temperature on the competitiveness of A. philoxeroides with the native co-occurring species Digitaria sanguinalis. In the field survey, we found that the dominance of A. philoxeroides increased with increasing of latitude gradient while cover of D. sanguinalis decreased. In monospecific plantings, artificial warming reduced the length of D. sanguinalis roots. In mixed plantings, warming reduced both A. philoxeroides abundance and D. sanguinalis stem length when A. philoxeroides was more prevalent in the planting. Warming also significantly reduced D. sanguinalis biomass, but increased that of A. philoxeroides. In addition, elevated temperatures significantly reduced the relative yield (RY) of D. sanguinalis, particularly when A. philoxeroides was planted in higher proportion in the plot. These results suggest that the invasiveness of A. philoxeroides increased with increasing latitude, and that warming may increase the effectiveness of its interspecific competition with D. sanguinalis. Hence, under global warming conditions, the harm to native species from A. philoxeroides would increase at higher latitudes. Our findings are critical for predicting the invasiveness of alien species under climate change.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mohannad Ismail
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jianqing Ding
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
42
|
Lu X, Siemann E, He M, Wei H, Shao X, Ding J. Warming benefits a native species competing with an invasive congener in the presence of a biocontrol beetle. THE NEW PHYTOLOGIST 2016; 211:1371-1381. [PMID: 27094757 DOI: 10.1111/nph.13976] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/17/2016] [Indexed: 06/05/2023]
Abstract
Climate warming may affect biological invasions by altering competition between native and non-native species, but these effects may depend on biotic interactions. In field surveys at 33 sites in China along a latitudinal and temperature gradient from 21°N to 30.5°N and a 2-yr field experiment at 30.5°N, we tested the role of the biocontrol beetle Agasicles hygrophila in mediating warming effects on competition between the invasive plant Alternanthera philoxeroides and the native plant Alternanthera sessilis. In surveys, native populations were perennial below 25.8°N but only annual populations were found above 26.5°N where the invader dominated the community. Beetles were present throughout the gradient. Experimental warming (+ 1.8°C) increased native plant performance directly by shifting its lifecycle from annual to perennial, and indirectly by releasing the native from competition via disproportionate increases in herbivory on the invader. Consequently, warming shifted the plant community from invader-dominated to native-dominated but only in the presence of the beetle. Our results show that herbivores can play a critical role in determining warming effects on plant communities and species invasions. Understanding how biotic interactions shape responses of communities to climate change is crucial for predicting the risk of plant invasions.
Collapse
Affiliation(s)
- Xinmin Lu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| | - Minyan He
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Hui Wei
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Xu Shao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Jianqing Ding
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| |
Collapse
|
43
|
Lemoine NP, Burkepile DE, Parker JD. Quantifying Differences Between Native and Introduced Species. Trends Ecol Evol 2016; 31:372-381. [DOI: 10.1016/j.tree.2016.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 11/16/2022]
|
44
|
Eskelinen A, Harrison S. Biotic context and soil properties modulate native plant responses to enhanced rainfall. ANNALS OF BOTANY 2015; 116:963-73. [PMID: 26159934 PMCID: PMC4640127 DOI: 10.1093/aob/mcv109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/29/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS The environmental and biotic context within which plants grow have a great potential to modify responses to climatic changes, yet few studies have addressed both the direct effects of climate and the modulating roles played by variation in the biotic (e.g. competitors) and abiotic (e.g. soils) environment. METHODS In a grassland with highly heterogeneous soils and community composition, small seedlings of two native plants, Lasthenia californica and Calycadenia pauciflora, were transplanted into factorially watered and fertilized plots. Measurements were made to test how the effect of climatic variability (mimicked by the watering treatment) on the survival, growth and seed production of these species was modulated by above-ground competition and by edaphic variables. KEY RESULTS Increased competition outweighed the direct positive impacts of enhanced rainfall on most fitness measures for both species, resulting in no net effect of enhanced rainfall. Both species benefitted from enhanced rainfall when the absence of competitors was accompanied by high soil water retention capacity. Fertilization did not amplify the watering effects; rather, plants benefitted from enhanced rainfall or competitor removal only in ambient nutrient conditions with high soil water retention capacity. CONCLUSIONS The findings show that the direct effects of climatic variability on plant fitness may be reversed or neutralized by competition and, in addition, may be strongly modulated by soil variation. Specifically, coarse soil texture was identified as a factor that may limit plant responsiveness to altered water availability. These results highlight the importance of considering the abiotic as well as biotic context when making future climate change forecasts.
Collapse
Affiliation(s)
- Anu Eskelinen
- Department of Environmental Science and Policy, University of California Davis, One Shields Avenue, Davis, CA 95616, USA and Department of Biology, University of Oulu, PO Box 3000, FI-90014 University of Oulu, Finland
| | - Susan Harrison
- Department of Environmental Science and Policy, University of California Davis, One Shields Avenue, Davis, CA 95616, USA and
| |
Collapse
|
45
|
Lu X, Siemann E, Wei H, Shao X, Ding J. Effects of warming and nitrogen on above- and below-ground herbivory of an exotic invasive plant and its native congener. Biol Invasions 2015. [DOI: 10.1007/s10530-015-0918-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Leishman MR, Gallagher RV. Will there be a shift to alien-dominated vegetation assemblages under climate change? DIVERS DISTRIB 2015. [DOI: 10.1111/ddi.12338] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Michelle R. Leishman
- Department of Biological Sciences; Macquarie University; North Ryde NSW 2109 Australia
| | - Rachael V. Gallagher
- Department of Biological Sciences; Macquarie University; North Ryde NSW 2109 Australia
| |
Collapse
|
47
|
Lu X, Siemann E, He M, Wei H, Shao X, Ding J. Climate warming increases biological control agent impact on a non-target species. Ecol Lett 2014; 18:48-56. [PMID: 25376303 PMCID: PMC4311439 DOI: 10.1111/ele.12391] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/16/2014] [Accepted: 09/30/2014] [Indexed: 11/29/2022]
Abstract
Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species.
Collapse
Affiliation(s)
- Xinmin Lu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Institute/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China; Department of Ecology and Evolutionary Biology, Rice University, Houston, TX, 77005, USA; Hubei Key Laboratory of Wetland Evolution& Ecological Restoration, Wuhan Botanical Institute/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | | | | | | | | | | |
Collapse
|
48
|
Warming shifts 'worming': effects of experimental warming on invasive earthworms in northern North America. Sci Rep 2014; 4:6890. [PMID: 25363633 PMCID: PMC4217098 DOI: 10.1038/srep06890] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/14/2014] [Indexed: 11/09/2022] Open
Abstract
Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration.
Collapse
|
49
|
Mestre A, Aguilar-Alberola JA, Baldry D, Balkis H, Ellis A, Gil-Delgado JA, Grabow K, Klobučar G, Kouba A, Maguire I, Martens A, Mülayim A, Rueda J, Scharf B, Soes M, S Monrós J, Mesquita-Joanes F. Invasion biology in non-free-living species: interactions between abiotic (climatic) and biotic (host availability) factors in geographical space in crayfish commensals (Ostracoda, Entocytheridae). Ecol Evol 2013; 3:5237-53. [PMID: 24455152 PMCID: PMC3892332 DOI: 10.1002/ece3.897] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/22/2013] [Accepted: 10/27/2013] [Indexed: 11/11/2022] Open
Abstract
In invasion processes, both abiotic and biotic factors are considered essential, but the latter are usually disregarded when modeling the potential spread of exotic species. In the framework of set theory, interactions between biotic (B), abiotic (A), and movement-related (M) factors in the geographical space can be hypothesized with BAM diagrams and tested using ecological niche models (ENMs) to estimate A and B areas. The main aim of our survey was to evaluate the interactions between abiotic (climatic) and biotic (host availability) factors in geographical space for exotic symbionts (i.e., non-free-living species), using ENM techniques combined with a BAM framework and using exotic Entocytheridae (Ostracoda) found in Europe as model organisms. We carried out an extensive survey to evaluate the distribution of entocytherids hosted by crayfish in Europe by checking 94 European localities and 12 crayfish species. Both exotic entocytherid species found, Ankylocythere sinuosa and Uncinocythere occidentalis, were widely distributed in W Europe living on the exotic crayfish species Procambarus clarkii and Pacifastacus leniusculus, respectively. No entocytherids were observed in the remaining crayfish species. The suitable area for A. sinuosa was mainly restricted by its own limitations to minimum temperatures in W and N Europe and precipitation seasonality in circum-Mediterranean areas. Uncinocythere occidentalis was mostly restricted by host availability in circum-Mediterranean regions due to limitations of P. leniusculus to higher precipitation seasonality and maximum temperatures. The combination of ENMs with set theory allows studying the invasive biology of symbionts and provides clues about biogeographic barriers due to abiotic or biotic factors limiting the expansion of the symbiont in different regions of the invasive range. The relative importance of abiotic and biotic factors on geographical space can then be assessed and applied in conservation plans. This approach can also be implemented in other systems where the target species is closely interacting with other taxa.
Collapse
Affiliation(s)
- Alexandre Mestre
- Department of Microbiology and Ecology, Institut Cavanilles de Biodiversitat i Biologia Evolutiva, University of ValenciaBurjassot, E-46100, Spain
| | - Josep A Aguilar-Alberola
- Department of Microbiology and Ecology, Institut Cavanilles de Biodiversitat i Biologia Evolutiva, University of ValenciaBurjassot, E-46100, Spain
| | | | | | | | - Jose A Gil-Delgado
- Department of Microbiology and Ecology, Institut Cavanilles de Biodiversitat i Biologia Evolutiva, University of ValenciaBurjassot, E-46100, Spain
| | - Karsten Grabow
- Institut für Biologie, Pädagogische Hochschule KarlsruheKarlsruhe, 76133, Germany
| | - Göran Klobučar
- Department of Zoology, University of ZagrebZagreb, HR-10000, Croatia
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, University of South BohemiaVodňany, 389 25, Czech Republic
| | - Ivana Maguire
- Department of Zoology, University of ZagrebZagreb, HR-10000, Croatia
| | - Andreas Martens
- Institut für Biologie, Pädagogische Hochschule KarlsruheKarlsruhe, 76133, Germany
| | - Ayşegül Mülayim
- Department of Biology, Istanbul UniversityVezneciler, 34134, Turkey
| | - Juan Rueda
- Department of Microbiology and Ecology, Institut Cavanilles de Biodiversitat i Biologia Evolutiva, University of ValenciaBurjassot, E-46100, Spain
| | | | - Menno Soes
- Naturalis Biodiversity CenterLeiden, 2333 CR & Bureau Waardenburg, Culemborg, 4100 AJ, The Netherlands
| | - Juan S Monrós
- Department of Microbiology and Ecology, Institut Cavanilles de Biodiversitat i Biologia Evolutiva, University of ValenciaBurjassot, E-46100, Spain
| | - Francesc Mesquita-Joanes
- Department of Microbiology and Ecology, Institut Cavanilles de Biodiversitat i Biologia Evolutiva, University of ValenciaBurjassot, E-46100, Spain
| |
Collapse
|