1
|
Wankmüller FJP, Delval L, Lehmann P, Baur MJ, Cecere A, Wolf S, Or D, Javaux M, Carminati A. Global influence of soil texture on ecosystem water limitation. Nature 2024:10.1038/s41586-024-08089-2. [PMID: 39443806 DOI: 10.1038/s41586-024-08089-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Low soil moisture and high vapour pressure deficit (VPD) cause plant water stress and lead to a variety of drought responses, including a reduction in transpiration and photosynthesis1,2. When soils dry below critical soil moisture thresholds, ecosystems transition from energy to water limitation as stomata close to alleviate water stress3,4. However, the mechanisms behind these thresholds remain poorly defined at the ecosystem scale. Here, by analysing observations of critical soil moisture thresholds globally, we show the prominent role of soil texture in modulating the onset of ecosystem water limitation through the soil hydraulic conductivity curve, whose steepness increases with sand fraction. This clarifies how ecosystem sensitivity to VPD versus soil moisture is shaped by soil texture, with ecosystems in sandy soils being relatively more sensitive to soil drying, whereas ecosystems in clayey soils are relatively more sensitive to VPD. For the same reason, plants in sandy soils have limited potential to adjust to water limitations, which has an impact on how climate change affects terrestrial ecosystems. In summary, although vegetation-atmosphere exchanges are driven by atmospheric conditions and mediated by plant adjustments, their fate is ultimately dependent on the soil.
Collapse
Affiliation(s)
- F J P Wankmüller
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - L Delval
- Earth and Life Institute, Environmental Sciences, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - P Lehmann
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - M J Baur
- Department of Geography, University of Cambridge, Cambridge, UK
- Conservation Research Institute, University of Cambridge, Cambridge, UK
| | - A Cecere
- Earth and Life Institute, Environmental Sciences, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - S Wolf
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - D Or
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV, USA
| | - M Javaux
- Earth and Life Institute, Environmental Sciences, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium.
- Agrosphere IBG-3, Forschungszentrum Jülich, Jülich, Germany.
| | - A Carminati
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Fu Z, Ciais P, Wigneron JP, Gentine P, Feldman AF, Makowski D, Viovy N, Kemanian AR, Goll DS, Stoy PC, Prentice IC, Yakir D, Liu L, Ma H, Li X, Huang Y, Yu K, Zhu P, Li X, Zhu Z, Lian J, Smith WK. Global critical soil moisture thresholds of plant water stress. Nat Commun 2024; 15:4826. [PMID: 38844502 PMCID: PMC11156669 DOI: 10.1038/s41467-024-49244-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
During extensive periods without rain, known as dry-downs, decreasing soil moisture (SM) induces plant water stress at the point when it limits evapotranspiration, defining a critical SM threshold (θcrit). Better quantification of θcrit is needed for improving future projections of climate and water resources, food production, and ecosystem vulnerability. Here, we combine systematic satellite observations of the diurnal amplitude of land surface temperature (dLST) and SM during dry-downs, corroborated by in-situ data from flux towers, to generate the observation-based global map of θcrit. We find an average global θcrit of 0.19 m3/m3, varying from 0.12 m3/m3 in arid ecosystems to 0.26 m3/m3 in humid ecosystems. θcrit simulated by Earth System Models is overestimated in dry areas and underestimated in wet areas. The global observed pattern of θcrit reflects plant adaptation to soil available water and atmospheric demand. Using explainable machine learning, we show that aridity index, leaf area and soil texture are the most influential drivers. Moreover, we show that the annual fraction of days with water stress, when SM stays below θcrit, has increased in the past four decades. Our results have important implications for understanding the inception of water stress in models and identifying SM tipping points.
Collapse
Affiliation(s)
- Zheng Fu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, 91191, France.
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, 91191, France
| | - Jean-Pierre Wigneron
- ISPA, INRAE, Université de Bordeaux, Bordeaux Sciences Agro, F-33140, Villenave d'Ornon, France
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, 10027, USA
| | - Andrew F Feldman
- NASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, MD, 20771, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - David Makowski
- Unit Applied Mathematics and Computer Science (UMR MIA-PS) INRAE AgroParisTech Université Paris-Saclay, Palaiseau, 91120, France
| | - Nicolas Viovy
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, 91191, France
| | - Armen R Kemanian
- Department of Plant Science, The Pennsylvania State University, 116 Agricultural Science and Industries Building, University Park, PA, 16802, USA
| | - Daniel S Goll
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, 91191, France
| | - Paul C Stoy
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, USA
| | - Iain Colin Prentice
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Dan Yakir
- Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Liyang Liu
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, 91191, France
| | - Hongliang Ma
- INRAE, Avignon Universit´e, UMR 1114 EMMAH, UMT CAPTE, F-84000, Avignon, France
| | - Xiaojun Li
- ISPA, INRAE, Université de Bordeaux, Bordeaux Sciences Agro, F-33140, Villenave d'Ornon, France
| | - Yuanyuan Huang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kailiang Yu
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, 91191, France
| | - Peng Zhu
- Department of Geography, The University of Hong Kong, Hong Kong, SAR, China
| | - Xing Li
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Zaichun Zhu
- Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, Guangdong, China
| | - Jinghui Lian
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, 91191, France
| | - William K Smith
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
3
|
Chen X, Pan Z, Huang B, Liang J, Wang J, Zhang Z, Jiang K, Huang N, Han G, Long B, Zhang Z, Men J, Gao R, Cai L, Wu Y, Huang Z. Influence paradigms of soil moisture on land surface energy partitioning under different climatic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170098. [PMID: 38278250 DOI: 10.1016/j.scitotenv.2024.170098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
Soil moisture (SM) directly controls the land surface energy partition which plays an important role in the formation of extreme weather events. However, its dependence on specific climatic conditions is not thoroughly understood due to the complexity of soil moisture effects. Here, we examine the relationship between SM and surface energy partitioning under different climate conditions, and identify the influence paradigms of soil moisture on surface energy partition. We find that temperature changes can explicitly determine the impact paradigm of different physical processes, i.e. evapotranspiration, soil freezing and thawing, and such influence paradigms are also affected by atmospheric aridity (VPD). Globally, there are five paradigms that effects on surface energy partitioning, including the warm-wet paradigm (WW), transitional paradigm (TP), warm-dry paradigm (WD), cool-wet paradigm (CW) and cold paradigm (CP). Since 1981, the global area proportion for TP is observed to increase pronouncedly. We also find that the critical SM threshold exhibits regional variations and the global average is 0.45 m3/m3. The identified paradigms and their long-term change trends provide new insights into the global intensification of land-atmosphere interaction, which has important implications for global warming and the formation of heatwaves.
Collapse
Affiliation(s)
- Xiao Chen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| | - Zhihua Pan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China.
| | - Binxiang Huang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China.
| | - Ju Liang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| | - Jialin Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| | - Ziyuan Zhang
- Department of Geography, Xinzhou Teachers University, Xinzhou, China
| | - Kang Jiang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| | - Na Huang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| | - Guolin Han
- China Meteorological Administration Training Center, Beijing, China
| | - Buju Long
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| | - Zhenzhen Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| | - Jingyu Men
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| | - Riping Gao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| | - Linlin Cai
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| | - Yao Wu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| | - Zhefan Huang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; CMA-CAU Joint Laboratory of Agriculture Addressing Climate Change, Beijing, China
| |
Collapse
|
4
|
Markos N, Preisler Y, Radoglou K, Rotenberg E, Yakir D. Physiological and phenological adjustments in water and carbon fluxes of Aleppo pine forests under contrasting climates in the Eastern Mediterranean. TREE PHYSIOLOGY 2024; 44:tpad125. [PMID: 37788052 DOI: 10.1093/treephys/tpad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
The ability of plants to adjust to the adverse effects of climate change is important for their survival and for their contribution to the global carbon cycle. This is particularly true in the Mediterranean region, which is among the regions that are most vulnerable to climate change. Here, we carried out a 2-year comparative ecophysiological study of ecosystem function in two similar Eastern Mediterranean forests of the same tree species (Pinus halepensis Mill.) under mild (Sani, Greece) and extreme (Yatir, Israel) climatic conditions. The partial effects of key environmental variables, including radiation, vapor pressure deficit, air temperature and soil moisture (Rg, D, T and soil water content (SWC), respectively), on the ecosystems' CO2 and water vapor fluxes were estimated using generalized additive models (GAMs). The results showed a large adjustment between sites in the seasonal patterns of both carbon and water fluxes and in the time and duration of the optimal period (defined here as the time when fluxes were within 85% of the seasonal maximum). The GAM analysis indicated that the main factor influencing the seasonal patterns was SWC, while T and D had significant but milder effects. During the respective optimal periods, the two ecosystems showed strong similarities in the fluxes' responses to the measured environmental variables, indicating similarity in their underlying physiological characteristics. The results indicate that Aleppo pine forests have a strong phenotypic adjustment potential to cope with increasing environmental stresses. This, in turn, will help their survival and their continued contribution to the terrestrial carbon sink in the face of climate change in this region.
Collapse
Affiliation(s)
- Nikos Markos
- Department of Forestry and Management of Environment and Natural Resources, Democritus University of Thrace, Pantazidou 193, 68200, N. Orestiada, Greece
| | - Yakir Preisler
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
- Plant Science institute, Agricultural Research Organization,-The Volcani Institute, Hamakabim 68 Rishon Letzion 7505101, Israel
| | - Kalliopi Radoglou
- Department of Forestry and Management of Environment and Natural Resources, Democritus University of Thrace, Pantazidou 193, 68200, N. Orestiada, Greece
| | - Eyal Rotenberg
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
| | - Dan Yakir
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
| |
Collapse
|
5
|
Appiah M, Abdulai I, Schulman AH, Moshelion M, Dewi ES, Daszkowska-Golec A, Bracho-Mujica G, Rötter RP. Drought response of water-conserving and non-conserving spring barley cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1247853. [PMID: 37941662 PMCID: PMC10628443 DOI: 10.3389/fpls.2023.1247853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/21/2023] [Indexed: 11/10/2023]
Abstract
Introduction Breeding barley cultivars adapted to drought requires in-depth knowledge on physiological drought responses. Methods We used a high-throughput functional phenotyping platform to examine the response of four high-yielding European spring barley cultivars to a standardized drought treatment imposed around flowering. Results Cv. Chanell showed a non-conserving water-use behavior with high transpiration and maximum productivity under well-watered conditions but rapid transpiration decrease under drought. The poor recovery upon re-irrigation translated to large yield losses. Cv. Baronesse showed the most water-conserving behavior, with the lowest pre-drought transpiration and the most gradual transpiration reduction under drought. Its good recovery (resilience) prevented large yield losses. Cv. Formula was less conserving than cv. Baronesse and produced low yet stable yields. Cv. RGT's dynamic water use with high transpiration under ample water supply and moderate transpiration decrease under drought combined with high resilience secured the highest and most stable yields. Discussion Such a dynamic water-use behavior combined with higher drought resilience and favorable root traits could potentially create an ideotype for intermediate drought. Prospective studies will examine these results in field experiments and will use the newly gained understanding on water use in barley to improve process descriptions in crop simulation models to support crop model-aided ideotype design.
Collapse
Affiliation(s)
- Mercy Appiah
- Department of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany
| | - Issaka Abdulai
- Department of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany
| | - Alan H. Schulman
- Production Systems, Natural Resources Institute Finland (LUKE), Helsinki, Finland
- Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Menachem Moshelion
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elvira S. Dewi
- Department of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany
- Department of Agroecotechnology, Faculty of Agriculture, Universitas Malikussaleh, Aceh Utara, Indonesia
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Gennady Bracho-Mujica
- Department of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany
| | - Reimund P. Rötter
- Department of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany
- Centre for Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
van der Woude AM, Peters W, Joetzjer E, Lafont S, Koren G, Ciais P, Ramonet M, Xu Y, Bastos A, Botía S, Sitch S, de Kok R, Kneuer T, Kubistin D, Jacotot A, Loubet B, Herig-Coimbra PH, Loustau D, Luijkx IT. Temperature extremes of 2022 reduced carbon uptake by forests in Europe. Nat Commun 2023; 14:6218. [PMID: 37803032 PMCID: PMC10558467 DOI: 10.1038/s41467-023-41851-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023] Open
Abstract
The year 2022 saw record breaking temperatures in Europe during both summer and fall. Similar to the recent 2018 drought, close to 30% (3.0 million km2) of the European continent was under severe summer drought. In 2022, the drought was located in central and southeastern Europe, contrasting the Northern-centered 2018 drought. We show, using multiple sets of observations, a reduction of net biospheric carbon uptake in summer (56-62 TgC) over the drought area. Specific sites in France even showed a widespread summertime carbon release by forests, additional to wildfires. Partial compensation (32%) for the decreased carbon uptake due to drought was offered by a warm autumn with prolonged biospheric carbon uptake. The severity of this second drought event in 5 years suggests drought-induced reduced carbon uptake to no longer be exceptional, and important to factor into Europe's developing plans for net-zero greenhouse gas emissions that rely on carbon uptake by forests.
Collapse
Affiliation(s)
- Auke M van der Woude
- University of Groningen, Centre for Isotope Research, Groningen, 8481 NG, The Netherlands
- Wageningen University, Meteorology & Air Quality Dept, Wageningen, 6700 AA, The Netherlands
| | - Wouter Peters
- University of Groningen, Centre for Isotope Research, Groningen, 8481 NG, The Netherlands.
- Wageningen University, Meteorology & Air Quality Dept, Wageningen, 6700 AA, The Netherlands.
| | - Emilie Joetzjer
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000, Nancy, France
| | - Sébastien Lafont
- Functional Ecology and Environmental Physics, Ephyse, INRA, Villenave d'Ornon, France
| | - Gerbrand Koren
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Philippe Ciais
- UMR CEA-CNRS-UVSQ, Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France
| | - Michel Ramonet
- UMR CEA-CNRS-UVSQ, Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France
| | - Yidi Xu
- UMR CEA-CNRS-UVSQ, Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France
| | - Ana Bastos
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | | | - Stephen Sitch
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Remco de Kok
- Wageningen University, Meteorology & Air Quality Dept, Wageningen, 6700 AA, The Netherlands
- ICOS ERIC, Carbon Portal, Geocentrum II, Sölvegatan 12, SE-22362, Lund, Sweden
| | - Tobias Kneuer
- Deutscher Wetterdienst, Hohenpeissenberg Meteorological Observatory, Hohenpeissenberg, Germany
| | - Dagmar Kubistin
- Deutscher Wetterdienst, Hohenpeissenberg Meteorological Observatory, Hohenpeissenberg, Germany
| | - Adrien Jacotot
- Sol, Agro et hydrosystèmes, Spatialisation (SAS), UMR 1069, INRAE, Institut Agro, Rennes, France
| | - Benjamin Loubet
- Université Paris Saclay, AgroParisTech, INRAE, UMR 1402 ECOSYS, 91120, Palaiseau, France
| | | | - Denis Loustau
- ISPA, Bordeaux Sciences Agro, INRAE, F-33140, Villenave d'Ornon, France
| | - Ingrid T Luijkx
- Wageningen University, Meteorology & Air Quality Dept, Wageningen, 6700 AA, The Netherlands
| |
Collapse
|
7
|
Javadian M, Scott RL, Biederman JA, Zhang F, Fisher JB, Reed SC, Potts DL, Villarreal ML, Feldman AF, Smith WK. Thermography captures the differential sensitivity of dryland functional types to changes in rainfall event timing and magnitude. THE NEW PHYTOLOGIST 2023; 240:114-126. [PMID: 37434275 DOI: 10.1111/nph.19127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023]
Abstract
Drylands of the southwestern United States are rapidly warming, and rainfall is becoming less frequent and more intense, with major yet poorly understood implications for ecosystem structure and function. Thermography-based estimates of plant temperature can be integrated with air temperature to infer changes in plant physiology and response to climate change. However, very few studies have evaluated plant temperature dynamics at high spatiotemporal resolution in rainfall pulse-driven dryland ecosystems. We address this gap by incorporating high-frequency thermal imaging into a field-based precipitation manipulation experiment in a semi-arid grassland to investigate the impacts of rainfall temporal repackaging. All other factors held constant, we found that fewer/larger precipitation events led to cooler plant temperatures (1.4°C) compared to that of many/smaller precipitation events. Perennials, in particular, were 2.5°C cooler than annuals under the fewest/largest treatment. We show these patterns were driven by: increased and consistent soil moisture availability in the deeper soil layers in the fewest/largest treatment; and deeper roots of perennials providing access to deeper plant available water. Our findings highlight the potential for high spatiotemporal resolution thermography to quantify the differential sensitivity of plant functional groups to soil water availability. Detecting these sensitivities is vital to understanding the ecohydrological implications of hydroclimate change.
Collapse
Affiliation(s)
- Mostafa Javadian
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA
| | - Russell L Scott
- Southwest Watershed Research Center, USDA Agricultural Research Service, Tucson, AZ, 85719, USA
| | - Joel A Biederman
- Southwest Watershed Research Center, USDA Agricultural Research Service, Tucson, AZ, 85719, USA
| | - Fangyue Zhang
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA
- Southwest Watershed Research Center, USDA Agricultural Research Service, Tucson, AZ, 85719, USA
| | - Joshua B Fisher
- Schmid College of Science and Technology, Chapman University, Orange, CA, 92866, USA
| | - Sasha C Reed
- Southwest Biological Science Center, US Geological Survey, Moab, UT, 84532, USA
| | - Daniel L Potts
- Biology Department, SUNY Buffalo State, Buffalo, NY, 14222, USA
| | - Miguel L Villarreal
- Western Geographic Science Center, US Geological Survey, Moffett Field, CA, 94035, USA
| | - Andrew F Feldman
- Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
- NASA Postdoctoral Program, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - William K Smith
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
8
|
Fu Z, Ciais P, Feldman AF, Gentine P, Makowski D, Prentice IC, Stoy PC, Bastos A, Wigneron JP. Critical soil moisture thresholds of plant water stress in terrestrial ecosystems. SCIENCE ADVANCES 2022; 8:eabq7827. [PMID: 36332021 PMCID: PMC9635832 DOI: 10.1126/sciadv.abq7827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Plant water stress occurs at the point when soil moisture (SM) limits transpiration, defining a critical SM threshold (θcrit). Knowledge of the spatial distribution of θcrit is crucial for future projections of climate and water resources. Here, we use global eddy covariance observations to quantify θcrit and evaporative fraction (EF) regimes. Three canonical variables describe how EF is controlled by SM: the maximum EF (EFmax), θcrit, and slope (S) between EF and SM. We find systematic differences of these three variables across biomes. Variation in θcrit, S, and EFmax is mostly explained by soil texture, vapor pressure deficit, and precipitation, respectively, as well as vegetation structure. Dryland ecosystems tend to operate at low θcrit and show adaptation to water deficits. The negative relationship between θcrit and S indicates that dryland ecosystems minimize θcrit through mechanisms of sustained SM extraction and transport by xylem. Our results further suggest an optimal adaptation of local EF-SM response that maximizes growing-season evapotranspiration and photosynthesis.
Collapse
Affiliation(s)
- Zheng Fu
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Andrew F. Feldman
- NASA Goddard Space Flight Center, Earth Sciences Division, Greenbelt, MD 20771, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | - David Makowski
- Unit Applied Mathematics and Computer Science (UMR 518), INRAE, AgroParisTech, Université Paris-Saclay, Paris, France
| | - I. Colin Prentice
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Paul C. Stoy
- Department of Biological Systems Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Ana Bastos
- Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, D-07745 Jena, Germany
| | - Jean-Pierre Wigneron
- ISPA, INRAE, Université de Bordeaux, Bordeaux Sciences Agro, F-33140 Villenave d’Ornon, France
| |
Collapse
|
9
|
Zheng Z. Climate Controls on the Spatial Variability of Vegetation Greenup Rate across Ecosystems in Northern Hemisphere. PLANTS (BASEL, SWITZERLAND) 2022; 11:2971. [PMID: 36365427 PMCID: PMC9653628 DOI: 10.3390/plants11212971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Variations in individual phenological events in response to global change have received considerable attentions. However, the development of phenological stages is relatively neglected, especially based on in situ observation data. In this study, the rate of vegetation greenup (Vgreenup) across the Northern Hemisphere was examined for different plant functional types (PFTs) by using eddy covariance flux data from 40 sites (417 site-years). Then, the controls of climatic variables on the spatial distribution of Vgreenup across PFTs were further investigated. The mean Vgreenup was 0.22 ± 0.11 g C m-2 day-2 across all sites, with the largest and lowest values observed in cropland and evergreen needle-leaf forest, respectively. A strong latitude dependence by Vgreenup was observed in both Europe and North America. The spatial variations of Vgreenup were jointly regulated by the duration of greenup (Dgreenup) and the amplitude of greenup (Agreenup). However, the predominant factor was Dgreenup in Europe, which changed to Agreenup in North America. Spring climatic factors exerted significant influences on the spatial distribution of Vgreenup across PFTs. Specifically, increasing temperature tended to shorten Dgreenup and promote Agreenup simultaneously, resulting in an acceleration of Vgreenup. Dryness had a depression effect on Vgreenup for the whole study area, as exhibited by a lower Vgreenup with increasing vapor pressure deficit or decreasing soil moisture. However, Vgreenup in North America was only significantly and positively correlated with temperature. Without the limitation of other climatic factors, the temperature sensitivity of Vgreenup was higher in North America (0.021 g C m-2 day-2 °C-1) than in Europe (0.015 g C m-2 day-2 °C-1). This study provides new cognitions for Vgreenup dynamics from in situ observations in complement to satellite observations, which can improve our understanding of terrestrial carbon cycles.
Collapse
Affiliation(s)
- Zhoutao Zheng
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|