1
|
Chen Z, Gao P, Lu Y, Cui X, Peng F. Hydrogen peroxide-aged biochar mitigating greenhouse gas emissions during co-composting of swine manure with rice bran. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126255. [PMID: 40239939 DOI: 10.1016/j.envpol.2025.126255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/23/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Compared to fresh biochar, aged biochar has a more significant effect on mitigating greenhouse gas (GHG) emissions in farmland soil. However, there is a relative scarcity of research addressing this effect in aerobic composting. In this study, a co-composting of swine manure and rice bran (NBC), with the addition of fresh biochar (FBC) and hydrogen peroxide-aged biochar (ABC), was conducted to investigate the dynamic changes in physicochemical properties, microbial communities, GHG emissions and related functional genes during different periods. In comparison to NBC, FBC led to a 32 % decrease in total GHG emissions (CO2-equiv), including a 29 % reduction in CO2 emissions, a 45 % reduction in CH4 emissions, and a 35 % decrease in N2O emissions. Furthermore, ABC resulted in a 14 % decrease in GHG emission (CO2-equiv), comprising a 47 % reduction in CH4 emissions and a 23 % decrease in N2O emissions compared to FBC. These findings indicated that the addition of aged biochar has a more significant impact on GHG reduction during composting. Network analyses, Mantel tests and redundancy analyses suggested that the mechanism behind the lowest GHG emissions in ABC is the reduction of the relative abundance of fungi associated with CH4 emissions, along with the nirS and nirK genes associated with denitrification. This reduction is associated with the decreasing anaerobic zones resulting from the increased pore volume in biochar after aging. Overall, this study demonstrates that hydrogen peroxide aging enhances the GHG-reducing efficiency in biochar, and provides new insights into the development of GHG-reducing technologies in composting.
Collapse
Affiliation(s)
- Zixun Chen
- Hunan Cultivated Land and Agricultural Eco-Environment Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China
| | - Peng Gao
- Hunan Cultivated Land and Agricultural Eco-Environment Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China
| | - Yaoxiong Lu
- Hunan Cultivated Land and Agricultural Eco-Environment Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China
| | - Xinwei Cui
- Hunan Cultivated Land and Agricultural Eco-Environment Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China.
| | - Fuyuan Peng
- Hunan Cultivated Land and Agricultural Eco-Environment Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China.
| |
Collapse
|
2
|
Wan Q, Chen L, Xu J, Ma D, Li W, Zhang S, Li Y, Jin W, Zhang J. Interactions of nematodes and ammonia-oxidizing bacteria mediate nitrification in two contrasting soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125706. [PMID: 40382926 DOI: 10.1016/j.jenvman.2025.125706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/26/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
Ammonia oxidation, the first and rate-limiting step of nitrification, is essential for converting ammonium (NH4+) to nitrite (NO2-) in soil, and is a key process in nitrogen (N) cycling that supports crop growth in agroecosystems. Previous research has focused on the impacts of ammonia-oxidizing microbes on soil nitrification under agricultural management, but the influence of the interaction between microfauna, particularly nematodes, and ammonia-oxidizing microbes on soil nitrification remains unclear. In this study, we selected four rates of N applied to lime concretion black soil and fluvo-aquic soil and tested the effect of the interplay of nematodes with ammonia-oxidizing archaea (AOA) and bacteria (AOB) on the potential nitrification rate (PNR). The results demonstrated that the application of N to the fluvo-aquic soil led to an increase in the PNR, as well as a significant enhancement in the abundance of copies of the AOA and AOB amoA genes. However, no consistent outcomes were observed in the lime concretion black soil. The application of N increased the relative abundance of bacterivorous nematodes, particularly Chiloplacus, in the fluvo-aquic soil, but it decreased their relative abundance in the lime concretion black soil. A co-occurrence network analysis indicated that the AOB nodes accounted for a higher proportion in the network and had more potential associations with bacterivorous nematodes in the fluvo-aquic soil. The partial least-squares path model suggests that bacterivorous nematodes positively regulated the AOB and further influenced the PNR in the fluvo-aquic soil. These results provide novel insights into our understanding of the processes of soil nitrification, as well as the interactions between soil microorganisms and nematodes.
Collapse
Affiliation(s)
- Qing Wan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lin Chen
- Fengqiu Experimental Station of National Ecosystem Research Network of China, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Donghao Ma
- Fengqiu Experimental Station of National Ecosystem Research Network of China, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China
| | - Wei Li
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Shixiu Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130012, China
| | - Yong Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weiwei Jin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiabao Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Fengqiu Experimental Station of National Ecosystem Research Network of China, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China.
| |
Collapse
|
3
|
Hiraoka S, Ijichi M, Takeshima H, Kumagai Y, Yang C, Makabe‐Kobayashi Y, Fukuda H, Yoshizawa S, Iwasaki W, Kogure K, Shiozaki T. Probe Capture Enrichment Sequencing of amoA Genes Improves the Detection of Diverse Ammonia-Oxidising Archaeal and Bacterial Populations. Mol Ecol Resour 2025; 25:e14042. [PMID: 39552505 PMCID: PMC11887609 DOI: 10.1111/1755-0998.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/18/2024] [Accepted: 10/01/2024] [Indexed: 11/19/2024]
Abstract
The ammonia monooxygenase subunit A (amoA) gene has been used to investigate the phylogenetic diversity, spatial distribution and activity of ammonia-oxidising archaeal (AOA) and bacterial (AOB), which contribute significantly to the nitrogen cycle in various ecosystems. Amplicon sequencing of amoA is a widely used method; however, it produces inaccurate results owing to the lack of a 'universal' primer set. Moreover, currently available primer sets suffer from amplification biases, which can lead to severe misinterpretation. Although shotgun metagenomic and metatranscriptomic analyses are alternative approaches without amplification bias, the low abundance of target genes in heterogeneous environmental DNA restricts a comprehensive analysis to a realisable sequencing depth. In this study, we developed a probe set and bioinformatics workflow for amoA enrichment sequencing using a hybridisation capture technique. Using metagenomic mock community samples, our approach effectively enriched amoA genes with low compositional changes, outperforming amplification and meta-omics sequencing analyses. Following the analysis of metatranscriptomic marine samples, we predicted 80 operational taxonomic units (OTUs) assigned to either AOA or AOB, of which 30 OTUs were unidentified using simple metatranscriptomic or amoA gene amplicon sequencing. Mapped read ratios to all the detected OTUs were significantly higher for the capture samples (50.4 ± 27.2%) than for non-capture samples (0.05 ± 0.02%), demonstrating the high enrichment efficiency of the method. The analysis also revealed the spatial diversity of AOA ecotypes with high sensitivity and phylogenetic resolution, which are difficult to examine using conventional approaches.
Collapse
Affiliation(s)
- Satoshi Hiraoka
- Research Center for Bioscience and Nanoscience (CeBN)Japan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaKanagawaJapan
| | - Minoru Ijichi
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Hirohiko Takeshima
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Yohei Kumagai
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Ching‐Chia Yang
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | | | - Hideki Fukuda
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Wataru Iwasaki
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
- Department of Integrated Biosciences, Graduate School of Frontier SciencesThe University of TokyoKashiwaChibaJapan
| | - Kazuhiro Kogure
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Takuhei Shiozaki
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| |
Collapse
|
4
|
Chen Z, Zhang N, Li Y, Xu S, Liu Y, Miao S, Ding W. Extreme Rainfall Amplified the Stimulatory Effects of Soil Carbon Availability on N 2O Emissions. GLOBAL CHANGE BIOLOGY 2025; 31:e70164. [PMID: 40183536 DOI: 10.1111/gcb.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025]
Abstract
Ongoing climate change is predicted to increase the frequency and intensity of extreme rainfall, which will dramatically alter soil nitrous oxide (N2O) emissions, especially changes in soil organic carbon (SOC) due to anthropogenic management. However, our ability to predict this effect is limited owing to a dearth of research. Therefore, we selected two croplands in Northeast China with the same quantity but contrasting availability of SOC to explore the in situ dynamics of N2O fluxes and N-cycling microbes through 2-year field experiment and N2O production pathways by laboratory 15N-tracing experiment. In a normal rainfall year, the croplands with high (HCA) and low (LCA) SOC availability emitted 0.66 and 0.25 kg N2O-N ha-1 without N-fertilization and 2.03 and 1.51 kg N2O-N ha-1 with N-fertilization, respectively. In a record-breaking wet year, multiple heavy rainfall events caused water supersaturation in the low-lying HCA cropland over 2 months. Consequently, the background N2O emissions increased by 508% compared with the normal rainfall year, and the N-induced N2O emission factor increased from 0.77% to 2.24%. Soil dissolved organic carbon (DOC) was identified as the primary driver of larger N2O fluxes from HCA cropland which facilitated denitrification by fueling nirS- and nirK-denitrifiers metabolism. Furthermore, a greater N substrate supply via a faster mineralization-nitrification coupling process promoted the contribution of autotrophic nitrification to N2O in HCA cropland. The N2O pulses from HCA soils during the waterlogging period were derived from stimulated denitrification, which dominated N2O production (> 90%). Simultaneously, C availability enhanced and nitrate was produced via archaeal nitrification, leading to an increased nirS/nosZII ratio that fostered N2O production through incomplete denitrification. Overall, our findings highlight the importance of avoiding the amendment of exogenous organic materials with high C lability, particularly under climate extremes, to eliminate the potential positive feedback of SOC management on climate change by inducing N2O emissions.
Collapse
Affiliation(s)
- Zengming Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Nan Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Ye Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Shiqi Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yulian Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Shujie Miao
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Weixin Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
5
|
Storch LC, Schulz K, Kraft JM, Prochnow A, Ruess L, Trost B, Theuerl S. Irrigation System, Rather than Nitrogen Fertilizer Application, Affects the Quantities of Functional Genes Related to N 2O Production in Potato Cropping. Microorganisms 2025; 13:741. [PMID: 40284578 PMCID: PMC12029621 DOI: 10.3390/microorganisms13040741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
The spatial and temporal distribution of water and nitrogen supply affects soil-borne nitrous oxide (N2O) emissions. In this study, the effects of different irrigation technologies (no irrigation, sprinkler irrigation and drip irrigation) and nitrogen (N) application types (no fertilizer, broadcasted and within irrigation water) on N2O flux rates and the quantities of functional genes involved in the N cycle in potato cropping were investigated over an entire season. The volume of irrigation water affected microbial N2O production, with the highest N2O flux rates found under sprinkler irrigation conditions, followed by drip and no irrigation. Nitrifier denitrification was identified as the potential pre-dominant pathway stimulated by fluctuations in aerobic-anaerobic soil conditions, especially under sprinkler irrigation. Regarding the different N application types, increased N use efficiency under fertigation was expected. However, N2O flux rates were not significantly reduced compared to broadcasted N application under drip irrigation. On average, the N2O fluxes were higher during the first half of the season, which was accompanied by a low N use efficiency of the potato crops. Potato crops mainly require N at later growth stages. Due to the different water and nutrient demand of potatoes, an adjusted application of fertilizer and water based on crop demand could reduce N2O emissions.
Collapse
Affiliation(s)
- Laura Charlotte Storch
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany (S.T.)
| | - Katharina Schulz
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany (S.T.)
| | - Jana Marie Kraft
- Institute of Biology, Ecology Group, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany (L.R.)
| | - Annette Prochnow
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany (S.T.)
- Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Hinter der Reinhardtstr. 6–8, 10115 Berlin, Germany
| | - Liliane Ruess
- Institute of Biology, Ecology Group, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany (L.R.)
| | - Benjamin Trost
- Field Research Station Marquardt, Leibniz Institute for Agricultural Engineering and Bioeconomy, 14469 Potsdam, Germany
| | - Susanne Theuerl
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany (S.T.)
| |
Collapse
|
6
|
Seto M, Sasaki R, Ooka H, Nakamura R. Thermodynamics Underpinning the Microbial Community-Level Nitrogen Energy Metabolism. Environ Microbiol 2025; 27:e70055. [PMID: 39956108 PMCID: PMC11830459 DOI: 10.1111/1462-2920.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/29/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025]
Abstract
Nitrogen compounds often serve as crucial electron donors and acceptors in microbial energy metabolism, playing a key role in biogeochemical cycles. The energetic favorability of nitrogen oxidation-reduction (redox) reactions, driven by the thermodynamic properties of these compounds, may have shaped the evolution of microbial energy metabolism, though the extent of their influence remains unclear. This study quantitatively evaluated the similarity between energetically superior nitrogen reactions, identified from 988 theoretically plausible reactions, and the nitrogen community-level network, reconstructed as a combination of enzymatic reactions representing intracellular to interspecies-level reaction interactions. Our analysis revealed significant link overlap rates between these networks. Notably, composite enzymatic reactions aligned more closely with energetically superior reactions than individual enzymatic reactions. These findings suggest that selective pressure from the energetic favorability of redox reactions can operate primarily at the species or community level, underscoring the critical role of thermodynamics in shaping microbial metabolic networks and ecosystem functioning.
Collapse
Affiliation(s)
- Mayumi Seto
- Department of Chemistry, Biology, and Environmental SciencesNara Women's UniversityNaraJapan
| | - Risa Sasaki
- Department of Chemistry, Biology, and Environmental SciencesNara Women's UniversityNaraJapan
| | - Hideshi Ooka
- Biofunctional Catalyst Research TeamRIKEN Center for Sustainable Resource ScienceWakoSaitamaJapan
| | - Ryuhei Nakamura
- Biofunctional Catalyst Research TeamRIKEN Center for Sustainable Resource ScienceWakoSaitamaJapan
- Earth‐Life Science Institute (ELSI)Institute of Science TokyoTokyoJapan
| |
Collapse
|
7
|
Midot F, Goh KM, Liew KJ, Lau SYL, Espenberg M, Mander Ü, Melling L. Temporal dynamics of soil microbial C and N cycles with GHG fluxes in the transition from tropical peatland forest to oil palm plantation. Appl Environ Microbiol 2025; 91:e0198624. [PMID: 39714193 PMCID: PMC11784229 DOI: 10.1128/aem.01986-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/29/2024] [Indexed: 12/24/2024] Open
Abstract
Tropical peatlands significantly influence local and global carbon and nitrogen cycles, yet they face growing pressure from anthropogenic activities. Land use changes, such as peatland forests conversion to oil palm plantations, affect the soil microbiome and greenhouse gas (GHG) emissions. However, the temporal dynamics of microbial community changes and their role as GHG indicators are not well understood. This study examines the dynamics of peat chemistry, soil microbial communities, and GHG emissions from 2016 to 2020 in a logged-over secondary peat swamp forest in Sarawak, Malaysia, which transitioned to an oil palm plantation. This study focuses on changes in genetic composition governing plant litter degradation, methane (CH4), and nitrous oxide (N2O) fluxes. Soil CO2 emission increased (doubling from approximately 200 mg C m-2 h-1), while CH4 emissions decreased (from 200 µg C m-2 h-1 to slightly negative) following land use changes. The N2O emissions in the oil palm plantation reached approximately 1,510 µg N m-2 h-1, significantly higher than previous land uses. The CH4 fluxes were driven by groundwater table, humification levels, and C:N ratio, with Methanomicrobia populations dominating methanogenesis and Methylocystis as the main CH4 oxidizer. The N2O fluxes correlated with groundwater table, total nitrogen, and C:N ratio with dominant nirK-type denitrifiers (13-fold nir to nosZ) and a minor role by nitrification (a threefold increase in amoA) in the plantation. Proteobacteria and Acidobacteria encoding incomplete denitrification genes potentially impact N2O emissions. These findings highlighted complex interactions between microbial communities and environmental factors influencing GHG fluxes in altered tropical peatland ecosystems.IMPORTANCETropical peatlands are carbon-rich environments that release significant amounts of greenhouse gases when drained or disturbed. This study assesses the impact of land use change on a secondary tropical peat swamp forest site converted into an oil palm plantation. The transformation lowered groundwater levels and changed soil properties. Consequently, the oil palm plantation site released higher carbon dioxide and nitrous oxide compared to previous land uses. As microbial communities play crucial roles in carbon and nitrogen cycles, this study identified environmental factors associated with microbial diversity, including genes and specific microbial groups related to nitrous oxide and methane emissions. Understanding the factors driving microbial composition shifts and greenhouse gas emissions in tropical peatlands provides baseline information to potentially mitigate environmental consequences of land use change, leading to a broader impact on climate change mitigation efforts and proper land management practices.
Collapse
Affiliation(s)
- Frazer Midot
- Sarawak Tropical Peat Research Institute, Kota Samarahan, Sarawak, Malaysia
- Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Kok Jun Liew
- Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Sharon Yu Ling Lau
- Sarawak Tropical Peat Research Institute, Kota Samarahan, Sarawak, Malaysia
| | - Mikk Espenberg
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Ülo Mander
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Lulie Melling
- Sarawak Tropical Peat Research Institute, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
8
|
Liu Y, Chen Y, Penttinen P, Chen X, Duan P, Fan F, Xiong W, Liu M, Tang X, Peng D, Xu K. Both AOA and AOB contribute to nitrification and show linear correlation with nitrate leaching in purple soils with a wide nitrogen gradient. ENVIRONMENTAL RESEARCH 2025; 264:120403. [PMID: 39577732 DOI: 10.1016/j.envres.2024.120403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Ammonia oxidizers play an important role in nitrification that forms nitrate, the main form of leaching nitrogen (N). However, little is known about how ammonia oxidizers bridge long-term N fertilization levels and soil nitrate leaching. We conducted a field experiment in purple soil, investigating the interactions among soil physico-chemical parameters, ammonia-oxidizing microbial communities, and N leaching under 0, 90, 180, 270, and 360 kg N ha-1 yr-1 fertilization levels. We found that soil inorganic N leaching increased exponentially with increasing N application rate. N fertilization enhanced the abundances of the amoA gene in ammonia-oxidizing archaea (AOA) and bacteria (AOB), while partial least squares regression analysis revealed that AOA and AOB abundances were correlated with pH and soil organic carbon (SOC). Compared with no N fertilization, N application reduced AOA alpha diversity and increased AOB alpha diversity. AOA alpha diversity was associated with pH and bulk density, whereas soil SOC and inorganic N content were more important in predicting changes in AOB alpha diversity. A linear relationship was established between soil NO3--N leaching, the potential nitrification rate (PNR), and the abundances of AOA and AOB. The association of soil NO3--N leaching and PNR with both AOA and AOB abundances were further corroborated by Mantel test, random forest regression, and partial least squares path modelling. Furthermore, alterations in the AOB alpha diversity, soil pH and NH4+-N content also contribute to the increasing soil NO3--N leaching along the N application rate. Our results suggest that AOA, which previous studies have found to be active only under low N conditions, can also contribute to nitrification and support soil NO3--N leaching at a wide range of N gradients. Overall, this finding advances the current understanding of the relationship between soil N leaching and microbial functional properties to some extent.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanxue Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaohui Chen
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Pengpeng Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Fenliang Fan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiyi Xiong
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Mingpeng Liu
- Pingshan County Agriculture and Rural Bureau, Yibin, 644000, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dandan Peng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kaiwei Xu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
9
|
Bai Y, Du Y, Xiong Y, Deng Y, Gan Y, Li Q. Integrated impacts of mariculture on nitrogen cycling processes in the coastal groundwater of Beihai, southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177622. [PMID: 39566628 DOI: 10.1016/j.scitotenv.2024.177622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/09/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Groundwater nitrogen (N) contamination in coastal zones is becoming an increasingly serious global issue. Mariculture, as a major anthropogenic activity, has profound impacts on coastal groundwater and constitutes an important source of coastal N contamination. However, a comprehensive understanding of the impact of mariculture on N cycling (especially N removal) is still lacking. Taking the Daguansha mariculture region in southern China as the study area, we aimed to investigate the environmental impact of mariculture on coastal groundwater and identify N cycling processes influenced by mariculture using hydrogeochemistry, multiple isotopes, coupled with 16S rRNA gene sequencing, and the quantitative polymerase chain reaction (qPCR) experiments. The results showed that the combined effects of seawater intrusion and seepage from land-based mariculture ponds have led to localized groundwater salinization in the region. Meanwhile, mariculture promotes nitrification and anammox processes in groundwater. The dominance of ammonia-oxidizing and anammox bacteria in the upper aquifer is attributable to local salinization, N and organic carbon input, as well as anoxic to suboxic conditions induced by seepage from aquaculture ponds. In addition, the gene abundances of ammonia oxidation (dominated by AOA) and denitrification were positively correlated, indicating their cooperative interaction. This study provides deeper insight into N cycling in coastal groundwater systems affected by extensive mariculture.
Collapse
Affiliation(s)
- Yuxi Bai
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Yao Du
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Yaojin Xiong
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Yamin Deng
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China; Wuhan Center, China Geological Survey (Central South China Innovation Center for Geosciences), Wuhan 430205, China
| | - Yiqun Gan
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Qinghua Li
- Wuhan Center, China Geological Survey (Central South China Innovation Center for Geosciences), Wuhan 430205, China.
| |
Collapse
|
10
|
Kou B, Huo L, Cao M, Hui K, Tan W, Yuan Y, Jiang Y. New insights into the stages of cadmium remediation in ryegrass enhanced by kitchen compost-derived dissolved organic matter: Activation, absorption, and storage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177138. [PMID: 39490827 DOI: 10.1016/j.scitotenv.2024.177138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/05/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Dissolved organic matter (DOM) regulates plant behavior in both agricultural and environmental fields. However, the regulatory mechanisms by which DOM influences soil-plant system interactions during the phytoremediation of Cd-contaminated soils remain unclear. Therefore, this study investigated the enhanced effect of kitchen compost-derived DOM on the Cd remediation capability of ryegrass across three phases of phytoremediation. The main pathways and mechanisms of DOM-assisted phytoremediation were identified through the analysis of changes in soil microbial communities and metabolism functions. The results revealed that DOM increased the bioavailability of soil Cd and significantly enhanced the Cd enrichment capacity of ryegrass, regardless of the application rate. The application of 20 % DOM to soil with a 20 mg/kg Cd content increased the bioconcentration factors of ryegrass roots and shoots by up to 38.19 and 11.08 times, respectively, compared with the control group. The direct or indirect optimizing effects of DOM on Cd fraction transformation, microbial communities, and their metabolism functions significantly enhanced the Cd enrichment capacity of ryegrass. Notably, DOM exhibited dual effects on ryegrass growth, mainly influenced by changes in soil physicochemical properties, optimization of microbial communities, and alterations in nitrogen metabolic functions. Additionally, the Cd reserves in ryegrass, which serve as a vital indicator of phytoremediation, exhibited a positive response to DOM. This study provides insights into the various reinforcing roles of kitchen compost-derived DOM in Cd-contaminated soil phytoremediation. These findings support the development of effective agronomic strategies for precise Cd regulation.
Collapse
Affiliation(s)
- Bing Kou
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Lin Huo
- Swiss Federal Institute of Technology (ETH) Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Minyi Cao
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
11
|
Sun H, Li Y, Xing Y, Bodington D, Huang X, Ding C, Ge T, Di H, Xu J, Gubry-Rangin C, Li Y. Organic fertilizer significantly mitigates N 2O emissions while increase contributed of comammox Nitrospira in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176578. [PMID: 39343392 DOI: 10.1016/j.scitotenv.2024.176578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/04/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Nitrification is the dominant process for nitrous oxide (N2O) production under aerobic conditions, but the relative contribution of the autotrophic nitrifiers (the ammonia-oxidising archaea (AOA), the ammonia-oxidising bacteria (AOB) and the comammox) to this process is still unclear in some soil types. This is particularly the case in paddy soils under different fertilization regimes. We investigated active nitrifiers and their contribution to nitrification and N2O production in a range of unfertilized and fertilized paddy soils, using 13CO2-DNA based stable isotope probing (SIP) technique combined with a series of specific nitrification inhibitors, including acetylene (C2H2), 3, 4-dimethylpyrazole phosphate (DMPP) and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO). The soils had a long-term history of fertilizer application, including chemical fertilizer only, a mixture of chemical fertilizers (70 %) and chicken manure (30 %) or a mixture of rice straw and chemical fertilizers. 13CO2-DNA-SIP and Illumina MiSeq sequencing demonstrated that comammox clades A.1 and B were active nitrifiers in all fertilized paddy soils. Inhibitor experiment showed that AOB largely contributed to nitrification activity and N2O emission in all paddy soils, while comammox contribution was more significant than AOA. Fertilization considerably altered nitrifiers' relative contribution to nitrification activity and N2O emissions. Applying organic fertilizers significantly decreased the N2O emissions but increased the contribution of comammox to the process. These findings expand the functional ecological niche of comammox, revealing their nitrification role and N2O production in other ecosystems than oligotrophic habitats.
Collapse
Affiliation(s)
- Han Sun
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Youfa Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yating Xing
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dylan Bodington
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenxiao Ding
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hongjie Di
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cécile Gubry-Rangin
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Issifu S, Acharya P, Kaur-Bhambra J, Gubry-Rangin C, Rasche F. Biological Nitrification Inhibitors with Antagonistic and Synergistic Effects on Growth of Ammonia Oxidisers and Soil Nitrification. MICROBIAL ECOLOGY 2024; 87:143. [PMID: 39567372 PMCID: PMC11579066 DOI: 10.1007/s00248-024-02456-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Biological nitrification inhibition (BNI) refers to the plant-mediated process in which nitrification is inhibited through rhizospheric release of diverse metabolites. While it has been assumed that interactive effects of these metabolites shape rhizosphere processes, including BNI, there is scant evidence supporting this claim. Hence, it was a primary objective to assess the interactive effects of selected metabolites, including caffeic acid (CA), vanillic acid (VA), vanillin (VAN), syringic acid (SA), and phenylalanine (PHE), applied as single and combined compounds, against pure cultures of various ammonia-oxidising bacteria (AOB, Nitrosomonas europaea, Nitrosospira multiformis, Nitrosospira tenuis, Nitrosospira briensis) and archaea (AOA, Nitrososphaera viennensis), as well as soil nitrification. Additionally, benzoic acid (BA) was examined as a novel biological nitrification inhibitor. All metabolites, except SA, tested as single compounds, achieved varied levels of inhibition of microbial growth, with CA exhibiting the highest inhibitory potential. Similarly, all metabolites applied as single compounds, except PHE, inhibited soil nitrification by up to 62%, with BA being the most potent. Inhibition of tested nitrifying microbes was also observed when compounds were assessed in combination. The combinations VA + PH, VA + CA, and VA + VAN exhibited synergism against N. tenuis and N. briensis, while others showed antagonism against N. europaea, N. multiformis, and N. viennensis. Although all combinations suppressed soil nitrification, their interactions against soil nitrification revealed antagonism. Our findings indicate that both antagonism and synergism are possible in rhizospheric interactions involving BNI metabolites, resulting in growth inhibition of nitrifiers and suppression of soil nitrification.
Collapse
Affiliation(s)
- Sulemana Issifu
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Garbenstr. 13, 70599, Stuttgart, Germany
| | - Prashamsha Acharya
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Garbenstr. 13, 70599, Stuttgart, Germany
| | - Jasmeet Kaur-Bhambra
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, Room 1.13, St Machar Drive, Aberdeen, AB24 3UU, Scotland
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Cecile Gubry-Rangin
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, Room 1.13, St Machar Drive, Aberdeen, AB24 3UU, Scotland.
| | - Frank Rasche
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Garbenstr. 13, 70599, Stuttgart, Germany.
- International Institute of Tropical Agriculture (IITA), P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
13
|
Liu R, Chang D, Zhou G, Liang H, Zhang J, Chai Q, Cao W. Green manuring combined with zeolite reduced nitrous oxide emissions in maize field by targeting microbial nitrogen transformations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175382. [PMID: 39127210 DOI: 10.1016/j.scitotenv.2024.175382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Green manure is a crucial strategy for increasing cereal yield and mitigating environmental burden while reducing chemical N fertilizer. To effectively tackle climate change, finding ways to reduce nitrous oxide (N2O) emissions from green manuring systems is vital. Herein, field and 15N labeled microcosm experiments were arranged to investigate the effect and mechanisms of green manuring and zeolite application on N2O emission. Both experiments comprised four treatments: conventional chemical N (N100), 70 % chemical N (N70), N70 with green manure (N70 + CV), and N70 + CV combined with zeolite (N70 + CV + Z). Compared with N100, both N70 + CV and N70 + CV + Z maintained maize yield, cumulative N2O emissions decreased by 37.7 % and 34.9 % in N70 + CV + Z in 2022-yr and 2023-yr, and by 12.8 % in N70 + CV in 2022-yr. Moreover, the reduction of N2O emission primarily occurred after incorporating green manure. The N100 and N70 + CV demonstrated a similar transformed proportion of chemical N to N2O (i.e., 4.9 % and 4.7 %) while reducing it to 2.7 % in N70 + CV + Z. Additionally, a mere 0.7 % of green manure N was transformed to N2O in both N70 + CV and N70 + CV + Z treatments. Compared with N100, both N70 + CV and N70 + CV + Z decreased the relative abundances of ammonia oxidation microbes, increased denitrifier and the ratios of (nirK + nirS)/nosZ and norBC/nosZ. Furthermore, compared with N70 + CV, N70 + CV + Z decreased the relative abundances of N2O-producer and the ratios of (nirK + nirS)/nosZ and norBC/nosZ in denitrification. These findings revealed that the reduction of N2O emissions resulting from green manure replaced chemical N was mainly due to weakened nitrification, while zeolite reduced N2O emissions attributed to enhanced conversion of N2O to N2. Moreover, certain key N-cycling functional bacteria, such as Phycisphaerae, Rubrobacteria, and Thermoflexia, were positively correlated with N2O emission. In contrast, Dehalococcoidia, Gammaproteobacteria, and Betaproteobacteria were negatively correlated with N2O emission. This investigation uncovered the underlying mechanisms for effectively reducing N2O emissions through green manuring combined with zeolite.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Danna Chang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guopeng Zhou
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Hao Liang
- College of Geography and Remote Sensing, Hohai University, Nanjing 210024, China
| | - Jiudong Zhang
- Soil and Fertilizer and Water-saving Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Qiang Chai
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Weidong Cao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
14
|
Yao L, Wu C, Jiang B, Wu M, Shao X, Li N. Thinning alters nitrogen transformation processes in subtropical forest soil: Key roles of physicochemical properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175086. [PMID: 39074748 DOI: 10.1016/j.scitotenv.2024.175086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
Thinning-a widely used forest management practice-can significantly influence soil nitrogen (N) cycling processes in subtropical forests. However, the effects of different thinning intensities on nitrification, denitrification, and their relationships with soil properties and microbial communities remain poorly understood. Here, we conducted a study in a subtropical forest in China and applied three thinning treatments, i.e., no thinning (0 %), intermediate thinning (10-15 %), and heavy thinning (20-25 %), and investigated the effects of thinning intensity on the potential nitrification rate (PNR), potential denitrification rate (PDR), and microbial communities. Moreover, we explored the relationships among soil physicochemical properties, microbial community structure, and nitrogen transformation rates under different thinning intensities. Our results showed that intermediate and heavy thinning significantly increased the PNR by 87 % and 61 % and decreased the PDR by 31 % and 50 % compared to that of the control, respectively. Although the bacterial community structure was markedly influenced by thinning, the fungal community structure remained stable. Importantly, changes in microbial community composition and diversity had minimal impacts on the nitrogen transformation processes, whereas soil physicochemical properties, such as pH, organic carbon content, and nitrogen forms, were identified as the primary drivers. These findings highlight the critical role of managing soil physicochemical properties to regulate nitrogen transformations in forest soils. Effective forest management should focus on precisely adjusting the thinning intensity to enhance the soil physicochemical conditions, thereby promoting more efficient nitrogen cycling and improving forest ecosystem health in subtropical regions.
Collapse
Affiliation(s)
- Liangjin Yao
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Chuping Wu
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Bo Jiang
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Ming Wu
- Wetland Ecosystem Research Station of Hangzhou Bay, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xuexin Shao
- Wetland Ecosystem Research Station of Hangzhou Bay, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Niu Li
- Wetland Ecosystem Research Station of Hangzhou Bay, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| |
Collapse
|
15
|
Lori M, Kundel D, Mäder P, Singh A, Patel D, Sisodia BS, Riar A, Krause HM. Organic farming systems improve soil quality and shape microbial communities across a cotton-based crop rotation in an Indian Vertisol. FEMS Microbiol Ecol 2024; 100:fiae127. [PMID: 39289000 PMCID: PMC11503945 DOI: 10.1093/femsec/fiae127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024] Open
Abstract
The adverse effects of intensified cropland practices on soil quality and biodiversity become especially evident in India, where nearly 60% of land is dedicated to cultivation and almost 30% of soil is already degraded. Intensive agricultural practice significantly contributes to soil degradation, highlighting the crucial need for effective countermeasures to support sustainable development goals. A long-term experiment, established in the semi-arid Nimar Valley (India) in 2007, monitors the effect of organic and conventional management on the plant-soil system in a Vertisol. The focus of our study was to assess how organic and conventional farming systems affect biological and chemical soil quality indicators. Additionally, we followed the community structure of the soil microbiome throughout the vegetation phase under soya or cotton cultivation in the year 2019. We found that organic farming enhanced soil organic carbon and nitrogen content, increased microbial abundance and activity, and fostered distinct microbial communities associated with traits in nutrient mineralization. In contrast, conventional farming enhanced the abundance of bacteria involved in ammonium oxidation suggesting high nitrification and subsequent nitrogen losses with regular mineral fertilization. Our findings underscore the value of adopting organic farming approaches in semi-arid subtropical regions to rectify soil quality and minimize nitrogen losses.
Collapse
Affiliation(s)
- Martina Lori
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | - Dominika Kundel
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | - Paul Mäder
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | - Akanksha Singh
- Department of International Cooperation, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | | | | | - Amritbir Riar
- Department of International Cooperation, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | - Hans-Martin Krause
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| |
Collapse
|
16
|
Cholet F, Agogué H, Ijaz UZ, Lachaussée N, Pineau P, Smith CJ. Low-abundant but highly transcriptionally active uncharacterised Nitrosomonas drive ammonia-oxidation in the Brouage mudflat, France. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174312. [PMID: 38936706 DOI: 10.1016/j.scitotenv.2024.174312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Exploring differences in nitrification within adjacent sedimentary structures of ridges and runnels on the Brouage mudflat, France, we quantified Potential Nitrification Rates (PNR) alongside amoA genes and transcripts. PNR was lower in ridges (≈1.7 fold-lower) than runnels, despite higher (≈1.8 fold-higher) ammonia-oxidizing bacteria (AOB) abundance. However, AOB were more transcriptionally active in runnels (≈1.9 fold-higher). Sequencing of amoA genes and transcripts revealed starkly contrasting profiles with transcripts from ridges and runnels dominated (≈91 % in ridges and ≈98 % in runnels) by low abundant (≈4.6 % of the DNA community in runnels and ≈0.8 % in ridges) but highly active phylotypes. The higher PNR in runnels was explained by higher abundance of this group, an uncharacterised Nitrosomonas sp. cluster. This cluster is phylogenetically similar to other active ammonia-oxidizers with worldwide distribution in coastal environments indicating its potential, but previously overlooked, contribution to ammonia oxidation globally. In contrast DNA profiles were dominated by highly abundant but low-activity clusters phylogenetically distinct from known Nitrosomonas (Nm) and Nitrosospira (Ns). This cluster is also globally distributed in coastal sediments, primarily detected as DNA, and often classified as Nitrosospira or Nitrosomonas. We therefore propose to classify this cluster as Ns/Nm. Our work indicates that low abundant but highly active AOB could be responsible for the nitrification globally, while the abundant AOB Ns/Nm may not be transcriptionally active, and as such account for the lack of correlation between rate processes and gene abundances often reported in the literature. It also raises the question as to what this seemingly inactive group is doing?
Collapse
Affiliation(s)
- Fabien Cholet
- Advanced Research Centre, Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, 11 Chapel Lane G11 6EW, Glasgow, UK..
| | - Hélène Agogué
- LIENSs, UMR 7266, CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Umer Z Ijaz
- Advanced Research Centre, Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, 11 Chapel Lane G11 6EW, Glasgow, UK
| | - Nicolas Lachaussée
- LIENSs, UMR 7266, CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Philippe Pineau
- LIENSs, UMR 7266, CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Cindy J Smith
- Advanced Research Centre, Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, 11 Chapel Lane G11 6EW, Glasgow, UK
| |
Collapse
|
17
|
Li Y, Chen J, Lin Y, Zhong C, Jing H, Liu H. Thaumarchaeota from deep-sea methane seeps provide novel insights into their evolutionary history and ecological implications. MICROBIOME 2024; 12:197. [PMID: 39385283 PMCID: PMC11463064 DOI: 10.1186/s40168-024-01912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/19/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota mediate the rate-limiting step of nitrification and remove the ammonia that inhibits the aerobic metabolism of methanotrophs. However, the AOA that inhabit deep-sea methane-seep surface sediments (DMS) are rarely studied. Here, we used global DMS metagenomics and metagenome-assembled genomes (MAGs) to investigate the metabolic activity, evolutionary history, and ecological contributions of AOA. Expression of AOA-specific ammonia-oxidizing gene (amoA) was examined in the sediments collected from the South China Sea (SCS) to identify their active ammonia metabolism in the DMS. RESULTS Our analysis indicated that AOA contribute > 75% to the composition of ammonia-utilization genes within the surface layers (above 30 cm) of global DMS. The AOA-specific ammonia-oxidizing gene was actively expressed in the DMS collected from the SCS. Phylogenomic analysis of medium-/high-quality MAGs from 18 DMS-AOA indicated that they evolved from ancestors in the barren deep-sea sediment and then expanded from the DMS to shallow water forming an amoA-NP-gamma clade-affiliated lineage. Molecular dating suggests that the DMS-AOA origination coincided with the Neoproterozoic oxidation event (NOE), which occurred ~ 800 million years ago (mya), and their expansion to shallow water coincided with the Sturtian glaciation (~ 713 mya). Comparative genomic analysis suggests that DMS-AOA exhibit higher requirement of carbon source for protein synthesis with enhanced genomic capability for osmotic regulation, motility, chemotaxis, and utilization of exogenous organic compounds, suggesting it could be more heterotrophic compared with other lineages. CONCLUSION Our findings provide new insights into the evolutionary history of AOA within the Thaumarchaeota, highlighting their critical roles in nitrogen cycling in the global DMS ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Yingdong Li
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jiawei Chen
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yanxun Lin
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Cheng Zhong
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Hongbin Liu
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| |
Collapse
|
18
|
Wang D, Zhang J, Han W, Wu P, Deng L, Wang W. Ammonia oxidizing bacteria (AOB) denitrification and bacterial denitrification as the main culprit of high N 2O emission in SBR with low C/N ratio wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122357. [PMID: 39232327 DOI: 10.1016/j.jenvman.2024.122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/11/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
A large amount of greenhouse gas nitrous oxide (N2O) will be produced during the biological nitrogen removal process for organic wastewater of low C/N ratio. One of the effective methods to solve this problem is to incorporate inexpensive carbon source. In this study, raw wastewater (RW) from pig farm, that was not anaerobically digested, was utilized as exogenous carbon in both A/O and SBR aerobic reactor to treat liquid digestate with high ammonia nitrogen and low C/N ratio. The results showed that N2O emission in SBR was higher than that of A/O process under the same nitrogen load. The N2O conversion in the biological nitrogen removal process was investigated by the strategy of integrating stable isotope method and metagenomics. The δO18-N2O, δN15-N2O, and SP values of the SBR were closer to the denitrification values of Ammonia-Oxidizing Bacteria (AOB) than those of A/O. The abundance of AOB in the SBR reactor was higher than that in the A/O reactor, while the abundance of denitrifying bacteria was lower. The amoA/B/C gene abundance in the SBR was greater than that in the A/O, and the NOS gene abundance was the opposite. The results indicated that both AOB denitrification and bacterial denitrification led to the increase of N2O emissions of the SBR.
Collapse
Affiliation(s)
- Dongxu Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China
| | - Jingni Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China
| | - Wenkai Han
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China
| | - Peike Wu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China
| | - Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China.
| |
Collapse
|
19
|
Hernández-Magaña E, Kraft B. Nitrous oxide production and consumption by marine ammonia-oxidizing archaea under oxygen depletion. Front Microbiol 2024; 15:1410251. [PMID: 39296305 PMCID: PMC11408285 DOI: 10.3389/fmicb.2024.1410251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024] Open
Abstract
Ammonia-oxidizing archaea (AOA) are key players in the nitrogen cycle and among the most abundant microorganisms in the ocean, thriving even in oxygen-depleted ecosystems. AOA produce the greenhouse gas nitrous oxide (N2O) as a byproduct of ammonia oxidation. Additionally, the recent discovery of a nitric oxide dismutation pathway in the AOA isolate Nitrosopumilus maritimus points toward other N2O production and consumption pathways in AOA. AOA that perform NO dismutation when exposed to oxygen depletion, produce oxygen and dinitrogen as final products. Based on the transient accumulation of N2O coupled with oxygen accumulation, N2O has been proposed as an intermediate in this novel archaeal pathway. In this study, we spiked N2O to oxygen-depleted incubations with pure cultures of two marine AOA isolates that were performing NO dismutation. By using combinations of N compounds with different isotopic signatures (15NO2 - pool +44N2O spike and 14NO2 - pool +46N2O spike), we evaluated the N2O spike effects on the production of oxygen and the isotopic signature of N2 and N2O. The experiments confirmed that N2O is an intermediate in NO dismutation by AOA, distinguishing it from similar pathways in other microbial clades. Furthermore, we showed that AOA rapidly reduce high concentrations of spiked N2O to N2. These findings advance our understanding of microbial N2O production and consumption in oxygen-depleted settings and highlight AOA as potentially important key players in N2O turnover.
Collapse
Affiliation(s)
- Elisa Hernández-Magaña
- Nordcee, Department of Biology, Faculty of Sciences, University of Southern Denmark, Odense, Denmark
| | - Beate Kraft
- Nordcee, Department of Biology, Faculty of Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Yan X, Liu D, de Smit SM, Komin V, Buisman CJN, Ter Heijne A. Oxygen-to-ammonium-nitrogen ratio as an indicator for oxygen supply management in microoxic bioanodic ammonium oxidation. WATER RESEARCH 2024; 261:121993. [PMID: 38968732 DOI: 10.1016/j.watres.2024.121993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
Microbial electrolysis cells (MECs) have been proven effective for oxidizing ammonium (NH4+), where the anode acts as an electron acceptor, reducing the energy input by substituting oxygen (O2). However, O2 has been proved to be essential for achieving high removal rates MECs. Thus, precise control of oxygen supply is crucial for optimizing treatment performance and minimizing energy consumption. Unlike previous studies focusing on dissolved oxygen (DO) levels, this study introduces the O2/NH4+-N ratio as a novel control parameter for balancing oxidation rates and the selectivity of NH4+ oxidation towards dinitrogen gas (N2) under limited oxygen condition. Our results demonstrated that the O2/NH4+-N ratio is a more relevant oxygen supply indicator compared to DO level. Oxygen served as a more favorable electron acceptor than the electrode, increasing NH4+ oxidation rates but also resulting in more oxidized products such as nitrate (NO3-). Additionally, nitrous oxide (N2O) and N2 production were higher with the electrode as the electron acceptor compared to oxygen alone. An O2/NH4+-N ratio of 0.5 was found to be optimal, achieving a balance between product selectivity for N2 (51.4 % ± 4.5 %) and oxidation rates (344.6 ± 14.7 mg-N/L*d), with the columbic efficiency of 30.7 % ± 2.0 %. Microbial community analysis revealed that nitrifiers and denitrifiers were the primary bacteria involved, with oxygen promoting the growth of nitrite-oxidizing bacteria, thus facilitating complete NH4+ oxidation to NO3-. Our study provides new insights and guidelines on the appropriate oxygen dosage, offering strategies into optimizing operational conditions for NH4+ removal using MECs.
Collapse
Affiliation(s)
- Xiaofang Yan
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Dandan Liu
- Paqell B.V., Reactorweg 301, 3542 CE Utrecht, the Netherlands
| | - Sanne M de Smit
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Vera Komin
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Cees J N Buisman
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
21
|
Lehtovirta-Morley LE, Ge C, Ross J, Yao H, Hazard C, Gubry-Rangin C, Prosser JI, Nicol GW. Nitrosotalea devaniterrae gen. nov., sp. nov. and Nitrosotalea sinensis sp. nov., two acidophilic ammonia oxidising archaea isolated from acidic soil, and proposal of the new order Nitrosotaleales ord. nov. within the class Nitrososphaeria of the phylum Nitrososphaerota. Int J Syst Evol Microbiol 2024; 74. [PMID: 39348174 DOI: 10.1099/ijsem.0.006387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Two obligately acidophilic, mesophilic and aerobic soil ammonia-oxidising archaea were isolated from a pH 4.5 arable sandy loam (UK) and pH 4.7 acidic sulphate paddy soil (PR China) and designated strains Nd1T and Nd2T, respectively. The strains shared more than 99 % 16S rRNA gene sequence identity and their genomes were both less than 2 Mb in length, sharing 79 % average nucleotide identity, 81 % average amino acid identity and a DNA G+C content of approximately 37 mol%. Both strains were chemolithotrophs that fixed carbon dioxide and gained energy by oxidising ammonia to nitrite, with no evidence of mixotrophic growth. Neither strain was capable of using urea as a source of ammonia. Both strains were non-motile in culture, although Nd1T does possess genes encoding flagella components and therefore may be motile under certain conditions. Cells of Nd1T were small angular rods 0.5-1 µm in length and grew at pH 4.2-5.6 and at 20-30 °C. Cells of Nd1T were small angular rods 0.5-1 µm in length and grew at pH 4.0-6.1 and at 20-42 °C. Nd1T and Nd2T are distinct with respect to genomic and physiological features and are assigned as the type strains for the species Nitrosotalea devaniterrae sp. nov. (type strain, Nd1T=NCIMB 15248T=DSM 110862T) and Nitrosotalea sinensis sp. nov. (type strain, Nd2T=NCIMB 15249T=DSM 110863T), respectively, within the genus Nitrosotalea gen. nov. The family Nitrosotaleaceae fam. nov. and order Nitrosotaleales ord. nov. are also proposed officially.
Collapse
Affiliation(s)
| | - Chaorong Ge
- Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, PR China
| | - Jenna Ross
- Institute of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UU, Scotland, UK
| | - Huaiying Yao
- Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, PR China
- Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, PR China
| | - Christina Hazard
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134 Ecully, France
| | - Cécile Gubry-Rangin
- Institute of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UU, Scotland, UK
| | - James I Prosser
- Institute of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UU, Scotland, UK
| | - Graeme W Nicol
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134 Ecully, France
| |
Collapse
|
22
|
Williamson G, Harris T, Bizior A, Hoskisson PA, Pritchard L, Javelle A. Biological ammonium transporters: evolution and diversification. FEBS J 2024; 291:3786-3810. [PMID: 38265636 DOI: 10.1111/febs.17059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/14/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Although ammonium is the preferred nitrogen source for microbes and plants, in animal cells it is a toxic product of nitrogen metabolism that needs to be excreted. Thus, ammonium movement across biological membranes, whether for uptake or excretion, is a fundamental and ubiquitous biological process catalysed by the superfamily of the Amt/Mep/Rh transporters. A remarkable feature of the Amt/Mep/Rh family is that they are ubiquitous and, despite sharing low amino acid sequence identity, are highly structurally conserved. Despite sharing a common structure, these proteins have become involved in a diverse range of physiological process spanning all domains of life, with reports describing their involvement in diverse biological processes being published regularly. In this context, we exhaustively present their range of biological roles across the domains of life and after explore current hypotheses concerning their evolution to help to understand how and why the conserved structure fulfils diverse physiological functions.
Collapse
Affiliation(s)
- Gordon Williamson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Thomas Harris
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Adriana Bizior
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Paul Alan Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Leighton Pritchard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Arnaud Javelle
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
23
|
Zeng Y, Tan C, Zhang L, You L, Zheng W, Chen H, Peng H, Wu C, Liang Y. Long-term addition of organic manure stimulates the growth and activity of comammox in a subtropical Inceptisol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174839. [PMID: 39025147 DOI: 10.1016/j.scitotenv.2024.174839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
The discovery of complete ammonia oxidizers (comammox) has dramatically altered our perception of nitrogen (N) biogeochemistry. However, their functional importance vs. the canonical ammonia oxidizers (i.e., ammonia oxidizing-archaea (AOA) and bacteria (AOB)) in agroecosystems is still poorly understood. Accordingly, a new assay using acetylene, 3,4-dimethylpyrazole phosphate (DMPP), and 1-octyne was adopted to assess the ammonia (NH3) oxidation and nitrous oxide (N2O) production activity of these functional guilds in a subtropical Inceptisol under long-term different fertilization regimes. These regimes include CK (no fertilizer control), synthetic fertilizer only (NPK), organic manure only (M) and organic manure plus synthetic fertilizer (MNPK). AOA dominated NH3 oxidation in the M treatment, while AOB dominated both NH3 oxidation and N2O production in all treatments except M. Comammox always played a minor role in both NH3 oxidation and N2O production across all treatments. Both M and MNPK treatments significantly increased the activity and growth of comammox. Compared to NPK, comammox exhibited increases of 270 % and 326 % in the NH3 oxidation rates, and increases of 1472 % and 563 % in the N2O production rates in M and MNPK, respectively. Random forest model revealed that copper (Cu), comammox abundance, and dissolved organic nitrogen (DON) were the most important predictors for the NH3 oxidation rates of comammox. Redundancy analyses (RDA) showed that fertilizer treatments significantly altered the community composition of NH3 oxidizers, and pH was the overarching parameter underpinning the community shift of the NH3 oxidizers. Overall, this study provides evidence that comammox play a minor yet unneglectable role in the nitrification of agroecosystems, and the long-term addition of organic manure stimulates the growth and activity of comammox in a subtropical Inceptisol.
Collapse
Affiliation(s)
- Yu Zeng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Che Tan
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lei Zhang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lelin You
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Wanning Zheng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Chen
- Zhejiang Key Laboratory of Recycling and Eco-treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Hongyun Peng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunyan Wu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yongchao Liang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
24
|
Su X, Huang X, Zhang Y, Yang L, Wen T, Yang X, Zhu G, Zhang J, Tang Y, Li Z, Ding J, Li R, Pan J, Chen X, Huang F, Rillig MC, Zhu YG. Nitrifying niche in estuaries is expanded by the plastisphere. Nat Commun 2024; 15:5866. [PMID: 38997249 PMCID: PMC11245476 DOI: 10.1038/s41467-024-50200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
The estuarine plastisphere, a novel ecological habitat in the Anthropocene, has garnered global concerns. Recent geochemical evidence has pointed out its potential role in influencing nitrogen biogeochemistry. However, the biogeochemical significance of the plastisphere and its mechanisms regulating nitrogen cycling remain elusive. Using 15N- and 13C-labelling coupled with metagenomics and metatranscriptomics, here we unveil that the plastisphere likely acts as an underappreciated nitrifying niche in estuarine ecosystems, exhibiting a 0.9 ~ 12-fold higher activity of bacteria-mediated nitrification compared to surrounding seawater and other biofilms (stone, wood and glass biofilms). The shift of active nitrifiers from O2-sensitive nitrifiers in the seawater to nitrifiers with versatile metabolisms in the plastisphere, combined with the potential interspecific cooperation of nitrifying substrate exchange observed among the plastisphere nitrifiers, collectively results in the unique nitrifying niche. Our findings highlight the plastisphere as an emerging nitrifying niche in estuarine environment, and deepen the mechanistic understanding of its contribution to marine biogeochemistry.
Collapse
Affiliation(s)
- Xiaoxuan Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Xinrong Huang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Yiyue Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Leyang Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Teng Wen
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaoru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Guibing Zhu
- University of the Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Gießen, Germany
| | - Yijia Tang
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2015, Australia
| | - Zhaolei Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Ruilong Li
- School of Marine Science, Guangxi University, Nanning, 530004, China
| | - Junliang Pan
- School of Electrical Engineering, Chongqing University, Chongqing, 400044, China
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Fuyi Huang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Matthias C Rillig
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China.
- University of the Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China.
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.
| |
Collapse
|
25
|
Zhao P, Li Y, Bai X, Jing X, Huo D, Zhao X, Ding Y, Shi Y. Resistance mechanisms of cereal plants and rhizosphere soil microbial communities to chromium stress. PeerJ 2024; 12:e17461. [PMID: 38952992 PMCID: PMC11216213 DOI: 10.7717/peerj.17461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/03/2024] [Indexed: 07/03/2024] Open
Abstract
Agricultural soils contaminated with heavy metals poison crops and disturb the normal functioning of rhizosphere microbial communities. Different crops and rhizosphere microbial communities exhibit different heavy metal resistance mechanisms. Here, indoor pot studies were used to assess the mechanisms of grain and soil rhizosphere microbial communities on chromium (Cr) stress. Millet grain variety 'Jingu 21' (Setaria italica) and soil samples were collected prior to control (CK), 6 hours after (Cr_6h), and 6 days following (Cr_6d) Cr stress. Transcriptomic analysis, high-throughput sequencing and quantitative polymerase chain reaction (qPCR) were used for sample determination and data analysis. Cr stress inhibited the expression of genes related to cell division, and photosynthesis in grain plants while stimulating the expression of genes related to DNA replication and repair, in addition to plant defense systems resist Cr stress. In response to chromium stress, rhizosphere soil bacterial and fungal community compositions and diversity changed significantly (p < 0.05). Both bacterial and fungal co-occurrence networks primarily comprised positively correlated edges that would serve to increase community stability. However, bacterial community networks were larger than fungal community networks and were more tightly connected and less modular than fungal networks. The abundances of C/N functional genes exhibited increasing trends with increased Cr exposure. Overall, these results suggest that Cr stress primarily prevented cereal seedlings from completing photosynthesis, cell division, and proliferation while simultaneously triggering plant defense mechanisms to resist the toxic effects of Cr. Soil bacterial and fungal populations exhibited diverse response traits, community-assembly mechanisms, and increased expression of functional genes related to carbon and nitrogen cycling, all of which are likely related to microbial survival during Cr stress. This study provides new insights into resistance mechanisms, microbial community structures, and mechanisms of C/N functional genes responses in cereal plants to heavy metal contaminated agricultural soils. Portions of this text were previously published as part of a preprint (https://www.researchsquare.com/article/rs-2891904/v1).
Collapse
Affiliation(s)
- Pengyu Zhao
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, China
- Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Taiyuan, China
| | - Yujing Li
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, China
| | - Xue Bai
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, China
| | - Xiuqing Jing
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, China
| | - Dongao Huo
- Research Center for Plant Resources and Nutritional Health, Taiyuan Normal University, Taiyuan, China
| | - Xiaodong Zhao
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, China
- Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Taiyuan, China
| | - Yuqin Ding
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, China
| | - Yuxuan Shi
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
26
|
Lourenço KS, Suleiman AKA, Pijl A, Dimitrov MR, Cantarella H, Kuramae EE. Mix-method toolbox for monitoring greenhouse gas production and microbiome responses to soil amendments. MethodsX 2024; 12:102699. [PMID: 38660030 PMCID: PMC11041840 DOI: 10.1016/j.mex.2024.102699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
In this study, we adopt an interdisciplinary approach, integrating agronomic field experiments with soil chemistry, molecular biology techniques, and statistics to investigate the impact of organic residue amendments, such as vinasse (a by-product of sugarcane ethanol production), on soil microbiome and greenhouse gas (GHG) production. The research investigates the effects of distinct disturbances, including organic residue application alone or combined with inorganic N fertilizer on the environment. The methods assess soil microbiome dynamics (composition and function), GHG emissions, and plant productivity. Detailed steps for field experimental setup, soil sampling, soil chemical analyses, determination of bacterial and fungal community diversity, quantification of genes related to nitrification and denitrification pathways, measurement and analysis of gas fluxes (N2O, CH4, and CO2), and determination of plant productivity are provided. The outcomes of the methods are detailed in our publications (Lourenço et al., 2018a; Lourenço et al., 2018b; Lourenço et al., 2019; Lourenço et al., 2020). Additionally, the statistical methods and scripts used for analyzing large datasets are outlined. The aim is to assist researchers by addressing common challenges in large-scale field experiments, offering practical recommendations to avoid common pitfalls, and proposing potential analyses, thereby encouraging collaboration among diverse research groups.•Interdisciplinary methods and scientific questions allow for exploring broader interconnected environmental problems.•The proposed method can serve as a model and protocol for evaluating the impact of soil amendments on soil microbiome, GHG emissions, and plant productivity, promoting more sustainable management practices.•Time-series data can offer detailed insights into specific ecosystems, particularly concerning soil microbiota (taxonomy and functions).
Collapse
Affiliation(s)
- Késia Silva Lourenço
- Microbial Ecology Department, Netherlands Institute of Ecology (NIOO), Droevendaalsesteeg 10, Wageningen 6708, PB, The Netherlands
- Soils and Environmental Resources Center, Agronomic Institute of Campinas (IAC), Av. Barão de Itapura 1481, Campinas 13020-902, SP, Brazil
| | - Afnan Khalil Ahmad Suleiman
- Microbial Ecology Department, Netherlands Institute of Ecology (NIOO), Droevendaalsesteeg 10, Wageningen 6708, PB, The Netherlands
- Soil Health group, Bioclear Earth B.V., Rozenburglaan 13, Groningen 9727 DL, The Netherlands
| | - Agata Pijl
- Microbial Ecology Department, Netherlands Institute of Ecology (NIOO), Droevendaalsesteeg 10, Wageningen 6708, PB, The Netherlands
| | - Mauricio R. Dimitrov
- Microbial Ecology Department, Netherlands Institute of Ecology (NIOO), Droevendaalsesteeg 10, Wageningen 6708, PB, The Netherlands
| | - Heitor Cantarella
- Soils and Environmental Resources Center, Agronomic Institute of Campinas (IAC), Av. Barão de Itapura 1481, Campinas 13020-902, SP, Brazil
| | - Eiko Eurya Kuramae
- Microbial Ecology Department, Netherlands Institute of Ecology (NIOO), Droevendaalsesteeg 10, Wageningen 6708, PB, The Netherlands
- Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
27
|
Pedrinho A, Karas PA, Kanellopoulos A, Feray E, Korman I, Wittenberg G, Ramot O, Karpouzas DG. The effect of natural products used as pesticides on the soil microbiota: OECD 216 nitrogen transformation test fails to identify effects that were detected via q-PCR microbial abundance measurement. PEST MANAGEMENT SCIENCE 2024; 80:2563-2576. [PMID: 38243771 DOI: 10.1002/ps.7961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Natural products present an environmentally attractive alternative to synthetic pesticides which have been implicated in the off-target effect. Currently, the assessment of pesticide toxicity on soil microorganisms relies on the OECD 216 N transformation assay (OECD stands for the Organisation Economic Co-operation and Development, which is a key international standard-setting organisation). We tested the hypotheses that (i) the OECD 216 assay fails to identify unacceptable effects of pesticides on soil microbiota compared to more advanced molecular and standardized tests, and (ii) the natural products tested (dihydrochalcone, isoflavone, aliphatic phenol, and spinosad) are less toxic to soil microbiota compared to a synthetic pesticide compound (3,5-dichloraniline). We determined the following in three different soils: (i) ammonium (NH4 +) and nitrate (NO3 -) soil concentrations, as dictated by the OECD 216 test, and (ii) the abundance of phylogenetically (bacteria and fungi) and functionally distinct microbial groups [ammonia-oxidizing archaea (AOA) and bacteria (AOB)] using quantitative polymerase chain reaction (q-PCR). RESULTS All pesticides tested exhibited limited persistence, with spinosad demonstrating the highest persistence. None of the pesticides tested showed clear dose-dependent effects on NH4 + and NO3 - levels and the observed effects were <25% of the control, suggesting no unacceptable impacts on soil microorganisms. In contrast, q-PCR measurements revealed (i) distinct negative effects on the abundance of total bacteria and fungi, which were though limited to one of the studied soils, and (ii) a significant reduction in the abundance of both AOA and AOB across soils. This reduction was attributed to both natural products and 3,5-dichloraniline. CONCLUSION Our findings strongly advocate for a revision of the current regulatory framework regarding the toxicity of pesticides to soil microbiota, which should integrate advanced and well-standardized tools. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Alexandre Pedrinho
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
- Metabolic Insights Ltd, Ness Ziona, Israel
| | - Panagiotis A Karas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Alexandros Kanellopoulos
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Emma Feray
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
- National Museum of Natural History, Paris, France
| | - Ido Korman
- Metabolic Insights Ltd, Ness Ziona, Israel
| | | | - Ofir Ramot
- Metabolic Insights Ltd, Ness Ziona, Israel
| | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
28
|
Beeckman F, Annetta L, Corrochano-Monsalve M, Beeckman T, Motte H. Enhancing agroecosystem nitrogen management: microbial insights for improved nitrification inhibition. Trends Microbiol 2024; 32:590-601. [PMID: 37973432 DOI: 10.1016/j.tim.2023.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Nitrification is a key microbial process in the nitrogen (N) cycle that converts ammonia to nitrate. Excessive nitrification, typically occurring in agroecosystems, has negative environmental impacts, including eutrophication and greenhouse gas emissions. Nitrification inhibitors (NIs) are widely used to manage N in agricultural systems by reducing nitrification rates and improving N use efficiency. However, the effectiveness of NIs can vary depending on the soil conditions, which, in turn, affect the microbial community and the balance between different functional groups of nitrifying microorganisms. Understanding the mechanisms underlying the effectiveness of NIs, and how this is affected by the soil microbial communities or abiotic factors, is crucial for promoting sustainable fertilizer practices. Therefore, this review examines the different types of NIs and how abiotic parameters can influence the nitrifying community, and, therefore, the efficacy of NIs. By discussing the latest research in this field, we provide insights that could facilitate the development of more targeted, efficient, or complementary NIs that improve the application of NIs for sustainable management practices in agroecosystems.
Collapse
Affiliation(s)
- Fabian Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Laure Annetta
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Mario Corrochano-Monsalve
- Departamento de Genética, Antropología Física y Fisiología Animal, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Leioa, Spain; Instituto Multidisciplinar Para el Estudio del Medio 'Ramon Margalef', Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Spain
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium.
| |
Collapse
|
29
|
Rojas-Pinzon PA, Prommer J, Sedlacek CJ, Sandén T, Spiegel H, Pjevac P, Fuchslueger L, Giguere AT. Inhibition profile of three biological nitrification inhibitors and their response to soil pH modification in two contrasting soils. FEMS Microbiol Ecol 2024; 100:fiae072. [PMID: 38702852 PMCID: PMC11110862 DOI: 10.1093/femsec/fiae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/28/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024] Open
Abstract
Up to 70% of the nitrogen (N) fertilizer applied to agricultural soils is lost through microbially mediated processes, such as nitrification. This can be counteracted by synthetic and biological compounds that inhibit nitrification. However, for many biological nitrification inhibitors (BNIs), the interaction with soil properties, nitrifier specificity, and effective concentrations are unclear. Here, we investigated three synthetic nitrification inhibitors (SNIs) (DCD, DMPP, and nitrapyrin) and three BNIs [methyl 3(4-hydroxyphenyl) propionate (MHPP), methyl 3(4-hydroxyphenyl) acrylate (MHPA), and limonene] in two agricultural soils differing in pH and nitrifier communities. The efficacies of SNIs and BNIs were resilient to short-term pH changes in the neutral pH soil, whereas the efficacy of some BNIs increased by neutralizing the alkaline soil. Among the BNIs, MHPA showed the highest inhibition and was, together with MHPP, identified as a putative AOB/comammox-selective inhibitor. Additionally, MHPA and limonene effectively inhibited nitrification at concentrations comparable to those used for DCD. Moreover, we identified the effective concentrations at which 50% and 80% of inhibition is observed (EC50 and EC80) for the BNIs, and similar EC80 values were observed in both soils. Overall, our results show that these BNIs could potentially serve as effective alternatives to SNIs currently used.
Collapse
Affiliation(s)
- Paula A Rojas-Pinzon
- Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Judith Prommer
- Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Christopher J Sedlacek
- Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Taru Sandén
- Department for Soil Health and Plant Nutrition, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220 Vienna, Austria
| | - Heide Spiegel
- Department for Soil Health and Plant Nutrition, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220 Vienna, Austria
| | - Petra Pjevac
- Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Environment and Climate Hub, University of Vienna, Augasse 2/6, 1090 Vienna, Austria
| | - Lucia Fuchslueger
- Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Environment and Climate Hub, University of Vienna, Augasse 2/6, 1090 Vienna, Austria
| | - Andrew T Giguere
- Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| |
Collapse
|
30
|
Ren Z, Li D, Zhang Z, Sun W, Liu G. Enhancing the relative abundance of comammox nitrospira in ammonia oxidizer community decreases N 2O emission in nitrification exponentially. CHEMOSPHERE 2024; 356:141883. [PMID: 38583528 DOI: 10.1016/j.chemosphere.2024.141883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Comammox Nitrospira and canonical ammonia-oxidizing bacteria (cAOB) generally coexist in activated sludge. In present study, the effect of comammox Nitrospira on N2O production during nitrification of activated sludge was investigated. Comammox Nitrospira and cAOB were separately enriched in two nitrifying reactors, with respective relative abundance of approximately 98% in ammonia oxidizer community. The N2O emission factor (EF) of nitrification in comammox Nitrospira dominated reactor was 0.35%, consistently lower than that (2.2%) in cAOB dominated reactor. When increasing the relative abundance of comammox Nitrospira in ammonia oxidizer community, the N2O EF of nitrification decreased exponentially, which suggested that comammox Nitrospira not only decreased N2O production directly but also might have reduced N2O yield by cAOB. When cAOB dominated the ammonia oxidizer community of sludge, decreasing pH to 6.3, lowering DO to less than 0.5 mg/L, and increasing nitrite concentration enhanced N2O EF dramatically. When comammox Nitrospira became the dominant ammonia oxidizer, however, the N2O EF correlated to nitrite insignificantly and a low DO of 0.2 mg/L and weakly acidic pH (6.3) decreased N2O EF by approximately 70% and 60%, respectively. These results imply that enhancing the relative abundance of comammox Nitrospira in sludge is an effective way to reducing N2O emissions and can also offset the promoting effects of acidic pH, low DO, and high nitrite concentration on N2O production during nitrification.
Collapse
Affiliation(s)
- Zhichang Ren
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou 510632, And Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Deyong Li
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou 510632, And Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Zhuang Zhang
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou 510632, And Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Weimin Sun
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Guoqiang Liu
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou 510632, And Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
31
|
Hunt KA, Carr AV, Otwell AE, Valenzuela JJ, Walker KS, Dixon ER, Lui LM, Nielsen TN, Bowman S, von Netzer F, Moon JW, Schadt CW, Rodriguez M, Lowe K, Joyner D, Davis KJ, Wu X, Chakraborty R, Fields MW, Zhou J, Hazen TC, Arkin AP, Wankel SD, Baliga NS, Stahl DA. Contribution of Microorganisms with the Clade II Nitrous Oxide Reductase to Suppression of Surface Emissions of Nitrous Oxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7056-7065. [PMID: 38608141 DOI: 10.1021/acs.est.3c07972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
The sources and sinks of nitrous oxide, as control emissions to the atmosphere, are generally poorly constrained for most environmental systems. Initial depth-resolved analysis of nitrous oxide flux from observation wells and the proximal surface within a nitrate contaminated aquifer system revealed high subsurface production but little escape from the surface. To better understand the environmental controls of production and emission at this site, we used a combination of isotopic, geochemical, and molecular analyses to show that chemodenitrification and bacterial denitrification are major sources of nitrous oxide in this subsurface, where low DO, low pH, and high nitrate are correlated with significant nitrous oxide production. Depth-resolved metagenomes showed that consumption of nitrous oxide near the surface was correlated with an enrichment of Clade II nitrous oxide reducers, consistent with a growing appreciation of their importance in controlling release of nitrous oxide to the atmosphere. Our work also provides evidence for the reduction of nitrous oxide at a pH of 4, well below the generally accepted limit of pH 5.
Collapse
Affiliation(s)
- Kristopher A Hunt
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Alex V Carr
- Department of Molecular Engineering Sciences, University of Washington, Seattle, Washington 98105, United States
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Anne E Otwell
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | | | - Kathleen S Walker
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Emma R Dixon
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Lauren M Lui
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Torben N Nielsen
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Samuel Bowman
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02540, United States
| | - Frederick von Netzer
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Ji-Won Moon
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Christopher W Schadt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Miguel Rodriguez
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Kenneth Lowe
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Dominique Joyner
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Katherine J Davis
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Xiaoqin Wu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Romy Chakraborty
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, United States
| | - Jizhong Zhou
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019, United States
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Terry C Hazen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Adam P Arkin
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Scott D Wankel
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02540, United States
| | - Nitin S Baliga
- Department of Molecular Engineering Sciences, University of Washington, Seattle, Washington 98105, United States
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
32
|
Han P, Tang X, Koch H, Dong X, Hou L, Wang D, Zhao Q, Li Z, Liu M, Lücker S, Shi G. Unveiling unique microbial nitrogen cycling and nitrification driver in coastal Antarctica. Nat Commun 2024; 15:3143. [PMID: 38609359 PMCID: PMC11014942 DOI: 10.1038/s41467-024-47392-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Largely removed from anthropogenic delivery of nitrogen (N), Antarctica has notably low levels of nitrogen. Though our understanding of biological sources of ammonia have been elucidated, the microbial drivers of nitrate (NO3-) cycling in coastal Antarctica remains poorly understood. Here, we explore microbial N cycling in coastal Antarctica, unraveling the biological origin of NO3- via oxygen isotopes in soil and lake sediment, and through the reconstruction of 1968 metagenome-assembled genomes from 29 microbial phyla. Our analysis reveals the metabolic potential for microbial N2 fixation, nitrification, and denitrification, but not for anaerobic ammonium oxidation, signifying a unique microbial N-cycling dynamic. We identify the predominance of complete ammonia oxidizing (comammox) Nitrospira, capable of performing the entire nitrification process. Their adaptive strategies to the Antarctic environment likely include synthesis of trehalose for cold stress, high substrate affinity for resource utilization, and alternate metabolic pathways for nutrient-scarce conditions. We confirm the significant role of comammox Nitrospira in the autotrophic, nitrification process via 13C-DNA-based stable isotope probing. This research highlights the crucial contribution of nitrification to the N budget in coastal Antarctica, identifying comammox Nitrospira clade B as a nitrification driver.
Collapse
Affiliation(s)
- Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- Institute of Eco-Chongming (IEC), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Xiufeng Tang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Hanna Koch
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, A-3430, Tulln, Austria
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, 361005, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- Institute of Eco-Chongming (IEC), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Danhe Wang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Qian Zhao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Zhe Li
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
- Institute of Eco-Chongming (IEC), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
| | - Sebastian Lücker
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Guitao Shi
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
33
|
Macey MC. Genome-resolved metagenomics identifies novel active microbes in biogeochemical cycling within methanol-enriched soil. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13246. [PMID: 38575138 PMCID: PMC10994693 DOI: 10.1111/1758-2229.13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
Metagenome assembled genomes (MAGs), generated from sequenced 13C-labelled DNA from 13C-methanol enriched soils, were binned using an ensemble approach. This method produced a significantly larger number of higher-quality MAGs compared to direct binning approaches. These MAGs represent both the primary methanol utilizers and the secondary utilizers labelled via cross-feeding and predation on the labelled methylotrophs, including numerous uncultivated taxa. Analysis of these MAGs enabled the identification of multiple metabolic pathways within these active taxa that have climatic relevance relating to nitrogen, sulfur and trace gas metabolism. This includes denitrification, dissimilatory nitrate reduction to ammonium, ammonia oxidation and metabolism of organic sulfur species. The binning of viral sequence data also yielded extensive viral MAGs, identifying active viral replication by both lytic and lysogenic phages within the methanol-enriched soils. These MAGs represent a valuable resource for characterizing biogeochemical cycling within terrestrial environments.
Collapse
Affiliation(s)
- Michael C. Macey
- AstrobiologyOU, Earth, Environment and Ecosystem SciencesThe Open UniversityMilton KeynesUK
| |
Collapse
|
34
|
Xu X, Liu Y, Tang C, Yang Y, Yu L, Lesueur D, Herrmann L, Di H, Li Y, Li Q, Xu J. Microbial resistance and resilience to drought and rewetting modulate soil N 2O emissions with different fertilizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170380. [PMID: 38281640 DOI: 10.1016/j.scitotenv.2024.170380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
Future climate models indicate an enhanced severity of regional drought and frequent rewetting events, which may cause cascading impacts on soil nitrogen cycle and nitrous oxide (N2O) emissions, but the underlying microbial mechanism remains largely unknown. Here we report an incubation study that examined the impacts of soil moisture status and nitrification inhibitor (DCD) on the N2O-producers and N2O-reducers following the application of urea and composted swine manure in an acid soil. The soil moisture treatments included 100 % water-holding capacity (WHC) (wetting, 35.3 % gravimetric soil water content), 40 % WHC (drought, 7 % gravimetric soil water content), and 40 % to 100 % WHC (rewetting). The results showed that N2O emissions were significantly decreased under drought conditions and were significantly increased after rewetting. The resistance of ammonia-oxidizing bacteria and nosZII, which was inhibited by urea or manure application, modulated N2O emissions under drought conditions. The resilience of the functional guilds modulated their dominant role in N2O emissions with rewetting. Ammonia-oxidizing bacteria, nirS-type denitrifying bacteria and nosZI showed significant resilience in response to rewetting. Significant negative relationships were observed between N2O emissions and nosZII clade under wetting condition and between N2O emissions and nosZI clade after rewetting. Our results highlighted the importance of microbial resistance and resilience in modulating N2O emissions, which help to better understand the dominant way of N2O emissions, and consequently make efficient mitigation strategies under the global climate change.
Collapse
Affiliation(s)
- Xiaoya Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Yaowei Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Caixian Tang
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Yihan Yang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Lei Yu
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Didier Lesueur
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR Eco&Sols, Hanoi, Viet Nam; Eco&Sols, Université de Montpellier (UMR), CIRAD, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut de Recherche pour le Développement (IRD), Montpellier SupAgro, 34060 Montpellier, France; Alliance of Biodiversity International and International Center for Tropical Agriculture (CIAT), Asia hub, Common Microbial Biotechnology Platform (CMBP), Hanoi, Viet Nam; School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment-Deakin University, Melbourne, VIC 3125, Australia; Chinese Academy of Tropical Agricultural Sciences, Rubber Research Institute, Haikou, China
| | - Laetitia Herrmann
- Alliance of Biodiversity International and International Center for Tropical Agriculture (CIAT), Asia hub, Common Microbial Biotechnology Platform (CMBP), Hanoi, Viet Nam; School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment-Deakin University, Melbourne, VIC 3125, Australia
| | - Hongjie Di
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Qinfen Li
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
35
|
Zhong L, Li X, Sun Y, Xiao H, Tang Y, Wang R, Su X. Effects of microplastics on N 2O production and reduction potential in crop soils of northern China. CHEMOSPHERE 2024; 351:141256. [PMID: 38246503 DOI: 10.1016/j.chemosphere.2024.141256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/27/2023] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Microplastics (MPs) pollution are found to be increasing in vegetable soils and potentially affecting N2O production and their associated pathways; however, its specific effects remain unclear. Here, we selected two common MPs, PE and PP at four different concentration levels of 0, 0.5, 1.5 and 3%, and conducted several incubation experiments aiming to explore soil bacterial and fungal N2O production. Results showed that the bacteria were the main contributors for the production of N2O, regardless of the absence or presence of MPs; and its contribution was decreased with increasing concentrations of PE and PP. The nosZ clade I and II genes were positively correlated with N2O reduction rates, indicating a combined regulation on soil N2O reduction. PE significantly inhibited the bacterial nitrification and denitrification, but did not affect the total N2O production rates; while PP significantly reduced both the bacterial and fungal N2O production rates. The resistance of fungal N2O production to MPs pollution was stronger than that of the bacterial N2O production. It highlights that the MPs pollution could reduce the potential of N2O production and reduction, and thus disturb soil nitrogen cycling system; while the inhibition on N2O production via bacteria and fungi varies with different types of MPs. This study is conducive to an improved and more comprehensive understanding of the ecological impacts of MPs within the agroecosystem.
Collapse
Affiliation(s)
- Lei Zhong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Xinhao Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yuru Sun
- Beijing Construction Engineering Group Environmental Remediation Co., Ltd, National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, China
| | - Hui Xiao
- Institute of Agricultural Resources and Environment, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
| | - Yafang Tang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Ruying Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xiaoxuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
36
|
Deng N, Gubry-Rangin C, Song XT, Ju XT, Liu SY, Shen JP, Di HJ, Han LL, Zhang LM. AOB Nitrosospira cluster 3a.2 (D11) dominates N 2O emissions in fertilised agricultural soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120504. [PMID: 38447513 DOI: 10.1016/j.jenvman.2024.120504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
Ammonia-oxidation process directly contribute to soil nitrous oxide (N2O) emissions in agricultural soils. However, taxonomy of the key nitrifiers (within ammonia oxidising bacteria (AOB), archaea (AOA) and complete ammonia oxidisers (comammox Nitrospira)) responsible for substantial N2O emissions in agricultural soils is unknown, as is their regulation by soil biotic and abiotic factors. In this study, cumulative N2O emissions, nitrification rates, abundance and community structure of nitrifiers were investigated in 16 agricultural soils from major crop production regions of China using microcosm experiments with amended nitrogen (N) supplemented or not with a nitrification inhibitor (nitrapyrin). Key nitrifier groups involved in N2O emissions were identified by comparative analyses of the different treatments, combining sequencing and random forest analyses. Soil cumulative N2O emissions significantly increased with soil pH in all agricultural soils. However, they decreased with soil organic carbon (SOC) in alkaline soils. Nitrapyrin significantly inhibited soil cumulative N2O emissions and AOB growth, with a significant inhibition of the AOB Nitrosospira cluster 3a.2 (D11) abundance. One Nitrosospira multiformis-like OTU phylotype (OTU34), which was classified within the AOB Nitrosospira cluster 3a.2 (D11), had the greatest importance on cumulative N2O emissions and its growth significantly depended on soil pH and SOC contents, with higher growth at high pH and low SOC conditions. Collectively, our results demonstrate that alkaline soils with low SOC contents have high N2O emissions, which were mainly driven by AOB Nitrosospira cluster 3a.2 (D11). Nitrapyrin can efficiently reduce nitrification-related N2O emissions by inhibiting the activity of AOB Nitrosospira cluster 3a.2 (D11). This study advances our understanding of key nitrifiers responsible for high N2O emissions in agricultural soils and their controlling factors, and provides vital knowledge for N2O emission mitigation in agricultural ecosystems.
Collapse
Affiliation(s)
- Na Deng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Xiao-Tong Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
| | - Xiao-Tang Ju
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Si-Yi Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
| | - Ju-Pei Shen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Hong-Jie Di
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, 7647, Christchurch, New Zealand
| | - Li-Li Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
37
|
Stein LY. Agritech to Tame the Nitrogen Cycle. Cold Spring Harb Perspect Biol 2024; 16:a041668. [PMID: 37788889 PMCID: PMC10910340 DOI: 10.1101/cshperspect.a041668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
While the Haber-Bosch process for N-fixation has enabled a steady food supply for half of humanity, substantial use of synthetic fertilizers has caused a radical unevenness in the global N-cycle. The resulting increases in nitrate production and greenhouse gas (GHG) emissions have contributed to eutrophication of both ground and surface waters, the growth of oxygen minimum zones in coastal regions, ozone depletion, and rising global temperatures. As stated by the Food and Agriculture Organization of the United Nations, agriculture releases ∼9.3 Gt CO2 equivalents per year, of which methane (CH4) and nitrous oxide (N2O) account for 5.3 Gt CO2 equivalents. N-pollution and slowing the runaway N-cycle requires a combined effort to replace chemical fertilizers with biological alternatives, which after a 10-yr span of usage could eliminate a minimum of 30% of ag-related GHG emissions (∼1.59 Gt), protect waterways from nitrate pollution, and protect soils from further deterioration. Agritech solutions include bringing biological fertilizers and biological nitrification inhibitors to the marketplace to reduce the microbial conversion of fertilizer nitrogen into GHGs and other toxic intermediates. Worldwide adoption of these plant-derived molecules will substantially elevate nitrogen use efficiency by crops while blocking the dominant source of N2O to the atmosphere and simultaneously protecting the biological CH4 sink. Additional agritech solutions to curtail N-pollution, soil erosion, and deterioration of freshwater supplies include soil-free aquaponics systems that utilize improved microbial inocula to enhance nitrogen use efficiency without GHG production. With adequate and timely investment and scale-up, microbe-based agritech solutions emphasizing N-cycling processes can dramatically reduce GHG emissions on short time lines.
Collapse
Affiliation(s)
- Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
38
|
Jiang C, Wu J, Ye J, Hong Y. High throughput amplicon analysis reveals potential novel ammonia oxidizing prokaryotes in the eutrophic Jiaozhou Bay. MARINE POLLUTION BULLETIN 2024; 200:116046. [PMID: 38246016 DOI: 10.1016/j.marpolbul.2024.116046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Ammonia-oxidizing prokaryotes (AOPs) are the major contributors of ammonia oxidization with widely distribution. Here we investigated the phylogenetic diversity, community composition, and regulating factors of AOPs in Jiaozhou Bay (JZB) with high-throughput sequencing of amoA gene. Phylogenetic analysis showed most of the OTUs could not be clustered with any known AOPs, indicating there might exist putative novel AOPs. With new developed protocols for AOP community analysis, we confirmed that only 3 OTUs of ammonia-oxidizing archaea (AOA) could be affiliated to known Nitrosopumilaceae and Nitrososphaera, and the other OTUs were identified as novel AOA based on the threshold. All abstained OTUs of ammonia-oxidizing bacteria (AOB) were identified as novel clusters based on the threshold. Further analysis showed the novel AOPs had different distribution characteristics related to environmental factors. The high abundance and widespread distribution of these novel AOPs indicated that they played an important role in ammonia conversion in eutrophic JZB.
Collapse
Affiliation(s)
- Cuihong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jiaqi Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
39
|
Yan X, Ying Y, Li K, Zhang Q, Wang K. A review of mitigation technologies and management strategies for greenhouse gas and air pollutant emissions in livestock production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120028. [PMID: 38219668 DOI: 10.1016/j.jenvman.2024.120028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
One of the key issues in manure management of livestock production is to reduce greenhouse gas (GHG) and air pollutant emissions, which lead to significant environmental footprint and human/animal health threats. This study provides a review of potentially efficacious technologies and management strategies that reduce GHG and air pollutant emissions during the three key stages of manure management in livestock production, i.e., animal housing, manure storage and treatment, and manure application. Several effective mitigation technologies and practices for each manure management stage are identified and analyzed in detail, including feeding formulation adjustment, frequent manure removal and air scrubber during animal housing stage; solid-liquid separation, manure covers for storage, acidification, anaerobic digestion and composting during manure storage and treatment stage; land application techniques at appropriate timing during manure application stage. The results indicated several promising approaches to reduce multiple gas emissions from the entire manure management. Removing manure 2-3 times per week or every day during animal housing stage is an effective and simple way to reduce GHG and air pollutant emissions. Acidification during manure storage and treatment stage can reduce ammonia and methane emissions by 33%-93% and 67%-87%, respectively and proper acid, such as lactic acid can also reduce nitrous oxide emission by about 90%. Shallow injection of manure for field application has the best performance in reducing ammonia emission by 62%-70% but increase nitrous oxide emission. The possible trade-off brings insight to the prioritization of targeted gas emissions for the researchers, stakeholders and policymakers, and also highlights the importance of assessing the mitigation technologies across the entire manure management chain. Implementing a combination of the management strategies needs comprehensive considerations about mitigation efficiency, technical feasibility, local regulations, climate condition, scalability and cost-effectiveness.
Collapse
Affiliation(s)
- Xiaojie Yan
- School of Optical, Mechanical and Electrical Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, Zhejiang, China; College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China; Guangxi Yangxiang Co., Ltd., Gangnan District, Guigang, 537106, Guangxi, China
| | - Yongfei Ying
- Zhejiang Province Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station, Zhejiang Province Department of Agriculture, 111 Yuyun Road, Hangzhou, 310020, Zhejiang, China
| | - Kunkun Li
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Qiang Zhang
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Kaiying Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
40
|
Song X, Parker J, Jones SK, Zhang L, Bingham I, Rees RM, Ju X. Labile Carbon from Artificial Roots Alters the Patterns of N 2O and N 2 Production in Agricultural Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38329046 DOI: 10.1021/acs.est.3c10833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Labile carbon (C) continuously delivered from the rhizosphere profoundly affects terrestrial nitrogen (N) cycling. However, nitrous oxide (N2O) and dinitrogen (N2) production in agricultural soils in the presence of continuous root C exudation with applied N remains poorly understood. We conducted an incubation experiment using artificial roots to continuously deliver small-dose labile C combined with 15N tracers to investigate N2O and N2 emissions in agricultural soils with pH and organic C (SOC) gradients. A significantly negative exponential relationship existed between N2O and N2 emissions under continuous C exudation. Increasing soil pH significantly promoted N2 emissions while reducing N2O emissions. Higher SOC further promoted N2 emissions in alkaline soils. Native soil-N (versus fertilizer-N) was the main source of N2O (average 67%) and N2 (average 80%) emissions across all tested soils. Our study revealed the overlooked high N2 emissions, mainly derived from native soil-N and strengthened by increasing soil pH, under relatively real-world conditions with continuous root C exudation. This highlights the important role of N2O and N2 production from native soil-N in terrestrial N cycling when there is a continuous C supply (e.g., plant-root exudate) and helps mitigate emissions and constrain global budgets of the two concerned nitrogenous gases.
Collapse
Affiliation(s)
- Xiaotong Song
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - John Parker
- SRUC, West Mains Road, Edinburgh, Scotland EH9 3JG, U.K
| | | | - Limei Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ian Bingham
- SRUC, West Mains Road, Edinburgh, Scotland EH9 3JG, U.K
| | - Robert M Rees
- SRUC, West Mains Road, Edinburgh, Scotland EH9 3JG, U.K
| | - Xiaotang Ju
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
41
|
Lan T, Dong X, Liu S, Zhou M, Li Y, Gao X. Coexistence of microplastics and Cd alters soil N transformation by affecting enzyme activity and ammonia oxidizer abundance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123073. [PMID: 38056587 DOI: 10.1016/j.envpol.2023.123073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/11/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Interactions between heavy metal and microplastics represent a serious threat to ecosystems and human health, but the effect of their coexistence on the soil N transformation processes is unclear. The mechanism in which metal-polluted soil reacts to additional microplastics stress and their toxicology interactions on soil N transformation were determined by investigating the dynamics of soil microbial N transformation in response to Cd stress and different doses of polythene (PE) microplastics by conducting a 14 days aerobic 15N microcosmic incubation experiment. The gross nitrification rates (n_gross) were decreased by 7.47% and 12.5% in the 1% and 2% (w/w) PE groups, respectively, through the direct effect on enzyme activity (β-glucosidase, N-acetylglucosaminidase, and leucine-aminopeptidase) and the abundance and community composition of ammonia oxidizer. It also exerted indirect effect by reducing nitrification substrate concentrations. PE microplastics (>1% [w/w]) significantly increased the gross N immobilization rate, and this change could have been driven by C/N stoichiometry. Cd stress alone led to a rapid short-term mineralization-immobilization turnover (1.67 times of the control). However, such effect was offset when Cd coexisted with PE microplastics, possibly because Cd was directly adsorbed by PE microplastics, and/or microplastics satisfied the C demand by microorganisms under Cd stress. Our findings demonstrated that the coexistence of microplastics and Cd significantly altered soil N nitrification and immobilization, which would change the N bioavailability in soil and alter the effect N cycling on the ecological environment.
Collapse
Affiliation(s)
- Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Xiaoman Dong
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shuang Liu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Minghua Zhou
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041, Chengdu, Sichuan, China
| | - Yang Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xuesong Gao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
42
|
Zhang J, Zhou M, Shi F, Lei Z, Wang Y, Hu M, Zhao J. The abundance of comammox bacteria was higher than that of ammonia-oxidizing archaea and bacteria in rhizosphere of emergent macrophytes in a typical shallow lake riparian. Int Microbiol 2024; 27:67-79. [PMID: 38062210 DOI: 10.1007/s10123-023-00465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 06/20/2023] [Accepted: 11/30/2023] [Indexed: 02/01/2024]
Abstract
Complete ammonia oxidation (comammox) bacteria can complete the whole nitrification process independently, which not only challenges the classical two-step nitrification theory but also updates long-held perspective of microbial ecological relationship in nitrification process. Although comammox bacteria have been found in many ecosystems in recent years, there is still a lack of research on the comammox process in rhizosphere of emergent macrophytes in lakeshore zone. Sediment samples were collected in this study from rhizosphere, far-rhizosphere, and non-rhizosphere of emergent macrophytes along the shore of Lake Liangzi, a shallow lake. The diversity of comammox bacteria and amoA gene abundance of comammox bacteria, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB) in these samples were measured. The results showed that comammox bacteria widely existed in the rhizosphere of emergent macrophytes and fell into clade A.1, clade A.2, and clade B, and clade A was the predominant community in all sampling sites. The abundance of comammox amoA gene (6.52 × 106-2.45 × 108 copies g-1 dry sediment) was higher than that of AOB amoA gene (6.58 × 104-3.58 × 106 copies g-1 dry sediment), and four orders of magnitude higher than that of AOA amoA gene (7.24 × 102-6.89 × 103 copies g-1 dry sediment), suggesting that the rhizosphere of emergent macrophytes is more favorable for the growth of comammox bacteria than that of AOB and AOA. Our study indicated that the comammox bacteria may play important roles in ammonia-oxidizing processes in all different rhizosphere regions.
Collapse
Affiliation(s)
- Jiahui Zhang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, 100038, China
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
- Laboratory of Eco-Environmental Engineering Research, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Mingzhi Zhou
- Laboratory of Eco-Environmental Engineering Research, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Fengning Shi
- Yunnan Hydrology and Water Resources Bureau, Kunming, 650100, China
| | - Ziyan Lei
- Laboratory of Eco-Environmental Engineering Research, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Yuchun Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, 100038, China
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Mingming Hu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, 100038, China.
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Jianwei Zhao
- Laboratory of Eco-Environmental Engineering Research, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
43
|
Yang X, Duan P, Liu Q, Wang K, Li D. Addition of cellulose and hemicellulose degrading microorganisms intensified nitrous oxide emission during composting. BIORESOURCE TECHNOLOGY 2024; 393:130100. [PMID: 38013032 DOI: 10.1016/j.biortech.2023.130100] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
This study aims to clarify the mechanisms underlying effects of inoculating cellulose and hemicellulose-degrading microorganisms on nitrous oxide (N2O) emissions during composting with silkworm excrement and mulberry branches. Inoculation with cellulose and hemicellulose-degrading microorganisms resulted in significant increases of total N2O emission by 10.4 ± 2.0 % (349.1 ± 6.2 mg N kg-1 dw) and 26.7 ± 2.1 % (400.6 ± 6.8 mg N kg-1 dw), respectively, compared to the control (316.3 ± 3.6 mg N kg-1 dw). The stimulation of N2O emission was attributed to the enhanced contribution of ammonia-oxidizing bacteria (AOB) and denitrifying bacteria to N2O production, as evidenced by the increased AOB amoA and denitrifying nirK gene abundances. Moreover, microbial inoculation stimulated N2O reduction to N2 owing to increased abundances of nosZⅠ and nosZⅠⅠ genes. These findings highlight the necessity to develop cost-effective and environmentally friendly strategies to reduce N2O emissions when cellulose and hemicellulose-degrading microorganisms are inoculated during composting.
Collapse
Affiliation(s)
- Xinyi Yang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Institutional Center for Shared Technologies and Facilities of Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Pengpeng Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Institutional Center for Shared Technologies and Facilities of Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Qiumei Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Institutional Center for Shared Technologies and Facilities of Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Kelin Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Institutional Center for Shared Technologies and Facilities of Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Dejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Institutional Center for Shared Technologies and Facilities of Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| |
Collapse
|
44
|
Beeckman F, Drozdzecki A, De Knijf A, Audenaert D, Beeckman T, Motte H. High-throughput assays to identify archaea-targeting nitrification inhibitors. FRONTIERS IN PLANT SCIENCE 2024; 14:1283047. [PMID: 38259951 PMCID: PMC10800436 DOI: 10.3389/fpls.2023.1283047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Nitrification is a microbial process that converts ammonia (NH3) to nitrite (NO2 -) and then to nitrate (NO3 -). The first and rate-limiting step in nitrification is ammonia oxidation, which is conducted by both bacteria and archaea. In agriculture, it is important to control this process as high nitrification rates result in NO3 - leaching, reduced nitrogen (N) availability for the plants and environmental problems such as eutrophication and greenhouse gas emissions. Nitrification inhibitors can be used to block nitrification, and as such reduce N pollution and improve fertilizer use efficiency (FUE) in agriculture. Currently applied inhibitors target the bacteria, and do not block nitrification by ammonia-oxidizing archaea (AOA). While it was long believed that nitrification in agroecosystems was primarily driven by bacteria, recent research has unveiled potential significant contributions from ammonia-oxidizing archaea (AOA), especially when bacterial activity is inhibited. Hence, there is also a need for AOA-targeting nitrification inhibitors. However, to date, almost no AOA-targeting inhibitors are described. Furthermore, AOA are difficult to handle, hindering their use to test or identify possible AOA-targeting nitrification inhibitors. To address the need for AOA-targeting nitrification inhibitors, we developed two miniaturized nitrification inhibition assays using an AOA-enriched nitrifying community or the AOA Nitrosospaera viennensis. These assays enable high-throughput testing of candidate AOA inhibitors. We here present detailed guidelines on the protocols and illustrate their use with some examples. We believe that these assays can contribute to the discovery of future AOA-targeting nitrification inhibitors, which could complement the currently applied inhibitors to increase nitrification inhibition efficiency in the field and as such contribute to a more sustainable agriculture.
Collapse
Affiliation(s)
- Fabian Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
| | - Andrzej Drozdzecki
- Screening Core, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Alexa De Knijf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
| | - Dominique Audenaert
- Screening Core, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
| |
Collapse
|
45
|
Gubry-Rangin C, Aigle A, Herrera-Alsina L, Lancaster LT, Prosser JI. Niche breadth specialization impacts ecological and evolutionary adaptation following environmental change. THE ISME JOURNAL 2024; 18:wrae183. [PMID: 39325971 PMCID: PMC11630254 DOI: 10.1093/ismejo/wrae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/29/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024]
Abstract
Ecological theory predicts that organismal distribution and abundance depend on the ability to adapt to environmental change. It also predicts that eukaryotic specialists and generalists will dominate in extreme environments or following environmental change, respectively. This theory has attracted little attention in prokaryotes, especially in archaea, which drive major global biogeochemical cycles. We tested this concept in Thaumarchaeota using pH niche breadth as a specialization factor. Responses of archaeal growth and activity to pH disturbance were determined empirically in manipulated, long-term, pH-maintained soil plots. The distribution of specialists and generalists was uneven over the pH range, with specialists being more limited to the extreme range. Nonetheless, adaptation of generalists to environmental change was greater than that of specialists, except for environmental changes leading to more extreme conditions. The balance of generalism and specialism over longer timescales was further investigated across evolutionary history. Specialists and generalists diversified at similar rates, reflecting balanced benefits of each strategy, but a higher transition rate from generalists to specialists than the reverse was demonstrated, suggesting that metabolic specialism is more easily gained than metabolic versatility. This study provides evidence for a crucial ecological concept in prokaryotes, significantly extending our understanding of archaeal adaptation to environmental change.
Collapse
Affiliation(s)
- Cécile Gubry-Rangin
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, United Kingdom
| | - Axel Aigle
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, United Kingdom
- Present address: Mexbrain, Villeurbanne, France
| | - Leonel Herrera-Alsina
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, United Kingdom
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, United Kingdom
| | - James I Prosser
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, United Kingdom
| |
Collapse
|
46
|
Yang Q, Zhong Y, Feng SW, Wen P, Wang H, Wu J, Yang S, Liang JL, Li D, Yang Q, Tam NFY, Peng P. Temporal enrichment of comammox Nitrospira and Ca. Nitrosocosmicus in a coastal plastisphere. THE ISME JOURNAL 2024; 18:wrae186. [PMID: 39375018 PMCID: PMC11471898 DOI: 10.1093/ismejo/wrae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/07/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Plastic marine debris is known to harbor a unique microbiome (termed the "plastisphere") that can be important in marine biogeochemical cycles. However, the temporal dynamics in the plastisphere and their implications for marine biogeochemistry remain poorly understood. Here, we characterized the temporal dynamics of nitrifying communities in the plastisphere of plastic ropes exposed to a mangrove intertidal zone. The 39-month colonization experiment revealed that the relative abundances of Nitrospira and Candidatus Nitrosocosmicus representatives increased over time according to 16S rRNA gene amplicon sequencing analysis. The relative abundances of amoA genes in metagenomes implied that comammox Nitrospira were the dominant ammonia oxidizers in the plastisphere, and their dominance increased over time. The relative abundances of two metagenome-assembled genomes of comammox Nitrospira also increased with time and positively correlated with extracellular polymeric substances content of the plastisphere but negatively correlated with NH4+ concentration in seawater, indicating the long-term succession of these two parameters significantly influenced the ammonia-oxidizing community in the coastal plastisphere. At the end of the colonization experiment, the plastisphere exhibited high nitrification activity, leading to the release of N2O (2.52 ng N2O N g-1) in a 3-day nitrification experiment. The predicted relative contribution of comammox Nitrospira to N2O production (17.9%) was higher than that of ammonia-oxidizing bacteria (4.8%) but lower than that of ammonia-oxidizing archaea (21.4%). These results provide evidence that from a long-term perspective, some coastal plastispheres will become dominated by comammox Nitrospira and thereby act as hotspots of ammonia oxidation and N2O production.
Collapse
Affiliation(s)
- Qian Yang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 1, Yanqihu East Road, Huairou District, Beijing 100049, P. R. China
| | - Yin Zhong
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
| | - Shi-wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, No. 55, Zhongshan Dadao Xi Road, Tianhe District, Guangzhou 510631, P. R. China
| | - Ping Wen
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, No. 55, Zhongshan Dadao Xi Road, Tianhe District, Guangzhou 510631, P. R. China
| | - Heli Wang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 1, Yanqihu East Road, Huairou District, Beijing 100049, P. R. China
| | - Junhong Wu
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 1, Yanqihu East Road, Huairou District, Beijing 100049, P. R. China
| | - Sen Yang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 1, Yanqihu East Road, Huairou District, Beijing 100049, P. R. China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, No. 55, Zhongshan Dadao Xi Road, Tianhe District, Guangzhou 510631, P. R. China
| | - Dan Li
- School of Environment and Civil Engineering, Dongguan University of Technology, No. 1, Daxue Road, Songshanhu District, Dongguan 523808, P. R. China
| | - Qiong Yang
- Guangdong Neilingding Futian National Nature Reserve, No. 1, Mangrove Road, Futian District, Shenzhen 518040, P. R. China
| | - Nora F Y Tam
- School of Science and Technology, Hong Kong Metropolitan University, 30 Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong 999077, P. R. China
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Ping’an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
| |
Collapse
|
47
|
Endo Y, Fujitani H, Kaneko A, Ninomiya T, Umezawa C, Kuroiwa M, Suwa Y. Isolation of a Moderately Acidophilic Nitrobacter from a Nitrifying Community Supplied with Urea. Microbes Environ 2024; 39:ME24027. [PMID: 39284717 PMCID: PMC11427310 DOI: 10.1264/jsme2.me24027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/23/2024] [Indexed: 09/29/2024] Open
Abstract
Nitrite-oxidizing bacteria (NOB), which perform the second step of aerobic nitrification, play an important role in soil. In the present study, we report a novel isolate from agricultural soil affiliated with the genus Nitrobacter and its physiological characteristics. We sampled the surface soil of a vegetable field and obtained mixed culture A31 using the most probable number (MPN) method with inorganic medium containing 0.75 mM urea (pH 5.5). The dilution-extinction procedure on culture A31 led to the isolation of a strain that was designated as Nitrobacter sp. A67. The nxrB1 gene sequence of Nitrobacter sp. A67 (302 bp) was classified into Cluster 5, and the highest sequence identity was 96.10% with Nitrobacter sp. BS5/19. The NO2- oxidation activity of Nitrobacter sp. A67 was investigated at various pH. The optimum pH for NO2- oxidation was 5.8-6.4. This result indicates that Nitrobacter sp. A67 is a moderately acidophilic nitrite-oxidizing bacterium.
Collapse
Affiliation(s)
- Yuta Endo
- Department of Biological Sciences, Chuo University, Tokyo, Japan
| | | | - Ayano Kaneko
- Department of Biological Sciences, Chuo University, Tokyo, Japan
| | - Takuya Ninomiya
- Department of Biological Sciences, Chuo University, Tokyo, Japan
| | - Chiharu Umezawa
- Department of Biological Sciences, Chuo University, Tokyo, Japan
| | - Megumi Kuroiwa
- Department of Biological Sciences, Chuo University, Tokyo, Japan
| | - Yuichi Suwa
- Department of Biological Sciences, Chuo University, Tokyo, Japan
| |
Collapse
|
48
|
Han Z, Leng Y, Sun Z, Li Z, Xu P, Wu S, Liu S, Li S, Wang J, Zou J. Substitution of organic and bio-organic fertilizers for mineral fertilizers to suppress nitrous oxide emissions from intensive vegetable fields. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119390. [PMID: 37897895 DOI: 10.1016/j.jenvman.2023.119390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023]
Abstract
To gain insight into the microbial mechanisms associated with the replacement of chemical fertilizers with organic or bio-organic fertilizers to mitigate soil nitrous oxide (N2O) emissions, we measured N2O emissions from greenhouse vegetable soils through field observations and pot experiments. Results showed that organic substitution suppressed N2O emissions by reducing soil mineral N content and stimulating the abundance of the nosZII gene. The trade-off effect of bio-organic substitution on N2O emissions may be due to the stimulated activity of the AOA-amoA gene, resulting in unfavorable conditions for N2O production and thus reduced N2O loss. We also linked the inhibitory effect of organic and bio-organic substitution on N2O emissions to the increased abundance of key species in bacterial co-occurrence networks represented by Patescibacteria as they were significantly and negatively correlated with N2O emissions. However, the mitigation effect of bio-organic substitution on N2O emissions was conteracted by an increase in Bacillus abundance due to the direct negative effect of Bacillus on the nosZII gene abundance. These findings suggest that conventional or bio-organic substitution is a promising strategy for alleviating the environmental costs of crop production.
Collapse
Affiliation(s)
- Zhaoqiang Han
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Yi Leng
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhirong Sun
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhutao Li
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Pinshang Xu
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shuang Wu
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Shuwei Liu
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Shuqing Li
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Jinyang Wang
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| | - Jianwen Zou
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| |
Collapse
|
49
|
Liu X, Jiang C, Qin Y, Wang C, Wang J, Zheng X, Maihaiti M, Zhang X, Ma S, Xu S, Zhuang X. Production of biochar from squeezed liquid of fruit and vegetable waste: Impacts on soil N 2O emission and microbial community. ENVIRONMENTAL RESEARCH 2023; 239:117245. [PMID: 37774999 DOI: 10.1016/j.envres.2023.117245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
The squeezed liquid from fruit and vegetable waste (LW) presents a unique wastewater challenge, marked by recalcitrance in treatment and amplified design risks with the application of conventional processes. Following coagulation of the squeezed liquid, the majority of particulate matter precipitates. The resulting precipitated floc (LWF) is reclaimed and subsequently utilized for the synthesis of biochar. The present study primarily explores the viability of repurposing LWF as biochar to enhance soil quality and mitigate N2O emissions. Findings indicate that the introduction of a 2% proportion of LWFB led to a remarkable 99.5% reduction in total N2O emissions in contrast to LWF. Concurrently, LWFB substantially enhanced nutrients content by elevating soil organic carbon (SOC) and nitrogen levels. Utilizing high-throughput sequencing in conjunction with qPCR, the investigation unveiled that the porous structure and substantial specific surface area of LWFB potentially fostered microbial adhesion and heightened diversity within the soil microbial community. Furthermore, LWFB notably diminished the relative abundance of AOB (Nitrosospira, Nitrosomonas), and NOB (Candidatus_Nitrotoga), thereby curbing the conversion of NH4+ into NO3-. The pronounced elevation in nosZ abundance implies that LWFB holds the potential to mitigate N2O emissions through a conversion to N2.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Qin
- Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu, 322000, Zhejiang, China
| | - Cong Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinglin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxu Zheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mairemu Maihaiti
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xupo Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
50
|
Qiu L, Gou X, Kong Y, Tu F, Peng X, Xu L, Zhou S, Huang C, Chen Y, Liu L, Tu L. Nitrogen addition stimulates N 2O emissions via changes in denitrification community composition in a subtropical nitrogen-rich forest. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119274. [PMID: 37890399 DOI: 10.1016/j.jenvman.2023.119274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Microbially driven nitrification and denitrification play important roles in regulating soil N availability and N2O emissions. However, how the composition of nitrifying and denitrifying prokaryotic communities respond to long-term N additions and regulate soil N2O emissions in subtropical forests remains unclear. Seven years of field experiment which included three N treatments (+0, +50, +150 kg N ha-1 yr-1; CK, LN, HN) was conducted in a subtropical forest. Soil available nutrients, N2O emissions, net N mineralization, denitrification potential and enzyme activities, and the composition and diversity of nitrifying and denitrifying communities were measured. Soil N2O emissions from the LN and HN treatments increased by 42.37% and 243.32%, respectively, as compared to the CK. Nitrogen addition significantly inhibited nitrification (N mineralization) and significantly increased denitrification potentials and enzymes. Nitrification and denitrification abundances (except nirK) were significantly lower in the HN, than CK treatment and were not significantly correlated with N2O emissions. Nitrogen addition significantly increased nirK abundance while maintaining the positive effects of denitrification and N2O emissions to N deposition, challenging the conventional wisdom that long-term N addition reduces N2O emissions by inhibiting microbial growth. Structural equation modeling showed that the composition, diversity, and abundance of nirS- and nirK-type denitrifying prokaryotic communities had direct effects on N2O emissions. Mechanistic investigations have revealed that denitrifier keystone taxa transitioned from N2O-reducing (complete denitrification) to N2O-producing (incomplete denitrification) with increasing N addition, increasing structural complexity and diversity of the denitrifier co-occurrence network. These results significantly advance current understanding of the relationship between denitrifying community composition and N2O emissions, and highlight the importance of incorporating denitrifying community dynamics and soil environmental factors together in models to accurately predict key ecosystem processes under global change.
Collapse
Affiliation(s)
- Lingjun Qiu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xin Gou
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuemei Kong
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Fangyang Tu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xia Peng
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lin Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shixing Zhou
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Congde Huang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuqin Chen
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Li Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lihua Tu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|