1
|
Bogdziewicz M, Chybicki I, Szymkowiak J, Ulaszewski B, Burczyk J, Szarek-Łukaszewska G, Meyza K, Sztupecka E, Ledwoń M, Piechnik Ł, Seget B, Kondrat K, Holeksa J, Żywiec M. Masting and Efficient Production of Seedlings: Balancing Costs of Variation Through Synchronised Fruiting. Ecol Lett 2024; 27:e14514. [PMID: 39354913 DOI: 10.1111/ele.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 10/03/2024]
Abstract
The efficient conversion of tissues into reproductive success is a crucial aspect affecting the evolution of life histories. Masting, the interannually variable and synchronous seed production in perennial plants, is a strategy that can enhance reproductive efficiency by mitigating seed predation and pollen limitation. However, evaluating benefits is insufficient to establish whether efficiency has improved, as such assessments neglect the associated costs of masting, particularly during the critical seed-to-seedling stage. We conducted a parentage analysis of seedlings and adults in a population of 209 Sorbus aucuparia trees, monitored over 23 years, providing pioneering documentation of the effects of masting on the fitness of individual trees beyond the seed stage. Our results show high costs of interannual variation that can be mitigated by high synchrony and reveal the existence of phenotypes that appear to reap the benefits of masting while avoiding its costs through regular reproduction.
Collapse
Affiliation(s)
- Michal Bogdziewicz
- Faculty of Biology. Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| | - Igor Chybicki
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Jakub Szymkowiak
- Faculty of Biology. Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
- Population Ecology Research Unit, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| | - Bartosz Ulaszewski
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Jaroslaw Burczyk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | | | - Katarzyna Meyza
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Ewa Sztupecka
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Mateusz Ledwoń
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Łukasz Piechnik
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Barbara Seget
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Kondrat
- Faculty of Biology. Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| | - Jan Holeksa
- Department of Plant Ecology and Environmental Protection, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznan, Poland
| | - Magdalena Żywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
2
|
Vagnon C, Olden JD, Boulêtreau S, Bruel R, Chevalier M, Garcia F, Holtgrieve G, Jackson M, Thebault E, Tedesco PA, Cucherousset J. Ecosystem synchrony: an emerging property to elucidate ecosystem responses to global change. Trends Ecol Evol 2024:S0169-5347(24)00196-4. [PMID: 39217060 DOI: 10.1016/j.tree.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Understanding ecosystem responses to global change have long challenged scientists due to notoriously complex properties arising from the interplay between biological and environmental factors. We propose the concept of ecosystem synchrony - that is, similarity in the temporal fluctuations of an ecosystem function between multiple ecosystems - to overcome this challenge. Ecosystem synchrony can manifest due to spatially correlated environmental fluctuations (Moran effect), exchange of energy, nutrients, and organic matter and similarity in biotic characteristics across ecosystems. By taking advantage of long-term surveys, remote sensing and the increased use of high-frequency sensors to assess ecosystem functions, ecosystem synchrony can foster our understanding of the coordinated ecosystem responses at unexplored spatiotemporal scales, identify emerging portfolio effects among ecosystems, and deliver signals of ecosystem perturbations.
Collapse
Affiliation(s)
- Chloé Vagnon
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France.
| | - Julian D Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105, USA
| | - Stéphanie Boulêtreau
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Rosalie Bruel
- OFB, DRAS, Service EcoAqua, Aix-en-Provence, France; Pôle R&D ECLA, Aix-en-Provence, France
| | - Mathieu Chevalier
- IFREMER-DYNECO-LEBCO, Centre de Bretagne, CS 10070, 29280 Plouzané, France
| | - Flavien Garcia
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Gordon Holtgrieve
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105, USA
| | - Michelle Jackson
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Elisa Thebault
- Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Créteil, Université Paris Cité, Institute of Ecology and Environmental Science (iEES), Paris, France
| | - Pablo A Tedesco
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Julien Cucherousset
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| |
Collapse
|
3
|
Foest JJ, Bogdziewicz M, Pesendorfer MB, Ascoli D, Cutini A, Nussbaumer A, Verstraeten A, Beudert B, Chianucci F, Mezzavilla F, Gratzer G, Kunstler G, Meesenburg H, Wagner M, Mund M, Cools N, Vacek S, Schmidt W, Vacek Z, Hacket-Pain A. Widespread breakdown in masting in European beech due to rising summer temperatures. GLOBAL CHANGE BIOLOGY 2024; 30:e17307. [PMID: 38709196 DOI: 10.1111/gcb.17307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 05/07/2024]
Abstract
Climate change effects on tree reproduction are poorly understood, even though the resilience of populations relies on sufficient regeneration to balance increasing rates of mortality. Forest-forming tree species often mast, i.e. reproduce through synchronised year-to-year variation in seed production, which improves pollination and reduces seed predation. Recent observations in European beech show, however, that current climate change can dampen interannual variation and synchrony of seed production and that this masting breakdown drastically reduces the viability of seed crops. Importantly, it is unclear under which conditions masting breakdown occurs and how widespread breakdown is in this pan-European species. Here, we analysed 50 long-term datasets of population-level seed production, sampled across the distribution of European beech, and identified increasing summer temperatures as the general driver of masting breakdown. Specifically, increases in site-specific mean maximum temperatures during June and July were observed across most of the species range, while the interannual variability of population-level seed production (CVp) decreased. The declines in CVp were greatest, where temperatures increased most rapidly. Additionally, the occurrence of crop failures and low seed years has decreased during the last four decades, signalling altered starvation effects of masting on seed predators. Notably, CVp did not vary among sites according to site mean summer temperature. Instead, masting breakdown occurs in response to warming local temperatures (i.e. increasing relative temperatures), such that the risk is not restricted to populations growing in warm average conditions. As lowered CVp can reduce viable seed production despite the overall increase in seed count, our results warn that a covert mechanism is underway that may hinder the regeneration potential of European beech under climate change, with great potential to alter forest functioning and community dynamics.
Collapse
Affiliation(s)
- Jessie J Foest
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Michał Bogdziewicz
- Faculty of Biology, Forest Biology Center, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Mario B Pesendorfer
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Davide Ascoli
- Department of Agriculture, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Andrea Cutini
- CREA - Research Centre for Forestry and Wood, Arezzo, Italy
| | - Anita Nussbaumer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arne Verstraeten
- Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
| | - Burkhard Beudert
- Department of Conservation and Research, Bavarian Forest National Park, Grafenau, Germany
| | | | | | - Georg Gratzer
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Georges Kunstler
- Université Grenoble Alpes, INRAE, LESSEM, Saint-Martin-d'Hères, France
| | - Henning Meesenburg
- Department of Environmental Control, Northwest German Forest Research Institute, Göttingen, Germany
| | - Markus Wagner
- Department of Environmental Control, Northwest German Forest Research Institute, Göttingen, Germany
| | - Martina Mund
- Forestry Research and Competence Centre Gotha, Gotha, Germany
| | - Nathalie Cools
- Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
| | - Stanislav Vacek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Wolfgang Schmidt
- Department of Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Zdeněk Vacek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Bogdziewicz M, Chybicki I, Szymkowiak J, Ulaszewski B, Burczyk J, Szarek-Łukaszewska G, Meyza K, Sztupecka E, Ledwoń M, Piechnik Ł, Seget B, Kondrat K, Gazda A, Żywiec M. Relatives reproduce in synchrony: kinship and individual condition shape intraspecific variation in masting phenotype. Proc Biol Sci 2024; 291:20232732. [PMID: 38412970 PMCID: PMC10898974 DOI: 10.1098/rspb.2023.2732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Masting (synchronous and interannually variable seed production) is frequently called a reproductive strategy; yet it is unclear whether the reproductive behaviour of individuals has a heritable component. To address this, we used 22 years of annual fruit production data from 110 Sorbus aucuparia L. trees to examine the contributions of genetic factors to the reproductive phenotype of individuals, while controlling for environmental variation. Trees sharing close genetic relationships and experiencing similar habitat conditions exhibited similar levels of reproductive synchrony. Trees of comparable sizes displayed similar levels of year-to-year variation in fruiting, with relatedness contributing to this variation. External factors, such as shading, influenced the time intervals between years with abundant fruit production. The effects of genetic relatedness on the synchrony of reproduction among trees and on interannual variation provide long-awaited evidence that the masting phenotype is heritable, and can respond to natural selection.
Collapse
Affiliation(s)
- Michal Bogdziewicz
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland
| | - Igor Chybicki
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Powstańców Wielkopolskich 10, 85-090, Bydgoszcz, Poland
| | - Jakub Szymkowiak
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland
| | - Bartosz Ulaszewski
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Powstańców Wielkopolskich 10, 85-090, Bydgoszcz, Poland
| | - Jaroslaw Burczyk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Powstańców Wielkopolskich 10, 85-090, Bydgoszcz, Poland
| | | | - Katarzyna Meyza
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Powstańców Wielkopolskich 10, 85-090, Bydgoszcz, Poland
| | - Ewa Sztupecka
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Powstańców Wielkopolskich 10, 85-090, Bydgoszcz, Poland
| | - Mateusz Ledwoń
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland
| | - Łukasz Piechnik
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
| | - Barbara Seget
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
| | - Katarzyna Kondrat
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland
| | - Anna Gazda
- Department of Forest Biodiversity, Faculty of Forestry, University of Agriculture, al. 29 Listopada 46, 31-425 Kraków, Poland
| | - Magdalena Żywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
| |
Collapse
|
5
|
Maag N, Korner-Nievergelt F, Szymkowiak J, Hałas N, Maziarz M, Neubauer G, Luepold SB, Carlotti S, Schaub M, Flade M, Scherrer D, Grendelmeier A, Riess M, Stelbrink P, Pasinelli G. Wood warbler population dynamics in response to mast seeding regimes in Europe. Ecology 2024; 105:e4227. [PMID: 38038276 DOI: 10.1002/ecy.4227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/27/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023]
Abstract
Mast seeding is the episodic, massive production of plant seeds synchronized over large areas. The resulting superabundance of seeds represents a resource pulse that can profoundly affect animal populations across trophic levels. Following years of high seed production, the abundance of both seed consumers and their predators increase. Higher predator abundance leads to increased predation pressure across the trophic web, impacting nonseed consumers such as the wood warbler Phylloscopus sibilatrix through increased nest predation after tree mast years. Over the past 30 years, the frequency of tree seed masts has increased, while wood warbler populations have declined in several regions of Europe. We hypothesized that increasing mast frequencies may have contributed to the observed population declines by creating suboptimal breeding conditions in years after masting. We measured reproductive output in four study areas in central Europe, which was between 0.61 and 1.24 fledglings lower in the years following masting than nonmasting. For each study area, we used matrix population models to predict population trends based on the estimated reproductive output and the local mast frequencies. We then compared the predicted with the observed population trends to assess if the frequency of mast years had contributed to the population dynamics. In Wielkopolska National Park (PL) and Hessen (DE), masting occurred on average only every 4 years and populations were stable or nearly so, whereas in Jura (CH) and Białowieża National Park (PL), masting occurred every 2 and 2.5 years, respectively, and populations were declining. The simple matrix population models predicted the relative difference among local population trends over the past 10-20 years well, suggesting that the masting frequency may partly explain regional variation in population trends. Simulations suggest that further increases in mast frequency will lead to further declines in wood warbler populations. We show that changes in a natural process, such as mast seeding, may contribute to the decline in animal populations through cascading effects.
Collapse
Affiliation(s)
- Nino Maag
- Swiss Ornithological Institute, Sempach, Switzerland
| | | | - Jakub Szymkowiak
- Population Ecology Research Unit, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Forest Biology Center, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Natalia Hałas
- Population Ecology Research Unit, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Marta Maziarz
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | - Martin Flade
- Schorfheide-Chorin Biosphere Reserve, Angermünde, Germany
| | - Daniel Scherrer
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - Michael Riess
- Department of Biology, University of Marburg, Marburg, Germany
| | - Pablo Stelbrink
- Department of Biology, University of Marburg, Marburg, Germany
| | - Gilberto Pasinelli
- Swiss Ornithological Institute, Sempach, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| |
Collapse
|
6
|
Kijowska-Oberc J, Dylewski Ł, Ratajczak E. Proline concentrations in seedlings of woody plants change with drought stress duration and are mediated by seed characteristics: a meta-analysis. Sci Rep 2023; 13:15157. [PMID: 37704656 PMCID: PMC10500006 DOI: 10.1038/s41598-023-40694-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Proline accumulation represents one of mechanisms used by plants to prevent the adverse consequences of water stress. The effects of increased proline levels in response to drought differ among species. Trees are exposed to the long-term effects of climate change. The reproductive success of species in a specific environment depends on the functional trait of tree seeds. We conducted a meta-analysis to evaluate the effects of drought stress on the proline concentrations in seedling leaf tissues of woody plant species and their relationships to drought duration, seed mass, seed category and coniferous/deciduous classification. Drought duration exhibited a nonlinear effect on proline accumulations. The drought effect on proline accumulations is greater for deciduous than for coniferous species and is higher for orthodox seed species than for recalcitrant. The seedlings of large-seeded species showed greater effect sizes than those of small-seeded species. Our results suggest that there is an optimum level at which proline accumulations under the influence of drought are the highest. A link between seed functional traits, as well as the coniferous/deciduous classification, and proline concentrations in tree seedlings during water stress were determined for the first time. Proline may help to identify high-quality seeds of trees used for reforestation.
Collapse
Affiliation(s)
- Joanna Kijowska-Oberc
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.
| | - Łukasz Dylewski
- Department of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Ewelina Ratajczak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| |
Collapse
|
7
|
Yang L, Shen Z, Wang X, Wang S, Xie Y, Larjavaara M, Zhang J, Li G. Climate drivers of seed rain phenology of subtropical forest communities along an elevational gradient. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023:10.1007/s00484-023-02481-9. [PMID: 37258689 DOI: 10.1007/s00484-023-02481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 06/02/2023]
Abstract
Seed rain phenology (the start and end date of seed rain) is an essential component of plant phenology, critical for understanding population regeneration and community dynamics. However, intra- and inter-annual changes of seed rain phenology along environmental gradients have rarely been studied and the responses of seed rain phenology to climate variations are unclear. We monitored seed rain phenology of four forest communities in four years at different elevations (900 m, 1450 m, 1650 m, 1900 m a.s.l.) of a subtropical mountain in Central China. We analyzed the spatiotemporal patterns of seed rain phenology of 29 common woody plant species (total observed species in the seed rain), and related the phenological variations to seed number and climatic variables using mixed-effect models with the correlation matrix of phylogeny. We found that changes in the period length were mainly driven by the end rather than the start date. The end date and the period length of seed rain were significantly different between the mast and non-mast seeding years, while no significant elevation-related trend was detected in seed rain phenology variation. Seed number, mean temperature in spring (Tspr), and winter (Twin), summer precipitation (Psum) had significant effects on seed rain phenology. When Tspr increased, the start date of seed rain advanced, while the end date was delayed and the seed rain period length was mainly prolonged by a higher seed number, Twin and Psum. Forest canopy might have a buffering effect on understory climatic conditions, especially in precipitation that lead to difference in seed rain phenology between canopy and shrub species. Our novel evidence of seed rain phenology can improve prediction of community regeneration dynamics in responding to climate changes.
Collapse
Affiliation(s)
- Liu Yang
- MOE Laboratory for Earth Surface Processes, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zehao Shen
- MOE Laboratory for Earth Surface Processes, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| | - Xuejing Wang
- MOE Laboratory for Earth Surface Processes, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Shaopeng Wang
- MOE Laboratory for Earth Surface Processes, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yuyang Xie
- MOE Laboratory for Earth Surface Processes, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Markku Larjavaara
- MOE Laboratory for Earth Surface Processes, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jie Zhang
- MOE Laboratory for Earth Surface Processes, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Guo Li
- Institute of Ecological Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
8
|
Li J, Li S, Liu C, Guo D, Zhang Q. Response of Chinese pine regeneration density to forest gap and slope aspect in northern China: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162428. [PMID: 36842583 DOI: 10.1016/j.scitotenv.2023.162428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Chinese pine is a Chinese endemic species with important ecological functions. Forest gaps and slope aspect are important factors in the regeneration of Chinese pine by influencing light and moisture, but what these effects are is still up for debate. Meanwhile, the effects of forest gaps and slope aspect are poorly studied in response to different forest types and ages, as well as temperature and precipitation. We established literature selection criteria that finally identified 101 and 69 pairs of study cases on forest gaps and slope aspect, respectively. The overall effect values were obtained by meta-analysis and found that gap and shady slope habitats had significant positive effects on the regeneration density of Chinese pine (P < 0.05). The gap most enhanced the regeneration density in a plantation setting (P < 0.05). In pure stands of Chinese pine, shady slopes can significantly increase regeneration density (P < 0.05). Forest gaps and shady slopes contributed most to Chinese pine regeneration density in mature stands compared to near mature stands, and over mature stands (P < 0.05). There was no significant effect of stand gap size on regeneration density (P > 0.05). In particular, the edges of the gap appeared to be well-suited for regeneration (P < 0.05). In our study area, mean annual precipitation resulted in a significant increase in the effects of the gap and shady slope as precipitation declined (P < 0.05). This meta-analysis helps elucidate the effects of forest gap (position or area) and slope aspect on Chinese pine regeneration. With global climate change, Chinese pine regeneration may prefer the edge of forest gaps and shady slopes.
Collapse
Affiliation(s)
- Jiasheng Li
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Shuai Li
- College of Resource and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Can Liu
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Donggang Guo
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China.
| | - Quanxi Zhang
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
9
|
Bogdziewicz M, Journé V, Hacket-Pain A, Szymkowiak J. Mechanisms driving interspecific variation in regional synchrony of trees reproduction. Ecol Lett 2023; 26:754-764. [PMID: 36888560 DOI: 10.1111/ele.14187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
Seed production in many plants is characterized by large interannual variation, which is synchronized at subcontinental scales in some species but local in others. The reproductive synchrony affects animal migrations, trophic responses to resource pulses and the planning of management and conservation. Spatial synchrony of reproduction is typically attributed to the Moran effect, but this alone is unable to explain interspecific differences in synchrony. We show that interspecific differences in the conservation of seed production-weather relationships combine with the Moran effect to explain variation in reproductive synchrony. Conservative timing of weather cues that trigger masting allows populations to be synchronized at distances >1000 km. Conversely, if populations respond to variable weather signals, synchrony cannot be achieved. Our study shows that species vary in the extent to which their weather cueing is spatiotemporally conserved, with important consequences, including an interspecific variation of masting vulnerability to climate change.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Faculty of Biology, Forest Biology Center, Adam Mickiewicz University, Poznan, Poland.,Laboratoire EcoSystemes et Societes En Montagne (LESSEM), Institut National de Recherche pour Agriculture, Alimentation et Environnement (IN-RAE), Université Grenoble Alpes, St. Martin-d'Hères, France
| | - Valentin Journé
- Faculty of Biology, Forest Biology Center, Adam Mickiewicz University, Poznan, Poland
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Jakub Szymkowiak
- Faculty of Biology, Forest Biology Center, Adam Mickiewicz University, Poznan, Poland.,Population Ecology Research Unit, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
10
|
Bogdziewicz M. How will global change affect plant reproduction? A framework for mast seeding trends. THE NEW PHYTOLOGIST 2022; 234:14-20. [PMID: 34409608 DOI: 10.1111/nph.17682] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Forest ecology traditionally focuses on plant growth and survival, leaving seed production as a major demographic process lacking a framework for how it will be affected by global change. Understanding plant reproductive responses to changing climate is complicated by masting, the annually variable seed production synchronized within populations. Predicting trends in masting is crucial, because masting impacts seed predation and pollination enough to override simple trends in mean seed production. Proximate mechanisms of seed production patterns in perennial plants are gathered to identify processes through which masting may be affected by a changing environment. Predicting trends in masting will require understanding the mechanisms that cause predictable seed failure after high-seed years, and the stochastic mechanisms that synchronize individuals in high-seed years.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University in Poznań, Ulica Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
- INRAE, LESSEM, University Grenoble Alpes, 2 rue de la Papeterie, BP 76, Saint-Martin-d'Hères, 38400, France
| |
Collapse
|
11
|
Bogdziewicz M, Kuijper D, Zwolak R, Churski M, Jędrzejewska B, Wysocka-Fijorek E, Gazda A, Miścicki S, Podgórski T. Emerging infectious disease triggered a trophic cascade and enhanced recruitment of a masting tree. Proc Biol Sci 2022; 289:20212636. [PMID: 35232238 PMCID: PMC8889186 DOI: 10.1098/rspb.2021.2636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There are several mechanisms that allow plants to temporarily escape from top-down control. One of them is trophic cascades triggered by top predators or pathogens. Another is satiation of consumers by mast seeding. These two mechanisms have traditionally been studied in separation. However, their combined action may have a greater effect on plant release than either process alone. In 2015, an outbreak of a disease (African swine fever, ASF) caused a crash in wild boar (Sus scrofa) abundance in Białowieża Primeval Forest. Wild boar are important consumers of acorns and are difficult to satiate relative to less mobile granivores. We hypothesized that the joint action of the ASF outbreak and masting would enhance regeneration of oaks (Quercus robur). Data from ungulate exclosures demonstrated that ASF led to reduction in acorn predation. Tree seedling data indicated that oak recruitment increased twofold relative to pre-epidemic period. Our results showed that perturbations caused by wildlife disease travel through food webs and influence forest dynamics. The outbreak of ASF acted synergistically with masting and removed herbivore top-down control of oaks by mobile consumers. This illustrates that the ASF epidemic that currently occurs across Europe can have broad effects on forest dynamics.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University in Poznań, Ulica Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland.,INRAE, LESSEM, University Grenoble Alpes, 2 rue de la Papeterie, BP 76, Saint-Martin-d'Hères 38400, France
| | - Dries Kuijper
- Mammal Research Institute, Polish Academy of Sciences, Ul. Stoczek 1, 17-230 Białowieża, Poland
| | - Rafał Zwolak
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University in Poznań, Ulica Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| | - Marcin Churski
- Mammal Research Institute, Polish Academy of Sciences, Ul. Stoczek 1, 17-230 Białowieża, Poland
| | - Bogumiła Jędrzejewska
- Mammal Research Institute, Polish Academy of Sciences, Ul. Stoczek 1, 17-230 Białowieża, Poland
| | - Emilia Wysocka-Fijorek
- Department of Forest Resources Management, Forest Research Institute-Sękocin Stary, ul. Braci Leśnej 3, 05-090 Raszyn, Poland
| | - Anna Gazda
- Department of Forest Biodiversity, Faculty of Forestry, University of Agriculture, al. 29 Listopada 46, 31-425 Kraków, Poland
| | - Stanisław Miścicki
- Department of Forest Management Planning, Dendrometry and Forest Economics, Institute of Forests Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska Str. 159, Warszawa 02-776, Poland
| | - Tomasz Podgórski
- Mammal Research Institute, Polish Academy of Sciences, Ul. Stoczek 1, 17-230 Białowieża, Poland.,Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague, Czech Republic
| |
Collapse
|
12
|
Abstract
Masting, or synchronous production of large seed crops, is widespread among plants. The predator satiation hypothesis states that masting evolved to overwhelm seed predators with an excess of food. Yet, this popular explanation faced few rigorous tests. We conducted a meta-analysis of studies that related the magnitude of seed production to the intensity of seed predation. Our results validate certain theoretical notions (e.g., that predator satiation is more effective at higher latitudes) but challenge others (e.g., that specialist and generalist consumers differ in the type of functional response to masting). We also found that masting is losing its ability to satiate consumers, probably because global warming affected masting patterns. This shift might considerably impair the reproduction of masting plants. Predator satiation is the most commonly tested hypothesis that explains the evolutionary advantages of masting. It proposes that masting benefits plant reproduction by reducing the proportion of seed crop that is consumed by predators. This hypothesis is widely accepted, but many theoretical notions about predator satiation have not been subjected to a robust evaluation. To address this issue, we conducted a meta-analysis of studies that quantified seed predation in relation to mast seeding. We found evidence of both numerical (starvation between mast years) and functional (satiation during mast years) response of consumers to masting. These two effects reinforced each other. Masting satiated invertebrate but not vertebrate seed predators. Satiation was more pronounced at higher, temperate, and boreal latitudes, perhaps because masting is more effective in reducing seed losses when plant communities are less diverse. The effectiveness of masting in satiating invertebrate consumers declined over time (1972 to 2018), probably reflecting the impact of climate change on the frequency and intensity of masting. If masting ceases to reduce seed losses, a crucial advantage of this reproductive strategy will be lost, and sustainability of many tree populations will decline.
Collapse
|
13
|
Gratzer G, Pesendorfer MB, Sachser F, Wachtveitl L, Nopp‐Mayr U, Szwagrzyk J, Canham CD. Does fine scale spatiotemporal variation in seed rain translate into plant population structure? OIKOS 2021. [DOI: 10.1111/oik.08826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Georg Gratzer
- Inst. of Forest Ecology, Dept of Soil and Forest Sciences, BOKU – Univ. of Natural Resources and Life Sciences Vienna Austria
| | - Mario B. Pesendorfer
- Inst. of Forest Ecology, Dept of Soil and Forest Sciences, BOKU – Univ. of Natural Resources and Life Sciences Vienna Austria
| | - Frederik Sachser
- Inst. of Forest Ecology, Dept of Soil and Forest Sciences, BOKU – Univ. of Natural Resources and Life Sciences Vienna Austria
- Inst. of Wildlife Biology and Game Management, Dept of Integrative Biology and Biodiversity Research, BOKU – Univ. of Natural Resources and Life Sciences Vienna Austria
| | - Laura Wachtveitl
- Inst. of Forest Ecology, Dept of Soil and Forest Sciences, BOKU – Univ. of Natural Resources and Life Sciences Vienna Austria
| | - Ursula Nopp‐Mayr
- Inst. of Wildlife Biology and Game Management, Dept of Integrative Biology and Biodiversity Research, BOKU – Univ. of Natural Resources and Life Sciences Vienna Austria
| | - Jerzy Szwagrzyk
- Dept of Botany and Nature Conservation, Forest Biodiversity Inst., Univ. of Agriculture Kraków Poland
| | | |
Collapse
|
14
|
Vacchiano G, Pesendorfer MB, Conedera M, Gratzer G, Rossi L, Ascoli D. Natural disturbances and masting: from mechanisms to fitness consequences. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200384. [PMID: 34657468 PMCID: PMC8520777 DOI: 10.1098/rstb.2020.0384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 11/12/2022] Open
Abstract
The timing of seed production and release is highly relevant for successful plant reproduction. Ecological disturbances, if synchronized with reproductive effort, can increase the chances of seeds and seedlings to germinate and establish. This can be especially true under variable and synchronous seed production (masting). Several observational studies have reported worldwide evidence for co-occurrence of disturbances and seed bumper crops in forests. Here, we review the evidence for interaction between disturbances and masting in global plant communities; we highlight feedbacks between these two ecological processes and posit an evolutionary pathway leading to the selection of traits that allow trees to synchronize seed crops with disturbances. Finally, we highlight relevant questions to be tested on the functional and evolutionary relationship between disturbances and masting. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Giorgio Vacchiano
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | - Mario B. Pesendorfer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Marco Conedera
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Cadenazzo, Switzerland
| | - Georg Gratzer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lorenzo Rossi
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | - Davide Ascoli
- Department of Agricultural, Forest and Food Sciences, University of Torino, Turin, Italy
| |
Collapse
|
15
|
Wion AP, Pearse IS, Rodman KC, Veblen TT, Redmond MD. The effects of ENSO and the North American monsoon on mast seeding in two Rocky Mountain conifer species. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200378. [PMID: 34657459 PMCID: PMC8520773 DOI: 10.1098/rstb.2020.0378] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 11/12/2022] Open
Abstract
We aimed to disentangle the patterns of synchronous and variable cone production (i.e. masting) and its relationship to climate in two conifer species native to dry forests of western North America. We used cone abscission scars to reconstruct ca 15 years of recent cone production in Pinus edulis and Pinus ponderosa, and used redundancy analysis to relate time series of annual cone production to climate indices describing the North American monsoon and the El Niño Southern Oscillation (ENSO). We show that the sensitivity to climate and resulting synchrony in cone production varies substantially between species. Cone production among populations of P. edulis was much more spatially synchronous and more closely related to large-scale modes of climate variability than among populations of P. ponderosa. Large-scale synchrony in P. edulis cone production was associated with the North American monsoon and we identified a dipole pattern of regional cone production associated with ENSO phase. In P. ponderosa, these climate indices were not strongly associated with cone production, resulting in asynchronous masting patterns among populations. This study helps frame our understanding of mast seeding as a life-history strategy and has implications for our ability to forecast mast years in these species. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Andreas P. Wion
- Graduate Degree Program in Ecology and Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523‐1472, USA
| | - Ian S. Pearse
- US Geological Survey, Fort Collins Science Center, Fort Collins, CO 80526, USA
| | - Kyle C. Rodman
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53706, USA
| | - Thomas T. Veblen
- Department of Geography, University of Colorado, Boulder, CO 80302, USA
| | - Miranda D. Redmond
- Graduate Degree Program in Ecology and Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523‐1472, USA
| |
Collapse
|
16
|
Pearse IS, Wion AP, Gonzalez AD, Pesendorfer MB. Understanding mast seeding for conservation and land management. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200383. [PMID: 34657466 PMCID: PMC8520776 DOI: 10.1098/rstb.2020.0383] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 11/12/2022] Open
Abstract
Masting, the intermittent and synchronous production of large seed crops, can have profound consequences for plant populations and the food webs that are built on their seeds. For centuries, people have recorded mast crops because of their importance in managing wildlife populations. In the past 30 years, we have begun to recognize the importance of masting in conserving and managing many other aspects of the environment: promoting the regeneration of forests following fire or other disturbance, conserving rare plants, conscientiously developing the use of edible seeds as non-timber forest products, coping with the consequences of extinctions on seed dispersal, reducing the impacts of plant invasions with biological control, suppressing zoonotic diseases and preventing depredation of endemic fauna. We summarize current instances and future possibilities of a broad set of applications of masting. By exploring in detail several case studies, we develop new perspectives on how solutions to pressing conservation and land management problems may benefit by better understanding the dynamics of seed production. A lesson common to these examples is that masting can be used to time management, and often, to do this effectively, we need models that explicitly forecast masting and the dynamics of seed-eating animals into the near-term future. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Ian S. Pearse
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO 80526, USA
| | - Andreas P. Wion
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523-1177, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523-1177, USA
| | - Angela D. Gonzalez
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523-1177, USA
| | - Mario B. Pesendorfer
- Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna 1190, Austria
- Smithsonian Conservation Biology Institute, Migratory Bird Center, Washington, DC 20013, USA
| |
Collapse
|
17
|
Abstract
Although it has long been recognized that seed production by many forest trees varies greatly from year to year, masting (along with 'mast fruiting', 'mast seeding' and 'masting behaviour') as a concept referring to such variability is a relatively recent development. Here, I provide a brief history of masting research, highlighting some of the early contributions by foresters, zoologists and others that paved the way for the burgeoning number of studies currently being conducted by researchers around the world. Of particular current interest is work attempting to understand the proximate mechanisms, evolutionary drivers and community effects of this important ecological phenomenon as well as the ways that climate change may influence masting behaviour in the future. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Walter D Koenig
- Hastings Natural History Reservation, University of California Berkeley, Carmel Valley, CA 93924, USA.,Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
18
|
Pesendorfer MB, Ascoli D, Bogdziewicz M, Hacket-Pain A, Pearse IS, Vacchiano G. The ecology and evolution of synchronized reproduction in long-lived plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200369. [PMID: 34657462 PMCID: PMC8520778 DOI: 10.1098/rstb.2020.0369] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 11/12/2022] Open
Abstract
Populations of many long-lived plants exhibit spatially synchronized seed production that varies extensively over time, so that seed production in some years is much higher than on average, while in others, it is much lower or absent. This phenomenon termed masting or mast seeding has important consequences for plant reproductive success, ecosystem dynamics and plant-human interactions. Inspired by recent advances in the field, this special issue presents a series of articles that advance the current understanding of the ecology and evolution of masting. To provide a broad overview, we reflect on the state-of-the-art of masting research in terms of underlying proximate mechanisms, ontogeny, adaptations, phylogeny and applications to conservation. While the mechanistic drivers and fitness consequences of masting have received most attention, the evolutionary history, ontogenetic trajectory and applications to plant-human interactions are poorly understood. With increased availability of long-term datasets across broader geographical and taxonomic scales, as well as advances in molecular approaches, we expect that many mysteries of masting will be solved soon. The increased understanding of this global phenomenon will provide the foundation for predictive modelling of seed crops, which will improve our ability to manage forests and agricultural fruit and nut crops in the Anthropocene. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Mario B. Pesendorfer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, A-1180 Vienna, Austria
- Migratory Bird Center, Smithsonian Conservation Biology Institute, Washington, DC 20008, USA
| | - Davide Ascoli
- Department of Agricultural, Forestry and Food Sciences, University of Torino, 10095 Grugliasco, Italy
| | - Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, 61-712 Poznań, Poland
- INRAE, LESSEM, University Grenoble Alpes, 38400 Saint-Martin-d'Hères, France
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Ian S. Pearse
- Fort Collins Science Center, US Geological Survey, Fort Collins, CO 80526, USA
| | - Giorgio Vacchiano
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
19
|
Ascoli D, Hacket-Pain A, Pearse IS, Vacchiano G, Corti S, Davini P. Modes of climate variability bridge proximate and evolutionary mechanisms of masting. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200380. [PMID: 34657463 PMCID: PMC8520781 DOI: 10.1098/rstb.2020.0380] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 11/12/2022] Open
Abstract
There is evidence that variable and synchronous reproduction in seed plants (masting) correlates to modes of climate variability, e.g. El Niño Southern Oscillation and North Atlantic Oscillation. In this perspective, we explore the breadth of knowledge on how climate modes control reproduction in major masting species throughout Earth's biomes. We posit that intrinsic properties of climate modes (periodicity, persistence and trends) drive interannual and decadal variability of plant reproduction, as well as the spatial extent of its synchrony, aligning multiple proximate causes of masting through space and time. Moreover, climate modes force lagged but in-phase ecological processes that interact synergistically with multiple stages of plant reproductive cycles. This sets up adaptive benefits by increasing offspring fitness through either economies of scale or environmental prediction. Community-wide links between climate modes and masting across plant taxa suggest an evolutionary role of climate variability. We argue that climate modes may 'bridge' proximate and ultimate causes of masting selecting for variable and synchronous reproduction. The future of such interaction is uncertain: processes that improve reproductive fitness may remain coupled with climate modes even under changing climates, but chances are that abrupt global warming will affect Earth's climate modes so rapidly as to alter ecological and evolutionary links. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Davide Ascoli
- Department DISAFA, University of Torino (IT), Torino TO, Italy
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool (UK), UK
| | - Ian S. Pearse
- Fort Collins Science Center, US Geological Survey, Fort Collins, CO, USA
| | | | - Susanna Corti
- Istituto di Scienze dell'Atmosfera e del Clima, Consiglio Nazionale delle Ricerche (CNR-ISAC), Bologna, Italy
| | - Paolo Davini
- Istituto di Scienze dell'Atmosfera e del Clima, Consiglio Nazionale delle Ricerche (CNR-ISAC), Torino, Italy
| |
Collapse
|
20
|
Hacket-Pain A, Bogdziewicz M. Climate change and plant reproduction: trends and drivers of mast seeding change. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200379. [PMID: 34657461 PMCID: PMC8520772 DOI: 10.1098/rstb.2020.0379] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 11/12/2022] Open
Abstract
Climate change is reshaping global vegetation through its impacts on plant mortality, but recruitment creates the next generation of plants and will determine the structure and composition of future communities. Recruitment depends on mean seed production, but also on the interannual variability and among-plant synchrony in seed production, the phenomenon known as mast seeding. Thus, predicting the long-term response of global vegetation dynamics to climate change requires understanding the response of masting to changing climate. Recently, data and methods have become available allowing the first assessments of long-term changes in masting. Reviewing the literature, we evaluate evidence for a fingerprint of climate change on mast seeding and discuss the drivers and impacts of these changes. We divide our discussion into the main characteristics of mast seeding: interannual variation, synchrony, temporal autocorrelation and mast frequency. Data indicate that masting patterns are changing but the direction of that change varies, likely reflecting the diversity of proximate factors underlying masting across taxa. Experiments to understand the proximate mechanisms underlying masting, in combination with the analysis of long-term datasets, will enable us to understand this observed variability in the response of masting. This will allow us to predict future shifts in masting patterns, and consequently ecosystem impacts of climate change via its impacts on masting. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool L69 7ZT, UK
| | - Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University in Poznań, Ulica Uniwersytetu Poznańskiego 6, Poznań, 61‐614 Poland
- INRAE, LESSEM, University Grenoble Alpes, 2 rue de la Papeterie, BP 76, Saint‐Martin‐d'Hères, 38400 France
| |
Collapse
|
21
|
Nakahata R, Naramoto M, Sato M, Mizunaga H. Multifunctions of fine root phenology in vegetative and reproductive growth in mature beech forest ecosystems. Ecosphere 2021. [DOI: 10.1002/ecs2.3788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ryo Nakahata
- Center for Ecological Research Kyoto University Kyoto Japan
- Graduate School of Agriculture Kyoto University Kyoto Japan
| | | | - Masako Sato
- Graduate School of Agriculture Shizuoka University Shizuoka Japan
| | | |
Collapse
|
22
|
Nakamura T, Ishida A, Kawai K, Minagi K, Saiki S, Yazaki K, Yoshimura J. Tree hazards compounded by successive climate extremes after masting in a small endemic tree, Distylium lepidotum, on subtropical islands in Japan. GLOBAL CHANGE BIOLOGY 2021; 27:5094-5108. [PMID: 34170598 PMCID: PMC8518126 DOI: 10.1111/gcb.15764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Ongoing global warming increases the frequency and severity of tropical typhoons and prolonged drought, leading to forest degradation. Simultaneous and/or successive masting events and climatic extremes may thus occur frequently in the near future. If these climatic extremes occur immediately after mass seed reproduction, their effects on individual trees are expected to be very severe because mass reproduction decreases carbohydrate reserves. While the effects of either a single climate extreme or masting alone on tree resilience/growth have received past research attention, understanding the cumulative effects of such multiple events remains challenging and is crucial for predicting future forest changes. Here, we report tree hazards compound by two successive climate extremes, a tropical typhoon and prolonged drought, after mass reproduction in an endemic tree species (Distylium lepidotum Nakai) on oceanic islands. Across individual trees, the starch stored within the sapwood of branchlets significantly decreased with reproductive efforts (fruit mass/shoot mass ratio). Typhoon damage significantly decreased not only the total leaf area of apical shoots but also the maximum photosynthetic rates. During the 5-month period after the typhoon, the mortality of large branchlets (8-10-mm diameter) increased with decreasing stored starch when the typhoon hit. During the prolonged summer drought in the next year, the recovery of total leaf area, stored starch, and hydraulic conductivity was negatively correlated with the stored starch at the typhoon. These data indicate that the level of stored starch within branchlets is the driving factor determining tree regrowth or dieback, and the restoration of carbohydrates after mass reproduction is synergistically delayed by such climate extremes. Stored carbohydrates are the major cumulative factor affecting individual tree resilience, resulting in their historical effects. Because of highly variable carbohydrate levels among individual trees, the resultant impacts of such successive events on forest dieback will be fundamentally different among trees.
Collapse
Affiliation(s)
- Tomomi Nakamura
- Center for Ecological ResearchKyoto UniversityOtsuShigaJapan
| | - Atsushi Ishida
- Center for Ecological ResearchKyoto UniversityOtsuShigaJapan
| | - Kiyosada Kawai
- Center for Ecological ResearchKyoto UniversityOtsuShigaJapan
- Japan International Research Center for Agricultural SciencesTsukubaIbarakiJapan
| | - Kanji Minagi
- Center for Ecological ResearchKyoto UniversityOtsuShigaJapan
| | - Shin‐Taro Saiki
- Forestry and Forest Products Research InstituteTsukubaIbarakiJapan
| | - Kenichi Yazaki
- Hokkaido Research Center, Forestry and Forest Products Research InstituteSapporoHokkaidoJapan
| | - Jin Yoshimura
- Institute of Tropical MedicineNagasaki UniversityNagasakiNagasakiJapan
- Faculty of ScienceTokyo Metropolitan UniversityHachiojiTokyoJapan
- The University MuseumThe University of TokyoBunkyoTokyoJapan
| |
Collapse
|
23
|
Bogdziewicz M, Hacket-Pain A, Ascoli D, Szymkowiak J. Environmental variation drives continental-scale synchrony of European beech reproduction. Ecology 2021; 102:e03384. [PMID: 33950521 DOI: 10.1002/ecy.3384] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/05/2021] [Accepted: 03/16/2021] [Indexed: 11/07/2022]
Abstract
Spatial synchrony is the tendency of spatially separated populations to display similar temporal fluctuations. Synchrony affects regional ecosystem functioning, but it remains difficult to disentangle its underlying mechanisms. We leveraged regression on distance matrices and geography of synchrony to understand the processes driving synchrony of European beech masting over the European continent. Masting in beech shows distance-decay, but significant synchrony is maintained at spatial scales of up to 1,500 km. The spatial synchrony of the weather cues that drive interannual variation in reproduction also explains the regional spatial synchrony of masting. Proximity played no apparent role in influencing beech masting synchrony after controlling for synchrony in environmental variation. Synchrony of beech reproduction shows a clear biogeographical pattern, decreasing from the northwest to southeast Europe. Synchrony networks for weather cues resemble networks for beech masting, indicating that the geographical structure of weather synchrony underlies the biogeography of masting synchrony. Our results support the hypothesis that environmental factors, the Moran effect, are key drivers of spatial synchrony in beech seed production at regional scales. The geographical patterns of regional synchronization of masting have implications for regional forest production, gene flow, carbon cycling, disease dynamics, biodiversity, and conservation.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Davide Ascoli
- Department of Agricultural, Forestry and Food Sciences, University of Torino, Grugliasco, Italy
| | - Jakub Szymkowiak
- Population Ecology Research Unit, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
24
|
Bogdziewicz M, Hacket-Pain A, Kelly D, Thomas PA, Lageard J, Tanentzap AJ. Climate warming causes mast seeding to break down by reducing sensitivity to weather cues. GLOBAL CHANGE BIOLOGY 2021; 27:1952-1961. [PMID: 33604979 DOI: 10.1111/gcb.15560] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Climate change is altering patterns of seed production worldwide with consequences for population recruitment and migration potential. For the many species that regenerate through synchronized, quasiperiodic reproductive events termed masting, these changes include decreases in the synchrony and interannual variation in seed production. This breakdown in the occurrence of masting features harms reproduction by decreasing the efficiency of pollination and increasing seed predation. Changes in masting are often paralleled by warming temperatures, but the underlying proximate mechanisms are unknown. We used a unique 39-year study of 139 European beech (Fagus sylvatica) trees that experienced masting breakdown to track the seed developmental cycle and pinpoint phases where weather effects on seed production have changed over time. A cold followed by warm summer led to large coordinated flowering efforts among plants. However, trees failed to respond to the weather signal as summers warmed and the frequency of reproductive cues changed fivefold. Less synchronous flowering resulted in less efficient pollination that further decreased the synchrony of seed maturation. As global temperatures are expected to increase this century, perennial plants that fine-tune their reproductive schedules based on temperature cues may suffer regeneration failures.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Dave Kelly
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Peter A Thomas
- School of Life Sciences, Keele University, Staffordshire, UK
| | - Jonathan Lageard
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Fernández‐Martínez M, Peñuelas J. Measuring temporal patterns in ecology: The case of mast seeding. Ecol Evol 2021; 11:2990-2996. [PMID: 33841760 PMCID: PMC8019024 DOI: 10.1002/ece3.7291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Properly assessing temporal patterns is a central issue in ecology in order to understand ecosystem processes and their mechanisms. Mast seeding has traditionally been described as a reproductive behavior consisting of highly variable and synchronized reproductive events. The most common metric used to measure temporal variability and thus infer masting behavior, the coefficient of variation (CV), however, has been repeatedly suggested to improperly estimate temporal variability. Biases of CV estimates are especially problematic for non-normally distributed data and/or data sets with a high number of zeros.Some recent studies have already adopted new metrics to measure temporal variability, but most continue to use CV. This controversy has started a strong debate about what metrics to use.We here summarize the problems of CV when assessing temporal variability, particularly across data sets containing a large number of zeros, and highlight the benefits of using other metrics of temporal variability, such as proportional variability (PV) and consecutive disparity (D). We also suggest a new way to look at reproductive behavior, by separating temporal variability from frequency of reproduction, to allow better comparison of data sets with different characteristics.We suggest future studies to properly describe the temporal patterns in fully scientific and measurable terms that do not lead to confusion, such as variability and frequency of reproduction, using robust and fully comparable metrics.
Collapse
Affiliation(s)
| | - Josep Peñuelas
- CSICGlobal Ecology UnitCREAF‐CSIC‐UABBellaterraBarcelonaSpain
- CREAFBellaterraBarcelonaSpain
| |
Collapse
|
26
|
Furness EN, Furness RW. Effects of Sitka spruce masting on phenology and demography of siskins Spinus spinus. Sci Rep 2021; 11:4921. [PMID: 33649392 PMCID: PMC7921583 DOI: 10.1038/s41598-021-84471-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/15/2021] [Indexed: 11/21/2022] Open
Abstract
Masting behaviour of Sitka spruce Picea sitchensis may influence Eurasian siskin Spinus spinus breeding ecology as breeding siskins specialize on spruce seeds. We caught siskins and other small passerines over 16 years using mist nets adjacent to large plantations of mature Sitka spruce. We sexed, aged, measured and weighed the birds and collected feather samples from fledglings to measure nitrogen and carbon stable isotope ratios. Siskins departed in late summer, and returned, and bred earlier in years of higher cone abundance. Nitrogen and carbon isotopes indicated that siskins fed their chicks on Sitka spruce seeds in most years, and more so in years of high cone production. More siskins were caught following heavy rainfall, when the cones had closed, encouraging the birds to seek alternative food sources. Fledglings were not heavier or larger in years with higher cone crops but were more numerous. However, the age ratio of siskins caught the following year was unaffected by cone crop. Given their reliance on Sitka spruce seeds, climate change may have a major impact on siskin numbers by altering the availability of Sitka spruce seeds, either through changes in masting patterns or cone opening, or due to climate-related changes in forestry practices. Siskins represent a valuable study system to conservation ecology, where a native species is ecologically reliant on introduced taxa.
Collapse
Affiliation(s)
- Euan N Furness
- Science and Solutions for a Changing Planet DTP and Department of Earth Sciences and Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Robert W Furness
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
27
|
Clark JS, Andrus R, Aubry-Kientz M, Bergeron Y, Bogdziewicz M, Bragg DC, Brockway D, Cleavitt NL, Cohen S, Courbaud B, Daley R, Das AJ, Dietze M, Fahey TJ, Fer I, Franklin JF, Gehring CA, Gilbert GS, Greenberg CH, Guo Q, HilleRisLambers J, Ibanez I, Johnstone J, Kilner CL, Knops J, Koenig WD, Kunstler G, LaMontagne JM, Legg KL, Luongo J, Lutz JA, Macias D, McIntire EJB, Messaoud Y, Moore CM, Moran E, Myers JA, Myers OB, Nunez C, Parmenter R, Pearse S, Pearson S, Poulton-Kamakura R, Ready E, Redmond MD, Reid CD, Rodman KC, Scher CL, Schlesinger WH, Schwantes AM, Shanahan E, Sharma S, Steele MA, Stephenson NL, Sutton S, Swenson JJ, Swift M, Veblen TT, Whipple AV, Whitham TG, Wion AP, Zhu K, Zlotin R. Continent-wide tree fecundity driven by indirect climate effects. Nat Commun 2021; 12:1242. [PMID: 33623042 PMCID: PMC7902660 DOI: 10.1038/s41467-020-20836-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/01/2020] [Indexed: 01/31/2023] Open
Abstract
Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.
Collapse
Affiliation(s)
- James S. Clark
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA ,grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Robert Andrus
- grid.266190.a0000000096214564Department of Geography, University of Colorado Boulder, Boulder, CO USA
| | - Melaine Aubry-Kientz
- grid.266096.d0000 0001 0049 1282School of Natural Sciences, University of California, Merced, Merced, CA USA
| | - Yves Bergeron
- grid.265695.bForest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, QC Canada
| | - Michal Bogdziewicz
- grid.5633.30000 0001 2097 3545Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Don C. Bragg
- grid.497399.90000 0001 2106 5338USDA Forest Service, Southern Research Station, Monticello, AR USA
| | - Dale Brockway
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Auburn, AL USA
| | - Natalie L. Cleavitt
- grid.5386.8000000041936877XNatural Resources, Cornell University, Ithaca, NY USA
| | - Susan Cohen
- grid.10698.360000000122483208Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Benoit Courbaud
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Robert Daley
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Adrian J. Das
- grid.2865.90000000121546924USGS Western Ecological Research Center, Three Rivers, CA USA
| | - Michael Dietze
- grid.189504.10000 0004 1936 7558Earth and Environment, Boston University, Boston, MA USA
| | - Timothy J. Fahey
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Auburn, AL USA
| | - Istem Fer
- grid.8657.c0000 0001 2253 8678Finnish Meteorological Institute, Helsinki, Finland
| | - Jerry F. Franklin
- grid.34477.330000000122986657Forest Resources, University of Washington, Seattle, WA USA
| | - Catherine A. Gehring
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Gregory S. Gilbert
- grid.205975.c0000 0001 0740 6917University of California, Santa Cruz, Santa Cruz, CA USA
| | - Cathryn H. Greenberg
- grid.472551.00000 0004 0404 3120USDA Forest Service, Bent Creek Experimental Forest, Asheville, NC USA
| | - Qinfeng Guo
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Eastern Forest Environmental Threat Assessment Center, Research Triangle Park, NC USA
| | - Janneke HilleRisLambers
- grid.34477.330000000122986657Department of Biology, University of Washington, Seattle, WA USA
| | - Ines Ibanez
- grid.214458.e0000000086837370School for Environment and Sustainability, University of Michigan, Ann Arbor, MI USA
| | - Jill Johnstone
- grid.25152.310000 0001 2154 235XDepartment of Biology, University of Saskatchewan, Saskatoon, SK Canada
| | - Christopher L. Kilner
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Johannes Knops
- grid.440701.60000 0004 1765 4000Health and Environmental Sciences Department, Xian Jiaotong-Liverpool University, Suzhou, China
| | - Walter D. Koenig
- grid.47840.3f0000 0001 2181 7878Hastings Reservation, University of California Berkeley, Carmel Valley, CA USA
| | - Georges Kunstler
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Jalene M. LaMontagne
- grid.254920.80000 0001 0707 2013Department of Biological Sciences, DePaul University, Chicago, IL USA
| | - Kristin L. Legg
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Jordan Luongo
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - James A. Lutz
- grid.53857.3c0000 0001 2185 8768Department of Wildland Resources, Utah State University Ecology Center, Logan, UT USA
| | - Diana Macias
- grid.266832.b0000 0001 2188 8502Department of Biology, University of New Mexico, Albuquerque, NM USA
| | | | - Yassine Messaoud
- grid.265704.20000 0001 0665 6279Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Quebec Canada
| | - Christopher M. Moore
- grid.254333.00000 0001 2296 8213Department of Biology, Colby College, Waterville, ME USA
| | - Emily Moran
- grid.266190.a0000000096214564Department of Geography, University of Colorado Boulder, Boulder, CO USA
| | - Jonathan A. Myers
- grid.4367.60000 0001 2355 7002Department of Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Orrin B. Myers
- grid.266832.b0000 0001 2188 8502University of New Mexico, Albuquerque, NM USA
| | - Chase Nunez
- grid.507516.00000 0004 7661 536XDepartment for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Robert Parmenter
- grid.454846.f0000 0001 2331 3972Valles Caldera National Preserve, National Park Service, Jemez Springs, NM USA
| | - Sam Pearse
- grid.2865.90000000121546924Fort Collins Science Center, Fort Collins, CO USA
| | - Scott Pearson
- grid.435676.50000 0000 8528 5973Department of Natural Sciences, Mars Hill University, Mars Hill, NC USA
| | - Renata Poulton-Kamakura
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Ethan Ready
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Miranda D. Redmond
- grid.47894.360000 0004 1936 8083Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO USA
| | - Chantal D. Reid
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Kyle C. Rodman
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - C. Lane Scher
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - William H. Schlesinger
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Amanda M. Schwantes
- grid.17063.330000 0001 2157 2938Ecology and Evolutionary Biology, University of Toronto, Toronto, ON Canada
| | - Erin Shanahan
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Shubhi Sharma
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Michael A. Steele
- grid.268256.d0000 0000 8510 1943Department of Biology, Wilkes University, Wilkes-Barre, PA USA
| | - Nathan L. Stephenson
- grid.2865.90000000121546924USGS Western Ecological Research Center, Three Rivers, CA USA
| | - Samantha Sutton
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Jennifer J. Swenson
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Margaret Swift
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Thomas T. Veblen
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Amy V. Whipple
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Thomas G. Whitham
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Andreas P. Wion
- grid.47894.360000 0004 1936 8083Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO USA
| | - Kai Zhu
- grid.205975.c0000 0001 0740 6917University of California, Santa Cruz, Santa Cruz, CA USA
| | - Roman Zlotin
- grid.411377.70000 0001 0790 959XGeography Department and Russian and East European Institute, Bloomington, IN USA
| |
Collapse
|
28
|
Bogdziewicz M, Szymkowiak J, Calama R, Crone EE, Espelta JM, Lesica P, Marino S, Steele MA, Tenhumberg B, Tyre A, Żywiec M, Kelly D. Does masting scale with plant size? High reproductive variability and low synchrony in small and unproductive individuals. ANNALS OF BOTANY 2020; 126:971-979. [PMID: 32574370 PMCID: PMC7539353 DOI: 10.1093/aob/mcaa118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/18/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND AIMS In a range of plant species, the distribution of individual mean fecundity is skewed and dominated by a few highly fecund individuals. Larger plants produce greater seed crops, but the exact nature of the relationship between size and reproductive patterns is poorly understood. This is especially clear in plants that reproduce by exhibiting synchronized quasi-periodic variation in fruit production, a process called masting. METHODS We investigated covariation of plant size and fecundity with individual-plant-level masting patterns and seed predation in 12 mast-seeding species: Pinus pinea, Astragalus scaphoides, Sorbus aucuparia, Quercus ilex, Q. humilis, Q. rubra, Q. alba, Q. montana, Chionochloa pallens, C. macra, Celmisia lyallii and Phormium tenax. KEY RESULTS Fecundity was non-linearly related to masting patterns. Small and unproductive plants frequently failed to produce any seeds, which elevated their annual variation and decreased synchrony. Above a low fecundity threshold, plants had similar variability and synchrony, regardless of their size and productivity. CONCLUSIONS Our study shows that within-species variation in masting patterns is correlated with variation in fecundity, which in turn is related to plant size. Low synchrony of low-fertility plants shows that the failure years were idiosyncratic to each small plant, which in turn implies that the small plants fail to reproduce because of plant-specific factors (e.g. internal resource limits). Thus, the behaviour of these sub-producers is apparently the result of trade-offs in resource allocation and environmental limits with which the small plants cannot cope. Plant size and especially fecundity and propensity for mast failure years play a major role in determining the variability and synchrony of reproduction in plants.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jakub Szymkowiak
- Population Ecology Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Rafael Calama
- Department of Forest Dynamics and Management, INIA-CIFOR, Ctra A CoruñaMadrid, Spain
| | | | | | - Peter Lesica
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Shealyn Marino
- Department of Biology, Wilkes University, Wilkes-Barre, PA, USA
| | | | - Brigitte Tenhumberg
- School of Biological Sciences and Department of Mathematics, University of Nebraska, Lincoln, NE, USA
| | - Andrew Tyre
- School of Natural Resources, University of Nebraska, Lincoln, NE, USA
| | - Magdalena Żywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz, Kraków, Poland
| | - Dave Kelly
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
29
|
Bogdziewicz M, Fernández‐Martínez M, Espelta JM, Ogaya R, Penuelas J. Is forest fecundity resistant to drought? Results from an 18-yr rainfall-reduction experiment. THE NEW PHYTOLOGIST 2020; 227:1073-1080. [PMID: 32329082 PMCID: PMC7496795 DOI: 10.1111/nph.16597] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Recruitment is a primary determinant of the long-term dynamics of plant populations in changing environments. However, little information is known about the effects of anthropogenic environmental changes on reproductive ecology of trees. We evaluated the impact of experimentally induced 18 yr of drought on reproduction of three contrasting forest trees: Quercus ilex, Phillyrea latifolia and Arbutus unedo. Rainfall reduction did not decrease tree fecundity. Drought, however, affected the allocation of resources in Q. ilex and A. unedo but not the more drought tolerant P. latifolia. Larger crop production by Q. ilex and A. unedo was associated with a stronger decrease in growth in the rainfall-reduction plots compared with the control plots, suggesting that these species were able to maintain their fecundity by shifting their allocation of resources away from growth. Our results indicated resistance to change in tree fecundity in Mediterranean-type forest subjected to an average 15% decrease in the amount of soil moisture, suggesting that these ecosystems may adapt to a progressive increase in arid conditions. However, the species-specific reductions in growth may indirectly affect future fecundity and ultimately shift community composition, even without immediate direct effects of drought on tree fecundity.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic ZoologyFaculty of BiologyAdam Mickiewicz University61‐614PoznańPoland
- CREAFCerdanyola delVallès08193CataloniaSpain
| | | | | | - Romà Ogaya
- CREAFCerdanyola delVallès08193CataloniaSpain
| | - Josep Penuelas
- CREAFCerdanyola delVallès08193CataloniaSpain
- Global Ecology UnitCSICCerdanyola del Vallès 08193CataloniaSpain
| |
Collapse
|
30
|
Bogdziewicz M, Kelly D, Tanentzap AJ, Thomas PA, Lageard JGA, Hacket-Pain A. Climate Change Strengthens Selection for Mast Seeding in European Beech. Curr Biol 2020; 30:3477-3483.e2. [PMID: 32649915 DOI: 10.1016/j.cub.2020.06.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Climate change is altering patterns of seed production worldwide [1-4], but the potential for evolutionary responses to these changes is poorly understood. Masting (synchronous, annually variable seed production by plant populations) is selectively beneficial through economies of scale that decrease the cost of reproduction per surviving offspring [5-7]. Masting is particularly widespread in temperate trees [8, 9] impacting food webs, macronutrient cycling, carbon storage, and human disease risk [10-12], so understanding its response to climate change is important. Here, we analyze inter-individual variability in plant reproductive patterns and two economies of scale-predator satiation and pollination efficiency-and document how natural selection acting upon them favors masting. Four decades of observations for European beech (Fagus sylvatica) show that predator satiation and pollination efficiency select for individuals with higher inter-annual variability of reproduction and higher reproductive synchrony between individuals. This result confirms the long-standing theory that masting, a population-level phenomenon, is generated by selection on individuals. Furthermore, recent climate-driven increases in mean seed production have increased selection pressure from seed predators but not from pollination efficiency. Natural selection is thus acting to restore the fitness benefits of masting, which have previously decreased under a warming climate [13]. However, selection will likely take far longer (centuries) than climate warming (decades), so in the short-term, tree reproduction will be reduced because masting has become less effective at satiating seed predators. Over the long-term, evolutionary responses to climate change could potentially increase inter-annual variability of seed production of masting species.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umutlowska 89, 61-614 Poznan, Poland; CREAF, Universitat de Autonoma Barcelona, Cerdanyola del Valles, 08193 Catalonia, Spain.
| | - Dave Kelly
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Downing St., Cambridge CB2 3EA, UK
| | - Peter A Thomas
- School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK
| | - Jonathan G A Lageard
- Department of Natural Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool L69 7ZT, UK
| |
Collapse
|
31
|
Johann F, Handschuh M, Linderoth P, Heurich M, Dormann CF, Arnold J. Variability of daily space use in wild boar Sus scrofa. WILDLIFE BIOLOGY 2020. [DOI: 10.2981/wlb.00609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Franz Johann
- F. Johann (https://orcid.org/0000-0003-3056-0298) ✉ and C. F. Dormann, Dept of Biometry and Environmental System Analysis, Faculty of Environment and Natural Resources, Albert-Ludwigs-Univ. Freiburg i. Br., Tennenb
| | - Markus Handschuh
- M. Handschuh and M. Heurich, Chair of Wildlife Ecology and Management, Faculty of Environment and Natural Resources, Albert-Ludwigs-Univ., Freiburg i. Br., Germany. M. Heurich also at: Bavarian Forest National Park, Grafenau, Germany
| | - Peter Linderoth
- FJ, P. Linderoth and J. Arnold, Agricultural Centre Baden-Württemberg, Wildlife Research Unit, Aulendorf, Germany
| | - Marco Heurich
- M. Handschuh and M. Heurich, Chair of Wildlife Ecology and Management, Faculty of Environment and Natural Resources, Albert-Ludwigs-Univ., Freiburg i. Br., Germany. M. Heurich also at: Bavarian Forest National Park, Grafenau, Germany
| | - Carsten F. Dormann
- F. Johann (https://orcid.org/0000-0003-3056-0298) ✉ and C. F. Dormann, Dept of Biometry and Environmental System Analysis, Faculty of Environment and Natural Resources, Albert-Ludwigs-Univ. Freiburg i. Br., Tennenb
| | - Janosch Arnold
- FJ, P. Linderoth and J. Arnold, Agricultural Centre Baden-Württemberg, Wildlife Research Unit, Aulendorf, Germany
| |
Collapse
|