1
|
Xu W, Elberling B, Li D, Ambus PL. Arctic Tundra Plant Dieback Can Alter Surface N 2O Fluxes and Interact With Summer Warming to Increase Soil Nitrogen Retention. GLOBAL CHANGE BIOLOGY 2024; 30:e17549. [PMID: 39450939 DOI: 10.1111/gcb.17549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
In recent years, the arctic tundra has been subject to more frequent stochastic biotic or extreme weather events (causing plant dieback) and warmer summer air temperatures. However, the combined effects of these perturbations on the tundra ecosystem remain uninvestigated. We experimentally simulated plant dieback by cutting vegetation and increased summer air temperatures (ca. +2°C) by using open-top chambers (OTCs) in an arctic heath tundra, West Greenland. We quantified surface greenhouse gas fluxes, measured soil gross N transformation rates, and investigated all ecosystem compartments (plants, soils, microbial biomass) to utilize or retain nitrogen (N) upon application of stable N-15 isotope tracer. Measurements from three growing seasons showed an immediate increase in surface CH4 and N2O uptake after the plant dieback. With time, surface N2O fluxes alternated between emission and uptake, and rates in both directions were occasionally affected, which was primarily driven by soil temperatures and soil moisture conditions. Four years after plant dieback, deciduous shrubs recovered their biomass but retained significantly lower amounts of 15N, suggesting the reduced capacity of deciduous shrubs to utilize and retain N. Among four plant functional groups, summer warming only increased the biomass of deciduous shrubs and their 15N retention, while following plant dieback deciduous shrubs showed no response to warming. This suggests that deciduous shrubs may not always benefit from climate warming over other functional groups when considering plant dieback events. Soil gross N mineralization (~ -50%) and nitrification rates (~ -70%) significantly decreased under both ambient and warmed conditions, while only under warmed conditions immobilization of NO3 - significantly increased (~ +1900%). This explains that plant dieback enhanced N retention in microbial biomass and thus bulk soils under warmed conditions. This study underscores the need to consider plant dieback events alongside summer warming to better predict future ecosystem-climate feedback.
Collapse
Affiliation(s)
- Wenyi Xu
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Bo Elberling
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Dan Li
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Per Lennart Ambus
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Koranda M, Michelsen A. Microbial nitrogen transformations in tundra soil depend on interactive effects of seasonality and plant functional types. BIOGEOCHEMISTRY 2024; 167:1391-1408. [PMID: 39552784 PMCID: PMC11564215 DOI: 10.1007/s10533-024-01176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/16/2024] [Indexed: 11/19/2024]
Abstract
Nitrogen (N) cycling in organic tundra soil is characterised by pronounced seasonal dynamics and strong influence of the dominant plant functional types. Such patterns in soil N-cycling have mostly been investigated by the analysis of soil N-pools and net N mineralisation rates, which, however, yield little information on soil N-fluxes. In this study we investigated microbial gross N-transformations, as well as concentrations of plant available N-forms in soils under two dominant plant functional types in tundra heath, dwarf shrubs and mosses, in subarctic Northern Sweden. We collected organic soil under three dwarf shrub species of distinct growth form and three moss species in early and late growing season. Our results showed that moss sites were characterised by significantly higher microbial N-cycling rates and soil N-availability than shrub sites. Protein depolymerisation, the greatest soil N-flux, as well as gross nitrification rates generally did not vary significantly between early and late growing season, whereas gross N mineralisation rates and inorganic N availability markedly dropped in late summer at most sites. The magnitude of the seasonal changes in N-cycling, however, clearly differed among plant functional types, indicating interactive effects of seasonality and plant species on soil N-cycling. Our study highlights that the spatial variation and seasonal dynamics of microbial N transformations and soil N availability in tundra heath are intimately linked with the distinct influence of plant functional types on soil microbial activity and the plant species-specific patterns of nutrient uptake and carbon assimilation. This suggests potential strong impacts of future global change-induced shifts in plant community composition on soil N-cycling in tundra ecosystems. Supplementary Information The online version contains supplementary material available at 10.1007/s10533-024-01176-6.
Collapse
Affiliation(s)
- Marianne Koranda
- Division of Terrestrial Ecosystem Research, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
- Center for Permafrost (CENPERM), University of Copenhagen, 1350 Copenhagen, Denmark
| | - Anders Michelsen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
- Center for Permafrost (CENPERM), University of Copenhagen, 1350 Copenhagen, Denmark
| |
Collapse
|
3
|
Yun H, Ciais P, Zhu Q, Chen D, Zohner CM, Tang J, Qu Y, Zhou H, Schimel J, Zhu P, Shao M, Christensen JH, Wu Q, Chen A, Elberling B. Changes in above- versus belowground biomass distribution in permafrost regions in response to climate warming. Proc Natl Acad Sci U S A 2024; 121:e2314036121. [PMID: 38857391 PMCID: PMC11194490 DOI: 10.1073/pnas.2314036121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/04/2024] [Indexed: 06/12/2024] Open
Abstract
Permafrost regions contain approximately half of the carbon stored in land ecosystems and have warmed at least twice as much as any other biome. This warming has influenced vegetation activity, leading to changes in plant composition, physiology, and biomass storage in aboveground and belowground components, ultimately impacting ecosystem carbon balance. Yet, little is known about the causes and magnitude of long-term changes in the above- to belowground biomass ratio of plants (η). Here, we analyzed η values using 3,013 plots and 26,337 species-specific measurements across eight sites on the Tibetan Plateau from 1995 to 2021. Our analysis revealed distinct temporal trends in η for three vegetation types: a 17% increase in alpine wetlands, and a decrease of 26% and 48% in alpine meadows and alpine steppes, respectively. These trends were primarily driven by temperature-induced growth preferences rather than shifts in plant species composition. Our findings indicate that in wetter ecosystems, climate warming promotes aboveground plant growth, while in drier ecosystems, such as alpine meadows and alpine steppes, plants allocate more biomass belowground. Furthermore, we observed a threefold strengthening of the warming effect on η over the past 27 y. Soil moisture was found to modulate the sensitivity of η to soil temperature in alpine meadows and alpine steppes, but not in alpine wetlands. Our results contribute to a better understanding of the processes driving the response of biomass distribution to climate warming, which is crucial for predicting the future carbon trajectory of permafrost ecosystems and climate feedback.
Collapse
Affiliation(s)
- Hanbo Yun
- State Key Laboratory of Frozen Soil Engineering, Beilu'He Observation and Research Station on Tibetan Plateau, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
- Center for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen DK1350, Denmark
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47906
| | - Philippe Ciais
- IPSL-Laboratoire des Sciences du Climat et de l'Environnement, Commissariat à l'Énergie Atomique et aux Énergies Alternatives CNRS UVSQ Université ParisSaclay, Centre d'Etudes Orme des Merisiers, Gif sur Yvette 91191, France
| | - Qing Zhu
- Climate Sciences Department, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Deliang Chen
- Department of Earth Sciences, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Constantin M Zohner
- Institute of Integrative Biology, Eidgenössische Technische Hochschule Zurich (Swiss Federal Institute of Technology), Zurich 168092, Switzerland
| | - Jing Tang
- Department of Biology, Terrestrial Ecology and Center of Volatile Interactions, University of Copenhagen, Copenhagen DK-2100, Denmark
- Department of Physical Geography and Ecosystem Science, Lund University, Lund SE-22236, Sweden
| | - Yang Qu
- Institute for Global Innovation and Development, East China Normal University, Shanghai 200062, China
| | - Hao Zhou
- Department of Physical Geography and Ecosystem Science, Lund University, Lund SE-22236, Sweden
| | - Joshua Schimel
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93108
| | - Peng Zhu
- Department of Geography, The University of Hong Kong, Hong Kong 999077, Special Administrative Region of China
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong 999077, Special Administrative Region of China
| | - Ming Shao
- Key laboratory of oil and gas resources exploration and development in Gansu province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | | | - Qingbai Wu
- State Key Laboratory of Frozen Soil Engineering, Beilu'He Observation and Research Station on Tibetan Plateau, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
| | - Anping Chen
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523
| | - Bo Elberling
- Center for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen DK1350, Denmark
| |
Collapse
|
4
|
Chen X, Wang G, Li N, Chang R, Zhang T, Mao T, Song C, Huang K. Nitrogen dynamics of alpine swamp meadows are less responsive to climate warming than that of alpine meadows. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172446. [PMID: 38621528 DOI: 10.1016/j.scitotenv.2024.172446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
The freeze-thaw cycle mediates permafrost soil hydrothermal status, nitrogen (N) mineralization, and loss. Furthermore, it affects root development and competition among nitrophilic and other species, shaping the pattern of N distribution in alpine ecosystems. However, the specific N dynamics during the growing season and N loss during the non-growing season in response to climate warming under low- and high-moisture conditions are not well documented. Therefore, we added 15N tracers to trace the fate of N in warmed and ambient alpine meadows and alpine swamp meadows in the permafrost region of the Qinghai-Tibet Plateau. During the growing season, warming increased 15N recovery (15Nrec) in shoots of K. humilis, litters, 0-5 and 5-20 cm roots in the alpine meadow by 149.94 % ± 52.87 %, 114.58 % ± 24.43 %, 61.11 % ± 32.27 %, and 97.12 % ± 42.92 %, respectively, while increased 15Nrec of litters by 151.55 % ± 27.06 % in the alpine swamp meadow. During the non-growing season, warming reduced 15N stored in roots by 486.77 % ± 57.90 %, though increased the 15N recovery in 5-20 cm soil depth by 76.68 % ± 39.42 % in the alpine meadow, whereas it did not affect N loss during the non-growing season in the alpine swamp meadow. Overall, warming promoted N utilization by increasing the plant N pool during the growing season, and enhanced root N loss and downward migration during the non-growing season due to the freeze-thaw process, which may result in fine root turnover and cell destruction releasing N in the alpine meadow. Conversely, the N dynamics of alpine swamp meadows were less responsive to climate warming.
Collapse
Affiliation(s)
- Xiaopeng Chen
- College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China
| | - Genxu Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China.
| | - Na Li
- Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ruiying Chang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Tao Zhang
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| | - Tianxu Mao
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Chunlin Song
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
| | - Kewei Huang
- Hubei Key Laboratory of Basin Water Security, Changjiang Survey, Planning, Design and Research Co., Ltd., Wuhan 430010, China
| |
Collapse
|
5
|
Blume-Werry G, Semenchuk P, Ljung K, Milbau A, Novak O, Olofsson J, Brunoni F. In situ seasonal patterns of root auxin concentrations and meristem length in an arctic sedge. THE NEW PHYTOLOGIST 2024; 242:988-999. [PMID: 38375943 DOI: 10.1111/nph.19616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/04/2024] [Indexed: 02/21/2024]
Abstract
Seasonal dynamics of root growth play an important role in large-scale ecosystem processes; they are largely governed by growth regulatory compounds and influenced by environmental conditions. Yet, our knowledge about physiological drivers of root growth is mostly limited to laboratory-based studies on model plant species. We sampled root tips of Eriophorum vaginatum and analyzed their auxin concentrations and meristem lengths biweekly over a growing season in situ in a subarctic peatland, both in surface soil and at the permafrost thawfront. Auxin concentrations were almost five times higher in surface than in thawfront soils and increased over the season, especially at the thawfront. Surprisingly, meristem length showed an opposite pattern and was almost double in thawfront compared with surface soils. Meristem length increased from peak to late season in the surface soils but decreased at the thawfront. Our study of in situ seasonal dynamics in root physiological parameters illustrates the potential for physiological methods to be applied in ecological studies and emphasizes the importance of in situ measurements. The strong effect of root location and the unexpected opposite patterns of meristem length and auxin concentrations likely show that auxin actively governs root growth to ensure a high potential for nutrient uptake at the thawfront.
Collapse
Affiliation(s)
- Gesche Blume-Werry
- Department of Ecology and Environmental Science, Umeå University, 901 87, Umeå, Sweden
| | - Philipp Semenchuk
- Department of Arctic Biology, UNIS - The University Centre in Svalbard, 9171, Longyearbyen, Norway
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Ann Milbau
- Department of Ecology and Environmental Science, Umeå University, 901 87, Umeå, Sweden
| | - Ondrej Novak
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - Johan Olofsson
- Department of Ecology and Environmental Science, Umeå University, 901 87, Umeå, Sweden
| | - Federica Brunoni
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| |
Collapse
|
6
|
Wei B, Zhang D, Wang G, Liu Y, Li Q, Zheng Z, Yang G, Peng Y, Niu K, Yang Y. Experimental warming altered plant functional traits and their coordination in a permafrost ecosystem. THE NEW PHYTOLOGIST 2023; 240:1802-1816. [PMID: 37434301 DOI: 10.1111/nph.19115] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023]
Abstract
Knowledge about changes in plant functional traits is valuable for the mechanistic understanding of warming effects on ecosystem functions. However, observations have tended to focus on aboveground plant traits, and there is little information about changes in belowground plant traits or the coordination of above- and belowground traits under climate warming, particularly in permafrost ecosystems. Based on a 7-yr field warming experiment, we measured 26 above- and belowground plant traits of four dominant species, and explored community functional composition and trait networks in response to experimental warming in a permafrost ecosystem on the Tibetan Plateau. Experimental warming shifted community-level functional traits toward more acquisitive values, with earlier green-up, greater plant height, larger leaves, higher photosynthetic resource-use efficiency, thinner roots, and greater specific root length and root nutrient concentrations. However, warming had a negligible effect in terms of functional diversity. In addition, warming shifted hub traits which have the highest centrality in the network from specific root area to leaf area. These results demonstrate that above- and belowground traits exhibit consistent adaptive strategies, with more acquisitive traits in warmer environments. Such changes could provide an adaptive advantage for plants in response to environmental change.
Collapse
Affiliation(s)
- Bin Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Guanqin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qinlu Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihu Zheng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guibiao Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunfeng Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kechang Niu
- Department of Ecology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Dieleman CM, Day NJ, Holloway JE, Baltzer J, Douglas TA, Turetsky MR. Carbon and nitrogen cycling dynamics following permafrost thaw in the Northwest Territories, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157288. [PMID: 35839897 DOI: 10.1016/j.scitotenv.2022.157288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Rapid climate warming across northern high latitudes is leading to permafrost thaw and ecosystem carbon release while simultaneously impacting other biogeochemical cycles including nitrogen. We used a two-year laboratory incubation study to quantify concomitant changes in carbon and nitrogen pool quantity and quality as drivers of potential CO2 production in thawed permafrost soils from eight soil cores collected across the southern Northwest Territories (NWT), Canada. These data were contextualized via in situ annual thaw depth measurements from 2015 to 2019 at 40 study sites that varied in burn history. We found with increasing time since experimental thaw the dissolved carbon and nitrogen pool quality significantly declined, indicating sustained microbial processing and selective immobilization across both pools. Piecewise structural equation modeling revealed CO2 trends were predominantly predicted by initial soil carbon content with minimal influence of dissolved phase carbon. Using these results, we provide a first-order estimate of potential near-surface permafrost soil losses of up to 80 g C m-2 over one year in southern NWT, exceeding regional historic mean primary productivity rates in some areas. Taken together, this research provides mechanistic knowledge needed to further constrain the permafrost‑carbon feedback and parameterize Earth system models, while building on empirical evidence that permafrost soils are at high risk of becoming weaker carbon sinks or even significant carbon sources under a changing climate.
Collapse
Affiliation(s)
- Catherine M Dieleman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada; School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada.
| | - Nicola J Day
- Biology Department, Wilfrid Laurier University, Waterloo, Ontario, Canada; School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jean E Holloway
- Department of Geography, Environment and Geomatics, University of Ottawa, Ontario, Canada
| | - Jennifer Baltzer
- Biology Department, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Thomas A Douglas
- U.S. Army Cold Regions Research and Engineering Laboratory, Fort Wainwright, AK, USA
| | - Merritt R Turetsky
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada; Institute of Arctic and Alpine Research, Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
8
|
A globally relevant stock of soil nitrogen in the Yedoma permafrost domain. Nat Commun 2022; 13:6074. [PMID: 36241637 PMCID: PMC9568517 DOI: 10.1038/s41467-022-33794-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/22/2022] [Indexed: 12/24/2022] Open
Abstract
Nitrogen regulates multiple aspects of the permafrost climate feedback, including plant growth, organic matter decomposition, and the production of the potent greenhouse gas nitrous oxide. Despite its importance, current estimates of permafrost nitrogen are highly uncertain. Here, we compiled a dataset of >2000 samples to quantify nitrogen stocks in the Yedoma domain, a region with organic-rich permafrost that contains ~25% of all permafrost carbon. We estimate that the Yedoma domain contains 41.2 gigatons of nitrogen down to ~20 metre for the deepest unit, which increases the previous estimate for the entire permafrost zone by ~46%. Approximately 90% of this nitrogen (37 gigatons) is stored in permafrost and therefore currently immobile and frozen. Here, we show that of this amount, ¾ is stored >3 metre depth, but if partially mobilised by thaw, this large nitrogen pool could have continental-scale consequences for soil and aquatic biogeochemistry and global-scale consequences for the permafrost feedback.
Collapse
|
9
|
Lacroix F, Zaehle S, Caldararu S, Schaller J, Stimmler P, Holl D, Kutzbach L, Göckede M. Mismatch of N release from the permafrost and vegetative uptake opens pathways of increasing nitrous oxide emissions in the high Arctic. GLOBAL CHANGE BIOLOGY 2022; 28:5973-5990. [PMID: 35852443 DOI: 10.1111/gcb.16345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Biogeochemical cycling in permafrost-affected ecosystems remains associated with large uncertainties, which could impact the Earth's greenhouse gas budget and future climate policies. In particular, increased nutrient availability following permafrost thaw could perturb the greenhouse gas exchange in these systems, an effect largely unexplored until now. Here, we enhance the terrestrial ecosystem model QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system), which simulates fully coupled carbon (C), nitrogen (N) and phosphorus (P) cycles in vegetation and soil, with processes relevant in high latitudes (e.g., soil freezing and snow dynamics). In combination with site-level and satellite-based observations, we use the model to investigate impacts of increased nutrient availability from permafrost thawing in comparison to other climate-induced effects and CO2 fertilization over 1960 to 2018 across the high Arctic. Our simulations show that enhanced availability of nutrients following permafrost thaw account for less than 15% of the total Gross primary productivity increase over the time period, despite simulated N limitation over the high Arctic scale. As an explanation for this weak fertilization effect, observational and model data indicate a mismatch between the timing of peak vegetative growth (week 26-27 of the year, corresponding to the beginning of July) and peak thaw depth (week 32-35, mid-to-late August), resulting in incomplete plant use of nutrients near the permafrost table. The resulting increasing N availability approaching the permafrost table enhances N loss pathways, which leads to rising nitrous oxide (N2 O) emissions in our model. Site-level emission trends of 2 mg N m-2 year-1 on average over the historical time period could therefore predict an emerging increasing source of N2 O emissions following future permafrost thaw in the high Arctic.
Collapse
Affiliation(s)
- Fabrice Lacroix
- Biogeochemical Signals (BSI), Max Planck Institute for Biogeochemistry, Jena, Germany
- Climate and Environmental Physics, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Sönke Zaehle
- Biogeochemical Signals (BSI), Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Silvia Caldararu
- Biogeochemical Signals (BSI), Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Peter Stimmler
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - David Holl
- Institute of Soil Science, Center for Earth System Research and Sustainability (CEN), University Hamburg, Hamburg, Germany
| | - Lars Kutzbach
- Institute of Soil Science, Center for Earth System Research and Sustainability (CEN), University Hamburg, Hamburg, Germany
| | - Mathias Göckede
- Biogeochemical Signals (BSI), Max Planck Institute for Biogeochemistry, Jena, Germany
| |
Collapse
|
10
|
Crichton KA, Anderson K, Charman DJ, Gallego-Sala A. Seasonal climate drivers of peak NDVI in a series of Arctic peatlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156419. [PMID: 35662594 DOI: 10.1016/j.scitotenv.2022.156419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Changes in plant cover and productivity are important in driving Arctic soil carbon dynamics and sequestration, especially in peatlands. Warming trends in the Arctic are known to have resulted in changes in plant productivity, extent and community composition, but more data are still needed to improve understanding of the complex controls and processes involved. Here we assess plant productivity response to climate variability between 1985 and 2020 by comparing peak growing season NDVI (Normalised Difference Vegetation Index data from Landsat 5 and 7), to seasonal-average weather data (temperature, precipitation and snow-melt timing) in nine locations containing peatlands in high- and low-Arctic regions in Europe and Canada. We find that spring (correlation 0.36 for peat dominant and 0.39 for mosaic; MLR coefficient 0.20 for peat, 0.29 for mosaic), summer (0.47, 0.42; 0.18, 0.17) and preceding-autumn (0.35, 0.25; 0.33, 0.27) temperature are linked to peak growing season NDVI at our sites between 1985 and 2020, whilst spring snow melt timing (0.42, 0.45; 0.25, 0.32) is also important, and growing season water availability is likely site-specific. According to regression trees, a warm preceding autumn (September-October-November) is more important than a warm summer (June-July-August) in predicting the highest peak season productivity in the peat-dominated areas. Mechanisms linked to soil processes may explain the importance of previous-Autumn conditions on productivity. We further find that peak productivity increases in these Arctic peatlands are comparable to those in the surrounding non-peatland-dominant vegetation. Increased productivity in and around Arctic peatlands suggests a potential to increased soil carbon sequestration with future warming, but further work is needed to test whether this is evident in observations of recent peat accumulation and extent.
Collapse
Affiliation(s)
| | - Karen Anderson
- Department of Geography, University of Exeter, Exeter, UK
| | - Dan J Charman
- Department of Geography, University of Exeter, Exeter, UK
| | | |
Collapse
|
11
|
Microbiogeochemical Traits to Identify Nitrogen Hotspots in Permafrost Regions. NITROGEN 2022. [DOI: 10.3390/nitrogen3030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Permafrost-affected tundra soils are large carbon (C) and nitrogen (N) reservoirs. However, N is largely bound in soil organic matter (SOM), and ecosystems generally have low N availability. Therefore, microbial induced N-cycling processes and N losses were considered negligible. Recent studies show that microbial N processing rates, inorganic N availability, and lateral N losses from thawing permafrost increase when vegetation cover is disturbed, resulting in reduced N uptake or increased N input from thawing permafrost. In this review, we describe currently known N hotspots, particularly bare patches in permafrost peatland or permafrost soils affected by thermokarst, and their microbiogeochemical characteristics, and present evidence for previously unrecorded N hotspots in the tundra. We summarize the current understanding of microbial N cycling processes that promote the release of the potent greenhouse gas (GHG) nitrous oxide (N2O) and the translocation of inorganic N from terrestrial into aquatic ecosystems. We suggest that certain soil characteristics and microbial traits can be used as indicators of N availability and N losses. Identifying N hotspots in permafrost soils is key to assessing the potential for N release from permafrost-affected soils under global warming, as well as the impact of increased N availability on emissions of carbon-containing GHGs.
Collapse
|
12
|
Andresen LC, Bodé S, Björk RG, Michelsen A, Aerts R, Boeckx P, Cornelissen JHC, Klanderud K, van Logtestijn RSP, Rütting T. Patterns of free amino acids in tundra soils reflect mycorrhizal type, shrubification, and warming. MYCORRHIZA 2022; 32:305-313. [PMID: 35307782 PMCID: PMC9184409 DOI: 10.1007/s00572-022-01075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The soil nitrogen (N) cycle in cold terrestrial ecosystems is slow and organically bound N is an important source of N for plants in these ecosystems. Many plant species can take up free amino acids from these infertile soils, either directly or indirectly via their mycorrhizal fungi. We hypothesized that plant community changes and local plant community differences will alter the soil free amino acid pool and composition; and that long-term warming could enhance this effect. To test this, we studied the composition of extractable free amino acids at five separate heath, meadow, and bog locations in subarctic and alpine Scandinavia, with long-term (13 to 24 years) warming manipulations. The plant communities all included a mixture of ecto-, ericoid-, and arbuscular mycorrhizal plant species. Vegetation dominated by grasses and forbs with arbuscular and non-mycorrhizal associations showed highest soil free amino acid content, distinguishing them from the sites dominated by shrubs with ecto- and ericoid-mycorrhizal associations. Warming increased shrub and decreased moss cover at two sites, and by using redundancy analysis, we found that altered soil free amino acid composition was related to this plant cover change. From this, we conclude that the mycorrhizal type is important in controlling soil N cycling and that expansion of shrubs with ectomycorrhiza (and to some extent ericoid mycorrhiza) can help retain N within the ecosystems by tightening the N cycle.
Collapse
Affiliation(s)
- Louise C Andresen
- Department of Earth Science, University of Gothenburg, Gothenburg, Sweden.
| | - Samuel Bodé
- Isotope Bioscience Laboratory (ISOFYS), Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Robert G Björk
- Department of Earth Science, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | | | - Rien Aerts
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pascal Boeckx
- Isotope Bioscience Laboratory (ISOFYS), Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - J Hans C Cornelissen
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kari Klanderud
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| | | | - Tobias Rütting
- Department of Earth Science, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Abstract
Studies for the northern high latitudes suggest that, in the near term, increased vegetation uptake may offset permafrost carbon losses, but over longer time periods, permafrost carbon decomposition causes a net loss of carbon. Here, we assess the impact of a coupled carbon and nitrogen cycle on the simulations of these carbon fluxes. We present results from JULES-IMOGEN—a global land surface model coupled to an intermediate complexity climate model with vertically resolved soil biogeochemistry. We quantify the impact of nitrogen fertilisation from thawing permafrost on the carbon cycle and compare it with the loss of permafrost carbon. Projections show that the additional fertilisation reduces the high latitude vegetation nitrogen limitation and causes an overall increase in vegetation carbon uptake. This is a few Petagrams of carbon (Pg C) by year 2100, increasing to up to 40 Pg C by year 2300 for the RCP8.5 concentration scenario and adds around 50% to the projected overall increase in vegetation carbon in that region. This nitrogen fertilisation results in a negative (stabilising) feedback on the global mean temperature, which could be equivalent in magnitude to the positive (destabilising) temperature feedback from the loss of permafrost carbon. This balance depends on the future scenario and initial permafrost carbon. JULES-IMOGEN describes one representation of the changes in Arctic carbon and nitrogen cycling in response to climate change. However there are uncertainties in the modelling framework, model parameterisation and missing processes which, when assessed, will provide a more complete picture of the balance between stabilising and destabilising feedbacks.
Collapse
|
14
|
Influences of summer warming and nutrient availability on Salix glauca L. growth in Greenland along an ice to sea gradient. Sci Rep 2022; 12:3077. [PMID: 35197470 PMCID: PMC8866482 DOI: 10.1038/s41598-022-05322-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022] Open
Abstract
The combined effects of climate change and nutrient availability on Arctic vegetation growth are poorly understood. Archaeological sites in the Arctic could represent unique nutrient hotspots for studying the long-term effect of nutrient enrichment. In this study, we analysed a time-series of ring widths of Salix glauca L. collected at nine archaeological sites and in their natural surroundings along a climate gradient in the Nuuk fjord region, Southwest Greenland, stretching from the edge of the Greenlandic Ice Sheet in the east to the open sea in the west. We assessed the temperature-growth relationship for the last four decades distinguishing between soils with past anthropogenic nutrient enrichment (PANE) and without (controls). Along the East-West gradient, the inner fjord sites showed a stronger temperature signal compared to the outermost ones. Individuals growing in PANE soils had wider ring widths than individuals growing in the control soils and a stronger climate-growth relation, especially in the inner fjord sites. Thereby, the individuals growing on the archaeological sites seem to have benefited more from the climate warming in recent decades. Our results suggest that higher nutrient availability due to past human activities plays a role in Arctic vegetation growth and should be considered when assessing both the future impact of plants on archaeological sites and the general greening in landscapes with contrasting nutrient availability.
Collapse
|
15
|
Xu W, Elberling B, Ambus PL. Fire increases soil nitrogen retention and alters nitrogen uptake patterns among dominant shrub species in an Arctic dry heath tundra. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150990. [PMID: 34656575 DOI: 10.1016/j.scitotenv.2021.150990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Climate change increases the frequency and severity of fire in the Arctic tundra regions. We assessed effects of fire in combination with summer warming on soil biogeochemical N- and P cycles with a focus on mineral N over two years following an experimental fire in a dry heath tundra, West Greenland. We applied stable isotopes (15NH4+-N and 15NO3--N) to trace the post-fire mineral N pools. The partitioning of 15N in the bulk soils, soil dissolved organic N (TDN), microbes and plants (roots and leaves) was established. The fire tended to increase microbial P pools by four-fold at both one and two years after the fire. Two years after the fire, the bulk soil 15N recovery has decreased to 10.4% in unburned plots while relatively high recovery was maintained (30%) in burned plots, suggesting an increase in soil N retention after the fire. The contribution of microbial 15N recovery to bulk soil 15N recovery increased from 11.2% at 21 days to 31.5% two years after the fire, suggesting that higher post-fire N retention was due largely to the increased incorporation of N into microbial biomass. Fire also increased 15N recovery in bulk roots after one and two years, but only under summer warming. This suggests that higher retention of post-fire N can strongly increase the potential for N uptake of recovering plants under a future warmer climate. There was significantly lower 15N enrichment of Betula nana leaves while higher 15N enrichment of Vaccinium uliginosum leaves (after three years) in burned than control plots. This shows that fire can alter the N uptake differently among dominant shrub species in this tundra ecosystem, and implies that wildfires may change plant species composition in the longer term.
Collapse
Affiliation(s)
- Wenyi Xu
- Center for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, 1350 Copenhagen K, Denmark.
| | - Bo Elberling
- Center for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, 1350 Copenhagen K, Denmark
| | - Per Lennart Ambus
- Center for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, 1350 Copenhagen K, Denmark
| |
Collapse
|
16
|
Yang G, Peng Y, Abbott BW, Biasi C, Wei B, Zhang D, Wang J, Yu J, Li F, Wang G, Kou D, Liu F, Yang Y. Phosphorus rather than nitrogen regulates ecosystem carbon dynamics after permafrost thaw. GLOBAL CHANGE BIOLOGY 2021; 27:5818-5830. [PMID: 34390614 DOI: 10.1111/gcb.15845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 05/27/2023]
Abstract
Ecosystem carbon (C) dynamics after permafrost thaw depends on more than just climate change since soil nutrient status may also impact ecosystem C balance. It has been advocated that nitrogen (N) release upon permafrost thaw could promote plant growth and thus offset soil C loss. However, compared with the widely accepted C-N interactions, little is known about the potential role of soil phosphorus (P) availability. We combined 3-year field observations along a thaw sequence (constituted by four thaw stages, i.e., non-collapse and 5, 14, and 22 years since collapse) with an in-situ fertilization experiment (included N and P additions at the level of 10 g N m-2 year-1 and 10 g P m-2 year-1 ) to evaluate ecosystem C-nutrient interactions upon permafrost thaw. We found that changes in soil P availability rather than N availability played an important role in regulating gross primary productivity and net ecosystem productivity along the thaw sequence. The fertilization experiment confirmed that P addition had stronger effects on plant growth than N addition in this permafrost ecosystem. These two lines of evidence highlight the crucial role of soil P availability in altering the trajectory of permafrost C cycle under climate warming.
Collapse
Affiliation(s)
- Guibiao Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunfeng Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Benjamin W Abbott
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, USA
| | - Christina Biasi
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Bin Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jun Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jianchun Yu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fei Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guanqin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan Kou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Futing Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|