1
|
Porto GF, Anjos DV, Luna P, Del-Claro K. A global overview of insect-fern interactions and its ecological trends. THE NEW PHYTOLOGIST 2024. [PMID: 39491489 DOI: 10.1111/nph.20229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
Historically, ferns have been described as underutilized by insects. However, studies have shown a diversity of insects interacting with ferns, although the evolutionary and ecological drivers of these interactions are still to be untangled. To fill these gaps, we compiled more than 100 yr of global data on insect-fern interactions from the literature comprising 374 fern and 649 insect species. With this database we assessed how fern trophic specialization, phylogenetic relationships and climate have shaped their interactions with insects. Our findings showed that interactions between ferns and insects can be explained by the phylogenetic relations among them. We observed that insect orders part of the Endopterygota clade tend to interact with similar fern species, which might be a result of the inheritance of Endopterygota ancestors probably due to phylogenetic niche conservationism. Under an ecological context, fern specialization increased with temperature, precipitation, and climatic stability. Our results show that climate might be one of the main factors explaining the spatial variation of insect-fern interactions, postulate also supported by the observed phylogenetic clustering of the studied ferns species. Our study highlights the intricate and multifaceted nature of insect-fern interactions, where evolutionary history and ecological factors converge to shape these relationships.
Collapse
Affiliation(s)
- Gabriela Fraga Porto
- Programa de Pós-graduação em Entomologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo - USP, Ribeirão Preto, 14040-901, Brazil
| | - Diego V Anjos
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
- Departamento de Ciências Biológicas, Universidade Regional do Cariri, Crato, CE, 63105-000, Brazil
| | - Pedro Luna
- Grupo de Investigación en Ecología y Evolución en los Trópicos-EETROP, Universidad de las Américas, Quito, 170124, Ecuador
| | - Kleber Del-Claro
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| |
Collapse
|
2
|
Martínez-De León G, Thakur MP. Ecological debts induced by heat extremes. Trends Ecol Evol 2024; 39:1024-1034. [PMID: 39079760 DOI: 10.1016/j.tree.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 11/08/2024]
Abstract
Heat extremes have become the new norm in the Anthropocene. Their potential to trigger major ecological responses is widely acknowledged, but their unprecedented severity hinders our ability to predict the magnitude of such responses, both during and after extreme heat events. To address this challenge we propose a conceptual framework inspired by the core concepts of ecological stability and thermal biology to depict how responses of populations and communities accumulate at three response stages (exposure, resistance, and recovery). Biological mechanisms mitigating responses at a given stage incur associated costs that only become apparent at other response stages; these are known as 'ecological debts'. We outline several scenarios for how ecological responses associate with debts to better understand biodiversity changes caused by heat extremes.
Collapse
Affiliation(s)
| | - Madhav P Thakur
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Pandey VK, Shafi Z, Tripathi A, Singh G, Singh R, Rustagi S. Production of biodegradable food packaging from mango peel via enzymatic hydrolysis and polyhydroxyalkanoates synthesis: A review on microbial intervention. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100292. [PMID: 39497936 PMCID: PMC11533516 DOI: 10.1016/j.crmicr.2024.100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
The rising environmental problem of plastic packaging waste has led to the development of sustainable alternatives, particularly for food packaging. Polyhydroxyalkanoates (PHAs) are biodegradable, thermoplastic polyesters. They are employed in the production of various products, including packaging films. The bio-based nature and appropriate features of PHAs, similar to conventional synthetic plastics, have garnered significant attention from researchers and industries. The current study aimed to produce biodegradable food packaging using mango peel (a major agricultural waste) with enzymatic hydrolysis and PHAs synthesis. Mango peel is the hub for macro-and micronutrients, including phytochemicals. The process includes an enzymatic hydrolysis step that converts complex carbohydrates into simple sugars using mango peel as a substrate. The produced sugars are used as raw materials for bacteria to synthesize PHAs, which are a class of biodegradable polymers produced by these microorganisms that can serve as packaging materials in the food industry. To solve environmental problems and increase the utilization of agricultural by-products, this review presents a practical method for producing food packaging that is environmentally friendly.
Collapse
Affiliation(s)
- Vinay Kumar Pandey
- Research & Development Cell, Biotechnology Department, Manav Rachna International Institute of Research and Studies (Deemed to Be University) Faridabad 121004 Haryana, India
| | - Zaryab Shafi
- Department of Biosciences, Integral University, Lucknow-226026, Uttar Pradesh, India
| | - Anjali Tripathi
- School of Health Sciences and Technology, UPES University Dehradun, Dehradun, India
| | - Gurmeet Singh
- Department of chemistry, Guru Nanak College of Pharmaceutical & Paramedical Sciences, Dehradun, Uttarakhand, India
| | - Rahul Singh
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied & Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
4
|
Robertson AM, Piggott JJ, Penk MR. Improving multiple stressor-response models through the inclusion of nonlinearity and interactions among stressor gradients. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1026. [PMID: 39373764 DOI: 10.1007/s10661-024-13169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
Stressor-response models are used to detect and predict changes within ecosystems in response to anthropogenic and naturally occurring stressors. While nonlinear stressor-response relationships and interactions between stressors are common in nature, predictive models often do not account for them due to perceived difficulties in the interpretation of results. We used Irish river monitoring data from 177 river sites to investigate if multiple stressor-response models can be improved by accounting for nonlinearity, interactions in stressor-response relationships and environmental context dependencies. Out of the six models of distinct biological responses, five models benefited from the inclusion of nonlinearity while all six benefited from the inclusion of interactions. The addition of nonlinearity means that we can better see the exponential increase in Trophic Diatom Index (TDI3) as phosphorus increases, inferring ecological conditions deteriorating at a faster rate with increasing phosphorus. Furthermore, our results show that the relationship between stressor and response has the potential to be dependent on other variables, as seen in the interaction of elevation with both siltation and nutrients in relation to Ephemeroptera, Plecoptera and Trichoptera (EPT) richness. Both relationships weakened at higher elevations, perhaps demonstrating that there is a decreased capacity for resilience to stressors at lower elevations due to greater cumulative effects. Understanding interactions such as this is vital to managing ecosystems. Our findings provide empirical support for the need to further develop and employ more complex modelling techniques in environmental assessment and management.
Collapse
Affiliation(s)
- Aoife M Robertson
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland.
| | - Jeremy J Piggott
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Marcin R Penk
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Swain A, Azevedo-Schmidt LE, Maccracken SA, Currano ED, Meineke EK, Pierce NE, Fagan WF, Labandeira CC. Interactive Effects of Temperature, Aridity, and Plant Stoichiometry on Insect Herbivory: Past and Present. Am Nat 2024; 204:416-431. [PMID: 39326060 DOI: 10.1086/731995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
AbstractThe influence of climate on deep-time plant-insect interactions is becoming increasingly well known, with temperature, CO2 increases (and associated stoichiometric changes in plants), and aridity likely playing a critical role. In our modern climate, all three factors are shifting at an unprecedented rate, with uncertain consequences for biodiversity. To investigate effects of temperature, stoichiometry (specifically that of nitrogen), and aridity on insect herbivory, we explored insect herbivory in three modern floral assemblages and in 39 fossil floras, especially focusing on eight floras around a past hyperthermal event (the Paleocene-Eocene Thermal Maximum) from Bighorn Basin (BB). We find that higher temperatures were associated with increased herbivory in the past, especially among BB sites. In these BB sites, non-N2-fixing plants experienced a lower richness but higher frequency of herbivory damage than N2-fixing plants. Herbivory frequency but not richness was greater in BB sites compared with contemporaneous, nearby, but less arid sites from Hanna Basin. Compared with deep-time environments, herbivory frequency and richness are higher in modern sites, suggesting that current accelerated warming uniquely impacts plant-insect interactions. Overall, our work addresses multiple aspects of climate change using fossil data while also contextualizing the impact of modern anthropogenic change on Earth's most diverse interactions.
Collapse
|
6
|
Gérard M, Gardelin E, Lehmann P, Roberts KT, Sepúlveda-Rodríguez G, Sisquella C, Baird E. Experimental elevated temperature affects bumblebee foraging and flight speed. Proc Biol Sci 2024; 291:20241598. [PMID: 39471861 PMCID: PMC11521611 DOI: 10.1098/rspb.2024.1598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 11/01/2024] Open
Abstract
Global warming threatens wild bees and their interaction with plants. While earlier studies have highlighted the negative effects of elevated temperatures on bee-plant interactions, we still lack knowledge about how they impact the foraging behaviours that are central to bee pollination activities. To address this knowledge gap, we investigated how ambient temperature affected the foraging behaviours of the bumblebee Bombus terrestris. We allowed the bumblebees to forage freely on artificial flowers in two climate-controlled rooms set at 24°C and 32°C. The colonies were alternated between the two temperatures every week. We recorded the flower visitation rate, flight speed, total foraging time and number of foraging trips. In addition, we measured flight metabolic rate across a range of temperatures to assess its potential as an underlying mechanism. In comparison to 24°C, at 32°C, flower visitation time decreased while flower visitation rate and flight speed increased. This is consistent with the reduction in flight metabolic rate recorded between these temperatures. At 32°C, the number of trips made by each worker decreased, suggesting that, despite the reduced energetic cost, flight in elevated temperatures may be stressful. Our results suggest that elevated temperatures affect bumblebee foraging behaviour and that this would likely disrupt plant-insect interactions.
Collapse
Affiliation(s)
- Maxence Gérard
- Department of Zoology, INSECT Lab, Division of Functional Morphology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du parc 20, 7000 Mons, Belgium
| | - Erika Gardelin
- Department of Zoology, INSECT Lab, Division of Functional Morphology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
| | - Philipp Lehmann
- Department of Zoology, INSECT Lab, Division of Functional Morphology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
- Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, 17489 Greifswald, Germany
| | - Kevin T. Roberts
- Department of Zoology, INSECT Lab, Division of Functional Morphology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
- Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, 17489 Greifswald, Germany
| | - Guadalupe Sepúlveda-Rodríguez
- Department of Zoology, INSECT Lab, Division of Functional Morphology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
| | - Clara Sisquella
- Department of Zoology, INSECT Lab, Division of Functional Morphology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
| | - Emily Baird
- Department of Zoology, INSECT Lab, Division of Functional Morphology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
| |
Collapse
|
7
|
Shan B, De Baets B, Verhoest NEC. Butterfly abundance changes in England are well associated with extreme climate events. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176318. [PMID: 39326748 DOI: 10.1016/j.scitotenv.2024.176318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
Climate change exerts significant impacts on ecosystems through extreme climate events (ECEs), which are linked to various climate variables and can occur in different seasons. However, previous studies predominantly focus on a single type of ECE within specific seasons. We address this research gap by examining four typical types of ECEs: droughts, pluvials, heatwaves, and coldwaves, which are consistently defined and identified on a daily scale using a recently proposed statistical method. Butterflies in England serve as our study subject since their life stages occur throughout the year, and we had access to a 45-year dataset encompassing 57 butterfly species. First, we analyzed the correlation between abundance changes and the severity of ECEs, revealing varying sensitivity to ECEs across different life stages. Notably, abundance changes are negatively correlated with the severity of heatwaves in the hibernation, egg, and larval stages, as well as with the severity of pluvials in the larval, pupal, and adult stages. Second, we identified the most extreme climate events (MECEs) in England in the period from 1950 to 2020 and linked them with synchronized abundance changes for all species. MECEs in the sensitive stages of butterflies are frequently (for eight out of 11 MECEs) associated with synchronized decreases in their abundance. Our findings underscore the importance of considering diverse types of ECEs across all seasons to gain insights into their potential ecosystem effects. We draw attention to the fact that our analyses are primarily data-driven, with limited ecophysiological interpretation.
Collapse
Affiliation(s)
- Baoying Shan
- KERMIT, Department of Data Analysis and Mathematical Modelling, Coupure links 653, Ghent 9000, Belgium; Hydro-Climatic Extremes Lab, Ghent University, Coupure links 653, Ghent 9000, Belgium
| | - Bernard De Baets
- KERMIT, Department of Data Analysis and Mathematical Modelling, Coupure links 653, Ghent 9000, Belgium
| | - Niko E C Verhoest
- Hydro-Climatic Extremes Lab, Ghent University, Coupure links 653, Ghent 9000, Belgium
| |
Collapse
|
8
|
Zhang B, Yang D, Zhang J, Yang N, Kong J, Hu Y, Liu J, Liu Q, Chen G, Zhang X. Short-term temperature changes affected the predation ability of Orius similis on Bemisia tabaci nymphs. JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae206. [PMID: 39316688 DOI: 10.1093/jee/toae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/21/2024] [Accepted: 08/31/2024] [Indexed: 09/26/2024]
Abstract
Bemisia tabaci (Gennadius), a major pest that can adversely affect economies and agriculture globally, is particularly sensitive to climate change-induced temperature fluctuations, which can intensify its outbreaks. Orius similis Zheng, a primary natural predator of B. tabaci, also experiences temperature-related effects that influence its biocontrol efficacy. Thus, understanding the response of O. similis to temperature changes is pivotal for optimizing its biocontrol potential. Herein, our investigations showed that the functional response of O. similis to both high- and low-instar nymphs of B. tabaci adheres to the type II model at temperatures of 19, 22, 25, 28, and 31 °C. At 28 °C, O. similis exhibits the highest instantaneous attack rate (high-instar: 1.1580, low-instar: 1.2112), and the shortest handling time per prey (high-instar: 0.0218, low-instar: 0.0191). The efficacy of O. similis in controlling B. tabaci nymphs follows the sequence: 28 °C > 25 °C > 31 °C > 22 °C > 19 °C. Additionally, search efficiency inversely correlates with prey density. Simulations using the Hessell-Varley interference model indicate that increased density of O. similis under any temperature condition leads to reduced predation rates. Moreover, O. similis shows a predation preference for low-instar nymphs of B. tabaci, with higher predation level observed at the same temperature. In conclusion, for effective control of B. tabaci in field releases, O. similis should be optimally released at temperatures between 25 and 28 °C to preferably target the egg or early nymph stages of B. tabaci and determining the appropriate number of O. similis is important to minimize interference among individuals and enhance biocontrol efficacy.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Dan Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Jinlong Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Nian Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Jiao Kong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Ying Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Jihuan Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Qing Liu
- School of Resources and Environment, Baoshan University, Key Laboratory of Conservation and Utilization of Insect Resources in Western Yunnan, Baoshan Key Laboratory of Biodiversity Conservation and Utilization of Gaoligong Mountains, Baoshan, China
| | - Guohua Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xiaoming Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
9
|
Bao Y, Han A, Gele T, Song Z, Liu X, Tong Z, Zhang J. Climate change reduces elevational and latitudinal differences in spring phenology of pine caterpillar (Dendrolimus spectabilis Bulter). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173847. [PMID: 38871325 DOI: 10.1016/j.scitotenv.2024.173847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
The pine caterpillar (Dendrolimus spectabilis Bulter, Lepidoptera: Lasiocampidae), as an ectotherm, temperature plays a crucial role in its development. With climate change, earlier development of insect pests is expected to pose a more frequent threat to forest communities. Yet the quantitative research about the extent to which global warming affects pine caterpillar populations is rarely understood, particularly across various elevations and latitudes. Spring phenology of pine caterpillars showed an advancing trend with 0.8 d/10a, 2.2 d/10a, 2.2 d/10a, and 3.3 d/10a under the SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 scenario, respectively. There was a maximum advance of 20 d in spring phenology of pine caterpillars during the 2090s, from mid-March to early March, and even late February. This study highlighted the significant advance in spring phenology at elevations >1000 m and lower latitudes. Consequently, the differences in elevational and latitudinal gradients were relatively small as the increasing temperatures at the end of the 21st century. And the average temperature in February-March was effective in explaining theses variability. These findings are crucial for adapting and mitigating to climate change.
Collapse
Affiliation(s)
- Yongbin Bao
- School of Environment, Northeast Normal University, Changchun 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Changchun 130024, China
| | - Aru Han
- School of Environment, Northeast Normal University, Changchun 130024, China
| | - Teri Gele
- School of Environment, Northeast Normal University, Changchun 130024, China
| | - Ziming Song
- Collage of Geography, Inner Mongolia Normal University, Hohhot 010022, China
| | - Xingpeng Liu
- School of Environment, Northeast Normal University, Changchun 130024, China
| | - Zhijun Tong
- School of Environment, Northeast Normal University, Changchun 130024, China
| | - Jiquan Zhang
- School of Environment, Northeast Normal University, Changchun 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Changchun 130024, China.
| |
Collapse
|
10
|
Chen LJ, Li ZZ, Liu W, Lyu B. Impact of high temperature and drought stress on the microbial community in wolf spiders. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116801. [PMID: 39083866 DOI: 10.1016/j.ecoenv.2024.116801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/11/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
High temperatures and drought present significant abiotic challenges that can limit the survival of many arthropods, including wolf spiders, which are ectothermic and play a crucial role in controlling pest populations. However, the impact of these stress factors on the microbiota of spiders remains poorly understood. In this study, we utilized 16 S rRNA gene sequencing to explore the diversity and composition of bacterial communities within Pardosa pseudoannulata under conditions of high temperature and drought stress. We found that Firmicutes, Bacteroidetes, and Proteobacteria were the predominant bacterial phyla present. Analyses of alpha diversity indicated an increase in bacterial diversity under combined stress conditions, as reflected by various diversity indices such as Ace, Chao1, Shannon, and Simpson. Furthermore, co-occurrence network analysis highlighted intricate interactions among the microbial taxa (e.g., Enterobacter, Chitinophaga, and Eubacterium), revealing the adaptive complexity of the spider's microbiome to environmental stress. Functional prediction analysis suggested that combined stress conditions might enhance key metabolic pathways, particularly those related to oxidative phosphorylation and amino acid metabolism. Using Random Forest analysis, we determined that changes in three heat shock proteins were largely attributed to variations in bacterial communities, with Firmicutes being notably influential. Collectively, this in-depth analysis offers novel insights into the responses of microbial communities within spider microbiomes to combined abiotic stresses, providing valuable information for understanding extreme climate impacts and informing ecological management strategies.
Collapse
Affiliation(s)
- Li-Jun Chen
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang 422000, China.
| | - Zhe-Zhi Li
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang 422000, China
| | - Wei Liu
- College of Urban and Environment Sciences, Hunan University of Technology, Zhuzhou 412007, China
| | - Bo Lyu
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
11
|
Kóbor P, Brhane D. Past, present and future of the two-spotted stink bug (Perillus bioculatus) in Europe revealed by citizen science. Sci Rep 2024; 14:21494. [PMID: 39277632 PMCID: PMC11401935 DOI: 10.1038/s41598-024-72501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
The introduction of the Nearctic predaceous stink bug species, (Perillus bioculatus) was attempted multiple times in various countries throughout Europe to mitigate the damage caused by the invasive and harmful pest species, the Colorado potato beetle (Leptinotarsa decemlineata). Though these attempts were thought to be unsuccessful for decades, more recent data elucidated that the species have established small self-sustaining populations in the Balkans Peninsula, Southern Russia, and Türkiye and recently began to expand. In the past years, the European range of the species reached Eastern Europe. After the first individuals were found in Hungary in October 2023 a citizen science campaign was launched to investigate the distribution of the species in the country. By June 2024 it became evident that the species is established throughout the country. Furthermore, observations regarding beetle larvae and moth caterpillars as alternative prey were reported supporting the previous assumptions that the naturalization and expansion of the species in Europe is facilitated by dietary drift. Here, we summarize the knowledge on the European presence of the two-spotted stink bug and formulate hypotheses regarding its future distribution and the impact of the species on the insect communities of the newly colonized areas.
Collapse
Affiliation(s)
- Péter Kóbor
- Department of Zoology, HUN-REN Centre for Agricultural Research Plant Protection Institute, Budapest, 1022, Hungary.
- Department of Integrated Plant Protection, Hungarian University of Agriculture and Life Sciences (MATE) Institute of Plant Protection, Gödöllő, 2100, Hungary.
| | - Daniel Brhane
- Department of Integrated Plant Protection, Hungarian University of Agriculture and Life Sciences (MATE) Institute of Plant Protection, Gödöllő, 2100, Hungary
- Department of Plant Protection, Hamelmalo Agricultural College, P.O. Box: 397, Keren, Eritrea
| |
Collapse
|
12
|
Quan PQ, Guo PL, He J, Liu XD. Heat-stress memory enhances the acclimation of a migratory insect pest to global warming. Mol Ecol 2024; 33:e17493. [PMID: 39132714 DOI: 10.1111/mec.17493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/18/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
In the face of rising global temperatures, the mechanisms behind an organism's ability to acclimate to heat stress remain enigmatic. The rice leaf folder, Cnaphalocrocis medinalis, traditionally viewed as temperature-sensitive, paradoxically exhibits robust larval acclimation to heat stress. This study used the heat-acclimated strain HA39, developed through multigenerational exposure to 39°C during the larval stage, and the unacclimated strain HA27 reared at 27°C to unravel the transgenerational effects of heat acclimation and its regulatory mechanisms. Heat acclimation for larvae incurred a fitness cost in pupae when exposed to high temperature, yet a significant transgenerational effect surfaced, revealing heightened fitness benefit in pupae from HA39, even without additional heat exposure during larval recovery at 27°C. This transgenerational effect exhibited a short-term memory, diminishing after two recovery generations. Moreover, the effect correlated with increased superoxide dismutase (SOD) enzyme activity and expression levels of oxidoreductase genes, representing physiological and molecular foundations of heat acclimation. Heat-acclimated larvae displayed elevated DNA methylation levels, while pupae from HA39, in recovery generations, exhibited decreased methylation indicated by the upregulation of a demethylase gene and downregulation of two methyltransferase genes at high temperatures. In summary, heat acclimation induces DNA methylation, orchestrating heat-stress memory and influencing the expression levels of oxidoreductase genes and SOD activity. Heat-stress memory enhances the acclimation of the migratory insect pest to global warming.
Collapse
Affiliation(s)
- Peng-Qi Quan
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Pan-Long Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jing He
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Dong Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Pan MZ, Shen RC, Fu ZX, Lu ZZ, Ma BB, Liu TX. High-temperature responses of Myzus persicae and its parasitoid Aphidius gifuensis in relation to heat level, duration and developmental stage. PEST MANAGEMENT SCIENCE 2024; 80:4628-4636. [PMID: 38877352 DOI: 10.1002/ps.8179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 05/02/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Understanding how parasitoids respond to temperature is crucial for improving biological control strategies under the context of global warming. This study examined the suitability of Myzus persicae and its parasitoid Aphidius gifuensis to varying temperature conditions, as well as the stage-specific response of A. gifuensis to high temperatures. RESULTS High temperatures had a significant impact on the both M. persicae and A. gifuensis. When exposed to 36°C, M. persicae developed more slowly and produced smaller adults compared to control, regardless of the duration of exposure (2, 4 or 6 h); additionally, the survival rate of M. persicae nymphs sharply decreased under these conditions. Exposure to 36°C for 4 h negatively impacted the development of A. gifuensis. Female parasitoids exposed to 32°C developed into smaller adults, whereas males exposed to all three temperature levels were smaller compared to control group. Female parasitoids exposed to high temperatures, regardless of the specific heat level and duration, exhibited reduced longevity and decreased fecundity. None of the parasitoids exposed to 36°C for 6 h daily developed into adults. Heat treated during early developmental stages (2 and 4 days old) had a greater influence on parasitoid development, whereas heat treatment at 4 and 6 days old had a more significant impact on its fecundity. CONCLUSION High temperatures not only directly affected the performance of A. gifuensis, but also exerted indirect effects by influencing the quality of the host aphids M. persicae. The deleterious effects of high temperature on larvae can persist into the adult stage, affecting the longevity and reproduction of adults. These findings are important for the utilization of A. gifuensis in the control of M. persicae in warming environments. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ming-Zhen Pan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Managemnent, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Rui-Chun Shen
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Managemnent, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhi-Xiao Fu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Managemnent, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhao-Zhi Lu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Managemnent, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Bei-Bei Ma
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Managemnent, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
14
|
Velikaneye BA, Kozak GM. Timing-dependent effects of elevated temperature on reproductive traits in the European corn borer moth. J Evol Biol 2024; 37:1076-1090. [PMID: 39037024 DOI: 10.1093/jeb/voae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Elevated temperature often has life stage-specific effects on ectotherms because thermal tolerance varies throughout ontogeny. Impacts of elevated temperature may extend beyond the exposed life stage if developmental plasticity causes early exposure to carry-over or if exposure at multiple life stages cumulatively produces effects. Reproductive traits may be sensitive to different thermal environments experienced during development, but such effects have not been comprehensively measured in Lepidoptera. In this study, we investigate how elevated temperature at different life stages alters reproduction in the European corn borer moth, Ostrinia nubilalis. We tested effects of exposure to elevated temperature (28 °C) separately or additively during larval, pupal, and adult life stages compared to control temperatures (23 °C). We found that exposure to elevated pupal and adult temperature decreased the number of egg clusters produced, but exposure limited to a single stage did not significantly impact reproductive output. Furthermore, elevated temperature during the pupal stage led to a faster transition to the adult stage and elevated larval temperature altered synchrony of adult eclosion, either by itself or combined with pupal temperature exposure. These results suggest that exposure to elevated temperature during development alters reproduction in corn borers in multiple ways, including through carry-over and additive effects. Additive effects of temperature across life stages are thought to be less common than stage-specific or carry-over effects, but our results suggest thermal environments experienced at all life stages need to be considered when predicting reproductive responses of insects to heatwaves.
Collapse
Affiliation(s)
- Brittany A Velikaneye
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| | - Genevieve M Kozak
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| |
Collapse
|
15
|
Lee H, Jung JK, Nam Y, Koh SH. Temperature-Dependent Oviposition Models for Monochamus saltuarius (Coleoptera: Cerambycidae). INSECTS 2024; 15:597. [PMID: 39194802 DOI: 10.3390/insects15080597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/29/2024]
Abstract
Monochamus saltuarius Gebler is a serious insect pest in Europe and East Asia regions, including Portugal, Spain, China, Japan, and Korea. It transfers the pine wood nematode Bursaphelenchus xylophilus to conifer trees, resulting in pine wilt disease (PWD). As temperature is a key factor influencing insect population dynamics, temperature-dependent models describing M. saltuarius oviposition could estimate population growth potential and evaluate outbreak risks. In this study, the longevity and fecundity of M. saltuarius females were measured under constant temperature conditions ranging from 20 to 32 °C, and temperature-dependent models were constructed. The longevity of M. saltuarius females ranged from 83.36 days to 22.92 days, with a total fecundity of 141 eggs and 52.77 eggs at 20 °C and 32 °C, respectively. To describe oviposition, we used a single-phase simulation describing oviposition as a single model and a two-phase simulation describing sexual maturation and oviposition as two separate models. These models effectively described M. saltuarius oviposition (r2 > 0.96) under constant temperature conditions, with the two-phase simulation demonstrating greater accuracy overall. Such models could facilitate assessments of PWD risks. The modeling framework of this study shows potential for predicting threats from various forestry and agricultural pests.
Collapse
Affiliation(s)
- Hyoseok Lee
- Division of Forest Insect Pests and Diseases, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Jong-Kook Jung
- Division of Forest Insect Pests and Diseases, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Youngwoo Nam
- Division of Forest Insect Pests and Diseases, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Sang-Hyun Koh
- Division of Forest Insect Pests and Diseases, National Institute of Forest Science, Seoul 02455, Republic of Korea
| |
Collapse
|
16
|
Gamboa M, Gotoh Y, Doloiras-Laraño A, Watanabe K. Response of wild aquatic insect communities to thermal variation through comparative landscape transcriptomics. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22137. [PMID: 39137227 DOI: 10.1002/arch.22137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Fluctuations in temperature are recognized as a potent driver of selection pressure, fostering genomic variations that are crucial for the adaptation and survival of organisms under selection. Notably, water temperature is a pivotal factor influencing aquatic organism persistence. By comprehending how aquatic organisms respond to shifts in water temperature, we can understand their potential physiological adaptations to environmental change in one or multiple species. This, in turn, contributes to the formulation of biologically relevant guidelines for the landscape scale transcriptome profile of organisms in lotic systems. Here, we investigated the distinct responses of seven stream stonefly species, collected from four geographical regions across Japan, to variations in temperature, including atmospheric and water temperatures. We achieved this by assessing the differences in gene expression through RNA-sequencing within individual species and exploring the patterns of community-genes among different species. We identified 735 genes that exhibited differential expressions across the temperature gradient. Remarkably, the community displayed expression levels differences of respiration and metabolic genes. Additionally, the diversity in molecular functions appeared to be linked to spatial variation, with water temperature differences potentially contributing to the overall functional diversity of genes. We found 22 community-genes with consistent expression patterns among species in response to water temperature variations. These genes related to respiration, metabolism and development exhibited a clear gradient providing robust evidence of divergent adaptive responses to water temperature. Our findings underscore the differential adaptation of stonefly species to local environmental conditions, suggesting that shared responses in gene expression may occur across multiple species under similar environmental conditions. This study emphasizes the significance of considering various species when assessing the impacts of environmental changes on aquatic insect communities and understanding potential mechanisms to cope with such changes.
Collapse
Affiliation(s)
- Maribet Gamboa
- Department of Ecology, Faculty of Science, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Yusuke Gotoh
- Department of Civil and Environmental Engineering, Ehime University, Matsuyama, Japan
| | | | - Kozo Watanabe
- Department of Civil and Environmental Engineering, Ehime University, Matsuyama, Japan
- Ehime University, Center Marine Environmental Studies (CMES), Matsuyama, Japan
| |
Collapse
|
17
|
Segoli M, Kishinevsky M, Harvey JA. Climate change, temperature extremes, and impacts on hyperparasitoids. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101229. [PMID: 38944274 DOI: 10.1016/j.cois.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Anthropogenic climate change, including temperature extremes, is having a major impact on insect physiology, phenology, behavior, populations, and communities. Hyperparasitoids (insects whose offspring develop in, or on, the body of a primary parasitoid host) are expected to be especially impacted by such effects due to their typical life history traits (e.g. low fecundity and slow development), small populations (being high on the food chain), and cascading effects mediated via lower trophic levels. We review evidence for direct and indirect temperature and climate-related effects mediated via plants, herbivores, and the primary parasitoid host species on hyperparasitoid populations, focusing on higher temperatures. We discuss how hyperparasitoid responses may feed back to the community and affect biological control programs. We conclude that despite their great importance, very little is known about the potential effects of climate change on hyperparasitoids and make a plea for additional studies exploring such responses.
Collapse
Affiliation(s)
- Michal Segoli
- The Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, SIDEER, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000 Israel.
| | - Miriam Kishinevsky
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeffrey A Harvey
- Netherlands Institute of Ecology, Wageningen, the Netherlands; Department of Ecological Sciences- Animal Ecology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
18
|
Schebeck M, Lehmann P, Laparie M, Bentz BJ, Ragland GJ, Battisti A, Hahn DA. Seasonality of forest insects: why diapause matters. Trends Ecol Evol 2024; 39:757-770. [PMID: 38777634 DOI: 10.1016/j.tree.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Insects have major impacts on forest ecosystems, from herbivory and soil-nutrient cycling to killing trees at a large scale. Forest insects from temperate, tropical, and subtropical regions have evolved strategies to respond to seasonality; for example, by entering diapause, to mitigate adversity and to synchronize lifecycles with favorable periods. Here, we show that distinct functional groups of forest insects; that is, canopy dwellers, trunk-associated species, and soil/litter-inhabiting insects, express a variety of diapause strategies, but do not show systematic differences in diapause strategy depending on functional group. Due to the overall similarities in diapause strategies, we can better estimate the impacts of anthropogenic change on forest insect populations and, consequently, on key ecosystems.
Collapse
Affiliation(s)
- Martin Schebeck
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, BOKU University, A-1190 Vienna, Austria.
| | - Philipp Lehmann
- Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, D-17489 Greifswald, Germany; Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden; Bolin Centre for Climate Research, SE-10691 Stockholm, Sweden
| | | | - Barbara J Bentz
- US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Logan, UT 84321, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado-Denver, Denver, CO 80204, USA
| | - Andrea Battisti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, I-35020 Legnaro, Italy
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611-0620, USA
| |
Collapse
|
19
|
Traine J, Rusman Q, Schiestl FP. Too hot to handle: temperature-induced plasticity influences pollinator behaviour and plant fitness. THE NEW PHYTOLOGIST 2024; 243:1571-1585. [PMID: 38922897 DOI: 10.1111/nph.19918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Abstract
Increased temperature can induce plastic changes in many plant traits. However, little is known about how these changes affect plant interactions with insect pollinators and herbivores, and what the consequences for plant fitness and selection are. We grew fast-cycling Brassica rapa plants at two temperatures (ambient and increased temperature) and phenotyped them (floral traits, scent, colour and glucosinolates). We then exposed plants to both pollinators (Bombus terrestris) and pollinating herbivores (Pieris rapae). We measured flower visitation, oviposition of P. rapae, herbivore development and seed output. Plants in the hot environment produced more but smaller flowers, with lower UV reflectance and emitted a different volatile blend with overall lower volatile emission. Moreover, these plants received fewer first-choice visits by bumblebees and butterflies, and fewer flower visits by butterflies. Seed production was lower in hot environment plants, both because of a reduction in flower fertility due to temperature and because of the reduced visitation of pollinators. The selection on plant traits changed in strength and direction between temperatures. Our study highlights an important mechanism by which global warming can change plant-pollinator interactions and negatively impact plant fitness, as well as potentially alter plant evolution through changes in phenotypic selection.
Collapse
Affiliation(s)
- Juan Traine
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, Zürich, 8008, Switzerland
| | - Quint Rusman
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, Zürich, 8008, Switzerland
| | - Florian P Schiestl
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, Zürich, 8008, Switzerland
| |
Collapse
|
20
|
Shelake RM, Wagh SG, Patil AM, Červený J, Waghunde RR, Kim JY. Heat Stress and Plant-Biotic Interactions: Advances and Perspectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:2022. [PMID: 39124140 PMCID: PMC11313874 DOI: 10.3390/plants13152022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Climate change presents numerous challenges for agriculture, including frequent events of plant abiotic stresses such as elevated temperatures that lead to heat stress (HS). As the primary driving factor of climate change, HS threatens global food security and biodiversity. In recent years, HS events have negatively impacted plant physiology, reducing plant's ability to maintain disease resistance and resulting in lower crop yields. Plants must adapt their priorities toward defense mechanisms to tolerate stress in challenging environments. Furthermore, selective breeding and long-term domestication for higher yields have made crop varieties vulnerable to multiple stressors, making them more susceptible to frequent HS events. Studies on climate change predict that concurrent HS and biotic stresses will become more frequent and severe in the future, potentially occurring simultaneously or sequentially. While most studies have focused on singular stress effects on plant systems to examine how plants respond to specific stresses, the simultaneous occurrence of HS and biotic stresses pose a growing threat to agricultural productivity. Few studies have explored the interactions between HS and plant-biotic interactions. Here, we aim to shed light on the physiological and molecular effects of HS and biotic factor interactions (bacteria, fungi, oomycetes, nematodes, insect pests, pollinators, weedy species, and parasitic plants), as well as their combined impact on crop growth and yields. We also examine recent advances in designing and developing various strategies to address multi-stress scenarios related to HS and biotic factors.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sopan Ganpatrao Wagh
- Global Change Research Institute, Czech Academy of Sciences, Brno 60300, Czech Republic;
| | - Akshay Milind Patil
- Cotton Improvement Project, Mahatma Phule Krishi Vidyapeeth (MPKV), Rahuri 413722, India;
| | - Jan Červený
- Global Change Research Institute, Czech Academy of Sciences, Brno 60300, Czech Republic;
| | - Rajesh Ramdas Waghunde
- Department of Plant Pathology, College of Agriculture, Navsari Agricultural University, Bharuch 392012, India;
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Nulla Bio Inc., Jinju 52828, Republic of Korea
| |
Collapse
|
21
|
Hwang BC, Giardina CP, Adu-Bredu S, Barrios-Garcia MN, Calvo-Alvarado JC, Dargie GC, Diao H, Duboscq-Carra VG, Hemp A, Hemp C, Huasco WH, Ivanov AV, Johnson NG, Kuijper DPJ, Lewis SL, Lobos-Catalán P, Malhi Y, Marshall AR, Mumladze L, Ngute ASK, Palma AC, Petritan IC, Rordriguez-Cabal MA, Suspense IA, Zagidullina A, Andersson T, Galiano-Cabrera DF, Jiménez-Castillo M, Churski M, Gage SA, Filippova N, Francisco KS, Gaglianese-Woody M, Iankoshvili G, Kaswamila MA, Lyatuu H, Mampouya Wenina YE, Materu B, Mbemba M, Moritz R, Orang K, Plyusnin S, Puma Vilca BL, Rodríguez-Solís M, Šamonil P, Stępniak KM, Walsh SK, Xu H, Metcalfe DB. The impact of insect herbivory on biogeochemical cycling in broadleaved forests varies with temperature. Nat Commun 2024; 15:6011. [PMID: 39019847 PMCID: PMC11254921 DOI: 10.1038/s41467-024-50245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024] Open
Abstract
Herbivorous insects alter biogeochemical cycling within forests, but the magnitude of these impacts, their global variation, and drivers of this variation remain poorly understood. To address this knowledge gap and help improve biogeochemical models, we established a global network of 74 plots within 40 mature, undisturbed broadleaved forests. We analyzed freshly senesced and green leaves for carbon, nitrogen, phosphorus and silica concentrations, foliar production and herbivory, and stand-level nutrient fluxes. We show more nutrient release by insect herbivores at non-outbreak levels in tropical forests than temperate and boreal forests, that these fluxes increase strongly with mean annual temperature, and that they exceed atmospheric deposition inputs in some localities. Thus, background levels of insect herbivory are sufficiently large to both alter ecosystem element cycling and influence terrestrial carbon cycling. Further, climate can affect interactions between natural populations of plants and herbivores with important consequences for global biogeochemical cycles across broadleaved forests.
Collapse
Affiliation(s)
- Bernice C Hwang
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden.
- Department of Ecology and Environmental Science, Umeå University, Linnaeus väg 6, Umeå, Sweden.
- Department of Ecology, University of Innsbruck, Sterwartestraße 15, Innsbruck, Austria.
| | - Christian P Giardina
- Institute of Pacific Islands Forestry, Pacific Southwest Research Station, USDA Forest Service, Hilo, HI, USA
| | - Stephen Adu-Bredu
- CSIR-Forestry Research Institute of Ghana: Kumasi, Ashanti, Ghana
- Department of Natural Resources Management, CSIR College of Science and Technology, Kumasi, Ghana
| | - M Noelia Barrios-Garcia
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, 05405, USA
- CONICET, CENAC-APN, Universidad Nacional del Comahue (CRUB), Bariloche (8400), Argentina
| | | | | | - Haoyu Diao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Virginia G Duboscq-Carra
- Grupo de Ecología de Invasiones, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA)-CONICET-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Andreas Hemp
- Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany
| | - Claudia Hemp
- Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| | - Walter Huaraca Huasco
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
- Asociación Civil Sin Fines De Lucro Para La Biodiversidad, Investigación Y Desarrollo Ambiental En Ecosistemas Tropicales (ABIDA), Urbanización Ucchullo Grande, Avenida Argentina F-9, Cusco, Perú
| | - Aleksandr V Ivanov
- Institute of Geology and Nature Management Far Eastern Branch of Russian Academy of Sciences, Relochny lane, 1, Blagoveshchensk, 675000, Russia
| | - Nels G Johnson
- Pacific Southwest Research Station, USDA Forest Service, Hilo, Hawai'i, USA
| | - Dries P J Kuijper
- Mammal Research Institute, Polish Academy of Sciences, Ul. Stoczek 1, 17‑230, Białowieża, Poland
| | - Simon L Lewis
- School of Geography, University of Leeds, Leeds, UK
- Department of Geography, University College London, London, UK
| | - Paulina Lobos-Catalán
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
| | - Andrew R Marshall
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Reforest Africa, PO Box 5, Mang'ula, Kilombero District, Tanzania
| | - Levan Mumladze
- Institute of Zoology, Ilia State University, 3/5 Cholokashvili Ave, 0169, Tbilisi, Georgia
| | - Alain Senghor K Ngute
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Ana C Palma
- College of Science & Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University, Qld, Australia
| | - Ion Catalin Petritan
- Faculty of Silviculture and Forest Engineering, Transilvania University of Brașov, Șirul Beethoven 1, 500123, Brașov, Romania
| | - Mariano A Rordriguez-Cabal
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, 05405, USA
- Grupo de Ecología de Invasiones, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA)-CONICET-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Ifo A Suspense
- Ecole Nationale Supérieure d'Agronomie et de Foresterie, Université Marien Ngouabi, Brazzaville, République du Congo
- Laboratoire de Biodiversité, de Gestion des Ecosystèmes et de l'Environnement, Faculté des Sciences et techniques, Université Marien Ngouabi, Brazzaville, République du Congo
| | - Asiia Zagidullina
- Forest Research Institute, University of Quebec in Abitibi-Témiscamingue, QC, Canada
- Department of Physical Geography and Environmental Management Problems, Institute of Geography, Russian Science Academy, Moscow, Russia
| | - Tommi Andersson
- Kevo Subarctic Research Institute, Biodiversity Unit, University of Turku, 20014, Turku, Finland
| | - Darcy F Galiano-Cabrera
- Asociación Civil Sin Fines De Lucro Para La Biodiversidad, Investigación Y Desarrollo Ambiental En Ecosistemas Tropicales (ABIDA), Urbanización Ucchullo Grande, Avenida Argentina F-9, Cusco, Perú
- Facultad de Ciencias Biológicas, Universidad Nacional de San Antonio Abad del Cusco, Av. de La Cultura 773, Cusco, Cusco Province, 08000, Peru
| | - Mylthon Jiménez-Castillo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Marcin Churski
- Mammal Research Institute, Polish Academy of Sciences, Ul. Stoczek 1, 17‑230, Białowieża, Poland
| | - Shelley A Gage
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 47 Mayers Road, Nambour, 4056, Australia
| | - Nina Filippova
- Yugra State University, 628012, Chekhova street, 16, Khanty-Mansiysk, Russia
| | - Kainana S Francisco
- Institute of Pacific Islands Forestry, Pacific Southwest Research Station, USDA Forest Service, Hilo, HI, USA
| | | | - Giorgi Iankoshvili
- Institute of Ecology, Ilia State University, 3/5 Cholokashvili Ave, 0169, Tbilisi, Georgia
| | | | - Herman Lyatuu
- Reforest Africa, PO Box 5, Mang'ula, Kilombero District, Tanzania
| | - Y E Mampouya Wenina
- Ecole Nationale Supérieure d'Agronomie et de Foresterie, Université Marien Ngouabi, Brazzaville, République du Congo
- Laboratoire de Biodiversité, de Gestion des Ecosystèmes et de l'Environnement, Faculté des Sciences et techniques, Université Marien Ngouabi, Brazzaville, République du Congo
| | - Brayan Materu
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| | - M Mbemba
- CongoPeat Project, Ecole Nationale Supérieure d'Agronomie et de Foresterie, Université Marien Ngouabi, Brazzaville, République du Congo
| | - Ruslan Moritz
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 664033, Irkutsk, Lermontova str., 132, Russia
| | - Karma Orang
- Ugyen Wangchuk Institute for Forest Research and Training, Department of Forests and Park Services, Ministry of Energy and Natural Resources, Lamai Goempa, Bumthang, Bhutan
| | - Sergey Plyusnin
- Pitirim Sorokin Syktyvkar State University, 455 Oktyabrsky prosp., 167001, Syktyvkar, Russia
| | - Beisit L Puma Vilca
- Asociación Civil Sin Fines De Lucro Para La Biodiversidad, Investigación Y Desarrollo Ambiental En Ecosistemas Tropicales (ABIDA), Urbanización Ucchullo Grande, Avenida Argentina F-9, Cusco, Perú
- Kevo Subarctic Research Institute, Biodiversity Unit, University of Turku, 20014, Turku, Finland
| | | | - Pavel Šamonil
- The Silva Tarouca Research Institute, Květnové náměstí 391, Průhonice, 252 43, Czech Republic
| | - Kinga M Stępniak
- Mammal Research Institute, Polish Academy of Sciences, Ul. Stoczek 1, 17‑230, Białowieża, Poland
- Department of Ecology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-086, Warsaw, Poland
| | - Seana K Walsh
- Department of Science and Conservation, National Tropical Botanical Garden, 3530 Papalina Road, Kalāheo, HI, 96741, USA
| | - Han Xu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Daniel B Metcalfe
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
- Department of Ecology and Environmental Science, Umeå University, Linnaeus väg 6, Umeå, Sweden
| |
Collapse
|
22
|
Nusillard W, Garinie T, Lelièvre Y, Zito S, Becker C, Thiéry D, Frandon J, Moreau J. Pest management facing warming and chemical stresses: Multi-stress effects on the biological agent Trichogramma oleae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174709. [PMID: 38997018 DOI: 10.1016/j.scitotenv.2024.174709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Global change is affecting plant-insect interactions in agroecosystems and can have dramatic consequences on yields when causing non-targeted pest outbreaks and threatening the use of pest natural enemies for biocontrol. The vineyard agroecosystem is an interesting system to study multi-stress conditions: on the one hand, agricultural intensification comes with high inputs of copper-based fungicides and, on the other hand, temperatures are rising due to climate change. We investigated interactive and bottom-up effects of both temperature increase and copper-based fungicides exposure on the important Lepidopteran vineyard pest Lobesia botrana and its natural enemy, the oophagous parasitoid Trichogramma oleae. We exposed L. botrana larvae to three increasing copper sulfate concentrations under two fluctuating thermal regimes, one current and one future. Eggs produced by L. botrana were then exposed to T. oleae. Our results showed that the survival of L. botrana, was only reduced by the highest copper sulfate concentration and improved under the warmer regime. The development time of L. botrana was strongly reduced by the warmer regime but increased with increasing copper sulfate concentrations, whereas pupal mass was reduced by both thermal regime and copper sulfate. T. oleae F1 emergence rate was reduced and their development time increased by combined effects of the warmer regime and increasing copper sulfate concentrations. Size, longevity and fecundity of T. oleae F1 decreased with high copper sulfate concentrations. These effects on the moth pest and its natural enemy are probably the result of trade-offs between the survival and the development of L. botrana facing multi-stress conditions and implicate potential consequences for future biological pest control. Our study supplies valuable data on how the interaction between pests and biological control agents is affected by multi-stress conditions.
Collapse
Affiliation(s)
- William Nusillard
- AgroParisTech, 91120 Palaiseau, France; Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France.
| | - Tessie Garinie
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Yann Lelièvre
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Sébastien Zito
- UMR 1287 Ecophysiologie et Génomique Fonctionnelle de la Vigne, INRAE, Institut des Sciences de la Vigne et du Vin 210, chemin de Leysotte, 33882, Villenave d'Ornon, France
| | - Christine Becker
- Department of Crop Protection, Hochschule Geisenheim University, Von-Lade-Str. 1, 65366 Geisenheim, Germany
| | - Denis Thiéry
- INRA (French National Institute for Agricultural Research), UMR 1065 Save, BSA, Centre de recherches INRAe Nouvelle-Aquitaine-Bordeaux, 33882, Villenave d'Ornon Cedex, France
| | - Jacques Frandon
- Recherche et Développement, Bioline Agrosciences, 26250, Livron-sur-Drôme, France
| | - Jérôme Moreau
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France; Centre d'Études Biologiques de Chizé, UMR 7372 CNRS & La Rochelle Université, 79360, Villiers-en-Bois, France
| |
Collapse
|
23
|
Ning J, Liang P, Wu X, Wang W, Wu Q, Wang S, Yang X, Zhang Y, Xie W. Silencing of catalase reduces unfavorable low-temperature tolerance capacity in whiteflies. PEST MANAGEMENT SCIENCE 2024; 80:3116-3125. [PMID: 38334193 DOI: 10.1002/ps.8016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Temperature is a primary factor that determines the eco-geographical distribution and population development of invasive insects. Temperature stress leads to various negative effects, including excess reactive oxygen species (ROS), and catalase (CAT) is a key enzyme against ROS in the antioxidant pathway. The whitefly Bemisia tabaci MED is a typical invasive pest that causes damage worldwide. Our previous studies have shown that CAT promotes whitefly adaptation to high temperature by eliminating ROS. However, the mechanism underlying the low-temperature adaptation of whiteflies is still unknown. RESULTS In this study, we investigated the role of CAT in the low-temperature tolerance of B. tabaci MED by analyzing its survival rate, reproduction, and ROS levels at 25 °C (as a control, suitable temperature), 20 °C (moderately decreased temperature), and 4 °C (severely decreased temperature). Silencing of BtCAT1, BtCAT2, or BtCAT3 reduced the viability of whiteflies under a short-term severely decreased temperature (4 °C), which manifested as decreases in survival and fecundity accompanied by significant increases in ROS levels. Moreover, even at a moderately decreased temperature (20 °C), silencing of BtCAT1 led to high ROS levels and low survival rates in adults. CONCLUSION Silencing of BtCATs significantly increased the sensitivity of B. tabaci MED to low temperatures. BtCAT1 is likely more essential than other BtCATs for low-temperature tolerance in whiteflies. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jie Ning
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peng Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojie Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- National Research Institute of Breeding in Hainan, Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
24
|
Simon MW, Amarasekare P. Predicting the fundamental thermal niche of ectotherms. Ecology 2024; 105:e4289. [PMID: 38578245 PMCID: PMC11374413 DOI: 10.1002/ecy.4289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/04/2023] [Accepted: 02/01/2024] [Indexed: 04/06/2024]
Abstract
Climate warming is predicted to increase mean temperatures and thermal extremes on a global scale. Because their body temperature depends on the environmental temperature, ectotherms bear the full brunt of climate warming. Predicting the impact of climate warming on ectotherm diversity and distributions requires a framework that can translate temperature effects on ectotherm life-history traits into population- and community-level outcomes. Here we present a mechanistic theoretical framework that can predict the fundamental thermal niche and climate envelope of ectotherm species based on how temperature affects the underlying life-history traits. The advantage of this framework is twofold. First, it can translate temperature effects on the phenotypic traits of individual organisms to population-level patterns observed in nature. Second, it can predict thermal niches and climate envelopes based solely on trait response data and, hence, completely independently of any population-level information. We find that the temperature at which the intrinsic growth rate is maximized exceeds the temperature at which abundance is maximized under density-dependent growth. As a result, the temperature at which a species will increase the fastest when rare is lower than the temperature at which it will recover from a perturbation the fastest when abundant. We test model predictions using data from a naturalized-invasive interaction to identify the temperatures at which the invasive can most easily invade the naturalized's habitat and the naturalized is most likely to resist the invasive. The framework is sufficiently mechanistic to yield reliable predictions for individual species and sufficiently broad to apply across a range of ectothermic taxa. This ability to predict the thermal niche before a species encounters a new thermal environment is essential to mitigating some of the major effects of climate change on ectotherm populations around the globe.
Collapse
Affiliation(s)
- Margaret W Simon
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, Los Angeles, USA
| | - Priyanga Amarasekare
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, Los Angeles, USA
| |
Collapse
|
25
|
Chakraborty S, Zigmond E, Shah S, Sylla M, Akorli J, Otoo S, Rose NH, McBride CS, Armbruster PA, Benoit JB. Thermal tolerance of mosquito eggs is associated with urban adaptation and human interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586322. [PMID: 38585904 PMCID: PMC10996485 DOI: 10.1101/2024.03.22.586322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Climate change is expected to profoundly affect mosquito distributions and their ability to serve as vectors for disease, specifically with the anticipated increase in heat waves. The rising temperature and frequent heat waves can accelerate mosquito life cycles, facilitating higher disease transmission. Conversely, higher temperatures could increase mosquito mortality as a negative consequence. Warmer temperatures are associated with increased human density, suggesting a need for anthropophilic mosquitoes to adapt to be more hardy to heat stress. Mosquito eggs provide an opportunity to study the biological impact of climate warming as this stage is stationary and must tolerate temperatures at the site of female oviposition. As such, egg thermotolerance is critical for survival in a specific habitat. In nature, Aedes mosquitoes exhibit different behavioral phenotypes, where specific populations prefer depositing eggs in tree holes and prefer feeding non-human vertebrates. In contrast, others, particularly human-biting specialists, favor laying eggs in artificial containers near human dwellings. This study examined the thermotolerance of eggs, along with adult stages, for Aedes aegypti and Ae. albopictus lineages associated with known ancestry and shifts in their relationship with humans. Mosquitoes collected from areas with higher human population density, displaying increased human preference, and having a human-associated ancestry profile have increased egg viability following high-temperature stress. Unlike eggs, thermal tolerance among adults showed no significant correlation based on the area of collection or human-associated ancestry. This study highlights that the egg stage is likely critical to mosquito survival when associated with humans and needs to be accounted when predicting future mosquito distribution.
Collapse
Affiliation(s)
- Souvik Chakraborty
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221
| | - Emily Zigmond
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221
| | - Sher Shah
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221
| | - Massamba Sylla
- Laboratory Vectors & Parasites, Department of Livestock Sciences and Techniques, Sine Saloum University El Hadji Ibrahima NIASS (SSUEIN) Kaffrine Campus
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson Otoo
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Noah H Rose
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
- Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA 92093
| | - Carolyn S McBride
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | | | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221
| |
Collapse
|
26
|
Galvão-Silva FL, Araújo AS, Dias VS, do Nascimento AS, Joachim-Bravo IS. Responses of two Anastrepha species' immature stages infesting preferential hosts to different temperature exposures. NEOTROPICAL ENTOMOLOGY 2024; 53:342-350. [PMID: 38194155 DOI: 10.1007/s13744-023-01124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Anastrepha fraterculus (Wiedemann) and A. obliqua (Macquart) are important pests of fruit crops. In Brazil, these species cause damage to fruit growing in the South (annual average temperature of 20.9 °C) and Northeast (average yearly temperature of 24 °C). We evaluated the effect of temperature on the viability and development time of A. fraterculus and A. obliqua immature stages in their respective preferred hosts, guava (Psidium guajava L., Myrtaceae) and mango (Mangifera indica L., Anacardiaceae). The duration of egg and pupal stages, egg to pre-pupa, and viability of egg and pupal stages under different temperatures (15, 20, 25, 30, and 35 °C) were assessed. For both species, development time decreased with increasing temperature. Viability in the evaluated stages was only observed between 15 and 30 °C. However, the species responded differently to the exposure temperatures (15 and 30 °C), especially in the pupal stage and from egg to pre-pupa. Anastrepha fraterculus showed a lower tolerance to high temperatures, especially in the pupal stage and from egg to pre-pupa, which may explain its lower importance and economic impact in warmer Brazilian regions. Anastrepha obliqua had a lower tolerance at 15 °C, indicating greater adequacy for temperatures above 20 °C, characteristic of Northeast Brazil, suggesting the capacity to spread to cooler areas with rising temperatures.
Collapse
Affiliation(s)
| | - Alexandre Santos Araújo
- Departamento de Entomologia e Acarologia, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, São Paulo, Brazil
| | - Vanessa Simões Dias
- Insect Pest Control Laboratory, Joint FAO, IAEA Centre of Nuclear Techniques in Food and Agriculture, IAEA, Vienna, Austria
| | | | | |
Collapse
|
27
|
Granato C, Campera M, Bulbert M. Sensitivity of Vanessa cardui to Temperature Variations: A Cost-Effective Experiment for Environmental Education. INSECTS 2024; 15:221. [PMID: 38667351 PMCID: PMC11050276 DOI: 10.3390/insects15040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Temperature increases mediated through climate change threaten the survival of species. It is of foremost importance to engage citizens and future generations in understanding the mechanisms through which temperatures impose their effects. For educators, this is not straightforward, as tools for examining the impact of temperature over the lifetime of an animal are prohibitively expensive. At the same time, environmental educators need guidance on the appropriate study systems to use with a balance between the species having an obvious response and ensuring the outcomes are ethical and sustainable. In our study, we created and tested a cost-effective experiment meant to be used for environmental education purposes. More specifically, we tested the sensitivity of the painted lady butterfly Vanessa cardui to temperature variations using a homemade incubator. We describe the design of this experiment and report findings on survival rate, morphological variations, development time of various stages and wingspan of adults across a range of biologically relevant temperatures. The information provided gives educators options for testing a variety of hypotheses with regards to the impacts of temperature using an affordable and flexible set-up. Furthermore, the findings can be used by students to develop an understanding of the ramifications of the butterflies' responses in an ecological context.
Collapse
Affiliation(s)
| | - Marco Campera
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (C.G.); (M.B.)
| | | |
Collapse
|
28
|
Sepúlveda Y, Nicholls E, Schuett W, Goulson D. Heatwave-like events affect drone production and brood-care behaviour in bumblebees. PeerJ 2024; 12:e17135. [PMID: 38529302 PMCID: PMC10962346 DOI: 10.7717/peerj.17135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Climate change is currently considered one of the major threats to biodiversity and is associated with an increase in the frequency and intensity of extreme weather events, such as heatwaves. Heatwaves create acutely stressful conditions that may lead to disruption in the performance and survival of ecologically and economically important organisms, such as insect pollinators. In this study, we investigated the impact of simulated heatwaves on the performance of queenless microcolonies of Bombus terrestris audax under laboratory conditions. Our results indicate that heatwaves can have significant impacts on bumblebee performance. However, contrary to our expectations, exposure to heatwaves did not affect survival. Exposure to a mild 5-day heatwave (30-32 °C) resulted in increased offspring production compared to those exposed to an extreme heatwave (34-36 °C) and to the control group (24 °C). We also found that brood-care behaviours were impacted by the magnitude of the heatwave. Wing fanning occurred occasionally at temperatures of 30-32 °C, whereas at 34-36 °C the proportion of workers engaged in this thermoregulatory behaviour increased significantly. Our results provide insights into the effects of heatwaves on bumblebee colony performance and underscore the use of microcolonies as a valuable tool for studying the effects of extreme weather events. Future research, especially field-based studies replicating natural foraging conditions, is crucial to complement laboratory-based studies to comprehend how heatwaves compromise the performance of pollinators. Such studies may potentially help to identify those species more resilient to climate change, as well as those that are most vulnerable.
Collapse
Affiliation(s)
- Yanet Sepúlveda
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Elizabeth Nicholls
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Wiebke Schuett
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| |
Collapse
|
29
|
You S, Lei G, Zhou H, Li J, Chen S, Huang J, Vasseur L, Gurr GM, You M, Chen Y. Thermal acclimation uncovers a simple genetic basis of adaptation to high temperature in a cosmopolitan pest. iScience 2024; 27:109242. [PMID: 38425842 PMCID: PMC10904271 DOI: 10.1016/j.isci.2024.109242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/16/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Understanding a population's fitness heterogeneity and genetic basis of thermal adaptation is essential for predicting the responses to global warming. We examined the thermotolerance and genetic adaptation of Plutella xylostella to exposure to hot temperatures. The population fitness parameters of the hot-acclimated DBM strains varied in the thermal environments. Using genome scanning and transcription profiling, we find a number of genes potentially involved in thermal adaptation of DBM. Editing two ABCG transporter genes, PxWhite and PxABCG, confirmed their role in altering cuticle permeability and influencing thermal responses. Our results demonstrate that SNP mutations in genes and changes in gene expression can allow DBM to rapidly adapt to thermal environment. ABCG transporter genes play an important role in thermal adaptation of DBM. This work improves our understanding of genetic adaptation mechanisms of insects to thermal stress and our capacity to predict the effects of rising global temperatures on ectotherms.
Collapse
Affiliation(s)
- Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gaoke Lei
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huiling Zhou
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianyu Li
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaoping Chen
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jieling Huang
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Department of Biological Sciences, UNESCO Chair on Community Sustainability, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Geoff M. Gurr
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Gulbali Institute, Charles Sturt University, Orange, NSW 2800, Australia
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanting Chen
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
30
|
Hayes MP, Ashe-Jepson E, Hitchcock GE, Clark R, Hellon J, Knock RI, Bladon AJ, Turner EC. Heatwave predicts a shady future for insects: impacts of an extreme weather event on a chalk grassland in Bedfordshire, UK. JOURNAL OF INSECT CONSERVATION 2024; 28:923-933. [PMID: 39430689 PMCID: PMC11489253 DOI: 10.1007/s10841-024-00556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/22/2024] [Indexed: 10/22/2024]
Abstract
Climate change is set to become one of the leading causes of biodiversity loss worldwide, with extreme weather events projected to increase in frequency. Ectothermic animals such as insects are at particular risk, especially when they are isolated and unable to move through the landscape to track suitable climate. To protect such taxa, it is important to understand how they are impacted by extreme weather events and whether management could provide effective microclimate refuges. However, potential management interventions remain untested for many species. Here, we show that the extreme high temperatures experienced in the UK on 19th July 2022 resulted in a community of butterflies becoming inactive, but that shaded areas, including artificial slopes created as part of conservation management for climate change, provided a refuge during this period. Our results indicate that future high temperatures could force butterflies to shelter in the shade, potentially being unable to fly, feed or mate during these periods, with possible long-term impacts, particularly if multiple consecutive high temperature days are experienced. Supplementary Information The online version contains supplementary material available at 10.1007/s10841-024-00556-5.
Collapse
Affiliation(s)
- Matthew P. Hayes
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, Cambridgeshire, CB2 3EJ UK
| | - Esme Ashe-Jepson
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, Cambridgeshire, CB2 3EJ UK
| | - Gwen E. Hitchcock
- Wildlife Trust for Bedfordshire, Cambridgeshire & Northamptonshire, UK
| | - Ryan Clark
- Wildlife Trust for Bedfordshire, Cambridgeshire & Northamptonshire, UK
| | - Josh Hellon
- Wildlife Trust for Bedfordshire, Cambridgeshire & Northamptonshire, UK
| | - Richard I. Knock
- Wildlife Trust for Bedfordshire, Cambridgeshire & Northamptonshire, UK
| | - Andrew J. Bladon
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, Cambridgeshire, CB2 3EJ UK
| | - Edgar C. Turner
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, Cambridgeshire, CB2 3EJ UK
| |
Collapse
|
31
|
Jones LJ, Miller DA, Schilder RJ, López‐Uribe MM. Body mass, temperature, and pathogen intensity differentially affect critical thermal maxima and their population-level variation in a solitary bee. Ecol Evol 2024; 14:e10945. [PMID: 38362170 PMCID: PMC10867875 DOI: 10.1002/ece3.10945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 02/17/2024] Open
Abstract
Climate change presents a major threat to species distribution and persistence. Understanding what abiotic or biotic factors influence the thermal tolerances of natural populations is critical to assessing their vulnerability under rapidly changing thermal regimes. This study evaluates how body mass, local climate, and pathogen intensity influence heat tolerance and its population-level variation (SD) among individuals of the solitary bee Xenoglossa pruinosa. We assess the sex-specific relationships between these factors and heat tolerance given the differences in size between sexes and the ground-nesting behavior of the females. We collected X. pruinosa individuals from 14 sites across Pennsylvania, USA, that varied in mean temperature, precipitation, and soil texture. We measured the critical thermal maxima (CTmax) of X. pruinosa individuals as our proxy for heat tolerance and used quantitative PCR to determine relative intensities of three parasite groups-trypanosomes, Spiroplasma apis (mollicute bacteria), and Vairimorpha apis (microsporidian). While there was no difference in CTmax between the sexes, we found that CTmax increased significantly with body mass and that this relationship was stronger for males than for females. Air temperature, precipitation, and soil texture did not predict mean CTmax for either sex. However, population-level variation in CTmax was strongly and negatively correlated with air temperature, which suggests that temperature is acting as an environmental filter. Of the parasites screened, only trypanosome intensity correlated with heat tolerance. Specifically, trypanosome intensity negatively correlated with the CTmax of female X. pruinosa but not males. Our results highlight the importance of considering size, sex, and infection status when evaluating thermal tolerance traits. Importantly, this study reveals the need to evaluate trends in the variation of heat tolerance within and between populations and consider implications of reduced variation in heat tolerance for the persistence of ectotherms in future climate conditions.
Collapse
Affiliation(s)
- Laura J. Jones
- Intercollege Graduate Degree Program in EcologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of Entomology, Center for Pollinator ResearchThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Douglas A. Miller
- Earth and Environmental Systems InstituteThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Rudolf J. Schilder
- Intercollege Graduate Degree Program in EcologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of Entomology, Center for Pollinator ResearchThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Margarita M. López‐Uribe
- Intercollege Graduate Degree Program in EcologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of Entomology, Center for Pollinator ResearchThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
32
|
Halsch CA, Shapiro AM, Thorne JH, Rodman KC, Parra A, Dyer LA, Gompert Z, Smilanich AM, Forister ML. Thirty-six years of butterfly monitoring, snow cover, and plant productivity reveal negative impacts of warmer winters and increased productivity on montane species. GLOBAL CHANGE BIOLOGY 2024; 30:e17044. [PMID: 37994481 DOI: 10.1111/gcb.17044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/28/2023] [Accepted: 11/05/2023] [Indexed: 11/24/2023]
Abstract
Climate change is contributing to declines of insects through rising temperatures, altered precipitation patterns, and an increasing frequency of extreme events. The impacts of both gradual and sudden shifts in weather patterns are realized directly on insect physiology and indirectly through impacts on other trophic levels. Here, we investigated direct effects of seasonal weather on butterfly occurrences and indirect effects mediated by plant productivity using a temporally intensive butterfly monitoring dataset, in combination with high-resolution climate data and a remotely sensed indicator of plant primary productivity. Specifically, we used Bayesian hierarchical path analysis to quantify relationships between weather and weather-driven plant productivity on the occurrence of 94 butterfly species from three localities distributed across an elevational gradient. We found that snow pack exerted a strong direct positive effect on butterfly occurrence and that low snow pack was the primary driver of reductions during drought. Additionally, we found that plant primary productivity had a consistently negative effect on butterfly occurrence. These results highlight mechanisms of weather-driven declines in insect populations and the nuances of climate change effects involving snow melt, which have implications for ecological theories linking topographic complexity to ecological resilience in montane systems.
Collapse
Affiliation(s)
- Christopher A Halsch
- Department of Biology, Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Nevada, USA
| | - Arthur M Shapiro
- Center for Population Biology, University of California, Davis, California, USA
| | - James H Thorne
- Department of Environmental Science and Policy, University of California, Davis, California, USA
| | - Kyle C Rodman
- Ecological Restoration Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Adriana Parra
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada, USA
| | - Lee A Dyer
- Department of Biology, Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Nevada, USA
| | | | - Angela M Smilanich
- Department of Biology, Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Nevada, USA
| | - Matthew L Forister
- Department of Biology, Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
33
|
Álvarez HA, Ruano F. Phenotypic plasticity of a winter-diapause mechanism copes with the effects of summer global warming in an ectothermic predator. Biol Lett 2024; 20:20230481. [PMID: 38229555 PMCID: PMC10792392 DOI: 10.1098/rsbl.2023.0481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
To adapt to changes in temperature, animals tend to invest more energy in thermal tolerance to enhance survival, which can have simultaneous costs on plastic traits. Would a decrease in genetic variability, due to global warming, affect the ability of populations with existing metabolic regulatory mechanisms to cope with extreme temperatures? To address this question, we conducted a series of experiments based on the A1B scenario of global warming, assessing within-population genetic variance in (a) morphological traits, (b) metabolic rate allometries, and (c) survival of a winter-diapausing predator ectotherm. Our study focused on the lacewing species Chrysoperla pallida, using both exogamic and endogamic artificial genetic lines. We discovered that both lines use their winter-diapausing phenotype to adapt to summer extreme temperatures caused by extreme heating conditions, but the exogamic line is prone to express phenotypic plasticity in metabolic scaling, with a trade-off between body size and mandible size, i.e. larger individuals tended to develop smaller mandibles to better survive. These findings highlight the significance of substantial phenotypic plasticity and pre-existing metabolic regulatory mechanisms in enabling ectotherms to cope with potential extreme heating occurring in global warming.
Collapse
Affiliation(s)
- Hugo Alejandro Álvarez
- Department of Biogeography and Global Change, CSIC – National Museum of Natural Sciences, Madrid, Comunidad de Madrid, Spain
- Department of Zoology, University of Granada, Granada, Andalucía, Spain
| | - Francisca Ruano
- Department of Zoology, University of Granada, Granada, Andalucía, Spain
| |
Collapse
|
34
|
Martins M, César CS, Cogni R. The effects of temperature on prevalence of facultative insect heritable symbionts across spatial and seasonal scales. Front Microbiol 2023; 14:1321341. [PMID: 38143870 PMCID: PMC10741647 DOI: 10.3389/fmicb.2023.1321341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Facultative inheritable endosymbionts are common and diverse in insects and are often found at intermediate frequencies in insect host populations. The literature assessing the relationship between environment and facultative endosymbiont frequency in natural host populations points to temperature as a major component shaping the interaction. However, a synthesis describing its patterns and mechanistic basis is lacking. This mini-review aims to bridge this gap by, following an evolutionary model, hypothesizing that temperature increases endosymbiont frequencies by modulating key phenotypes mediating the interaction. Field studies mainly present positive correlations between temperature and endosymbiont frequency at spatial and seasonal scales; and unexpectedly, temperature is predominantly negatively correlated with the key phenotypes. Higher temperatures generally reduce the efficiency of maternal transmission, reproductive parasitism, endosymbiont influence on host fitness and the ability to protect against natural enemies. From the endosymbiont perspective alone, higher temperatures reduce titer and both high and low temperatures modulate their ability to promote host physiological acclimation and behavior. It is necessary to promote research programs that integrate field and laboratory approaches to pinpoint which processes are responsible for the temperature correlated patterns of endosymbiont prevalence in natural populations.
Collapse
Affiliation(s)
| | | | - Rodrigo Cogni
- Department of Ecology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Irving MR, Goolsby EW, Stanford H, Lim-Hing S, Urrea M, Mason CM. Temperature alters the toxicological impacts of plant terpenoids on the polyphagous model herbivore Vanessa cardui. J Chem Ecol 2023; 49:666-680. [PMID: 37695522 PMCID: PMC10781811 DOI: 10.1007/s10886-023-01449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
Terpenes are a major class of secondary metabolites present in all plants, and long hypothesized to have diversified in response to specific plant-herbivore interactions. Herbivory is a major biotic interaction that plays out across broad temporal and spatial scales that vary dramatically in temperature regimes, both due to climatic variation across geographic locations as well as the effect of seasonality. In addition, there is an emerging understanding that global climate change will continue to alter the temperature regimes of nearly every habitat on Earth over the coming centuries. Regardless of source, variation in temperature may influence herbivory, in particular via changes in the efficacy and impacts of plant defensive chemistry. This study aims to characterize temperature-driven variation in toxicological effects across several structural classes of terpenes in the model herbivore Vanessa cardui, the painted lady butterfly. We observed a general increase in monoterpene toxicity to larvae, pupa, and adults at higher temperatures, as well as an increase in development time as terpene concentration increased. Results obtained from this study yield insights into possible drivers of seasonal variation in plant terpene production as well as inform effects of rising global temperatures on plant-insect interactions. In the context of other known effects of climate change on plant-herbivore interactions like carbon fertilization and compensatory feeding, temperature-driven changes in plant chemical defense efficacy may further complicate the prediction of climate change impacts on the fundamental ecological process of herbivory.
Collapse
Affiliation(s)
- Mari R Irving
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA.
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Eric W Goolsby
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| | - Hannah Stanford
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| | - Simone Lim-Hing
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Maria Urrea
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| | - Chase M Mason
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
36
|
Ramos Aguila LC, Li X, Akutse KS, Bamisile BS, Sánchez Moreano JP, Lie Z, Liu J. Host-Parasitoid Phenology, Distribution, and Biological Control under Climate Change. Life (Basel) 2023; 13:2290. [PMID: 38137891 PMCID: PMC10744521 DOI: 10.3390/life13122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Climate change raises a serious threat to global entomofauna-the foundation of many ecosystems-by threatening species preservation and the ecosystem services they provide. Already, changes in climate-warming-are causing (i) sharp phenological mismatches among host-parasitoid systems by reducing the window of host susceptibility, leading to early emergence of either the host or its associated parasitoid and affecting mismatched species' fitness and abundance; (ii) shifting arthropods' expansion range towards higher altitudes, and therefore migratory pest infestations are more likely; and (iii) reducing biological control effectiveness by natural enemies, leading to potential pest outbreaks. Here, we provided an overview of the warming consequences on biodiversity and functionality of agroecosystems, highlighting the vital role that phenology plays in ecology. Also, we discussed how phenological mismatches would affect biological control efficacy, since an accurate description of stage differentiation (metamorphosis) of a pest and its associated natural enemy is crucial in order to know the exact time of the host susceptibility/suitability or stage when the parasitoids are able to optimize their parasitization or performance. Campaigns regarding landscape structure/heterogeneity, reduction of pesticides, and modelling approaches are urgently needed in order to safeguard populations of natural enemies in a future warmer world.
Collapse
Affiliation(s)
- Luis Carlos Ramos Aguila
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (X.L.); (Z.L.); (J.L.)
| | - Xu Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (X.L.); (Z.L.); (J.L.)
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya;
- Unit of Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | | | - Jessica Paola Sánchez Moreano
- Grupo Traslacional en Plantas, Universidad Regional Amazónica Ikiam, Parroquia Muyuna km 7 vía Alto Tena, Tena 150150, Napo, Ecuador;
| | - Zhiyang Lie
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (X.L.); (Z.L.); (J.L.)
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (X.L.); (Z.L.); (J.L.)
| |
Collapse
|
37
|
Brochu AS, Dionne A, Fall ML, Pérez-López E. A Decade of Hidden Phytoplasmas Unveiled Through Citizen Science. PLANT DISEASE 2023; 107:3389-3393. [PMID: 37227441 DOI: 10.1094/pdis-02-23-0227-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Climate change is impacting agriculture in many ways, and a contribution from all is required to reduce the imminent losses related to it. Recently, it has been shown that citizen science could be a way to trace the impact of climate change. However, how can citizen science be applied in plant pathology? Here, using as an example a decade of phytoplasma-related diseases reported by growers, agronomists, and citizens in general, and confirmed by a government laboratory, we explored how to better value plant pathogen monitoring data. Through this collaboration, we found that in the last decade, 34 hosts have been affected by phytoplasmas; 9, 13, and 5 of these plants were, for the first time, reported phytoplasma hosts in eastern Canada, all of Canada, and worldwide, respectively. Another finding of great impact is the first report of a 'Candidatus Phytoplasma phoenicium'-related strain in Canada, while 'Ca. P. pruni' and 'Ca. P. pyri' were reported for the first time in eastern Canada. These findings will have a great impact on the management of phytoplasmas and their insect vectors. Using these insect-vectored bacterial pathogens, we show the need for new strategies that can allow fast and accurate communication between concerned citizens and those institutions confirming their observations.[Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Anne-Sophie Brochu
- Départment de phytologie, Faculté Des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche et D'innovation Sur Les Végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Institute de Biologie Intégrative et Des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Antoine Dionne
- Laboratoire D'expertise et de Diagnostic en Phytoprotection, MAPAQ, Quebec City, Quebec, Canada
| | - Mamadou Lamine Fall
- Saint-Jean-Sur-Richelieu Research and Development Centre, AAFC, Saint-Jean-sur-Richelieu, Quebec, Canada
| | - Edel Pérez-López
- Départment de phytologie, Faculté Des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche et D'innovation Sur Les Végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Institute de Biologie Intégrative et Des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
38
|
Grčić A, Ilijin L, Filipović A, Matić D, Mrdaković M, Todorović D, Vlahović M, Perić-Mataruga V. Digestive enzyme activity and macromolecule content in the hemolymph of differentially adapted Lymantria dispar L. populations after short-term increases in ambient temperature. ENVIRONMENTAL RESEARCH 2023; 236:116461. [PMID: 37343759 DOI: 10.1016/j.envres.2023.116461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Global, unpredictable temperature increases have strong effects on all organisms, especially insects. Elucidating the effects of short-term temperature increases on midgut digestive enzymes (α-glucosidase, lipase, trypsin, and leucine aminopeptidase - LAP) and metabolic macromolecules in the hemolymph (proteins, lipids, and trehalose) of phytophagous pest larvae of Lymantria dispar is important for general considerations of insect adaptation to a warming climate and potential pest control options. We also wanted to determine whether the different adaptations of L. dispar populations to environmental pollution might affect their ability to cope with heat stress using larvae from the undisturbed, Kosmaj forest and disturbed, Lipovica forest. Heat treatments at 28 °C increased α-glucosidase activity in both larval populations, inhibited LAP activity in larvae from the polluted forest, and had no significant effect on trypsin and lipase activities, regardless of larval origin. The concentration of proteins, lipids, and trehalose in the hemolymph of larvae from the disturbed forest increased, whereas the population from the undisturbed forest showed only an increase in proteins and lipids after the heat treatments. Larval mass was also increased in larvae from the undisturbed forest. Our results suggest a higher sensitivity of digestive enzymes and metabolism to short-term heat stress in L. dispar populations adapted to pollution in their forest habitat, although climate warming is not beneficial even for populations from unpolluted forests. The digestive and metabolic processes of L. dispar larvae are substantially affected by sublethal short-term increases in ambient temperature.
Collapse
Affiliation(s)
- Anja Grčić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia.
| | - Larisa Ilijin
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| | - Aleksandra Filipović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| | - Dragana Matić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| | - Marija Mrdaković
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| | - Dajana Todorović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| | - Milena Vlahović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| | - Vesna Perić-Mataruga
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| |
Collapse
|
39
|
MacDonald P, Myers JH, Cory JS. Warmer temperatures reduce the transmission of a virus in a gregarious forest insect. Ecology 2023; 104:e4159. [PMID: 37632353 DOI: 10.1002/ecy.4159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/28/2023]
Abstract
Understanding how climate warming will influence species interactions is a key question in ecology and predicting changes in the prevalence of disease outbreaks is particularly challenging. Ectotherms are likely to be more influenced by climatic changes as temperature governs their growth, feeding, development, and behavior. We test the hypothesis that pathogen transmission and host mortality will increase at warmer temperatures using a cyclic forest insect, the western tent caterpillar (WTC), Malacosoma californicum pluviale, and its baculovirus. The virus causes population declines at peak host density. WTC are gregarious and clustering is predicted to increase the risk of within family infection; however, how temperature influences this has not been examined. We investigated the impact of temperature on different components of the transmission process in order to pinpoint the possible mechanisms involved. In the laboratory, leaf consumption increased linearly with rising temperature between 15 and 30°C. Insects died more rapidly from virus infection as temperature increased, but this did not translate into differences in the production of viral transmission stages. To examine the influence of temperature on virus transmission, we created a temperature difference between two greenhouses containing potted red alder trees, Alnus rubra. The cooler greenhouse (mean 19.5°C) was roughly similar to ambient temperatures in the field, while the warmer greenhouse was 10°C higher (mean 29°C). As predicted, both larval movement and feeding were higher at the warmer temperature, while the likelihood of the preinfected, inoculum larvae dying on the tents was twice as high in the cooler greenhouse. This resulted in increased virus mortality and a higher transmission parameter under cooler conditions. Therefore, we suggest that, contrary to our prediction, the reduced movement of infected larvae at colder temperatures increased the risk of infection in these gregarious insects and had a greater impact on virus transmission than the increased activity of the susceptible larvae in warmer conditions. Long-term population data from the field, however, show no relationship between temperature and infection levels, suggesting that local changes in virus transmission might not scale up to population infection levels.
Collapse
Affiliation(s)
- Paul MacDonald
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Judith H Myers
- Biodiversity Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jenny S Cory
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
40
|
Xie T, Orr MC, Zhang D, Ferrari RR, Li Y, Liu X, Niu Z, Wang M, Zhou Q, Hao J, Zhu C, Chesters D. Phylogeny-based assignment of functional traits to DNA barcodes outperforms distance-based, in a comparison of approaches. Mol Ecol Resour 2023; 23:1526-1539. [PMID: 37202847 DOI: 10.1111/1755-0998.13813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
The full potential for using DNA barcodes for profiling functional trait diversity has yet to be determined in plants and animals; thus, we outline a general framework for quantifying functional trait diversity of insect community DNA and propose and assess the accuracy of three methods for achieving this. We built a novel dataset of traits and DNA barcodes for wild bees in China. An informatics framework was developed for phylogeny-based integration of these data and prediction of traits for any subject barcodes, which was compared with two distance-based methods. For Phylogenetic Assignment, we additionally conducted a species-level analysis of publically available bee trait data. Under the specimen-level dataset, the rate of trait assignment was negatively correlated with distance between the query and the nearest trait-known reference, for all methods. Phylogenetic Assignment was found to perform best under several criteria; particularly, it had the lowest false-positive rate (rarely returning a state prediction where success was unlikely; where the distance from query to the nearest reference was high). For a wider range of compiled traits, conservative life-history traits showed the highest rates of assignment; for example, sociality was predicted with confidence at 53%, parasitism at 44% and nest location at 33%. As outlined herein, automated trait assignment might be applied at scale to either barcodes or metabarcodes. With further compilation and databasing of DNA barcode and trait data, the rate and accuracy of trait assignment is expected to increase to the point of being a widely viable and informative approach.
Collapse
Affiliation(s)
- Tingting Xie
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Michael C Orr
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Entomologie, Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - Dan Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Rafael R Ferrari
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiuwei Liu
- Institute of Agro-Products Processing, Kunming, China
| | - Zeqing Niu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Mingqiang Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qingsong Zhou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jiasheng Hao
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Chaodong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| | - Douglas Chesters
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- International College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Bressac C, El Sabrout A, Kifouche F, Anne M, Capdevielle-Dulac C, Mougel F, Kaiser L. Hot and cold waves decrease sperm production and bias sex ratio in the parasitoid wasp Cotesia typhae (Hymenoptera, Braconidae). JOURNAL OF INSECT PHYSIOLOGY 2023; 149:104553. [PMID: 37567362 DOI: 10.1016/j.jinsphys.2023.104553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Parasitoid wasps are haplodiploid, meaning that sperm stored by egg laying females are only used to produce daughters. Thus, the sex ratio of the offspring depends on the availability of sperm after mating. In these insects, males are sensitive to temperature at the pupal stage. This stress leads to subfertility due to a drastic reduction in the number of sperm produced and transferred to females. Experiments were conducted under controlled conditions on the parasitoid wasp Cotesia typhae (Hymenoptera, Braconidae), a natural enemy of the invading pest Sesamia nonagrioides (Lepidoptera, Noctuidae). At 25-27 °C, sperm production was measured for 7 days, and found to reach a plateau at the third day of adult life. It leads to a final amount around 25,000 sperm per male. A male can successfully inseminate at least 10 females, producing predominantly female offspring. Sperm production decreased significantly after 1 day of pupal exposure to heat at 34 or 36 °C and 7 days of cold at 0, 5 or 10 °C. This highlights that both cold and heat are stressful. After mating with one male treated at 10 or 34 °C, females store fewer sperm than the control, and produce fewer daughters. The sex ratio of the offspring is male biased when males experienced temperature stresses during development, like other parasitoid wasps. In the field, C. typhae populations would be affected by heat and cold, at least at the pupal stage. This lowers overwintering risk in case this biological agent was introduced in Europe. This risk is both economical, as companies seek to establish costly continuous production to sell beneficial insects, and ecological as the introduced population would not settle in the ecosystem. Lastly, the transport and storage of this insect of agronomic interest would need to consider temperature variations to ensure successful application.
Collapse
Affiliation(s)
- Christophe Bressac
- IRBI, UMR 7261 CNRS, Institut de Recherche sur la Biologie de l'Insecte, Faculté des Sciences et Techniques, Université de Tours, Tours, France.
| | - Ahmed El Sabrout
- IRBI, UMR 7261 CNRS, Institut de Recherche sur la Biologie de l'Insecte, Faculté des Sciences et Techniques, Université de Tours, Tours, France; Applied Entomology and Zoology Department, Faculty of Agriculture (El-Shatby), Alexandria University, 21526 Alexandria, Egypt
| | - Fatma Kifouche
- IRBI, UMR 7261 CNRS, Institut de Recherche sur la Biologie de l'Insecte, Faculté des Sciences et Techniques, Université de Tours, Tours, France
| | - Melissa Anne
- EGCE, Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91190 Gif-sur-Yvette, France
| | - Claire Capdevielle-Dulac
- EGCE, Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91190 Gif-sur-Yvette, France
| | - Florence Mougel
- EGCE, Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91190 Gif-sur-Yvette, France
| | - Laure Kaiser
- EGCE, Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91190 Gif-sur-Yvette, France
| |
Collapse
|
42
|
Sepúlveda Y, Goulson D. Feeling the heat: Bumblebee workers show no acclimation capacity of upper thermal tolerance to simulated heatwaves. J Therm Biol 2023; 116:103672. [PMID: 37531893 DOI: 10.1016/j.jtherbio.2023.103672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
Climate change is our most significant challenge in the 21st century and among the main drivers of biodiversity loss. Recent distributional shifts and declines in crucial pollinators, such as bumblebees, seem to be associated to this phenomenon. However, despite future climate projections on climate warming, few studies have assessed the ability of temperate bumblebees to acclimate to extreme weather events, such as heatwaves. This study estimates the upper critical thermal limits (Critical Thermal Maximum (CTmax) and Heat Coma Temperature (HCT)), of the bumblebee subspecies Bombus terrestris audax, and assesses whether CTmax increases following exposure to a simulated heatwave. The critical thermal maximum occurred between 48.9 and 52.7 °C, while the heat coma temperature varied between 50.7 and 53.4 °C. After measurement of HCT, around 23% of bees survived 24 h or longer, but coordination was never recovered. There was no significant association between upper critical thermal limits and body mass, which highlights the need to investigate other factors to comprehend the mechanisms behind thermal tolerance limits. Furthermore, the heatwave treatments had no significant effect on the CTmax of bumblebee workers, indicating no acclimation capacity of upper thermal tolerance to simulated heatwaves. Our study provides insights into the upper thermal tolerance limits of Bombus terrestris audax and reveals that exposure to heatwave-like events does not change the upper thermal tolerance of bees, highlighting the need to develop effective strategies that might enable them to cope with extreme weather events.
Collapse
Affiliation(s)
- Yanet Sepúlveda
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
43
|
Terlau JF, Brose U, Eisenhauer N, Amyntas A, Boy T, Dyer A, Gebler A, Hof C, Liu T, Scherber C, Schlägel UE, Schmidt A, Hirt MR. Microhabitat conditions remedy heat stress effects on insect activity. GLOBAL CHANGE BIOLOGY 2023; 29:3747-3758. [PMID: 37186484 DOI: 10.1111/gcb.16712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
Anthropogenic global warming has major implications for mobile terrestrial insects, including long-term effects from constant warming, for example, on species distribution patterns, and short-term effects from heat extremes that induce immediate physiological responses. To cope with heat extremes, they either have to reduce their activity or move to preferable microhabitats. The availability of favorable microhabitat conditions is strongly promoted by the spatial heterogeneity of habitats, which is often reduced by anthropogenic land transformation. Thus, it is decisive to understand the combined effects of these global change drivers on insect activity. Here, we assessed the movement activity of six insect species (from three orders) in response to heat stress using a unique tracking approach via radio frequency identification. We tracked 465 individuals at the iDiv Ecotron across a temperature gradient up to 38.7°C. In addition, we varied microhabitat conditions by adding leaf litter from four different tree species to the experimental units, either spatially separated or well mixed. Our results show opposing effects of heat extremes on insect activity depending on the microhabitat conditions. The insect community significantly decreased its activity in the mixed litter scenario, while we found a strong positive effect on activity in the separated litter scenario. We hypothesize that the simultaneous availability of thermal refugia as well as resources provided by the mixed litter scenario allows animals to reduce their activity and save energy in response to heat stress. Contrary, the spatial separation of beneficial microclimatic conditions and resources forces animals to increase their activity to fulfill their energetic needs. Thus, our study highlights the importance of habitat heterogeneity on smaller scales, because it may buffer the consequences of extreme temperatures of insect performance and survival under global change.
Collapse
Affiliation(s)
- Jördis F Terlau
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Angelos Amyntas
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, Germany
| | - Thomas Boy
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, Germany
| | - Alexander Dyer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, Germany
| | - Alban Gebler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Christian Hof
- Terrestrial Ecology Research Group, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Tao Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Christoph Scherber
- Institute of Landscape Ecology, University of Münster, Münster, Germany
- Centre for Biodiversity Monitoring, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| | - Ulrike E Schlägel
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Anja Schmidt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
- Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Myriam R Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
44
|
Li YJ, Chen SY, Jørgensen LB, Overgaard J, Renault D, Colinet H, Ma CS. Interspecific differences in thermal tolerance landscape explain aphid community abundance under climate change. J Therm Biol 2023; 114:103583. [PMID: 37270894 DOI: 10.1016/j.jtherbio.2023.103583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/19/2023] [Accepted: 04/29/2023] [Indexed: 06/06/2023]
Abstract
A single critical thermal limit is often used to explain and infer the impact of climate change on geographic range and population abundance. However, it has limited application in describing the temporal dynamic and cumulative impacts of extreme temperatures. Here, we used a thermal tolerance landscape approach to address the impacts of extreme thermal events on the survival of co-existing aphid species (Metopolophium dirhodum, Sitobion avenae and Rhopalosiphum padi). Specifically, we built the thermal death time (TDT) models based on detailed survival datasets of three aphid species with three ages across a broad range of stressful high (34-40 °C) and low (-3∼-11 °C) temperatures to compare the interspecific and developmental stage variations in thermal tolerance. Using these TDT parameters, we performed a thermal risk assessment by calculating the potential daily thermal injury accumulation associated with the regional temperature variations in three wheat-growing sites along a latitude gradient. Results showed that M. dirhodum was the most vulnerable to heat but more tolerant to low temperatures than R. padi and S. avenae. R. padi survived better at high temperatures than Sitobion avenae and M. dirhodum but was sensitive to cold. R. padi was estimated to accumulate higher cold injury than the other two species during winter, while M. dirhodum accrued more heat injury during summer. The warmer site had higher risks of heat injury and the cooler site had higher risks of cold injury along a latitude gradient. These results support recent field observations that the proportion of R. padi increases with the increased frequency of heat waves. We also found that young nymphs generally had a lower thermal tolerance than old nymphs or adults. Our results provide a useful dataset and method for modelling and predicting the consequence of climate change on the population dynamics and community structure of small insects.
Collapse
Affiliation(s)
- Yuan-Jie Li
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China; Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China; UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes 1, avenue du Général Leclerc, 35042, Rennes cedex, France
| | - Si-Yang Chen
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | | | - Johannes Overgaard
- Zoophysiology, Department of Biology, Aarhus University, 8000, Aarhus C, Denmark
| | - David Renault
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes 1, avenue du Général Leclerc, 35042, Rennes cedex, France
| | - Hervé Colinet
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes 1, avenue du Général Leclerc, 35042, Rennes cedex, France
| | - Chun-Sen Ma
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China; Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
45
|
Li YJ, Ma CS, Yan Y, Renault D, Colinet H. The interspecific variations in molecular responses to various doses of heat and cold stress: the case of cereal aphids. JOURNAL OF INSECT PHYSIOLOGY 2023; 147:104520. [PMID: 37148996 DOI: 10.1016/j.jinsphys.2023.104520] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Insects are currently subjected to unprecedented thermal stress due to recent increases in the frequency and amplitude of temperature extremes. Understanding molecular responses to thermal stress is critically important to appreciate how species react to thermal stress. Three co-occurring cosmopolitan species are found within the guild of cereal aphids: Sitobion avenae, Ropalosiphum padi and Metopolophium dirhodum. Earlier reports have shown that increasing frequency of temperature extremes causes a shift in dominant species within guilds of cereal aphids by differently altering the population's growth. We hypothesize that a differential molecular response to stress among species may partially explain these changes. Heat shock proteins (HSPs) are molecular chaperones well known to play an important role in protecting against the adverse effects of thermal stress. However, few studies on molecular chaperones have been conducted in cereal aphids. In this study, we compared the heat and cold tolerance between three aphid species by measuring the median lethal time (Lt50) and examined the expression profiles of seven hsp genes after exposures to comparable thermal injury levels and also after same exposure durations. Results showed that R. padi survived comparatively better at high temperatures than the two other species but was more cold-sensitive. Hsp genes were induced more strongly by heat than cold stress. Hsp70A was the most strongly up-regulated gene in response to both heat and cold stress. R. padi had more heat inducible genes and significantly higher mRNA levels of hsp70A, hsp10, hsp60 and hsp90 than the other two species. Hsps ceased to be expressed at 37°C in M. dirhodum and S. avenae while expression was maintained in R. padi. In contrast, M. dirhodum was more cold tolerant and had more cold inducible genes than the others. These results confirm species-specific differences in molecular stress responses and suggest that differences in induced expression of hsps may be related to species' thermal tolerance, thus causing the changes in the relative abundance.
Collapse
Affiliation(s)
- Yuan-Jie Li
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, 35000 Rennes, France; School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Chun-Sen Ma
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Yi Yan
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - David Renault
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, 35000 Rennes, France
| | - Hervé Colinet
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, 35000 Rennes, France.
| |
Collapse
|
46
|
Harvey JA, Dong Y. Climate Change, Extreme Temperatures and Sex-Related Responses in Spiders. BIOLOGY 2023; 12:biology12040615. [PMID: 37106814 PMCID: PMC10136024 DOI: 10.3390/biology12040615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Climatic extremes, such as heat waves, are increasing in frequency, intensity and duration under anthropogenic climate change. These extreme events pose a great threat to many organisms, and especially ectotherms, which are susceptible to high temperatures. In nature, many ectotherms, such as insects, may seek cooler microclimates and 'ride out´ extreme temperatures, especially when these are transient and unpredictable. However, some ectotherms, such as web-building spiders, may be more prone to heat-related mortality than more motile organisms. Adult females in many spider families are sedentary and build webs in micro-habitats where they spend their entire lives. Under extreme heat, they may be limited in their ability to move vertically or horizontally to find cooler microhabitats. Males, on the other hand, are often nomadic, have broader spatial distributions, and thus might be better able to escape exposure to heat. However, life-history traits in spiders such as the relative body size of males and females and spatial ecology also vary across different taxonomic groups based on their phylogeny. This may make different species or families more or less susceptible to heat waves and exposure to very high temperatures. Selection to extreme temperatures may drive adaptive responses in female physiology, morphology or web site selection in species that build small or exposed webs. Male spiders may be better able to avoid heat-related stress than females by seeking refuge under objects such as bark or rocks with cooler microclimates. Here, we discuss these aspects in detail and propose research focusing on male and female spider behavior and reproduction across different taxa exposed to temperature extremes.
Collapse
Affiliation(s)
- Jeffrey A Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Yuting Dong
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
47
|
Mukherjee T, Sharma LK, Thakur M, Banerjee D, Chandra K. Whether curse or blessing: A counterintuitive perspective on global pest thrips infestation under climatic change with implications to agricultural economics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161349. [PMID: 36621499 DOI: 10.1016/j.scitotenv.2022.161349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The improvement and application of pest models to predict yield losses is still a challenge for the scientific community. However, pest models were targeted chiefly towards scheduling scouting or pesticide applications to deal with pest infestation. Thysanoptera (thrips) significantly impact the productivity of many economically important crops worldwide. Until now, no comprehensive study is available on the global distribution of pest thrips, as well as on the extent of cropland vulnerability worldwide. Further, nothing is known about the climate change impacts on these insects. Thus the present study was designed to map the global distribution and quantify the extent of cropland vulnerability in the present and future climate scenarios using data of identified pest thrips within the genus, i.e., Thrips, Frankliniella, and Scirtothrips. Our found significant niche contraction under the climate change scenarios and thrips may reside primarily in their thermal tolerance thresholds. About 3,98,160 km2 of cropland globally was found to be affected in the present scenario. However, it may significantly reduce to 5530 Km2 by 2050 and 1990 km2 by 2070. Further, the thrips distribution mostly getting restricted to Eastern North America, the North-western of the Indian sub-continent, and the north of Europe. Among all realms, thrips may lose ground in the Indo-Malayan realm at the most and get restricted to only 27 out of 825 terrestrial ecoregions. The agrarian communities of the infested regions may get benefit if these pests get wiped out, but on the contrary, we may lose species diversity. Moreover, the vacated niche may attract other invasive species, which may seriously impact the species composition and agricultural productivity. The present study findings can be used in making informed decisions about prioritizing future economic and research investments on the thrips in light of anticipated climate change impacts.
Collapse
Affiliation(s)
- Tanoy Mukherjee
- Zoological Survey of India, Kolkata 700053, India-; Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India
| | | | | | | | | |
Collapse
|
48
|
Johnson DM, Haynes KJ. Spatiotemporal dynamics of forest insect populations under climate change. CURRENT OPINION IN INSECT SCIENCE 2023; 56:101020. [PMID: 36906142 DOI: 10.1016/j.cois.2023.101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 05/03/2023]
Abstract
Effects of climate on forest insect populations are complex, often involving drivers that are opposing, nonlinear, and nonadditive. Overall, climate change is driving an increase in outbreaks and range shifts. Links between climate and forest insect dynamics are becoming clearer; however, the underlying mechanisms remain less clear. Climate alters forest insect population dynamics directly through life history, physiology, and voltinism, and indirectly through effects on host trees and natural enemies. Climatic effects on bark beetles, wood-boring insects, and sap-suckers are often indirect, through effects on host-tree susceptibility, whereas climatic effects on defoliators are comparatively more direct. We recommend process-based approaches to global distribution mapping and population models to identify the underlying mechanisms and enable effective management of forest insects.
Collapse
Affiliation(s)
| | - Kyle J Haynes
- University of Virginia, Blandy Experimental Farm, Boyce, VA 22620, USA
| |
Collapse
|
49
|
Campion C, Rajamohan A, Dillon ME. Sperm can't take the heat: Short-term temperature exposures compromise fertility of male bumble bees (Bombus impatiens). JOURNAL OF INSECT PHYSIOLOGY 2023; 146:104491. [PMID: 36773841 DOI: 10.1016/j.jinsphys.2023.104491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Bumble bee (genus Bombus) populations are increasingly under threat from habitat fragmentation, pesticides, pathogens, and climate change. Climate change is likely a prime driver of bumble bee declines but the mechanisms by which changing climates alter local abundance, leading to shifts in geographic range are unclear. Heat tolerance is quite high in worker bumble bees (CTmax ∼ 48-55 °C), making it unlikely for them to experience these high temperatures, even with climate warming. However, the thermal tolerance of whole organisms often exceeds that of their gametes; many insects can be sterilized by exposure to temperatures well below their upper thermal tolerance. Male bumble bees are independent from the colony and may encounter more frequent temperature extremes, but whether these exposures compromise spermatozoa is still unclear. Using commercially-reared Bombus impatiens colonies, males were reared in the lab and spermatozoa were exposed (in vivo and isolated in vitro) to sublethal temperatures near lower and upper thermal tolerance (CTmin and CTmax, respectively). Heat exposure (45 °C for up to 85 min) reduced spermatozoa viability both for whole males (in vivo; control = 79.5 %, heat exposed = 58 %, heat stupor = 57.7 %) and isolated seminal vesicles (in vitro; control = 85.5 %, heat exposed = 62.9 %). Whole males exposed to 4 °C for 85 min (in vivo; control = 79.2 %, cold = 72.4 %), isolated seminal vesicles exposed to 4 °C for 85 min (in vitro; control = 85.5 %, cold = 85.1 %), and whole males exposed to for 4 °C for 48 h (in vivo; control = 88.7 %, cold = 84.3 %) did not differ significantly in spermatozoa viability. After<85 min at 45 °C, males had significantly reduced spermatozoa viability, suggesting that short-term heat waves below CTmax could strongly reduce the fertility of male bumble bees with potential population-level impacts.
Collapse
Affiliation(s)
- Claire Campion
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA.
| | - Arun Rajamohan
- Edward T. Schafer Agricultural Research Center, USDA-ARS, 1616 Fargo, ND 58102, USA
| | - Michael E Dillon
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
50
|
da Silva CRB, Beaman JE, Youngblood JP, Kellermann V, Diamond SE. Vulnerability to climate change increases with trophic level in terrestrial organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161049. [PMID: 36549538 DOI: 10.1016/j.scitotenv.2022.161049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/17/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The resilience of ecosystem function under global climate change is governed by individual species vulnerabilities and the functional groups they contribute to (e.g. decomposition, primary production, pollination, primary, secondary and tertiary consumption). Yet it remains unclear whether species that contribute to different functional groups, which underpin ecosystem function, differ in their vulnerability to climate change. We used existing upper thermal limit data across a range of terrestrial species (N = 1701) to calculate species warming margins (degrees distance between a species upper thermal limit and the maximum environmental temperature they inhabit), as a metric of climate change vulnerability. We examined whether species that comprise different functional groups exhibit differential vulnerability to climate change, and if vulnerability trends change across geographic space while considering evolutionary history. Primary producers had the broadest warming margins across the globe (μ = 18.72 °C) and tertiary consumers had the narrowest warming margins (μ = 9.64 °C), where vulnerability tended to increase with trophic level. Warming margins had a nonlinear relationship (second-degree polynomial) with absolute latitude, where warming margins were narrowest at about 33°, and were broader at lower and higher absolute latitudes. Evolutionary history explained significant variation in species warming margins, as did the methodology used to estimate species upper thermal limits. We investigated if variation in body mass across the trophic levels could explain why higher trophic level organisms had narrower warming margins than lower trophic level organisms, however, we did not find support for this hypothesis. This study provides a critical first step in linking individual species vulnerabilities with whole ecosystem responses to climate change.
Collapse
Affiliation(s)
- Carmen R B da Silva
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA; School of Biological Sciences, Monash University, Victoria, Australia.
| | - Julian E Beaman
- College of Science and Engineering, Flinders University, South Australia, Australia
| | - Jacob P Youngblood
- School of Life Sciences, Arizona State University, Tempe, AZ, USA; Department of Biology, Southern Oregon University, Ashland, OR, USA
| | | | - Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|