1
|
Friggens NL, Hugelius G, Kokelj SV, Murton JB, Phoenix GK, Hartley IP. Positive rhizosphere priming accelerates carbon release from permafrost soils. Nat Commun 2025; 16:3576. [PMID: 40234409 PMCID: PMC12000286 DOI: 10.1038/s41467-025-58845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 04/03/2025] [Indexed: 04/17/2025] Open
Abstract
Thawing permafrost soils are predicted to release substantial amounts of carbon by 2100. In addition to this, warming-induced active-layer deepening and increased rooting depth may result in further carbon losses from previously-frozen soil by stimulating microbial communities through fresh carbon inputs inducing positive rhizosphere priming. While models based on temperate data predict significant permafrost carbon loss through rhizosphere priming, data from permafrost soils are lacking. Here, we provide direct evidence of live plant-induced positive rhizosphere priming in permafrost and active-layer soils across diverse soil types from Arctic and Subarctic Canada. By 13CO2 labelling plants in a controlled environment, we show that root activity increases carbon loss from previously frozen soils by 31%. This rhizosphere priming effect persists longer in permafrost than in active-layer soils, suggesting greater vulnerability of permafrost carbon. These findings underscore the urgency of incorporating plant-soil-microbe interactions into models predicting greenhouse gas emissions from thawing permafrost.
Collapse
Affiliation(s)
- Nina L Friggens
- Department of Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK.
| | - Gustaf Hugelius
- Department of Physical Geography, Stockholm University, Stockholm, Sweden
| | - Steven V Kokelj
- Northwest Territories Geological Survey, Government of the Northwest Territories, Yellowknife, NT, Canada
| | | | - Gareth K Phoenix
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Iain P Hartley
- Department of Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| |
Collapse
|
2
|
Liu F, Zhang W, Li S. Effects of Freeze-Thaw Cycles on Uptake Preferences of Plants for Nutrient: A Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:1122. [PMID: 40219190 PMCID: PMC11991290 DOI: 10.3390/plants14071122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/21/2025] [Accepted: 03/29/2025] [Indexed: 04/14/2025]
Abstract
Freeze-thawing is an abiotic climatic force prevalent at mid-to-high latitudes or high altitudes, significantly impacting ecosystem nitrogen (N) and phosphorus (P) cycling, which is receiving increasing attention due to ongoing global warming. The N and P nutrients are essential for plant growth and development, and the uptake and utilization of these nutrients by plants are closely linked to external environmental conditions. Additionally, the availability of N and P nutrients influences the ecological adaptability of plants. Adapting plants to diverse external environments for the efficient uptake and utilization of N and P nutrients represents a main focus in contemporary ecological research on plant nutrient utilization in the ecosystems of mid-to-high latitudes or high altitudes. Through a comprehensive analysis of the experimental results regarding plant nutrient uptake and utilization in mid-to-high-latitude or high-altitude ecosystems, this paper discussed the processes of soil N and P cycling and the different utilization strategies of nutrient forms employed by plants during freezing and thawing. Freeze-thaw cycles affect the availability of N and P in the soil. Under freeze-thaw conditions, plants preferentially take up readily available N sources (e.g., nitrate (NO3--N) or ammonium (NH4+-N)) and adjust their root growth and timing of N uptake, developing specific physiological and biochemical adaptations to meet their growth needs. When nutrient conditions are poor or N sources are limited, plants may rely more on low-molecular-weight organic nitrogen (e.g., amino acids) as N sources. Plants adapt to changes in their environment by adjusting root growth, making changes in root secretions, and utilizing microbial communities associated with the P cycle to support more efficient P utilization. Future research should (i) enhance the monitoring of plant roots and nutrient dynamics in the subterranean layers of the soil; (ii) incorporate a broader range of nutrients; (iii) examine specific freeze-thaw landscape types, along with the spatial and temporal heterogeneity of climate change within seasons, which is essential for minimizing uncertainty in our understanding of plant nutrient utilization strategies.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
- Qilu Zhongke Institute of Carbon Neutrality, Jinan 250100, China
| | - Siqi Li
- Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
- Qilu Zhongke Institute of Carbon Neutrality, Jinan 250100, China
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Ministry of Ecology and Environment, Shanghai Academy of Environment Sciences, Shanghai 200233, China
| |
Collapse
|
3
|
Chen T, Sheng M, Xiao J, Ai S, Kou J, Yang Q, Ai Y, Ma J, Zhu G, Ai X. Phosphorus pool distributions and adsorption-desorption characteristics of soil aggregates in cut slopes of a permafrost zone in the Qinghai-Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176623. [PMID: 39395499 DOI: 10.1016/j.scitotenv.2024.176623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/14/2024] [Accepted: 09/28/2024] [Indexed: 10/14/2024]
Abstract
Soil phosphorus (P) has attracted considerable attention from researchers because of its role in the restoration and stabilization processes of cut slopes in permafrost regions. However, the soil P pool distributions and adsorption-desorption characteristics in alpine cut slopes remain unclear. In this context, we examined in this study the P pools in the aggregates of surface cut soil slopes (0-10 cm) in areas with three permafrost types, including perennially frozen soil (PF), seasonally frozen ground (SFG), and non-frozen soil (NFS) in the Qinghai-Tibet Plateau, China. In addition, we assessed the P adsorption-desorption characteristics and their correlations with the P pools. The results showed the significant effects of the permafrost types on the contents of total P (TP), available P (AP), labile P (LP), moderately labile P (MLP) and stable P (SP). The inorganic P (IP) contents were higher than those of organic P (OP) in the cut soil slopes of the three permafrost types. In addition, H2O-Pi and NaHCO3-Pi accounted for small proportions of IP, while NaHCO3-Po accounted for the smallest proportion of OP. On the other hand, the SP contents in the soil aggregates were generally higher than those of MLP and LP. In fact, the LP contents in the PF, SFG, and NFS were 72.55, 44.68, and 49.42 mg/kg, respectively. The AP contents in the cut soil slopes of the three permafrost types were significantly correlated with the MLP and LP contents. Moreover, the P adsorption-desorption characteristics of the SFG and NFS were closely related to AP and MLP. Compared with the PF and NFS, the SFG exhibited low and high P adsorption and desorption capacities, respectively. The findings of this study provided an important theoretical basis for the restoration of cut slopes in alpine permafrost regions.
Collapse
Affiliation(s)
- Tingting Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Sichuan 610065, China
| | - Meihua Sheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Sichuan 610065, China
| | - Jingyao Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Sichuan 610065, China
| | - Shenghao Ai
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianing Kou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Sichuan 610065, China
| | - Qinqing Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Sichuan 610065, China
| | - Yingwei Ai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Sichuan 610065, China
| | - Jinqiang Ma
- Tibet Huatailong Mining Development Co., Ltd, Lhasa 850200, China
| | - Guoyu Zhu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Sichuan 610065, China
| | - Xiaoyan Ai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Sichuan 610065, China.
| |
Collapse
|
4
|
Fan B, Gao P, Tian T, Jiang J, Ding N, Wan Y, Ma M, Sun K. Regeneration Limitations of Hippophae rhamnoides Population After Successfully Encroached on the Qinghai-Tibetan Plateau. Ecol Evol 2024; 14:e70684. [PMID: 39717632 PMCID: PMC11663628 DOI: 10.1002/ece3.70684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 12/25/2024] Open
Abstract
Shrub encroachment can alter the structure and function of grassland ecosystems, leading to their degradation. Therefore, population regeneration dynamics after shrub encroachment on the influence of grassland should not be ignored. H. rhamnoides, as a pioneer species, has significantly encroached with large areas on the Qinghai-Tibetan Plateau (QTP) due to climate change and over-grazing. However, few studies have focused on the dynamics of population regeneration following successful encroachment. Therefore, we studied H. rhamnoides natural population in the alpine grasslands, investigating population regeneration pattern, seed, bud production and storage, and limitation imposed by microhabitats (soil, light and feeding). Our aim was to explore population regeneration strategies and identify key limiting factors for population regeneration after successful encroachment. Our findings revealed several key points: (i) H. rhamnoides entered the alpine grassland by relying on seeds, it would seize resources by low-cost clonal reproduction, then increase sexual reproduction to improve genetic diversity. (ii) The production and storage of seeds and buds was sufficient, seed vigor was high, seed emergence rate was higher due to mechanical restriction of hard seed coat was weakened by the water transport channels in the palisade layer, and formation of seedlings was less restricted. (iii) H. rhamnoides population regeneration was mainly limited by microhabitats light and feeding. However, light and feeding significantly affected seedlings photosynthesis and carbon storage, their interaction significantly reduced the seedlings survival, and further restricted population regeneration. The results can provide theoretical basis for the restoration and management of alpine grassland degradation caused by shrub encroachment.
Collapse
Affiliation(s)
- Baoli Fan
- College of Life ScienceNorthwest Normal UniversityLanzhouChina
- Key Laboratory of Eco‐Functional Polymer Materials of the Ministry of EducationLanzhouChina
| | - Pengfei Gao
- College of Life ScienceNorthwest Normal UniversityLanzhouChina
| | - Tingting Tian
- College of Life ScienceNorthwest Normal UniversityLanzhouChina
| | - Jinhua Jiang
- College of Life ScienceNorthwest Normal UniversityLanzhouChina
| | - Nana Ding
- College of Life ScienceNorthwest Normal UniversityLanzhouChina
| | - Yongkuan Wan
- College of Life ScienceNorthwest Normal UniversityLanzhouChina
| | - Miaojun Ma
- College of EcologyLanzhou UniversityLanzhouChina
| | - Kun Sun
- College of Life ScienceNorthwest Normal UniversityLanzhouChina
| |
Collapse
|
5
|
Zhi W, Baniecki H, Liu J, Boyer E, Shen C, Shenk G, Liu X, Li L. Increasing phosphorus loss despite widespread concentration decline in US rivers. Proc Natl Acad Sci U S A 2024; 121:e2402028121. [PMID: 39556745 PMCID: PMC11621846 DOI: 10.1073/pnas.2402028121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/10/2024] [Indexed: 11/20/2024] Open
Abstract
The loss of phosphorous (P) from the land to aquatic systems has polluted waters and threatened food production worldwide. Systematic trend analysis of P, a nonrenewable resource, has been challenging, primarily due to sparse and inconsistent historical data. Here, we leveraged intensive hydrometeorological data and the recent renaissance of deep learning approaches to fill data gaps and reconstruct temporal trends. We trained a multitask long short-term memory model for total P (TP) using data from 430 rivers across the contiguous United States (CONUS). Trend analysis of reconstructed daily records (1980-2019) shows widespread decline in concentrations, with declining, increasing, and insignificantly changing trends in 60%, 28%, and 12% of the rivers, respectively. Concentrations in urban rivers have declined the most despite rising urban population in the past decades; concentrations in agricultural rivers however have mostly increased, suggesting not-as-effective controls of nonpoint sources in agriculture lands compared to point sources in cities. TP loss, calculated as fluxes by multiplying concentration and discharge, however exhibited an overall increasing rate of 6.5% per decade at the CONUS scale over the past 40 y, largely due to increasing river discharge. Results highlight the challenge of reducing TP loss that is complicated by changing river discharge in a warming climate.
Collapse
Affiliation(s)
- Wei Zhi
- The National Key Laboratory of Water Disaster Prevention, Yangtze Institute for Conservation and Development, Key Laboratory of Hydrologic-Cycle and Hydrodynamic-System of Ministry of Water Resources, College of Hydrology and Water Resources, Hohai University, Nanjing210024, China
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA16802
| | - Hubert Baniecki
- MI2.AI, University of Warsaw, Warsaw00-927, Poland
- Warsaw University of Technology, Warsaw00-661, Poland
| | - Jiangtao Liu
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA16802
| | - Elizabeth Boyer
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA16802
- Institute of Computational and Data Sciences, The Pennsylvania State University, University Park, PA16802
| | - Chaopeng Shen
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA16802
| | - Gary Shenk
- Virginia and West Virginia Water Science Center, United States Geological Survey, Richmond, VA23228
| | - Xiaofeng Liu
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA16802
- Institute of Computational and Data Sciences, The Pennsylvania State University, University Park, PA16802
| | - Li Li
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA16802
| |
Collapse
|
6
|
Chen L, Yang G, Bai Y, Chang J, Qin S, Liu F, He M, Song Y, Zhang F, Peñuelas J, Zhu B, Zhou G, Yang Y. Permafrost carbon cycle and its dynamics on the Tibetan Plateau. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1833-1848. [PMID: 38951429 DOI: 10.1007/s11427-023-2601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/19/2024] [Indexed: 07/03/2024]
Abstract
Our knowledge on permafrost carbon (C) cycle is crucial for understanding its feedback to climate warming and developing nature-based solutions for mitigating climate change. To understand the characteristics of permafrost C cycle on the Tibetan Plateau, the largest alpine permafrost region around the world, we summarized recent advances including the stocks and fluxes of permafrost C and their responses to thawing, and depicted permafrost C dynamics within this century. We find that this alpine permafrost region stores approximately 14.1 Pg (1 Pg=1015 g) of soil organic C (SOC) in the top 3 m. Both substantial gaseous emissions and lateral C transport occur across this permafrost region. Moreover, the mobilization of frozen C is expedited by permafrost thaw, especially by the formation of thermokarst landscapes, which could release significant amounts of C into the atmosphere and surrounding water bodies. This alpine permafrost region nevertheless remains an important C sink, and its capacity to sequester C will continue to increase by 2100. For future perspectives, we would suggest developing long-term in situ observation networks of C stocks and fluxes with improved temporal and spatial coverage, and exploring the mechanisms underlying the response of ecosystem C cycle to permafrost thaw. In addition, it is essential to improve the projection of permafrost C dynamics through in-depth model-data fusion on the Tibetan Plateau.
Collapse
Affiliation(s)
- Leiyi Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Guibiao Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Yuxuan Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Jinfeng Chang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shuqi Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Futing Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Mei He
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Yutong Song
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Josep Peñuelas
- Consejo Superior de Investigaciones Científicas (CSIC), Global Ecology Unit CREAF-CSIC- UAB (Universitat Autònoma de Barcelona), Barcelona, 08193, Spain
- Centre for Ecological Research and Forestry (CREAF), Barcelona, 08193, Spain
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Guoying Zhou
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Xining, 810008, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Graham EB, Garayburu-Caruso VA, Wu R, Zheng J, McClure R, Jones GD. Genomic fingerprints of the world's soil ecosystems. mSystems 2024; 9:e0111223. [PMID: 38722174 PMCID: PMC11237643 DOI: 10.1128/msystems.01112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/25/2024] [Indexed: 06/19/2024] Open
Abstract
Despite the explosion of soil metagenomic data, we lack a synthesized understanding of patterns in the distribution and functions of soil microorganisms. These patterns are critical to predictions of soil microbiome responses to climate change and resulting feedbacks that regulate greenhouse gas release from soils. To address this gap, we assay 1,512 manually curated soil metagenomes using complementary annotation databases, read-based taxonomy, and machine learning to extract multidimensional genomic fingerprints of global soil microbiomes. Our objective is to uncover novel biogeographical patterns of soil microbiomes across environmental factors and ecological biomes with high molecular resolution. We reveal shifts in the potential for (i) microbial nutrient acquisition across pH gradients; (ii) stress-, transport-, and redox-based processes across changes in soil bulk density; and (iii) greenhouse gas emissions across biomes. We also use an unsupervised approach to reveal a collection of soils with distinct genomic signatures, characterized by coordinated changes in soil organic carbon, nitrogen, and cation exchange capacity and in bulk density and clay content that may ultimately reflect soil environments with high microbial activity. Genomic fingerprints for these soils highlight the importance of resource scavenging, plant-microbe interactions, fungi, and heterotrophic metabolisms. Across all analyses, we observed phylogenetic coherence in soil microbiomes-more closely related microorganisms tended to move congruently in response to soil factors. Collectively, the genomic fingerprints uncovered here present a basis for global patterns in the microbial mechanisms underlying soil biogeochemistry and help beget tractable microbial reaction networks for incorporation into process-based models of soil carbon and nutrient cycling.IMPORTANCEWe address a critical gap in our understanding of soil microorganisms and their functions, which have a profound impact on our environment. We analyzed 1,512 global soils with advanced analytics to create detailed genetic profiles (fingerprints) of soil microbiomes. Our work reveals novel patterns in how microorganisms are distributed across different soil environments. For instance, we discovered shifts in microbial potential to acquire nutrients in relation to soil acidity, as well as changes in stress responses and potential greenhouse gas emissions linked to soil structure. We also identified soils with putative high activity that had unique genomic characteristics surrounding resource acquisition, plant-microbe interactions, and fungal activity. Finally, we observed that closely related microorganisms tend to respond in similar ways to changes in their surroundings. Our work is a significant step toward comprehending the intricate world of soil microorganisms and its role in the global climate.
Collapse
Affiliation(s)
- Emily B. Graham
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | | | - Ruonan Wu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jianqiu Zheng
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ryan McClure
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Gerrad D. Jones
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
8
|
Zhang D, Wang L, Qin S, Kou D, Wang S, Zheng Z, Peñuelas J, Yang Y. Microbial nitrogen and phosphorus co-limitation across permafrost region. GLOBAL CHANGE BIOLOGY 2023; 29:3910-3923. [PMID: 37097019 DOI: 10.1111/gcb.16743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
The status of plant and microbial nutrient limitation have profound impacts on ecosystem carbon cycle in permafrost areas, which store large amounts of carbon and experience pronounced climatic warming. Despite the long-term standing paradigm assumes that cold ecosystems primarily have nitrogen deficiency, large-scale empirical tests of microbial nutrient limitation are lacking. Here we assessed the potential microbial nutrient limitation across the Tibetan alpine permafrost region, using the combination of enzymatic and elemental stoichiometry, genes abundance and fertilization method. In contrast with the traditional view, the four independent approaches congruently detected widespread microbial nitrogen and phosphorus co-limitation in both the surface soil and deep permafrost deposits, with stronger limitation in the topsoil. Further analysis revealed that soil resources stoichiometry and microbial community composition were the two best predictors of the magnitude of microbial nutrient limitation. High ratio of available soil carbon to nutrient and low fungal/bacterial ratio corresponded to strong microbial nutrient limitation. These findings suggest that warming-induced enhancement in soil nutrient availability could stimulate microbial activity, and probably amplify soil carbon losses from permafrost areas.
Collapse
Affiliation(s)
- Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lu Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuqi Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Dan Kou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Biogeochemistry Research Group, Department of Biological and Environmental Sciences, University of Eastern Finland, Kuopio, Finland
| | - Siyu Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhihu Zheng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Josep Peñuelas
- Consejo Superior de Investigaciones Científicas (CSIC), Global Ecology Unit CREAF-CSIC-UAB (Universitat Autònoma de Barcelona), Barcelona, Spain
- CREAF, Barcelona, Catalonia, Spain
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Sun F, Chang R, Tariq A, Sardans J, Penuelas J, Jiang H, Zhou X, Li N. Livestock grazing-exclusion under global warming scenario decreases phosphorus mineralization by changing soil food web structure in a Tibetan alpine meadow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162313. [PMID: 36805062 DOI: 10.1016/j.scitotenv.2023.162313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
The exclusion of grazing has been used extensively in alpine meadows on the Tibetan Plateau. Studies, however, have shown reported recent trends of decreasing concentrations of soil nutrients because of grazing exclusion and climate change. The effects of excluding grazing on the soil biogeochemical process of phosphorus cycling in alpine meadows are unclear, especially under climatic warming. We conducted a 5-year grazing-exclusion and warming-manipulation experiment to examine the effects of excluding grazing on fractions of soil phosphorus, microbial and nematode communities and enzymatic activities in treatments of low grazing intensity, grazing exclusion, and combined grazing exclusion and warming. Our results indicated that excluding grazing significantly decreased bacterivore and omnivore-predator densities, phoD gene abundance and alkaline phosphomonoesterase activity (in the 0-5 cm layer by -34, -41, -38 and -42 %) at altitudes of 3850 m, 4000 m, 4150 m and 4250 m, respectively. Structural equation modeling indicated that bacterivores positively affected phoD gene abundance, alkaline phosphomonoesterase activity and inorganic‑phosphorus fractions. Combined grazing exclusion and warming significantly decreased bacterivore and omnivore-predator densities but significantly increased fungivore density (in the 0-5 cm layer by 238, 172, 119 and 65 %) at altitudes of 3850, 4000, 4150 and 4250 m, respectively. Structural equation modeling also indicated that the combined grazing-exclusion and warming treatment increased the soil fungi and fungivores, but the higher abundances of fungi and fungivores did not significantly affect acid phosphomonoesterase activity or inorganic‑phosphorus fractions. Alternatively, the combined grazing-exclusion and warming treatment significantly increased the concentrations of amorphous and free aluminum, which were positively correlated with the maximum adsorption of phosphorus. The combined grazing-exclusion and warming treatment thus significantly decreased the availability of resin phosphorus (-63, -51, -81 and -67 %) in the 0-5 cm layer at altitudes of 3850, 4000, 4150 and 4250 m, respectively. Our results suggested that light grazing (0.5 yak ha-1 year-1) could increase phosphorus mineralization and the activity of soil enzymes in alpine meadows under global warming. An adequate load of livestock pressure at each altitude can be an effective management technique, mainly under warming, to maintain an adequate, sustainable and equilibrated phosphorus cycle in the plant-soil system.
Collapse
Affiliation(s)
- Feng Sun
- College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruiying Chang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Akash Tariq
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| | - Hui Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, China
| | - Xingmei Zhou
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, China
| | - Na Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, China.
| |
Collapse
|
10
|
Yang C, Zhang H, Zhao X, Liu P, Wang L, Wang W. A functional metagenomics study of soil carbon and nitrogen degradation networks and limiting factors on the Tibetan plateau. Front Microbiol 2023; 14:1170806. [PMID: 37228377 PMCID: PMC10203874 DOI: 10.3389/fmicb.2023.1170806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction The Three-River Source Nature Reserve is located in the core area of the Qinghai-Tibetan Plateau, with the alpine swamp, meadow and steppe as the main ecosystem types. However, the microbial communities in these alpine ecosystems, and their carbon and nitrogen degrading metabolic networks and limiting factors remain unclear. Methods We sequenced the diversity of bacteria and fungi in alpine swamps, meadows, steppes, and their degraded and artificially restored ecosystems and analyzed soil environmental conditions. Results The results indicated that moisture content had a greater influence on soil microbial community structure compared to degradation and restoration. Proteobacteria dominated in high moisture alpine swamps and alpine meadows, while Actinobacteria dominated in low moisture alpine steppes and artificial grasslands. A metabolic network analysis of carbon and nitrogen degradation and transformation using metagenomic sequencing revealed that plateau microorganisms lacked comprehensive and efficient enzyme systems to degrade organic carbon, nitrogen, and other biological macromolecules, so that the short-term degradation of alpine vegetation had no effect on the basic composition of soil microbial community. Correlation analysis found that nitrogen fixation was strong in meadows with high moisture content, and their key nitrogen-fixing enzymes were significantly related to Sphingomonas. Denitrification metabolism was enhanced in water-deficient habitats, and the key enzyme, nitrous oxide reductase, was significantly related to Phycicoccus and accelerated the loss of nitrogen. Furthermore, Bacillus contained a large number of amylases (GH13 and GH15) and proteases (S8, S11, S26, and M24) which may promote the efficient degradation of organic carbon and nitrogen in artificially restored grasslands. Discussion This study illustrated the irrecoverability of meadow degradation and offered fundamental information for altering microbial communities to restore alpine ecosystems.
Collapse
Affiliation(s)
- Chong Yang
- School of Geographical Sciences, Qinghai Normal University, Xining, China
- School of Life Sciences, Qinghai Normal University, Xining, China
| | - Hong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xinquan Zhao
- Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, China
| | - Pan Liu
- School of Geographical Sciences, Qinghai Normal University, Xining, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wenying Wang
- School of Life Sciences, Qinghai Normal University, Xining, China
| |
Collapse
|
11
|
Shi C, Urbina‐Malo C, Tian Y, Heinzle J, Kwatcho Kengdo S, Inselsbacher E, Borken W, Schindlbacher A, Wanek W. Does long-term soil warming affect microbial element limitation? A test by short-term assays of microbial growth responses to labile C, N and P additions. GLOBAL CHANGE BIOLOGY 2023; 29:2188-2202. [PMID: 36622092 PMCID: PMC10946488 DOI: 10.1111/gcb.16591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 12/25/2022] [Indexed: 05/28/2023]
Abstract
Increasing global temperatures have been reported to accelerate soil carbon (C) cycling, but also to promote nitrogen (N) and phosphorus (P) dynamics in terrestrial ecosystems. However, warming can differentially affect ecosystem C, N and P dynamics, potentially intensifying elemental imbalances between soil resources, plants and soil microorganisms. Here, we investigated the effect of long-term soil warming on microbial resource limitation, based on measurements of microbial growth (18 O incorporation into DNA) and respiration after C, N and P amendments. Soil samples were taken from two soil depths (0-10, 10-20 cm) in control and warmed (>14 years warming, +4°C) plots in the Achenkirch soil warming experiment. Soils were amended with combinations of glucose-C, inorganic/organic N and inorganic/organic P in a full factorial design, followed by incubation at their respective mean field temperatures for 24 h. Soil microbes were generally C-limited, exhibiting 1.8-fold to 8.8-fold increases in microbial growth upon C addition. Warming consistently caused soil microorganisms to shift from being predominately C limited to become C-P co-limited. This P limitation possibly was due to increased abiotic P immobilization in warmed soils. Microbes further showed stronger growth stimulation under combined glucose and inorganic nutrient amendments compared to organic nutrient additions. This may be related to a prolonged lag phase in organic N (glucosamine) mineralization and utilization compared to glucose. Soil respiration strongly positively responded to all kinds of glucose-C amendments, while responses of microbial growth were less pronounced in many of these treatments. This highlights that respiration-though easy and cheap to measure-is not a good substitute of growth when assessing microbial element limitation. Overall, we demonstrate a significant shift in microbial element limitation in warmed soils, from C to C-P co-limitation, with strong repercussions on the linkage between soil C, N and P cycles under long-term warming.
Collapse
Affiliation(s)
- Chupei Shi
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem ScienceCenter of Microbiology and Environmental Systems Science, University of ViennaViennaAustria
- Department of Ecosystem and Landscape DynamicsInstitute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdamNetherlands
| | - Carolina Urbina‐Malo
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem ScienceCenter of Microbiology and Environmental Systems Science, University of ViennaViennaAustria
- Institute of Soil Science, Leibniz Universität HannoverHannoverGermany
| | - Ye Tian
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem ScienceCenter of Microbiology and Environmental Systems Science, University of ViennaViennaAustria
- Doctoral School in Microbiology and Environmental ScienceUniversity of ViennaViennaAustria
| | - Jakob Heinzle
- Department of Forest Ecology and Soil, Federal Research and Training Centre for ForestsNatural Hazards and Landscape‐BFWViennaAustria
| | - Steve Kwatcho Kengdo
- Department of Soil Ecology, Bayreuth Center of Ecology and Environmental Research (BAYCEER)University of BayreuthBayreuthGermany
| | - Erich Inselsbacher
- Institute of Soil ResearchUniversity of Natural Resources and Life SciencesViennaAustria
| | - Werner Borken
- Department of Soil Ecology, Bayreuth Center of Ecology and Environmental Research (BAYCEER)University of BayreuthBayreuthGermany
| | - Andreas Schindlbacher
- Department of Forest Ecology and Soil, Federal Research and Training Centre for ForestsNatural Hazards and Landscape‐BFWViennaAustria
| | - Wolfgang Wanek
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem ScienceCenter of Microbiology and Environmental Systems Science, University of ViennaViennaAustria
| |
Collapse
|
12
|
Liu Z, Chen Z, Yu G, Zhang W, Zhang T, Han L. The role of climate, vegetation, and soil factors on carbon fluxes in Chinese drylands. FRONTIERS IN PLANT SCIENCE 2023; 14:1060066. [PMID: 36844101 PMCID: PMC9947249 DOI: 10.3389/fpls.2023.1060066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
Drylands dominate the trend and variability of the land carbon (C) sink. A better understanding of the implications of climate-induced changes in the drylands for C sink-source dynamics is urgently needed. The effect of climate on ecosystem C fluxes (gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem productivity (NEP)) in drylands has been extensively explored, but the roles of other concurrently changing factors, such as vegetation conditions and nutrient availability, remain unclear. We used eddy-covariance C-flux measurements from 45 ecosystems with concurrent information on climate (mean annual temperature (MAT) and mean annual precipitation (MAP)), soil (soil moisture (SM) and soil total nitrogen content (soil N)), and vegetation (leaf area index (LAI) and leaf nitrogen content (LNC)) factors to assess their roles in C fluxes. The results showed that the drylands in China were weak C sinks. GPP and ER were positively correlated with MAP, while they were negatively correlated with MAT. NEP first decreased and then increased with increasing MAT and MAP, and 6.6 °C and 207 mm were the boundaries for the NEP response to MAT and MAP, respectively. SM, soil N, LAI, and MAP were the main factors affecting GPP and ER. However, SM and LNC had the most important influence on NEP. Compared with climate and vegetation factors, soil factors (SM and soil N) had a greater impact on C fluxes in the drylands. Climate factors mainly affected C fluxes by regulating vegetation and soil factors. To accurately estimate the global C balance and predict the response of ecosystems to environmental change, it is necessary to fully consider the discrepant effects of climate, vegetation, and soil factors on C fluxes, as well as the cascade relationships between different factors.
Collapse
Affiliation(s)
- Zhaogang Liu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Chen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Weikang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Tianyou Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Lang Han
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| |
Collapse
|
13
|
Rastetter EB, Kwiatkowski BL, Kicklighter DW, Barker Plotkin A, Genet H, Nippert JB, O'Keefe K, Perakis SS, Porder S, Roley SS, Ruess RW, Thompson JR, Wieder WR, Wilcox K, Yanai RD. N and P constrain C in ecosystems under climate change: Role of nutrient redistribution, accumulation, and stoichiometry. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2684. [PMID: 35633204 PMCID: PMC10078338 DOI: 10.1002/eap.2684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/07/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
We use the Multiple Element Limitation (MEL) model to examine responses of 12 ecosystems to elevated carbon dioxide (CO2 ), warming, and 20% decreases or increases in precipitation. Ecosystems respond synergistically to elevated CO2 , warming, and decreased precipitation combined because higher water-use efficiency with elevated CO2 and higher fertility with warming compensate for responses to drought. Response to elevated CO2 , warming, and increased precipitation combined is additive. We analyze changes in ecosystem carbon (C) based on four nitrogen (N) and four phosphorus (P) attribution factors: (1) changes in total ecosystem N and P, (2) changes in N and P distribution between vegetation and soil, (3) changes in vegetation C:N and C:P ratios, and (4) changes in soil C:N and C:P ratios. In the combined CO2 and climate change simulations, all ecosystems gain C. The contributions of these four attribution factors to changes in ecosystem C storage varies among ecosystems because of differences in the initial distributions of N and P between vegetation and soil and the openness of the ecosystem N and P cycles. The net transfer of N and P from soil to vegetation dominates the C response of forests. For tundra and grasslands, the C gain is also associated with increased soil C:N and C:P. In ecosystems with symbiotic N fixation, C gains resulted from N accumulation. Because of differences in N versus P cycle openness and the distribution of organic matter between vegetation and soil, changes in the N and P attribution factors do not always parallel one another. Differences among ecosystems in C-nutrient interactions and the amount of woody biomass interact to shape ecosystem C sequestration under simulated global change. We suggest that future studies quantify the openness of the N and P cycles and changes in the distribution of C, N, and P among ecosystem components, which currently limit understanding of nutrient effects on C sequestration and responses to elevated CO2 and climate change.
Collapse
Affiliation(s)
| | | | | | | | - Helene Genet
- Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksAlaskaUSA
| | | | - Kimberly O'Keefe
- Department of Biological SciencesSaint Edward's UniversityAustinTexasUSA
| | - Steven S. Perakis
- U.S. Geological SurveyForest and Rangeland Ecosystem Science CenterCorvallisOregonUSA
| | - Stephen Porder
- Ecology and Evolutionary BiologyInstitute for Environment and Society, Brown UniversityProvidenceRhode IslandUSA
| | - Sarah S. Roley
- School of the EnvironmentWashington State UniversityRichlandWashingtonUSA
- W.K. Kellogg Biological StationMichigan State UniversityHickory CornersMichiganUSA
| | - Roger W. Ruess
- Department of Biology and WildlifeInstitute of Arctic Biology, University of Alaska FairbanksFairbanksAlaskaUSA
| | | | - William R. Wieder
- Climate and Global Dynamics LaboratoryNational Center for Atmospheric ResearchBoulderColoradoUSA
- Institute of Arctic and Alpine ResearchUniversity of Colorado BoulderBoulderColoradoUSA
| | - Kevin Wilcox
- Department of Ecosystem Science and ManagementUniversity of WyomingLaramieWyomingUSA
| | - Ruth D. Yanai
- Department of Sustainable Resources ManagementSUNY College of Environmental Science and ForestrySyracuseNew YorkUSA
| |
Collapse
|
14
|
Zhang R, Tian D, Wang J, Pan J, Zhu J, Li Y, Yan Y, Song L, Wang S, Chen C, Niu S. Dryness weakens the positive effects of plant and fungal β diversities on above- and belowground biomass. GLOBAL CHANGE BIOLOGY 2022; 28:6629-6639. [PMID: 36054413 DOI: 10.1111/gcb.16405] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Plant and microbial diversity are key to determine ecosystem functioning. Despite the well-known role of local-scale α diversity in affecting vegetation biomass, the effects of community heterogeneity (β diversity) of plants and soil microbes on above- and belowground biomass (AGB and BGB) across contrasting environments still remain unclear. Here, we conducted a dryness-gradient transect survey over 3000 km across grasslands on the Tibetan Plateau. We found that plant β diversity was more dominant than α diversity in maintaining higher levels of AGB, while soil fungal β diversity was the key driver in enhancing BGB. However, these positive effects of plant and microbial β diversity on AGB and BGB were strongly weakened by increasing climatic dryness, mainly because higher soil available phosphorus caused by increasing dryness reduced both plant and soil fungal β diversities. Overall, these new findings highlight the critical role of above- and belowground β diversity in sustaining grassland biomass, raising our awareness to the ecological risks of large-scale biotic homogenization under future climate change.
Collapse
Affiliation(s)
- Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Junxiao Pan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Juntao Zhu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yang Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yingjie Yan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lei Song
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Song Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chen Chen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, People's Republic of China
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
15
|
Dong N, Prentice IC, Wright IJ, Wang H, Atkin OK, Bloomfield KJ, Domingues TF, Gleason SM, Maire V, Onoda Y, Poorter H, Smith NG. Leaf nitrogen from the perspective of optimal plant function. THE JOURNAL OF ECOLOGY 2022; 110:2585-2602. [PMID: 36619687 PMCID: PMC9804922 DOI: 10.1111/1365-2745.13967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/14/2022] [Indexed: 05/14/2023]
Abstract
Leaf dry mass per unit area (LMA), carboxylation capacity (V cmax) and leaf nitrogen per unit area (Narea) and mass (Nmass) are key traits for plant functional ecology and ecosystem modelling. There is however no consensus about how these traits are regulated, or how they should be modelled. Here we confirm that observed leaf nitrogen across species and sites can be estimated well from observed LMA and V cmax at 25°C (V cmax25). We then test the hypothesis that global variations of both quantities depend on climate variables in specific ways that are predicted by leaf-level optimality theory, thus allowing both Narea to be predicted as functions of the growth environment.A new global compilation of field measurements was used to quantify the empirical relationships of leaf N to V cmax25 and LMA. Relationships of observed V cmax25 and LMA to climate variables were estimated, and compared to independent theoretical predictions of these relationships. Soil effects were assessed by analysing biases in the theoretical predictions.LMA was the most important predictor of Narea (increasing) and Nmass (decreasing). About 60% of global variation across species and sites in observed Narea, and 31% in Nmass, could be explained by observed LMA and V cmax25. These traits, in turn, were quantitatively related to climate variables, with significant partial relationships similar or indistinguishable from those predicted by optimality theory. Predicted trait values explained 21% of global variation in observed site-mean V cmax25, 43% in LMA and 31% in Narea. Predicted V cmax25 was biased low on clay-rich soils but predicted LMA was biased high, with compensating effects on Narea. Narea was overpredicted on organic soils. Synthesis. Global patterns of variation in observed site-mean Narea can be explained by climate-induced variations in optimal V cmax25 and LMA. Leaf nitrogen should accordingly be modelled as a consequence (not a cause) of V cmax25 and LMA, both being optimized to the environment. Nitrogen limitation of plant growth would then be modelled principally via whole-plant carbon allocation, rather than via leaf-level traits. Further research is required to better understand and model the terrestrial nitrogen and carbon cycles and their coupling.
Collapse
Affiliation(s)
- Ning Dong
- Department of Life SciencesGeorgina Mace Centre for the Living Planet, Imperial College LondonAscotUK
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Iain Colin Prentice
- Department of Life SciencesGeorgina Mace Centre for the Living Planet, Imperial College LondonAscotUK
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
- Ministry of Education Key Laboratory for Earth System ModellingDepartment of Earth System Science, Tsinghua UniversityBeijingChina
| | - Ian J. Wright
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Han Wang
- Ministry of Education Key Laboratory for Earth System ModellingDepartment of Earth System Science, Tsinghua UniversityBeijingChina
| | - Owen K. Atkin
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Keith J. Bloomfield
- Department of Life SciencesGeorgina Mace Centre for the Living Planet, Imperial College LondonAscotUK
| | - Tomas F. Domingues
- FFCLRP, Department of BiologyUniversity of São PauloRibeirão PretoBrazil
| | - Sean M. Gleason
- Water Management and Systems Research UnitUSDA‐ARSFort CollinsColoradoUSA
| | - Vincent Maire
- Département des sciences de l'environnementUniversité du Québec à Trois‐Rivièresrois‐RivièresQuebecCanada
| | - Yusuke Onoda
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Hendrik Poorter
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
- Plant Sciences (IBG‐2)Forschungszentrum Julich GmbHJulichGermany
| | - Nicholas G. Smith
- Department of Biological SciencesTexas Tech UniversityLubbockTexasUSA
| |
Collapse
|
16
|
Lacroix F, Zaehle S, Caldararu S, Schaller J, Stimmler P, Holl D, Kutzbach L, Göckede M. Mismatch of N release from the permafrost and vegetative uptake opens pathways of increasing nitrous oxide emissions in the high Arctic. GLOBAL CHANGE BIOLOGY 2022; 28:5973-5990. [PMID: 35852443 DOI: 10.1111/gcb.16345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Biogeochemical cycling in permafrost-affected ecosystems remains associated with large uncertainties, which could impact the Earth's greenhouse gas budget and future climate policies. In particular, increased nutrient availability following permafrost thaw could perturb the greenhouse gas exchange in these systems, an effect largely unexplored until now. Here, we enhance the terrestrial ecosystem model QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system), which simulates fully coupled carbon (C), nitrogen (N) and phosphorus (P) cycles in vegetation and soil, with processes relevant in high latitudes (e.g., soil freezing and snow dynamics). In combination with site-level and satellite-based observations, we use the model to investigate impacts of increased nutrient availability from permafrost thawing in comparison to other climate-induced effects and CO2 fertilization over 1960 to 2018 across the high Arctic. Our simulations show that enhanced availability of nutrients following permafrost thaw account for less than 15% of the total Gross primary productivity increase over the time period, despite simulated N limitation over the high Arctic scale. As an explanation for this weak fertilization effect, observational and model data indicate a mismatch between the timing of peak vegetative growth (week 26-27 of the year, corresponding to the beginning of July) and peak thaw depth (week 32-35, mid-to-late August), resulting in incomplete plant use of nutrients near the permafrost table. The resulting increasing N availability approaching the permafrost table enhances N loss pathways, which leads to rising nitrous oxide (N2 O) emissions in our model. Site-level emission trends of 2 mg N m-2 year-1 on average over the historical time period could therefore predict an emerging increasing source of N2 O emissions following future permafrost thaw in the high Arctic.
Collapse
Affiliation(s)
- Fabrice Lacroix
- Biogeochemical Signals (BSI), Max Planck Institute for Biogeochemistry, Jena, Germany
- Climate and Environmental Physics, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Sönke Zaehle
- Biogeochemical Signals (BSI), Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Silvia Caldararu
- Biogeochemical Signals (BSI), Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Peter Stimmler
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - David Holl
- Institute of Soil Science, Center for Earth System Research and Sustainability (CEN), University Hamburg, Hamburg, Germany
| | - Lars Kutzbach
- Institute of Soil Science, Center for Earth System Research and Sustainability (CEN), University Hamburg, Hamburg, Germany
| | - Mathias Göckede
- Biogeochemical Signals (BSI), Max Planck Institute for Biogeochemistry, Jena, Germany
| |
Collapse
|
17
|
Zhou H, Ouyang T, Liu L, Xia S, Jia Q. In-Forest Planting of High-Value Herb Sarcandra glabra Enhances Soil Carbon Storage without Affecting the Diversity of the Arbuscular Mycorrhiza Fungal Community and Composition of Cunninghamia lanceolata. Microorganisms 2022; 10:microorganisms10091844. [PMID: 36144446 PMCID: PMC9504502 DOI: 10.3390/microorganisms10091844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Sarcandra glabra in-forest planting, an anthropogenic activity that may introduce a variety of disturbances into the forest, is being popularly promoted in southern China, while its consequential influences on soil nutrients, as well as the arbuscular mycorrhiza fungal (AMF) community of key forest keystone plants, are still unelucidated, which hampers the assessment of ecological safety and the improvement of agronomic measurements. In this research, topsoil from a 3-year-old Sarcandra glabra planted forest and a nearby control forest were sampled, and the annual variation in the soil nutrients and AMF community of the keystone tree Cunninghamia lanceolata were investigated. Our result showed that the total amount of soil organic carbon of the Sarcandra glabra cultivation group was significantly higher than that of the control group (p < 0.05), which indicated that Sarcandra glabra cultivation significantly enhanced the topsoil carbon storage. Yet, there were only insignificant differences in the Shannon index and Chao index of the AMF community between the two groups (p > 0.05). PCoA analysis found that the compositional differences between two groups were also insignificant. This indicated that Sarcandra glabra cultivation had no significant influence on the diversity and composition of the Cunninghamia lanceolata AMF community. However, we found that the differences in the total amounts of nitrogen and total phosphorus between the two groups were relatively lower in April and September, which indicated the higher nutrient demands and consumption of Sarcandra glabra in these two periods and suggested that a sufficient fertilizer application in these two stages would reduce the potential competition for nutrients between Sarcandra glabra and Cunninghamia lanceolata in order to ensure Sarcandra glabra production and forest health. Lastly, our results reported a total extra income ranging from of CNY 127,700 hm−2 (7 years of cultivation) to CNY 215,300 hm−2 (10 years cultivation) provided by Sarcandra glabra in-forest planting, which indicated its powerful potential for mitigating poverty. Our research systematically investigated the annual variation in the soil nutrient content and keystone tree AMF community caused by Sarcandra glabra cultivation and offers constructive guidance for Sarcandra glabra cultivation and fertilization management and ecological safety assessment.
Collapse
Affiliation(s)
| | - Tianlin Ouyang
- Jiangxi Provincial Forestry Science and Technology Experiment Center, Xinfeng 341600, China
| | - Liting Liu
- Jiangxi Academy of Forestry, Nanchang 330013, China
| | - Shiqi Xia
- Jiangxi Academy of Forestry, Nanchang 330013, China
| | - Quanquan Jia
- Jiangxi Academy of Forestry, Nanchang 330013, China
- Correspondence: ; Tel.: +86-07-91-8390-2672
| |
Collapse
|
18
|
Wang G, Chen L, Zhang D, Qin S, Peng Y, Yang G, Wang J, Yu J, Wei B, Liu Y, Li Q, Kang L, Wang Y, Yang Y. Divergent Trajectory of Soil Autotrophic and Heterotrophic Respiration upon Permafrost Thaw. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10483-10493. [PMID: 35748652 DOI: 10.1021/acs.est.1c07575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Warming-induced permafrost thaw may stimulate soil respiration (Rs) and thus cause a positive feedback to climate warming. However, due to the limited in situ observations, it remains unclear about how Rs and its autotrophic (Ra) and heterotrophic (Rh) components change upon permafrost thaw. Here we monitored variations in Rs and its components along a permafrost thaw sequence on the Tibetan Plateau, and explored the potential linkage of Rs components (i.e., Ra and Rh) with biotic (e.g., plant functional traits and soil microbial diversity) and abiotic factors (e.g., substrate quality). We found that Ra and Rh exhibited divergent responses to permafrost collapse: Ra increased with the time of thawing, while Rh exhibited a hump-shaped pattern along the thaw sequence. We also observed different drivers of thaw-induced changes in the ratios of Ra:Rs and Rh:Rs. Except for soil water status, plant community structure, diversity, and root properties explained the variation in Ra:Rs ratio, soil substrate quality and microbial diversity were key factors associated with the dynamics of Rh:Rs ratio. Overall, these findings demonstrate divergent patterns and drivers of Rs components as permafrost thaw prolongs, which call for considerations in Earth system models for better forecasting permafrost carbon-climate feedback.
Collapse
Affiliation(s)
- Guanqin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leiyi Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shuqi Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunfeng Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guibiao Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jun Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianchun Yu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Resources and Environmental Science/Hebei Province Key Laboratory for Farmland Eco-Environment, Agricultural University of Hebei, Baoding 071000, China
| | - Qinlu Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyao Kang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Kashi NN, Hobbie EA, Varner RK, Wymore AS, Ernakovich JG, Giesler R. Nutrients Alter Methane Production and Oxidation in a Thawing Permafrost Mire. Ecosystems 2022. [DOI: 10.1007/s10021-022-00758-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|