1
|
O’Hara CC, Frazier M, Valle M, Butt N, Kaschner K, Klein C, Halpern BS. Cumulative human impacts on global marine fauna highlight risk to biological and functional diversity. PLoS One 2024; 19:e0309788. [PMID: 39292645 PMCID: PMC11410257 DOI: 10.1371/journal.pone.0309788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 09/20/2024] Open
Abstract
Anthropogenic stressors to marine ecosystems from climate change and human activities increase extinction risk of species, disrupt ecosystem integrity, and threaten important ecosystem services. Addressing these stressors requires understanding where and to what extent they are impacting marine biological and functional diversity. We model cumulative risk of human impact upon 21,159 marine animal species by combining information on species-level vulnerability and spatial exposure to a range of anthropogenic stressors. We apply this species-level assessment of human impacts to examine patterns of species-stressor interactions within taxonomic groups. We then spatially map impacts across the global ocean, identifying locations where climate-driven impacts overlap with fishing, shipping, and land-based stressors to help inform conservation needs and opportunities. Comparing species-level modeled impacts to those based on marine habitats that represent important marine ecosystems, we find that even relatively untouched habitats may still be home to species at elevated risk, and that many species-rich coastal regions may be at greater risk than indicated from habitat-based methods alone. Finally, we incorporate a trait-based metric of functional diversity to identify where impacts to functionally unique species might pose greater risk to community structure and ecosystem integrity. These complementary lenses of species, function, and habitat provide a richer understanding of threats to marine biodiversity to help inform efforts to meet conservation targets and ensure sustainability of nature's contributions to people.
Collapse
Affiliation(s)
- Casey C. O’Hara
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Melanie Frazier
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Mireia Valle
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, United States of America
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
- Basque Centre for Climate Change (BC3), Scientific Campus of the University of the Basque Country (UPV-EHU), Leioa, Spain
| | - Nathalie Butt
- The Nature Conservancy, South Brisbane, Queensland, Australia
- Centre for Biodiversity and Conservation Science, School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Kristin Kaschner
- Department of Biometry and Environmental System Analysis, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Carissa Klein
- Centre for Biodiversity and Conservation Science, School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin S. Halpern
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
2
|
Cerutti-Pereyra F, Drenkard EJ, Espinoza M, Finucci B, Galván-Magaña F, Hacohen-Domené A, Hearn A, Hoyos-Padilla ME, Ketchum JT, Mejía-Falla PA, Moya-Serrano AV, Navia AF, Pazmiño DA, Ramírez-Macías D, Rummer JL, Salinas-de-León P, Sosa-Nishizaki O, Stock C, Chin A. Vulnerability of Eastern Tropical Pacific chondrichthyan fish to climate change. GLOBAL CHANGE BIOLOGY 2024; 30:e17373. [PMID: 38967106 DOI: 10.1111/gcb.17373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 07/06/2024]
Abstract
Climate change is an environmental emergency threatening species and ecosystems globally. Oceans have absorbed about 90% of anthropogenic heat and 20%-30% of the carbon emissions, resulting in ocean warming, acidification, deoxygenation, changes in ocean stratification and nutrient availability, and more severe extreme events. Given predictions of further changes, there is a critical need to understand how marine species will be affected. Here, we used an integrated risk assessment framework to evaluate the vulnerability of 132 chondrichthyans in the Eastern Tropical Pacific (ETP) to the impacts of climate change. Taking a precautionary view, we found that almost a quarter (23%) of the ETP chondrichthyan species evaluated were highly vulnerable to climate change, and much of the rest (76%) were moderately vulnerable. Most of the highly vulnerable species are batoids (77%), and a large proportion (90%) are coastal or pelagic species that use coastal habitats as nurseries. Six species of batoids were highly vulnerable in all three components of the assessment (exposure, sensitivity and adaptive capacity). This assessment indicates that coastal species, particularly those relying on inshore nursery areas are the most vulnerable to climate change. Ocean warming, in combination with acidification and potential deoxygenation, will likely have widespread effects on ETP chondrichthyan species, but coastal species may also contend with changes in freshwater inputs, salinity, and sea level rise. This climate-related vulnerability is compounded by other anthropogenic factors, such as overfishing and habitat degradation already occurring in the region. Mitigating the impacts of climate change on ETP chondrichthyans involves a range of approaches that include addressing habitat degradation, sustainability of exploitation, and species-specific actions may be required for species at higher risk. The assessment also highlighted the need to further understand climate change's impacts on key ETP habitats and processes and identified knowledge gaps on ETP chondrichthyan species.
Collapse
Affiliation(s)
| | | | - Mario Espinoza
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San José, Costa Rica
- MigraMar, Olema, California, USA
| | - Brittany Finucci
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Felipe Galván-Magaña
- Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico
| | | | - Alexander Hearn
- MigraMar, Olema, California, USA
- Universidad San Francisco de Quito, Galápagos, Ecuador
| | | | - James T Ketchum
- MigraMar, Olema, California, USA
- Pelagios-Kakunjá A.C., La Paz, Baja California Sur, Mexico
| | - Paola A Mejía-Falla
- Wildlife Conservation Society-WCS Colombia, Cali, Colombia
- Fundación colombiana para la investigación y conservación de tiburones y rayas-SQUALUS, Cali, Colombia
| | | | - Andres F Navia
- Fundación colombiana para la investigación y conservación de tiburones y rayas-SQUALUS, Cali, Colombia
| | - Diana A Pazmiño
- MigraMar, Olema, California, USA
- Universidad San Francisco de Quito, Galápagos, Ecuador
| | - Deni Ramírez-Macías
- Conexiones Terramar A.C. Whale Shark Mexico, La Paz, Baja California Sur, Mexico
| | - Jodie L Rummer
- James Cook University, Townsville, Queensland, Australia
| | - Pelayo Salinas-de-León
- Charles Darwin Foundation, Galápagos, Ecuador
- Save Our Seas Foundation Shark Research Center and Guy Harvey Research Institute, Nova Southeastern University, Dania Beach, Florida, USA
| | - Oscar Sosa-Nishizaki
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Carretera Ensenada-Tijuana, Ensenada, Baja California, Mexico
| | | | - Andrew Chin
- James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
3
|
Wong A, Frommel AY, Sumaila UR, Cheung WWL. A traits-based approach to assess aquaculture's contributions to food, climate change, and biodiversity goals. NPJ OCEAN SUSTAINABILITY 2024; 3:30. [PMID: 38828386 PMCID: PMC11142914 DOI: 10.1038/s44183-024-00065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024]
Abstract
Aquaculture has the potential to support a sustainable and equitable food system in line with the United Nations Sustainable Development Goals (SDG) on food security, climate change, and biodiversity (FCB). Biological diversity amongst aquaculture organisms can drive diverse contributions to such goals. Existing studies have assessed the performance of a limited number of taxa in the general context of improving aquaculture production, but few explicitly consider the biological attributes of farmed aquatic taxa at the FCB nexus. Through a systematic literature review, we identify key traits associated with FCB and evaluate the potential of aquaculture to contribute to FCB goals using a fuzzy logic model. The majority of identified traits are associated with food security, and two-thirds of traits linked with food security are also associated with climate change or biodiversity, revealing potential co-benefits of optimizing a single trait. Correlations between FCB indices further suggest that challenges and opportunities in aquaculture are intertwined across FCB goals, but low mean FCB scores suggest that the focus of aquaculture research and development on food production is insufficient to address food security, much less climate or biodiversity issues. As expected, production-maximizing traits (absolute fecundity, the von Bertalanffy growth function coefficient K, macronutrient density, maximum size, and trophic level as a proxy for feed efficiency) highly influence a species' FCB potential, but so do species preferences for environmental conditions (tolerance to phosphates, nitrates, and pH levels, as well as latitudinal and geographic ranges). Many highly farmed species that are typically associated with food security, especially finfish, score poorly for food, climate, and biodiversity potential. Algae and mollusc species tend to perform well across FCB indices, revealing the importance of non-fish species in achieving FCB goals and potential synergies in integrated multi-trophic aquaculture systems. Overall, this study provides decision-makers with a biologically informed assessment of desirable aquaculture traits and species while illuminating possible strategies to increase support for FCB goals. Our findings can be used as a foundation for studying the socio-economic opportunities and barriers for aquaculture transitions to develop equitable pathways toward FCB-positive aquaculture across nuanced regional contexts.
Collapse
Affiliation(s)
- Aleah Wong
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC Canada
| | - Andrea Y. Frommel
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC Canada
| | - U. Rashid Sumaila
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC Canada
| | - William W. L. Cheung
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
4
|
Coulon N, Elliott S, Teichert N, Auber A, McLean M, Barreau T, Feunteun E, Carpentier A. Northeast Atlantic elasmobranch community on the move: Functional reorganization in response to climate change. GLOBAL CHANGE BIOLOGY 2024; 30:e17157. [PMID: 38273525 DOI: 10.1111/gcb.17157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024]
Abstract
While spatial distribution shifts have been documented in many marine fishes under global change, the responses of elasmobranchs have rarely been studied, which may have led to an underestimation of their potential additional threats. Given their irreplaceable role in ecosystems and their high extinction risk, we used a 24-year time series (1997-2020) of scientific bottom trawl surveys to examine the effects of climate change on the spatial distribution of nine elasmobranch species within Northeast Atlantic waters. Using a hierarchical modeling of species communities, belonging to the joint species distribution models, we found that suitable habitats for four species increased on average by a factor of 1.6 and, for six species, shifted north-eastwards and/or to deeper waters over the past two decades. By integrating species traits, we showed changes in habitat suitability led to changes in the elasmobranchs trait composition. Moreover, communities shifted to deeper waters and their mean trophic level decreased. We also note an increase in the mean community size at maturity concurrent with a decrease in fecundity. Because skates and sharks are functionally unique and dangerously vulnerable to both climate change and fishing, we advocate for urgent considerations of species traits in management measures. Their use would make it better to identify species whose loss could have irreversible impacts in face of the myriad of anthropogenic threats.
Collapse
Affiliation(s)
- Noémie Coulon
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS, IRD, SU, UCN, UA, Dinard, France
| | - Sophie Elliott
- Salmon & Trout Research Centre, Game & Wildlife Conservation Trust, Wareham, UK
| | - Nils Teichert
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS, IRD, SU, UCN, UA, Dinard, France
| | - Arnaud Auber
- Unité Halieutique Manche Mer du Nord, Laboratoire Ressources Halieutiques, IFREMER, Boulogne-sur-Mer, France
| | - Matthew McLean
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Thomas Barreau
- Service des Stations Marine, Station Marine de Dinard, Dinard, France
| | - Eric Feunteun
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS, IRD, SU, UCN, UA, Dinard, France
| | - Alexandre Carpentier
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS, IRD, SU, UCN, UA, Campus de Beaulieu, Université de Rennes, Rennes, France
| |
Collapse
|
5
|
Kytinou E, Issaris Y, Sini M, Salomidi M, Katsanevakis S. ECOfast - An integrative ecological evaluation index for an ecosystem-based assessment of shallow rocky reefs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118323. [PMID: 37354588 DOI: 10.1016/j.jenvman.2023.118323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/26/2023]
Abstract
The degradation of marine ecosystems is a growing concern worldwide, emphasizing the need for efficient tools to assess their ecological status. Herein, a novel ecosystem-based ecological evaluation index of shallow rocky reefs is introduced and tested in the Aegean and Ionian Seas (NE Mediterranean). The index focuses on a specific set of pre-selected species, including habitat-forming, key, commercially important, and non-indigenous species, across a wide range of trophic levels (1.00-4.53). Data acquisition is conducted through rapid non-destructive SCUBA diving surveys to assess all macroscopic food web components (macroalgae, invertebrates, and fish). Two versions of the index, ECOfast and ECOfast-NIS, were developed, each applying a different approach to account for the impact of non-indigenous species. In our case study, the correlations between the two versions of the index and sea surface temperature, protection status, occurrence of carnivorous fish, and non-indigenous herbivores were assessed through generalized additive models (GAMs). The assessment assigned 93% (ECOfast) or 96% (ECOfast-NIS) of the sites to a moderate to bad ecological status, indicating an alarming situation in the shallow rocky reefs of the NE Mediterranean. Sites evaluated as poor or bad were characterized by extensive coverage of ephemeral macroalgae, absence or minimal presence of large indigenous carnivorous fish, and complete absence of one to three out of five invertebrate functional trophic groups. The community composition of macroalgae, herbivorous species, and carnivorous fishes differed between the 5 m and 15 m depth zones. Surface temperature and carnivorous fish occurrence were the most important tested predictors of the ecological status of shallow rocky reefs. The best GAMs showed that the ECOfast score declined with sea surface temperature and increased with the occurrence of carnivorous fish; ECOfast-NIS declined with sea surface temperature and the occurrence of non-indigenous fish and increased with the occurrence of carnivorous fish. The non-destructive and integrative nature of this approach, its speed of data acquisition and analysis, and its capacity to account for highly mobile predatory fish and non-indigenous species render the ECOfast index a novel, robust, and valuable tool for assessing the ecological status of shallow rocky reefs.
Collapse
Affiliation(s)
- Eleni Kytinou
- Department of Marine Sciences, University of the Aegean, Lofos Panepistimiou, 81100, Mytilene, Greece; Institute of Oceanography, Hellenic Centre for Marine Research, 46.7 km Athens Sounio Ave., 19013, Anavyssos, Greece.
| | - Yiannis Issaris
- Institute of Oceanography, Hellenic Centre for Marine Research, 46.7 km Athens Sounio Ave., 19013, Anavyssos, Greece
| | - Maria Sini
- Department of Marine Sciences, University of the Aegean, Lofos Panepistimiou, 81100, Mytilene, Greece
| | - Maria Salomidi
- Institute of Oceanography, Hellenic Centre for Marine Research, 46.7 km Athens Sounio Ave., 19013, Anavyssos, Greece
| | - Stelios Katsanevakis
- Department of Marine Sciences, University of the Aegean, Lofos Panepistimiou, 81100, Mytilene, Greece
| |
Collapse
|
6
|
Li Y, Sun M, Kleisner KM, Mills KE, Chen Y. A global synthesis of climate vulnerability assessments on marine fisheries: Methods, scales, and knowledge co-production. GLOBAL CHANGE BIOLOGY 2023; 29:3545-3561. [PMID: 37079435 DOI: 10.1111/gcb.16733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Undertaking climate vulnerability assessments (CVAs) on marine fisheries is instrumental to the identification of regions, species, and stakeholders at risk of impacts from climate change, and the development of effective and targeted responses for fisheries adaptation. In this global literature review, we addressed three important questions to characterize fisheries CVAs: (i) what are the available approaches to develop CVAs in various social-ecological contexts, (ii) are different geographic scales and regions adequately represented, and (iii) how do diverse knowledge systems contribute to current understanding of vulnerability? As part of these general research efforts, we identified and characterized an inventory of frameworks and indicators that encompass a wide range of foci on ecological and socioeconomic dimensions of climate vulnerability on fisheries. Our analysis highlighted a large gap between countries with top research inputs and the most urgent adaptation needs. More research and resources are needed in low-income tropical countries to ensure existing inequities are not exacerbated. We also identified an uneven research focus across spatial scales and cautioned a possible scale mismatch between assessment and management needs. Drawing on this information, we catalog (1) a suite of research directions that could improve the utility and applicability of CVAs, particularly the examination of barriers and enabling conditions that influence the uptake of CVA results into management responses at multiple levels, (2) the lessons that have been learned from applications in data-limited regions, particularly the use of proxy indicators and knowledge co-production to overcome the problem of data deficiency, and (3) opportunities for wider applications, for example diversifying the use of vulnerability indicators in broader monitoring and management schemes. This information is used to provide a set of recommendations that could advance meaningful CVA practices for fisheries management and promote effective translation of climate vulnerability into adaptation actions.
Collapse
Affiliation(s)
- Yunzhou Li
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York, USA
| | - Ming Sun
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York, USA
| | | | | | - Yong Chen
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
7
|
Hodapp D, Roca IT, Fiorentino D, Garilao C, Kaschner K, Kesner-Reyes K, Schneider B, Segschneider J, Kocsis ÁT, Kiessling W, Brey T, Froese R. Climate change disrupts core habitats of marine species. GLOBAL CHANGE BIOLOGY 2023; 29:3304-3317. [PMID: 36789726 DOI: 10.1111/gcb.16612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/20/2022] [Indexed: 05/16/2023]
Abstract
Driven by climate change, marine biodiversity is undergoing a phase of rapid change that has proven to be even faster than changes observed in terrestrial ecosystems. Understanding how these changes in species composition will affect future marine life is crucial for conservation management, especially due to increasing demands for marine natural resources. Here, we analyse predictions of a multiparameter habitat suitability model covering the global projected ranges of >33,500 marine species from climate model projections under three CO2 emission scenarios (RCP2.6, RCP4.5, RCP8.5) up to the year 2100. Our results show that the core habitat area will decline for many species, resulting in a net loss of 50% of the core habitat area for almost half of all marine species in 2100 under the high-emission scenario RCP8.5. As an additional consequence of the continuing distributional reorganization of marine life, gaps around the equator will appear for 8% (RCP2.6), 24% (RCP4.5), and 88% (RCP8.5) of marine species with cross-equatorial ranges. For many more species, continuous distributional ranges will be disrupted, thus reducing effective population size. In addition, high invasion rates in higher latitudes and polar regions will lead to substantial changes in the ecosystem and food web structure, particularly regarding the introduction of new predators. Overall, our study highlights that the degree of spatial and structural reorganization of marine life with ensued consequences for ecosystem functionality and conservation efforts will critically depend on the realized greenhouse gas emission pathway.
Collapse
Affiliation(s)
- Dorothee Hodapp
- Helmholtz-Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Irene T Roca
- Helmholtz-Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research, Bremerhaven, Germany
- Laboratoire interdisciplinaire de simulation socio-écologique (LISSÉ), Université de Québec en Outaouais (UQO), Gatineau, Canada
| | - Dario Fiorentino
- Helmholtz-Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research, Bremerhaven, Germany
- Thünen Institute of Sea Fisheries, Bremerhaven, Germany
| | | | - Kristin Kaschner
- Department of Biometry and Environmental Systems Analysis, Albert-Ludwigs University, Freiburg im Breisgau, Germany
| | | | - Birgit Schneider
- Institute of Geosciences, Christian-Albrechts University of Kiel, Kiel, Germany
| | | | - Ádám T Kocsis
- GeoZentrum Nordbayern, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Kiessling
- GeoZentrum Nordbayern, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brey
- Helmholtz-Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research, Bremerhaven, Germany
- University of Bremen, Bremen, Germany
| | - Rainer Froese
- GEOMAR Helmholtz-Centre for Ocean Research, Kiel, Germany
| |
Collapse
|
8
|
Cerón-Souza I, Delgadillo-Duran D, Polo-Murcia SM, Sarmiento-Naizaque ZX, Reyes-Herrera PH. Prioritizing Colombian plant genetic resources for investment in research using indicators about the geographic origin, vulnerability status, economic benefits, and food security importance. BIODIVERSITY AND CONSERVATION 2023; 32:2221-2261. [PMID: 37255861 PMCID: PMC10195663 DOI: 10.1007/s10531-023-02599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 06/01/2023]
Abstract
Germplasm banks are the most significant repository for plant genetic resources for food and agriculture (PGRFA) worldwide. Despite their strategic importance, national germplasm banks of tropical megadiverse developing countries such as Colombia have extremely limited funds. Therefore, making strategic decisions about research investment is essential. Here, we designed a data-driven approach to build an index that sorts Colombian PGRFA into three groups: high, medium, or low priority, based on four pillars of information from open-access databases and aligned with the sustainable goals of no poverty and zero hunger: Geographic origin, vulnerability status, economic benefits, and food security importance. We analyzed 345 PGRFA using the index, separating them into two groups, 275 already conserved in the Colombian germplasm bank (BGVCOL group) and 70 not currently conserved in the BGVCOL (NCB group). We used fuzzy logic to classify each PGRFA by each pillar and integrate it to obtain a priority index. Missing data for native crops were frequent in the BGVCOL group. Therefore we adopted an imputation strategy to fill the gaps and calculated the uncertainty. After applying the index, PGRFA with higher priority were 24 (8.72%) from the BGVCOL (i.e., 15 potatoes, three tomatoes, two tree tomatoes, pineapple, cocoa, papaya, and yacon) and one from NCB (i.e., coffee). We concluded that this methodology successfully prioritized PGRFA in Colombia and shows the big holes of knowledge for future research and alternatives to improve this index. The versatility of this methodology could be helpful in other genebanks with budget limitations for research investment. Supplementary Information The online version contains supplementary material available at 10.1007/s10531-023-02599-7.
Collapse
Affiliation(s)
- I. Cerón-Souza
- CI Tibaitatá, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Km 14 via Mosquera, Bogotá, Colombia
| | - D. Delgadillo-Duran
- CI Tibaitatá, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Km 14 via Mosquera, Bogotá, Colombia
| | - S. M. Polo-Murcia
- CI Tibaitatá, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Km 14 via Mosquera, Bogotá, Colombia
| | - Z. X. Sarmiento-Naizaque
- CI Tibaitatá, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Km 14 via Mosquera, Bogotá, Colombia
| | - P. H. Reyes-Herrera
- CI Tibaitatá, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Km 14 via Mosquera, Bogotá, Colombia
| |
Collapse
|
9
|
Chatzimentor A, Doxa A, Katsanevakis S, Mazaris AD. Are Mediterranean marine threatened species at high risk by climate change? GLOBAL CHANGE BIOLOGY 2023; 29:1809-1821. [PMID: 36583369 DOI: 10.1111/gcb.16577] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 05/28/2023]
Abstract
Rapid anthropogenic climate change is driving threatened biodiversity one step closer to extinction. Effects on native biodiversity are determined by an interplay between species' exposure to climate change and their specific ecological and life-history characteristics that render them even more susceptible. Impacts on biodiversity have already been reported, however, a systematic risk evaluation of threatened marine populations is lacking. Here, we employ a trait-based approach to assess the risk of 90 threatened marine Mediterranean species to climate change, combining species' exposure to increased sea temperature and intrinsic vulnerability. One-quarter of the threatened marine biodiversity of the Mediterranean Sea is predicted to be under elevated levels of climate risk, with various traits identified as key vulnerability traits. High-risk taxa including sea turtles, marine mammals, Anthozoa and Chondrichthyes are highlighted. Climate risk, vulnerability and exposure hotspots are distributed along the Western Mediterranean, Alboran, Aegean, and Adriatic Seas. At each Mediterranean marine ecoregion, 21%-31% of their threatened species have high climate risk. All Mediterranean marine protected areas host threatened species with high risk to climate change, with 90% having a minimum of 4 up to 19 species of high climate risk, making the objective of a climate-smart conservation strategy a crucial task for immediate planning and action. Our findings aspire to offer new insights for systematic, spatially strategic planning and prioritization of vulnerable marine life in the face of accelerating climate change.
Collapse
Affiliation(s)
- Anastasia Chatzimentor
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aggeliki Doxa
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece
| | | | - Antonios D Mazaris
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
10
|
Estoque RC, Ishtiaque A, Parajuli J, Athukorala D, Rabby YW, Ooba M. Has the IPCC's revised vulnerability concept been well adopted? AMBIO 2023; 52:376-389. [PMID: 36414854 PMCID: PMC9755408 DOI: 10.1007/s13280-022-01806-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/24/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
In the Third and Fourth Assessment Reports (TAR and AR4, respectively) by the Intergovernmental Panel on Climate Change (IPCC), vulnerability is conceived as a function of exposure, sensitivity, and adaptive capacity. However, in its Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) and Fifth Assessment Report (AR5), the IPCC redefined and separated exposure, and it reconceptualized vulnerability to be a function of sensitivity and capacity to cope and adapt. In this review, we found that the IPCC's revised vulnerability concept has not been well adopted and that researchers' preference, possible misinterpretation, possible confusion, and possible unawareness are among the possible technical and practical reasons. Among the issues that need further clarification from the IPCC is whether or not such a reconceptualization of vulnerability in the SREX/AR5 necessarily implies nullification of the TAR/AR4 vulnerability concept as far as the IPCC is concerned.
Collapse
Affiliation(s)
- Ronald C. Estoque
- Center for Biodiversity and Climate Change, Forestry and Forest Products Research Institute, Tsukuba, Japan
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan
| | - Asif Ishtiaque
- Department of Geography, Geology and Planning, Missouri State University, Springfield, USA
| | | | - Darshana Athukorala
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yasin Wahid Rabby
- Department of Engineering, Wake Forest University, Winston-Salem, USA
| | - Makoto Ooba
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan
| |
Collapse
|
11
|
Ma S, Kang B, Li J, Sun P, Liu Y, Ye Z, Tian Y. Climate risks to fishing species and fisheries in the China Seas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159325. [PMID: 36216044 DOI: 10.1016/j.scitotenv.2022.159325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/14/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Climate change is one of the most concerning topics in the Anthropocene. Increasing sea water temperature will trigger a series of ecological consequences, altering the various functions and services that marine ecosystems provide for humans. Fisheries, specifically, will likely face the most direct impact. China provides unparalleled catches with enormous and intensive fishing effort, and China Seas are suffering from significantly increasing water temperature. However, uncertainties in the impacts of climate change on fishing species and fisheries in the China Seas present challenges for the formulation of coping and adapting strategies. Here, we employed a climate risk assessment framework to evaluate the climate risks of fishing species and fisheries of various provinces in China in the past decade, aiming to benefit the development and prioritization of appropriate adaptation options to climate change. Results show that considering the water temperature in the 2010s, 20 % of fishing species in the China Seas have one-fourth of their habitats unsuitable, and the situation will become worse with future warming scenarios in the 2050s when nearly half of species will have at least one-fourth of their habitats no longer suitable. Integrating hazard, exposure and vulnerability, climate risks to fisheries feature heterogeneity among provinces. Climate risks to fisheries of northern provinces are characterized by low hazard and high exposure, while the southern counterparts are largely determined by high hazard and low exposure. Climate change is threatening fishing species and remarkably altering fishery patterns in China Seas. Shifting fishing targets, increasing fishing efficiency, raising catch diversity, and updating fishery-related industries would be effective steps to help fisheries adapt to climate change, and adaptation strategies need to be tailored considering local realities.
Collapse
Affiliation(s)
- Shuyang Ma
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Bin Kang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jianchao Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Peng Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yang Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Zhenjiang Ye
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yongjun Tian
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
12
|
Ureta C, Ramírez‐Barrón M, Sánchez‐García EA, Cuervo‐Robayo AP, Munguía‐Carrara M, Mendoza‐Ponce A, Gay C, Sánchez‐Cordero V. Species, taxonomic, and functional group diversities of terrestrial mammals at risk under climate change and land-use/cover change scenarios in Mexico. GLOBAL CHANGE BIOLOGY 2022; 28:6992-7008. [PMID: 36053734 PMCID: PMC9826092 DOI: 10.1111/gcb.16411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
There is a need to revise the framework used to project species risks under climate change (CC) and land-use/cover change (LUCC) scenarios. We built a CC risk index using the latest Intergovernmental Panel on Climate Change framework, where risk is a function of vulnerability (sensitivity and adaptive capacity), exposure, and hazard. We incorporated future LUCC scenarios as part of the exposure component. We combined a trait-based approach based on biological characteristics of species with a correlative approach based on ecological niche modeling, assigning risk scores to species, taxonomic (orders), and functional (trophic, body size, and locomotion) groups of terrestrial mammals occurring in Mexico. We identified 15 species projected to lose their climatic suitability. Of the 11 taxonomic orders, Eulipotyphla, Didelphimorphia, Artiodactyla, and Lagomorpha had the highest risk scores. Of the 19 trophic groups, piscivores, insectivores under canopy, frugivores-granivores, herbivores browser, and myrmecophagous had the highest risk scores. Of the five body-sized groups, large-sized species (>15 kg) had highest risk scores. Of the seven locomotion groups, arboreal and semi-aquatics had highest risk scores. CC and LUCC scenarios reduced suitable areas of species potential distributions by 37.5% (with CC), and 51% (with CC and LUCC) under a limited full-dispersal assumption. Reductions in suitable areas of species potential distributions increased to 50.2% (with CC), and 52.4% (with CC and LUCC) under a non-dispersal assumption. Species-rich areas (>75% species) projected 36% (with CC) and 57% (with CC and LUCC) reductions in suitability for 2070. Shifts in climatic suitability projections of species-rich areas increased in number of species in northeast and southeast Mexico and decreased in northwest and southern Mexico, suggesting important species turnover. High-risk projections under future CC and LUCC scenarios for species, taxonomic, and functional group diversities, and species-rich areas of terrestrial mammals highlight trends in different impacts on biodiversity and ecosystem function.
Collapse
Affiliation(s)
- Carolina Ureta
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
- Investigadora por México‐CONACyTConsejo Nacional de Ciencia y TecnologíaCiudad de MéxicoMexico
| | - Mercedes Ramírez‐Barrón
- Departamento de ZoologíaInstituto de Biología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Edgar Andrés Sánchez‐García
- Departamento de ZoologíaInstituto de Biología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Angela P. Cuervo‐Robayo
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Insurgentes Sur‐PeriféricoCiudad de MéxicoMexico
| | - Mariana Munguía‐Carrara
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Insurgentes Sur‐PeriféricoCiudad de MéxicoMexico
| | - Alma Mendoza‐Ponce
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
- International Institute for Applied Systems AnalysisLaxenburgAustria
| | - Carlos Gay
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Víctor Sánchez‐Cordero
- Departamento de ZoologíaInstituto de Biología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| |
Collapse
|
13
|
Koehn LE, Nelson LK, Samhouri JF, Norman KC, Jacox MG, Cullen AC, Fiechter J, Pozo Buil M, Levin PS. Social-ecological vulnerability of fishing communities to climate change: A U.S. West Coast case study. PLoS One 2022; 17:e0272120. [PMID: 35976855 PMCID: PMC9385011 DOI: 10.1371/journal.pone.0272120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
Climate change is already impacting coastal communities, and ongoing and future shifts in fisheries species productivity from climate change have implications for the livelihoods and cultures of coastal communities. Harvested marine species in the California Current Large Marine Ecosystem support U.S. West Coast communities economically, socially, and culturally. Ecological vulnerability assessments exist for individual species in the California Current but ecological and human vulnerability are linked and vulnerability is expected to vary by community. Here, we present automatable, reproducible methods for assessing the vulnerability of U.S. West Coast fishing dependent communities to climate change within a social-ecological vulnerability framework. We first assessed the ecological risk of marine resources, on which fishing communities rely, to 50 years of climate change projections. We then combined this with the adaptive capacity of fishing communities, based on social indicators, to assess the potential ability of communities to cope with future changes. Specific communities (particularly in Washington state) were determined to be at risk to climate change mainly due to economic reliance on at risk marine fisheries species, like salmon, hake, or sea urchins. But, due to higher social adaptive capacity, these communities were often not found to be the most vulnerable overall. Conversely, certain communities that were not the most at risk, ecologically and economically, ranked in the category of highly vulnerable communities due to low adaptive capacity based on social indicators (particularly in Southern California). Certain communities were both ecologically at risk due to catch composition and socially vulnerable (low adaptive capacity) leading to the highest tier of vulnerability. The integration of climatic, ecological, economic, and societal data reveals that factors underlying vulnerability are variable across fishing communities on the U.S West Coast, and suggests the need to develop a variety of well-aligned strategies to adapt to the ecological impacts of climate change.
Collapse
Affiliation(s)
- Laura E. Koehn
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, United States of America
- * E-mail:
| | - Laura K. Nelson
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, United States of America
| | - Jameal F. Samhouri
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, United States of America
| | - Karma C. Norman
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, United States of America
| | - Michael G. Jacox
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Monterey, CA, United States of America
| | - Alison C. Cullen
- Evans School of Public Policy and Governance, University of Washington, Seattle, WA, United States of America
| | - Jerome Fiechter
- Ocean Sciences Department, University of California at Santa Cruz, Santa Cruz, CA, United States of America
| | - Mercedes Pozo Buil
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Monterey, CA, United States of America
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - Phillip S. Levin
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, United States of America
- The Nature Conservancy in Washington, Seattle, WA, United States of America
| |
Collapse
|
14
|
Ojeda V, Serra B, Lagares C, Rojo-Francàs E, Sellés M, Marco-Herrero E, García E, Farré M, Arenas C, Abelló P, Mestres F. Interannual fluctuations in connectivity among crab populations (Liocarcinus depurator) along the Atlantic-Mediterranean transition. Sci Rep 2022; 12:9797. [PMID: 35697727 PMCID: PMC9192654 DOI: 10.1038/s41598-022-13941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
An interesting evolutionary question that still remains open is the connectivity between marine populations. Marine currents can favour the dispersal of larvae or adults, but they can also produce eddies and gyres generating oceanographic fronts, thus limiting gene flow. To address this subject, we selected the Atlantic-Mediterranean transition, where several fronts are located: Gibraltar Strait (GS), Almeria-Oran Front (AOF) and Ibiza Channel (IC). Seven populations of the marine crab Liocarcinus depurator (Cadiz, West and East Alboran, Alacant, Valencia, Ebro Delta and North Catalonia) located along this transition were analysed in six consecutive years (2014–2019) using a fragment of the COI (Cytochrome Oxidase subunit I) gene. All sequences (966) belonged to two well defined haplogroups: ATL (most abundant in Atlantic waters) and MED (predominant in Mediterranean waters). Following a geographic variation, the frequency of ATL decreased significantly from Cadiz to North Catalonia. However, this variation presented steps due to the effect of oceanographic restrictions/fronts. Significant effects were recorded for GS (2015, 2017, 2018 and 2019), AOF (all years except 2018) and IC (2016). The intensity and precise location of these fronts changed over time. Multivariate analyses distinguished three main population groups: Cadiz, Alboran Sea and the remaining Mediterranean populations. These findings could be relevant to properly define Marine Protected Areas and for conservation and fisheries policies.
Collapse
Affiliation(s)
- Víctor Ojeda
- Dept. Genètica, Microbiologia i Estadística. Secció de Genètica Biomèdica, Evolució i Desenvolupament, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.,IRBio (Institut de Recerca Per la Biodiversitat), Universitat de Barcelona, Barcelona, Spain
| | - Bruna Serra
- Dept. Genètica, Microbiologia i Estadística. Secció de Genètica Biomèdica, Evolució i Desenvolupament, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.,IRBio (Institut de Recerca Per la Biodiversitat), Universitat de Barcelona, Barcelona, Spain
| | - Clàudia Lagares
- Dept. Genètica, Microbiologia i Estadística. Secció de Genètica Biomèdica, Evolució i Desenvolupament, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.,IRBio (Institut de Recerca Per la Biodiversitat), Universitat de Barcelona, Barcelona, Spain
| | - Eva Rojo-Francàs
- Dept. Genètica, Microbiologia i Estadística. Secció de Genètica Biomèdica, Evolució i Desenvolupament, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.,IRBio (Institut de Recerca Per la Biodiversitat), Universitat de Barcelona, Barcelona, Spain
| | - Maria Sellés
- Dept. Genètica, Microbiologia i Estadística. Secció de Genètica Biomèdica, Evolució i Desenvolupament, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.,IRBio (Institut de Recerca Per la Biodiversitat), Universitat de Barcelona, Barcelona, Spain
| | | | - Encarnación García
- Instituto Español de Oceanografía - C.O. Murcia (IEO-CSIC), San Pedro del Pinatar, Spain
| | - Marc Farré
- Instituto Español de Oceanografía - C.O. Balears (IEO-CSIC), Palma de Mallorca, Spain.,Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Concepció Arenas
- Dept. Genètica, Microbiologia i Estadística, Secció d'Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Pere Abelló
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Francesc Mestres
- Dept. Genètica, Microbiologia i Estadística. Secció de Genètica Biomèdica, Evolució i Desenvolupament, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain. .,IRBio (Institut de Recerca Per la Biodiversitat), Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
15
|
Tai TC, Calosi P, Gurney-Smith HJ, Cheung WWL. Modelling ocean acidification effects with life stage-specific responses alters spatiotemporal patterns of catch and revenues of American lobster, Homarus americanus. Sci Rep 2021; 11:23330. [PMID: 34857790 PMCID: PMC8639722 DOI: 10.1038/s41598-021-02253-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Abstract
Ocean acidification (OA) affects marine organisms through various physiological and biological processes, yet our understanding of how these translate to large-scale population effects remains limited. Here, we integrated laboratory-based experimental results on the life history and physiological responses to OA of the American lobster, Homarus americanus, into a dynamic bioclimatic envelope model to project future climate change effects on species distribution, abundance, and fisheries catch potential. Ocean acidification effects on juvenile stages had the largest stage-specific impacts on the population, while cumulative effects across life stages significantly exerted the greatest impacts, albeit quite minimal. Reducing fishing pressure leads to overall increases in population abundance while setting minimum size limits also results in more higher-priced market-sized lobsters (> 1 lb), and could help mitigate the negative impacts of OA and concurrent stressors (warming, deoxygenation). However, the magnitude of increased effects of climate change overweighs any moderate population gains made by changes in fishing pressure and size limits, reinforcing that reducing greenhouse gas emissions is most pressing and that climate-adaptive fisheries management is necessary as a secondary role to ensure population resiliency. We suggest possible strategies to mitigate impacts by preserving important population demographics.
Collapse
Affiliation(s)
- Travis C. Tai
- grid.17091.3e0000 0001 2288 9830Changing Ocean Research Unit, Institute for the Oceans and Fisheries, The University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4 Canada
| | - Piero Calosi
- grid.265702.40000 0001 2185 197XDépartment de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1 Canada
| | - Helen J. Gurney-Smith
- grid.23618.3e0000 0004 0449 2129Fisheries and Oceans Canada, St. Andrews Biological Station, 125 Marine Science Drive, St. Andrews, NB E5B 0E4 Canada
| | - William W. L. Cheung
- grid.17091.3e0000 0001 2288 9830Changing Ocean Research Unit, Institute for the Oceans and Fisheries, The University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4 Canada
| |
Collapse
|
16
|
Sousa R, Vasconcelos J, Vera-Escalona I, Pinto AR, Hawkins SJ, Freitas M, Delgado J, González JA, Riera R. Pleistocene expansion, anthropogenic pressure and ocean currents: Disentangling the past and ongoing evolutionary history of Patella aspera Röding, 1798 in the archipelago of Madeira. MARINE ENVIRONMENTAL RESEARCH 2021; 172:105485. [PMID: 34715642 DOI: 10.1016/j.marenvres.2021.105485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
AIMS Rising sea-level following the Last Glacial Maximum lead to fragmentation of coastal limpet populations between islands of the Archipelago of Madeira. This fragmentation is reinforced by recent heavy exploitation reducing effective population size on Madeira Island. We use the limpet P. aspera to understand how the role of processes at different time scales (i.e. changes in the sea level and overexploitation) can influence the genetic composition of an extant species, relating these processes to reproductive phenology and seasonal shifts in ocean currents. LOCATION Madeira Island, Porto Santo and Desertas (Archipelago of Madeira, NE Atlantic Ocean). TAXON The limpet Patella aspera. METHODS Twelve microsatellite genetic markers were used. A power analysis was used to evaluate the power of the microsatellite markers to detect a signal of population differentiation. Long-term past migrations were assessed using a Bayesian Markov Montecarlo approach in the software MIGRATE-n to estimate mutation-scaled migration rates (M = m/μ; m, probability of a lineage immigrating per generation; μ, mutation rate). Two scenarios were evaluated using an Approximate Bayesian Computation (ABC) in the software DIYABC 2.1 (i) Scenario 1: considered a population scenario from a reduced Ne at time t3 to a higher Ne at time t2; and (ii) Scenario 2 considering a reduction of Ne from a time t3 to a time t2. RESULTS Colonization of the archipelago by Portuguese settlers six centuries ago probably led to an important decrease in the genetic diversity of the species (Ne). Contemporary gene flow strongly support a pattern of high asymmetric connectivity explained by the reproductive phenology of the species and spatio-temporal seasonal changes in the ocean currents. Spatio-temporal reconstructions using Bayesian methods, including coalescent and Approximate Bayesian Computation (ABC) approaches, suggest changes in the migration patterns from highly symmetric to highly asymmetric connectivity with subtle population differentiation as consequence of post-glacial maximum sea level rise during the Holocene. MAIN CONCLUSIONS Our results suggest that anthropogenic activity could have had serious effects on the genetic diversity of heavily exploited littoral species since the end of the Pleistocene, probably accelerating in recent years.
Collapse
Affiliation(s)
- Ricardo Sousa
- Observatório Oceânico da Madeira, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (OOM/ARDITI) - Edifício Madeira Tecnopolo, Funchal, Madeira, Portugal; Direção Regional do Mar (DRM)/ Direção de Serviços de Monitorização, Estudos e Investigação do Mar (DSEIMar), 9004-562, Funchal, Madeira, Portugal; MARE - Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Edifício Madeira Tecnopolo Piso 0, Caminho da Penteada, 9020-105, Funchal, Madeira, Portugal
| | - Joana Vasconcelos
- MARE - Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Edifício Madeira Tecnopolo Piso 0, Caminho da Penteada, 9020-105, Funchal, Madeira, Portugal; Faculdade de Ciências de Vida, Universidade da Madeira, Campus Universitário da Madeira, Caminho da Penteada, 9020-020, Funchal, Madeira, Portugal; Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile
| | - Iván Vera-Escalona
- CIBAS, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile; IU-ECOAQUA, Group of Biodiversity and Conservation (BIOCON), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ana Rita Pinto
- Direção Regional do Mar (DRM)/ Direção de Serviços de Monitorização, Estudos e Investigação do Mar (DSEIMar), 9004-562, Funchal, Madeira, Portugal
| | - S J Hawkins
- Marine Biological Association of the UK, Plymouth, PL1 2PB, UK; School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, SO14 3ZH, UK
| | - Mafalda Freitas
- Observatório Oceânico da Madeira, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (OOM/ARDITI) - Edifício Madeira Tecnopolo, Funchal, Madeira, Portugal; Direção Regional do Mar (DRM)/ Direção de Serviços de Monitorização, Estudos e Investigação do Mar (DSEIMar), 9004-562, Funchal, Madeira, Portugal; MARE - Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Edifício Madeira Tecnopolo Piso 0, Caminho da Penteada, 9020-105, Funchal, Madeira, Portugal
| | - João Delgado
- Direção Regional do Mar (DRM)/ Direção de Serviços de Monitorização, Estudos e Investigação do Mar (DSEIMar), 9004-562, Funchal, Madeira, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Porto, Portugal
| | - José A González
- Ecología Marina Aplicada y Pesquerías (i-UNAT), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Rodrigo Riera
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile; IU-ECOAQUA, Group of Biodiversity and Conservation (BIOCON), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
17
|
Pita I, Mouillot D, Moullec F, Shin YJ. Contrasted patterns in climate change risk for Mediterranean fisheries. GLOBAL CHANGE BIOLOGY 2021; 27:5920-5933. [PMID: 34309958 DOI: 10.1111/gcb.15814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Climate change is rapidly becoming one of the biggest threats to marine life, and its impacts have the potential to strongly affect fisheries upon which millions of people rely. This is particularly crucial for the Mediterranean Sea, which is one of the world's biodiversity hotspots, one of the world's most overfished regions, and where temperatures are rising 25% faster than in the rest of the ocean on average. In this study, we calculated a vulnerability index for 100 species that compose 95% of the Mediterranean catches, through a trait-based approach. The Climate Risk Assessment (CRA) methodology was subsequently used to assess the risks due to climate change of Mediterranean fisheries. We found that the northern Mediterranean fisheries target more vulnerable species than their southern counterparts. However, when combining this catch-based vulnerability with a suite of socio-economic parameters, north African countries stand out as the most vulnerable to climate change impacts. Indeed, considering countries' exposure of the fisheries sector and their vulnerability to climate change, a sharp contrast between northern and southern Mediterranean appears, with Egypt and Tunisia scoring the highest risk. By integrating a trait-based approach on targeted marine species with socio-economic features, our analysis helps to better understand the ramifications of climate change consequences on Mediterranean fisheries and highlights the regions that could potentially be particularly affected.
Collapse
Affiliation(s)
- Ignacio Pita
- Marine Biodiversity, Exploitation and Conservation (MARBEC), Université Montpellier, Institut de Recherche pour le Développement (IRD), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), CNRS, Montpellier, France
| | - David Mouillot
- Marine Biodiversity, Exploitation and Conservation (MARBEC), Université Montpellier, Institut de Recherche pour le Développement (IRD), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), CNRS, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Fabien Moullec
- Coastal Systems (COS), Royal Netherlands Institute for Sea Research, Den Burg, Noord-Holland, The Netherlands
| | - Yunne-Jai Shin
- Marine Biodiversity, Exploitation and Conservation (MARBEC), Université Montpellier, Institut de Recherche pour le Développement (IRD), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), CNRS, Montpellier, France
| |
Collapse
|
18
|
Climate risk to European fisheries and coastal communities. Proc Natl Acad Sci U S A 2021; 118:2018086118. [PMID: 34583987 DOI: 10.1073/pnas.2018086118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 11/18/2022] Open
Abstract
With the majority of the global human population living in coastal regions, correctly characterizing the climate risk that ocean-dependent communities and businesses are exposed to is key to prioritizing the finite resources available to support adaptation. We apply a climate risk analysis across the European fisheries sector to identify the most at-risk fishing fleets and coastal regions and then link the two analyses together. We employ an approach combining biological traits with physiological metrics to differentiate climate hazards between 556 populations of fish and use these to assess the relative climate risk for 380 fishing fleets and 105 coastal regions in Europe. Countries in southeast Europe as well as the United Kingdom have the highest risks to both fishing fleets and coastal regions overall, while in other countries, the risk-profile is greater at either the fleet level or at the regional level. European fisheries face a diversity of challenges posed by climate change; climate adaptation, therefore, needs to be tailored to each country, region, and fleet's specific situation. Our analysis supports this process by highlighting where and what adaptation measures might be needed and informing where policy and business responses could have the greatest impact.
Collapse
|
19
|
Tigchelaar M, Cheung WWL, Mohammed EY, Phillips MJ, Payne HJ, Selig ER, Wabnitz CCC, Oyinlola MA, Frölicher TL, Gephart JA, Golden CD, Allison EH, Bennett A, Cao L, Fanzo J, Halpern BS, Lam VWY, Micheli F, Naylor RL, Sumaila UR, Tagliabue A, Troell M. Compound climate risks threaten aquatic food system benefits. NATURE FOOD 2021; 2:673-682. [PMID: 37117477 DOI: 10.1038/s43016-021-00368-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/17/2021] [Indexed: 04/30/2023]
Abstract
Aquatic foods from marine and freshwater systems are critical to the nutrition, health, livelihoods, economies and cultures of billions of people worldwide, but climate-related hazards may compromise their ability to provide these benefits. Here, we estimate national-level aquatic food system climate risk using an integrative food systems approach that connects climate hazards impacting marine and freshwater capture fisheries and aquaculture to their contributions to sustainable food system outcomes. We show that without mitigation, climate hazards pose high risks to nutritional, social, economic and environmental outcomes worldwide-especially for wild-capture fisheries in Africa, South and Southeast Asia, and Small Island Developing States. For countries projected to experience compound climate risks, reducing societal vulnerabilities can lower climate risk by margins similar to meeting Paris Agreement mitigation targets. System-level interventions addressing dimensions such as governance, gender equity and poverty are needed to enhance aquatic and terrestrial food system resilience and provide investments with large co-benefits towards meeting the Sustainable Development Goals.
Collapse
Affiliation(s)
| | - William W L Cheung
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Hanna J Payne
- Center for Ocean Solutions, Stanford University, Stanford, CA, USA
| | | | - Colette C C Wabnitz
- Center for Ocean Solutions, Stanford University, Stanford, CA, USA
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Muhammed A Oyinlola
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas L Frölicher
- Climate and Environmental Physics, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Jessica A Gephart
- Department of Environmental Science, American University, Washington DC, USA
| | - Christopher D Golden
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | | | - Abigail Bennett
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Ling Cao
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Jessica Fanzo
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD, USA
- Nitze School of Advanced International Studies, Johns Hopkins University, Washington DC, USA
| | - Benjamin S Halpern
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA
| | - Vicky W Y Lam
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fiorenza Micheli
- Center for Ocean Solutions, Stanford University, Stanford, CA, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Rosamond L Naylor
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - U Rashid Sumaila
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
- School of Public Policy and Global Affairs, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Max Troell
- Beijer Institute of Ecological Economics, The Royal Swedish Academy of Sciences, Stockholm, Sweden
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| |
Collapse
|
20
|
Micronutrient supply from global marine fisheries under climate change and overfishing. Curr Biol 2021; 31:4132-4138.e3. [PMID: 34289388 DOI: 10.1016/j.cub.2021.06.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/23/2022]
Abstract
Fish are rich in bioavailable micronutrients, such as zinc and iron, deficiencies of which are a global food security concern.1,2 Global marine fisheries yields are threatened by climate change and overfishing,3,4 yet understanding of how these stressors affect the nutrients available from fisheries is lacking.5,6 Here, using global assessments of micronutrient content2 and fisheries catch data,7 we investigate how the vulnerability status of marine fish species8,9 may translate into vulnerability of micronutrient availability at scales of both individual species and entire fishery assemblages for 157 countries. We further quantify the micronutrient evenness of catches to identify countries where interventions can optimize micronutrient supply. Our global analysis, including >800 marine fish species, reveals that, at a species level, micronutrient availability and vulnerability to both climate change and overfishing varies greatly, with tropical species displaying a positive co-tolerance, indicating greater persistence to both stressors at a community level.10 Global fisheries catches had relatively low nutritional vulnerability to fishing. Catches with higher species richness tend to be nutrient dense and evenly distributed but are more vulnerable to climate change, with 40% of countries displaying high vulnerability. Countries with high prevalence of inadequate micronutrient intake tend to have the most nutrient-dense catches, but these same fisheries are highly vulnerable to climate change, with relatively lower capacity to adapt.11 Our analysis highlights the need to consolidate fisheries, climate, and food policies to secure the sustainable contribution of fish-derived micronutrients to food and nutrition security.
Collapse
|
21
|
O’Hara CC, Frazier M, Halpern BS. At-risk marine biodiversity faces extensive, expanding, and intensifying human impacts. Science 2021; 372:84-87. [DOI: 10.1126/science.abe6731] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/03/2021] [Indexed: 01/09/2023]
Abstract
Human activities and climate change threaten marine biodiversity worldwide, though sensitivity to these stressors varies considerably by species and taxonomic group. Mapping the spatial distribution of 14 anthropogenic stressors from 2003 to 2013 onto the ranges of 1271 at-risk marine species sensitive to them, we found that, on average, species faced potential impacts across 57% of their ranges, that this footprint expanded over time, and that the impacts intensified across 37% of their ranges. Although fishing activity dominated the footprint of impacts in national waters, climate stressors drove the expansion and intensification of impacts. Mitigating impacts on at-risk biodiversity is critical to supporting resilient marine ecosystems, and identifying the co-occurrence of impacts across multiple taxonomic groups highlights opportunities to amplify the benefits of conservation management.
Collapse
Affiliation(s)
- Casey C. O’Hara
- Bren School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Melanie Frazier
- National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Benjamin S. Halpern
- Bren School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, CA, USA
- National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
22
|
Cisneros-Montemayor AM, Moreno-Báez M, Reygondeau G, Cheung WWL, Crosman KM, González-Espinosa PC, Lam VWY, Oyinlola MA, Singh GG, Swartz W, Zheng CW, Ota Y. Enabling conditions for an equitable and sustainable blue economy. Nature 2021; 591:396-401. [PMID: 33731948 DOI: 10.1038/s41586-021-03327-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/04/2021] [Indexed: 11/09/2022]
Abstract
The future of the global ocean economy is currently envisioned as advancing towards a 'blue economy'-socially equitable, environmentally sustainable and economically viable ocean industries1,2. However, tensions exist within sustainable development approaches, arising from differing perspectives framed around natural capital or social equity. Here we show that there are stark differences in outlook on the capacity for establishing a blue economy, and on its potential outcomes, when social conditions and governance capacity-not just resource availability-are considered, and we highlight limits to establishing multiple overlapping industries. This is reflected by an analysis using a fuzzy logic model to integrate indicators from multiple disciplines and to evaluate their current capacity to contribute to establishing equitable, sustainable and viable ocean sectors consistent with a blue economy approach. We find that the key differences in the capacity of regions to achieve a blue economy are not due to available natural resources, but include factors such as national stability, corruption and infrastructure, which can be improved through targeted investments and cross-scale cooperation. Knowledge gaps can be addressed by integrating historical natural and social science information on the drivers and outcomes of resource use and management, thus identifying equitable pathways to establishing or transforming ocean sectors1,3,4. Our results suggest that policymakers must engage researchers and stakeholders to promote evidence-based, collaborative planning that ensures that sectors are chosen carefully, that local benefits are prioritized, and that the blue economy delivers on its social, environmental and economic goals.
Collapse
Affiliation(s)
| | - Marcia Moreno-Báez
- School of Marine and Environmental Programs, University of New England, Biddeford, ME, USA
| | - Gabriel Reygondeau
- Changing Ocean Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - William W L Cheung
- Changing Ocean Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine M Crosman
- Nippon Foundation Ocean Nexus Center, EarthLab, University of Washington, Seattle, WA, USA
| | | | - Vicky W Y Lam
- Changing Ocean Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Muhammed A Oyinlola
- Changing Ocean Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gerald G Singh
- Department of Geography, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Wilf Swartz
- Marine Affairs Program, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Yoshitaka Ota
- Nippon Foundation Ocean Nexus Center, EarthLab, University of Washington, Seattle, WA, USA
| |
Collapse
|
23
|
Finding the Links between Risk Management and Project Success: Evidence from International Development Projects in Colombia. SUSTAINABILITY 2020. [DOI: 10.3390/su12219294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of this research is to help improve the effectiveness of international development projects (IDPs) with a focus on enhancing their success. For this purpose, this work seeks to identify links between the management of risks among five projects executed in Cauca (Colombia) and the success of these projects in terms of project management and impacts on the beneficiary communities. An analysis of these projects reveals the most critical risks encountered and the relationships between the management of those risks and the success of the projects. The use of fuzzy logic through the fuzzy-set qualitative comparative analysis (fsQCA) program is key to performing this difficult task. The results of a qualitative study reveal that the most important risks correspond to economic, cultural, and political factors. A quantitative analysis by fsQCA shows a direct relationship between the management of cultural differences and the positive impacts of IDPs on the beneficiary communities.
Collapse
|
24
|
Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change. PLoS One 2020; 15:e0231595. [PMID: 32298349 PMCID: PMC7161985 DOI: 10.1371/journal.pone.0231595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/26/2020] [Indexed: 11/19/2022] Open
Abstract
Species distribution shifts are a widely reported biological consequence of climate-driven warming across marine ecosystems, creating ecological and social challenges. To meet these challenges and inform management decisions, we need accurate projections of species distributions. Quantitative species distribution models (SDMs) are routinely used to make these projections, while qualitative climate change vulnerability assessments are becoming more common. We constructed SDMs, compared SDM projections to expectations from a qualitative expert climate change vulnerability assessment, and developed a novel approach for combining the two methods to project the distribution and relative biomass of 49 marine species in the Northeast Shelf Large Marine Ecosystem under a “business as usual” climate change scenario. A forecasting experiment using SDMs highlighted their ability to capture relative biomass patterns fairly well (mean Pearson’s correlation coefficient between predicted and observed biomass = 0.24, range = 0–0.6) and pointed to areas needing improvement, including reducing prediction error and better capturing fine-scale spatial variability. SDM projections suggest the region will undergo considerable biological changes, especially in the Gulf of Maine, where commercially-important groundfish and traditional forage species are expected to decline as coastal fish species and warmer-water forage species historically found in the southern New England/Mid-Atlantic Bight area increase. The SDM projections only occasionally aligned with vulnerability assessment expectations, with agreement more common for species with adult mobility and population growth rates that showed low sensitivity to climate change. Although our blended approach tried to build from the strengths of each method, it had no noticeable improvement in predictive ability over SDMs. This work rigorously evaluates the predictive ability of SDMs, quantifies expected species distribution shifts under future climate conditions, and tests a new approach for integrating SDMs and vulnerability assessments to help address the complex challenges arising from climate-driven species distribution shifts.
Collapse
|
25
|
Tremblay N, Hünerlage K, Werner T. Hypoxia Tolerance of 10 Euphausiid Species in Relation to Vertical Temperature and Oxygen Gradients. Front Physiol 2020; 11:248. [PMID: 32265739 PMCID: PMC7107326 DOI: 10.3389/fphys.2020.00248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Oxygen Minimum Zones prevail in most of the world's oceans and are particularly extensive in Eastern Boundary Upwelling Ecosystems such as the Humboldt and the Benguela upwelling systems. In these regions, euphausiids are an important trophic link between primary producers and higher trophic levels. The species are known as pronounced diel vertical migrators, thus facing different levels of oxygen and temperature within a 24 h cycle. Declining oxygen levels may lead to vertically constrained habitats in euphausiids, which consequently will affect several trophic levels in the food web of the respective ecosystem. By using the regulation index (RI), the present study aimed at investigating the hypoxia tolerances of different euphausiid species from Atlantic, Pacific as well as from Polar regions. RI was calculated from 141 data sets and used to differentiate between respiration strategies using median and quartile (Q) values: low degree of oxyregulation (0.25 < RI median < 0.5); high degree of oxyregulation (0.5 < RI median < 1; Q1 > 0.25 or Q3 > 0.75); and metabolic suppression (RI median, Q1 and Q3 < 0). RI values of the polar (Euphausia superba, Thysanoessa inermis) and sub-tropical (Euphausia hanseni, Nyctiphanes capensis, and Nematoscelis megalops) species indicate a high degree of oxyregulation, whereas almost perfect oxyconformity (RI median ≈ 0; Q1 < 0 and Q3 > 0) was identified for the neritic temperate species Thysanoessa spinifera and the tropical species Euphausia lamelligera. RI values of Euphausia distinguenda and the Humboldt species Euphausia mucronata qualified these as metabolic suppressors. RI showed a significant impact of temperature on the respiration strategy of E. hanseni from oxyregulation to metabolic suppression. The species' estimated hypoxia tolerances and the degree of oxyconformity vs. oxyregulation were linked to diel vertical migration behavior and the temperature experienced during migration. The results highlight that the euphausiid species investigated have evolved various strategies to deal with different levels of oxygen, ranging from species showing a high degree of oxyconformity to strong oxyregulation. Neritic species may be more affected by hypoxia, as these are often short-distance-migrators and only adapted to a narrow range of environmental conditions.
Collapse
Affiliation(s)
- Nelly Tremblay
- Shelf Sea System Ecology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Helgoland, Germany
| | - Kim Hünerlage
- Institute for Sea Fisheries, Thünen Institute, Bremerhaven, Germany
| | | |
Collapse
|
26
|
Whitney CK, Conger T, Ban NC, McPhie R. Synthesizing and communicating climate change impacts to inform coastal adaptation planning. Facets (Ott) 2020. [DOI: 10.1139/facets-2019-0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Planning for adaptation to climate change requires regionally relevant information on rising air and ocean temperatures, sea levels, increasingly frequent and intense storms, and other climate-related impacts. However, in many regions there are limited focused syntheses of the climate impacts, risks, and potential adaptation strategies for coastal marine areas and sectors. We report on a regional assessment of climate change impacts and recommendations for adaptation strategies in the NE Pacific Coast (British Columbia, Canada), conducted in collaboration with a regional planning and plan implementation partnership (Marine Plan Partnership for the North Pacific Coast), aimed at bridging the gaps between climate science and regional adaptation planning. We incorporated both social and ecological aspects of climate change impacts and adaptations, and the feedback mechanisms which may result in both increased risks and opportunities for the following areas of interest: “Ecosystems”, “Fisheries and Aquaculture”, “Communities”, and “Marine Infrastructure”. As next steps within the region, we propose proactive planning measures including communication of the key impacts and projections and cross-sectoral assessments of climate vulnerability and risk to direct decision-making.
Collapse
Affiliation(s)
- Charlotte K. Whitney
- School of Environmental Studies, University of Victoria, David Turpin Building, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
- Pacific Institute for Climate Solutions, 2489 Sinclair Road, Victoria, BC V8N 6M2, Canada
| | - Tugce Conger
- Pacific Institute for Climate Solutions, 2489 Sinclair Road, Victoria, BC V8N 6M2, Canada
- Institute for Resources, Environment, and Sustainability, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada
| | - Natalie C. Ban
- School of Environmental Studies, University of Victoria, David Turpin Building, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Romney McPhie
- Marine Plan Partnership for the North Pacific Coast (MaPP)
| |
Collapse
|
27
|
Functional traits reveal the presence and nature of multiple processes in the assembly of marine fish communities. Oecologia 2019; 192:143-154. [DOI: 10.1007/s00442-019-04555-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/05/2019] [Indexed: 01/15/2023]
|
28
|
Spencer PD, Hollowed AB, Sigler MF, Hermann AJ, Nelson MW. Trait-based climate vulnerability assessments in data-rich systems: An application to eastern Bering Sea fish and invertebrate stocks. GLOBAL CHANGE BIOLOGY 2019; 25:3954-3971. [PMID: 31531923 DOI: 10.1111/gcb.14763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/08/2019] [Indexed: 06/10/2023]
Abstract
Trait-based climate vulnerability assessments based on expert evaluation have emerged as a rapid tool to assess biological vulnerability when detailed correlative or mechanistic studies are not feasible. Trait-based assessments typically view vulnerability as a combination of sensitivity and exposure to climate change. However, in some locations, a substantial amount of information may exist on system productivity and environmental conditions (both current and projected), with potential disparities in the information available for data-rich and data-poor stocks. Incorporating this level of detailed information poses challenges when conducting, and communicating uncertainty from, rapid vulnerability assessments. We applied a trait-based vulnerability assessment to 36 fish and invertebrate stocks in the eastern Bering Sea (EBS), a data-rich ecosystem. In recent years, the living marine resources of the EBS and Aleutian Islands have supported fisheries worth more than US $1 billion of annual ex-vessel value. Our vulnerability assessment uses projections (to 2039) from three downscaled climate models, and graphically characterizes the variation in climate projections between climate models and between seasons. Bootstrapping was used to characterize uncertainty in specific biological traits and environmental variables, and in the scores for sensitivity, exposure, and vulnerability. The sensitivity of EBS stocks to climate change ranged from "low" to "high," but vulnerability ranged between "low" and "moderate" due to limited exposure to climate change. Comparison with more detailed studies reveals that water temperature is an important variable for projecting climate impacts on stocks such as walleye pollock (Gadus chalcogrammus), and sensitivity analyses revealed that modifying the rule for determining vulnerability increased the vulnerability scores. This study demonstrates the importance of considering several uncertainties (e.g., climate projections, biological, and model structure) when conducting climate vulnerability assessments, and can be extended in future research to consider the vulnerability of user groups dependent on these stocks.
Collapse
Affiliation(s)
- Paul D Spencer
- NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, Seattle, WA, USA
| | - Anne B Hollowed
- NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, Seattle, WA, USA
| | - Michael F Sigler
- NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, Juneau, AK, USA
| | - Albert J Hermann
- Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, WA, USA
- NOAA, Pacific Marine Environmental Laboratory, Seattle, WA, USA
| | - Mark W Nelson
- NOAA, National Marine Fisheries Service, Office of Science and Technology, Silver Spring, MD, USA
| |
Collapse
|
29
|
McLean MJ, Mouillot D, Goascoz N, Schlaich I, Auber A. Functional reorganization of marine fish nurseries under climate warming. GLOBAL CHANGE BIOLOGY 2019; 25:660-674. [PMID: 30367735 DOI: 10.1111/gcb.14501] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 05/08/2023]
Abstract
While climate change is rapidly impacting marine species and ecosystems worldwide, the effects of climate warming on coastal fish nurseries have received little attention despite nurseries' fundamental roles in recruitment and population replenishment. Here, we used a 26-year time series (1987-2012) of fish monitoring in the Bay of Somme, a nursery in the Eastern English Channel (EEC), to examine the impacts of environmental and human drivers on the spatial and temporal dynamics of fish functional structure during a warming phase of the Atlantic Multidecadal Oscillation (AMO). We found that the nursery was initially dominated by fishes with r-selected life-history traits such as low trophic level, low age and size at maturity, and small offspring, which are highly sensitive to warming. The AMO, likely superimposed on climate change, induced rapid warming in the late 1990s (over 1°C from 1998 to 2003), leading to functional reorganization of fish communities, with a roughly 80% decline in overall fish abundance and increased dominance by K-selected fishes. Additionally, historical overfishing likely rendered the bay more vulnerable to climatic changes due to increased dominance by fishing-tolerant, yet climatically sensitive species. The drop in fish abundance not only altered fish functional structure within the Bay of Somme, but the EEC was likely impacted, as the EEC has been unable to recover from a regime shift in the late 1990s potentially, in part, due to failed replenishment from the bay. Given the collapse of r-selected fishes, we discuss how the combination of climate cycles and global warming could threaten marine fish nurseries worldwide, as nurseries are often dominated by r-selected species.
Collapse
Affiliation(s)
- Matthew J McLean
- IFREMER, Unité Halieutique de Manche et mer du Nord, Boulogne-sur-Mer, France
- MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier Cedex, France
| | - David Mouillot
- MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier Cedex, France
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland
| | - Nicolas Goascoz
- IFREMER, Laboratoire Ressources Halieutiques, Port-en-Bessin, France
| | - Ivan Schlaich
- IFREMER, Laboratoire Ressources Halieutiques, Port-en-Bessin, France
| | - Arnaud Auber
- IFREMER, Unité Halieutique de Manche et mer du Nord, Boulogne-sur-Mer, France
| |
Collapse
|
30
|
Cheung WWL, Jones MC, Reygondeau G, Frölicher TL. Opportunities for climate-risk reduction through effective fisheries management. GLOBAL CHANGE BIOLOGY 2018; 24:5149-5163. [PMID: 30141269 DOI: 10.1111/gcb.14390] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/19/2018] [Accepted: 06/26/2018] [Indexed: 05/16/2023]
Abstract
Risk of impact of marine fishes to fishing and climate change (including ocean acidification) depend on the species' ecological and biological characteristics, as well as their exposure to over-exploitation and climate hazards. These human-induced hazards should be considered concurrently in conservation risk assessment. In this study, we aim to examine the combined contributions of climate change and fishing to the risk of impacts of exploited fishes, and the scope for climate-risk reduction from fisheries management. We combine fuzzy logic expert system with species distribution modeling to assess the extinction risks of climate and fishing impacts of 825 exploited marine fish species across the global ocean. We compare our calculated risk index with extinction risk of marine species assessed by the International Union for Conservation of Nature (IUCN). Our results show that 60% (499 species) of the assessed species are projected to experience very high risk from both overfishing and climate change under a "business-as-usual" scenario (RCP 8.5 with current status of fisheries) by 2050. The risk index is significantly and positively related to level of IUCN extinction risk (ordinal logistic regression, p < 0.0001). Furthermore, the regression model predicts species with very high risk index would have at least one in five (>20%) chance of having high extinction risk in the next few decades (equivalent to the IUCN categories of vulnerable, endangered or critically endangered). Areas with more at-risk species to climate change are in tropical and subtropical oceans, while those that are at risk to fishing are distributed more broadly, with higher concentration of at-risk species in North Atlantic and South Pacific Ocean. The number of species with high extinction risk would decrease by 63% under the sustainable fisheries-low emission scenario relative to the "business-as-usual" scenario. This study highlights the substantial opportunities for climate-risk reduction through effective fisheries management.
Collapse
Affiliation(s)
- William W L Cheung
- Changing Ocean Research Unit, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Miranda C Jones
- Changing Ocean Research Unit, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Gabriel Reygondeau
- Changing Ocean Research Unit, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas L Frölicher
- Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| |
Collapse
|
31
|
Cisneros-Montemayor AM, Singh GG, Cheung WWL. A fuzzy logic expert system for evaluating policy progress towards sustainability goals. AMBIO 2018; 47:595-607. [PMID: 29249050 PMCID: PMC6072633 DOI: 10.1007/s13280-017-0998-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/03/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Evaluating progress towards environmental sustainability goals can be difficult due to a lack of measurable benchmarks and insufficient or uncertain data. Marine settings are particularly challenging, as stakeholders and objectives tend to be less well defined and ecosystem components have high natural variability and are difficult to observe directly. Fuzzy logic expert systems are useful analytical frameworks to evaluate such systems, and we develop such a model here to formally evaluate progress towards sustainability targets based on diverse sets of indicators. Evaluation criteria include recent (since policy enactment) and historical (from earliest known state) change, type of indicators (state, benefit, pressure, response), time span and spatial scope, and the suitability of an indicator in reflecting progress toward a specific objective. A key aspect of the framework is that all assumptions are transparent and modifiable to fit different social and ecological contexts. We test the method by evaluating progress towards four Aichi Biodiversity Targets in Canadian oceans, including quantitative progress scores, information gaps, and the sensitivity of results to model and data assumptions. For Canadian marine systems, national protection plans and biodiversity awareness show good progress, but species and ecosystem states overall do not show strong improvement. Well-defined goals are vital for successful policy implementation, as ambiguity allows for conflicting potential indicators, which in natural systems increases uncertainty in progress evaluations. Importantly, our framework can be easily adapted to assess progress towards policy goals with different themes, globally or in specific regions.
Collapse
Affiliation(s)
- Andrés M. Cisneros-Montemayor
- Institute for the Oceans and Fisheries, The University of British Columbia, 2202, Main Mall, Vancouver, BC V6T 1Z4 Canada
| | - Gerald G. Singh
- Institute for the Oceans and Fisheries, The University of British Columbia, 2202, Main Mall, Vancouver, BC V6T 1Z4 Canada
| | - William W. L. Cheung
- Institute for the Oceans and Fisheries, The University of British Columbia, 2202, Main Mall, Vancouver, BC V6T 1Z4 Canada
| |
Collapse
|