1
|
Wang Z, Hu H, Chai Z, Hu Y, Wang S, Zhang C, Yan C, Wang J, Coll W, Huang TJ, Xu X, Deng H. Bioinspired hydrophobic pseudo-hydrogel for programmable shape-morphing. Nat Commun 2025; 16:875. [PMID: 39833266 DOI: 10.1038/s41467-025-56291-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Inspired by counterintuitive water "swelling" ability of the hydrophobic moss of the genus Sphagnum (Peat moss), we prepared a hydrophobic pseudo-hydrogel (HPH), composed of a pure hydrophobic silicone elastomer with a tailored porous structure. In contrast to conventional hydrogels, HPH achieves absorption-induced volume expansion through surface tension induced elastocapillarity, presenting an unexpected absorption-induced volume expansion capability in hydrophobic matrices. We adopt a theoretical framework elucidating the interplay of surface tension induced elastocapillarity, providing insights into the absorption-induced volume expansion behavior. By systematically programming the pore structure, we demonstrate tunable, anisotropic, and programmable absorption-induced expansion. This leads to dedicated self-shaping transformations. Incorporating magnetic particles, we engineer HPH-based soft robots capable of swimming, rolling, and walking. This study demonstrates a unusual approach to achieve water-responsive behavior in hydrophobic materials, expanding the possibilities for programmable shape-morphing in soft materials and soft robotic applications.
Collapse
Affiliation(s)
- Zhigang Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Haotian Hu
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Zefan Chai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Yuhang Hu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Siyuan Wang
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Cheng Zhang
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Chunjie Yan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Jun Wang
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Wesley Coll
- Department of Mechanical Engineering and Material Science, Duke University, Durham, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, USA
- Department of Biomedical Engineering, Duke University, Durham, USA
| | - Xianchen Xu
- Department of Biomedical Engineering, Duke University, Durham, USA.
| | - Heng Deng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China.
- Shenzhen Research Institute, China University of Geosciences, Shenzhen, China.
| |
Collapse
|
2
|
Cao B, Bai C, Wu K, La T, Chen W, Liu L, Zhou X, Chen C, Li X, Su Y, Che L, Li G. Ticks jump in a warmer world: Global distribution shifts of main pathogenic ticks are associated with future climate change. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124129. [PMID: 39823935 DOI: 10.1016/j.jenvman.2025.124129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/22/2024] [Accepted: 01/10/2025] [Indexed: 01/20/2025]
Abstract
In recent decades, the threats of ticks and tick-borne diseases (TBDs) increased extensively with environmental change, urbanization, and rapidly changing interactions between human and animals. However, large-scale distribution of tick and TBD risks as well as their relationship with environmental change remain inadequately unclear. Here, we first proposed a "tick-pathogen-habitat-human" model to project the global potential distribution of main pathogenic ticks using a total of 70,714 occurrence records. Meanwhile, the effects of ecological factors and socio-economic factors driving the distribution pattern were evaluated. Based on this, the risk distribution of TBDs was projected by large-scale "tick-pathogen-disease" analysis. Furthermore, the distribution shifts of tick suitability were projected under different shared socio-economic pathways in the future. Our findings demonstrate that warm temperate countries (e.g., the United States, China and European countries) in the Northern Hemisphere represent significant high risk regions for ticks and TBDs. Specifically, solar radiation of January emerges as the main decisive factor determining the risk distribution pattern. Future shifts of tick suitability showed decrease trend under low greenhouse gas emission scenarios but increase trend under high scenarios. These suitability shifts were significantly correlated with future temperature- (9 species) and precipitation- (19 species) related factors. Collectively, in this study we first shaped the global risk distribution of main ticks and TBDs as well as tick suitability shifts correlated with future global climate change, which will provide helpful references for disease prevention and administration. The methods proposed here will also shed light on other emerging and recurrent zoonotic diseases (e.g., COVID-19, monkeypox) in the future.
Collapse
Affiliation(s)
- Bo Cao
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China; Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China; Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710004, China; College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Chengke Bai
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Kunyi Wu
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ting La
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wenwen Chen
- Department of Dermatology, Yangling Demonstration Zone Hospital, Yangling, 712100, China
| | - Lianjin Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiaofang Zhou
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Chong Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xian Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Yiyang Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lingyu Che
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Guishuang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
3
|
Liu N, Guo Q, Shi F, Gao L, Liu Y, Wang Y, Gong Z, Liu H, Sun Y, Li B, Ni B, Zhu RL, Zhao Q. Developmentally controlled subcellular remodeling and VND-initiated vacuole-executed PCD module shape xylem-like cells in peat moss. Commun Biol 2024; 7:1323. [PMID: 39402183 PMCID: PMC11473775 DOI: 10.1038/s42003-024-07003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/02/2024] [Indexed: 10/17/2024] Open
Abstract
Peat moss (Sphagnum) is a non-vascular higher plant with unique xylem-like hyaline (H) cells that are accompanied by photosynthetic chlorophyllous cells. These cellular structures play crucial roles in water storage and carbon sequestration. However, it is largely unknown how peat moss develops the H cells. This study systematically explored the Sphagnum Developmental Cell Atlas and Lineage and classified leaf cell development into two lineages with six stages (S0-S5) based on changes in key cellular traits, including the formation of spiral secondary cell walls (S4) and the presence of water pores (S5). Cell lineage-specific subcellular remodeling was transcriptionally regulated during leaf development, and vacuole-mediated clearance of organelles and cell death led to mature dead H cells. Interestingly, expression of land plant conserved Vascular-related NAC Domain (VND) genes correlated with H cell formation. Overall, these results suggest that the origination of xylem-like H cells is related to VND, likely through the neofunctionalization of vacuole-mediated cell death to attempt xylem formation in peat moss, suggesting potential uncoupling of xylem and phloem cell origins. This study positions peat moss as a potential model organism for studying integrative evolutionary cell biology.
Collapse
Affiliation(s)
- Ningjing Liu
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Qiuqi Guo
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Fangming Shi
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Lei Gao
- The IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongqi Liu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, China
| | - Yiwen Wang
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Zhiwei Gong
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Haoran Liu
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Yue Sun
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Bosheng Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, China
| | - Bing Ni
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Rui-Liang Zhu
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, 200241, Shanghai, China.
- Institute of Eco-Chongming, Shanghai, China.
| |
Collapse
|
4
|
Gürlek S, Araújo AC, Brummitt N. Predicting the Threat Status of Mosses Using Functional Traits. PLANTS (BASEL, SWITZERLAND) 2024; 13:2019. [PMID: 39124136 PMCID: PMC11314510 DOI: 10.3390/plants13152019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
Mosses are an early lineage of the plant kingdom, with around 13,000 species. Although an important part of biodiversity, providing crucial ecosystem services, many species are threatened with extinction. However, only circa 300 species have so far had their extinction risk evaluated globally for the IUCN Red List. Functional traits are known to help predict the extinction risk of species in other plant groups. In this study, a matrix of 15 functional traits was produced for 723 moss species from around the world to evaluate the potential of such predictability. Binary generalized linear models showed that monoicous species were more likely to be threatened than dioicous species, and the presence of a sporophyte (sexual reproduction), vegetative reproduction and an erect (straight) capsule instead of a pendent (immersed) one lowers the risk of species extinction. A longer capsule, seta and stem length, as well as broader substrate breadth, are indicative of species with a lower risk of extinction. The best-performing models fitted with few traits were able to predict extinction risks of species with good accuracy. These models applied to Data Deficient (DD) species proved how useful they may be to speed up the IUCN Red List assessment process while reducing the number of listed DD species, by selecting species most in need of a full, detailed assessment. Some traits tested in this study are a novelty in conservation research on mosses, opening new possibilities for future studies. The traits studied and the models presented here are a significant contribution to the knowledge of mosses at risk of extinction and will help to improve conservation efforts.
Collapse
Affiliation(s)
- Sinan Gürlek
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot SL5 7PY, UK
- Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK; (A.C.A.); (N.B.)
| | - Ana Claudia Araújo
- Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK; (A.C.A.); (N.B.)
| | - Neil Brummitt
- Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK; (A.C.A.); (N.B.)
| |
Collapse
|
5
|
Yu MJ, Wang XT, Wang T, Huang WQ, Lang ZD, Wang JP, Wu YH. Spatial and Seasonal Changes in Microbial Community of Hynobius amjiensis Breeding Pools in a Sphagnum-Dominated Peatland. Microorganisms 2024; 12:1344. [PMID: 39065112 PMCID: PMC11279080 DOI: 10.3390/microorganisms12071344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Peatlands deliver a variety of beneficial ecosystem services, particularly serving as habitats for a diverse array of species. Hynobius amjiensis is a critically endangered amphibian initially discovered in a Sphagnum-dominated peatland in Anji, China. The unique habitat requirements of H. amjiensis make it highly vulnerable to environmental changes. Here, we investigated the different breeding pools of H. amjiensis in the Sphagnum-dominated peatland (the type locality) for a one-year period to evaluate the interactions among the egg sacs present, water quality, and microbial communities (16S and 18S rRNA gene amplicon). The numbers of egg sacs were higher in the breeding pools located at the marginal area than those at the core area of the peatland. Similarly, the α-diversity of bacteria, fungi, and protists were lower in the core region compared to those at the edge of the peatland, perhaps due to water eutrophication. The microbial communities and water quality differed significantly among breeding pools and sampling months. The simpler microbial networks of the breeding pools in the core wetland may impact the numbers and health of the egg sacs. This study contributes to a better understanding of the effect of water quality on biodiversity in peatlands, and it can also guide regulations for wetland conservation and the protection of endangered species.
Collapse
Affiliation(s)
- Meng-Jie Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.-J.Y.); (T.W.); (W.-Q.H.)
| | - Xian-Ting Wang
- Zhejiang Hynobius amjiensis Nature Reserve Management Office, Huzhou 313300, China
| | - Ting Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.-J.Y.); (T.W.); (W.-Q.H.)
| | - Wei-Quan Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.-J.Y.); (T.W.); (W.-Q.H.)
| | - Ze-Dong Lang
- Zhejiang Hynobius amjiensis Nature Reserve Management Office, Huzhou 313300, China
| | - Jia-Peng Wang
- School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China
| | - Yu-Huan Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.-J.Y.); (T.W.); (W.-Q.H.)
| |
Collapse
|
6
|
Huang WZ, Shen C, Xu H, Shu L, Sulayman M, Wu YH, Zhu RL. A Synopsis of Dicranum Hedw. (Dicranaceae, Bryophyta) in China, with Special References to Four Species Newly Reported and Re-Evaluation of Dicranum psathyrum Klazenga. PLANTS (BASEL, SWITZERLAND) 2024; 13:1759. [PMID: 38999599 PMCID: PMC11243558 DOI: 10.3390/plants13131759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 07/14/2024]
Abstract
Dicranum Hedw. is a highly diverse and widely distributed genus within Dicranaceae. The species diversity and distribution of this genus in China, however, remain not well known. A new revision of Dicranum in China using morphological and molecular phylogenetic methods confirms that China has 39 species, including four newly reported species, D. bardunovii Tubanova & Ignatova, D. dispersum Engelmark, D. schljakovii Ignatova & Tubanova, and D. spadiceum J.E.Zetterst. Dicranum psathyrum Klazenga is transferred to Dicranoloma (Renauld) Renauld as a new synonym of Dicranoloma fragile Broth. Two species, Dicranum brevifolium (Lindb.) Lindb. and D. viride (Sull. & Lesq.) Lindb. are excluded from the bryoflora of China. A key to the Chinese Dicranum species is also provided. These results indicate an underestimation of the distribution range of numerous Dicranum species, underscoring the need for further in-depth investigations into the worldwide Dicranum diversity.
Collapse
Affiliation(s)
- Wen-Zhuan Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Bryology Laboratory, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chao Shen
- Bryology Laboratory, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hao Xu
- Bryology Laboratory, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lei Shu
- Bryology Laboratory, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mamtimin Sulayman
- Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yu-Huan Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui-Liang Zhu
- Bryology Laboratory, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
7
|
Kilner CL, Carrell AA, Wieczynski DJ, Votzke S, DeWitt K, Yammine A, Shaw J, Pelletier DA, Weston DJ, Gibert JP. Temperature and CO 2 interactively drive shifts in the compositional and functional structure of peatland protist communities. GLOBAL CHANGE BIOLOGY 2024; 30:e17203. [PMID: 38433341 DOI: 10.1111/gcb.17203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Microbes affect the global carbon cycle that influences climate change and are in turn influenced by environmental change. Here, we use data from a long-term whole-ecosystem warming experiment at a boreal peatland to answer how temperature and CO2 jointly influence communities of abundant, diverse, yet poorly understood, non-fungi microbial Eukaryotes (protists). These microbes influence ecosystem function directly through photosynthesis and respiration, and indirectly, through predation on decomposers (bacteria and fungi). Using a combination of high-throughput fluid imaging and 18S amplicon sequencing, we report large climate-induced, community-wide shifts in the community functional composition of these microbes (size, shape, and metabolism) that could alter overall function in peatlands. Importantly, we demonstrate a taxonomic convergence but a functional divergence in response to warming and elevated CO2 with most environmental responses being contingent on organismal size: warming effects on functional composition are reversed by elevated CO2 and amplified in larger microbes but not smaller ones. These findings show how the interactive effects of warming and rising CO2 levels could alter the structure and function of peatland microbial food webs-a fragile ecosystem that stores upwards of 25% of all terrestrial carbon and is increasingly threatened by human exploitation.
Collapse
Affiliation(s)
- Christopher L Kilner
- Department of Biology, Duke University, Durham, North Carolina, USA
- Bird Conservancy of the Rockies, Fort Collins, Colorado, USA
| | - Alyssa A Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Samantha Votzke
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Katrina DeWitt
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Andrea Yammine
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Jonathan Shaw
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Dale A Pelletier
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jean P Gibert
- Department of Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
8
|
Yang J, Fu Z, Xiao K, Dong H, Zhou Y, Zhan Q. Climate Change Potentially Leads to Habitat Expansion and Increases the Invasion Risk of Hydrocharis (Hydrocharitaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:4124. [PMID: 38140451 PMCID: PMC10748102 DOI: 10.3390/plants12244124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Climate change is a crucial factor impacting the geographical distribution of plants and potentially increases the risk of invasion for certain species, especially for aquatic plants dispersed by water flow. Here, we combined six algorithms provided by the biomod2 platform to predict the changes in global climate-suitable areas for five species of Hydrocharis (Hydrocharitaceae) (H. chevalieri, H. dubia, H. laevigata, H. morsus-ranae, and H. spongia) under two current and future carbon emission scenarios. Our results show that H. dubia, H. morsus-ranae, and H. laevigata had a wide range of suitable areas and a high risk of invasion, while H. chevalieri and H. spongia had relatively narrow suitable areas. In the future climate scenario, the species of Hydrocharis may gain a wider habitat area, with Northern Hemisphere species showing a trend of migration to higher latitudes and the change in tropical species being more complex. The high-carbon-emission scenario led to greater changes in the habitat area of Hydrocharis. Therefore, we recommend strengthening the monitoring and reporting of high-risk species and taking effective measures to control the invasion of Hydrocharis species.
Collapse
Affiliation(s)
- Jiongming Yang
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (J.Y.); (Z.F.)
| | - Zhihao Fu
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (J.Y.); (Z.F.)
| | - Keyan Xiao
- Hubei Xiuhu Botanical Garden, Xiaogan 432500, China;
| | - Hongjin Dong
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, China;
| | - Yadong Zhou
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (J.Y.); (Z.F.)
| | - Qinghua Zhan
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (J.Y.); (Z.F.)
| |
Collapse
|
9
|
Juselius-Rajamäki T, Väliranta M, Korhola A. The ongoing lateral expansion of peatlands in Finland. GLOBAL CHANGE BIOLOGY 2023; 29:7173-7191. [PMID: 37855045 DOI: 10.1111/gcb.16988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
Peatlands are the most dense terrestrial carbon stock and since the last glacial epoch northern peatlands have accumulated between 400 and 1000 Gt of carbon. Although the horizontal development history of the peatlands during the Holocene has been previously researched, these studies have overlooked the current peatland margins. This has led to a long-standing view that the lateral expansion of the peatlands has halted or significantly slowed down. However, no concentrated effort focusing on the recent development of the peatland margins has been conducted. To fulfil this knowledge gap, we studied the development of peatland margins in five Finnish peatlands. In addition, we studied the effect of peatland subsoil characteristics and past forest fires on the peatland expansion. We sampled 15 transects with a total of 47 peat cores utilizing 14 C radiocarbon dating on the basal layers of these peat cores. Our results show that the Northern peatlands are still expanding with four of our study sites having recent, post-1950's basal ages in the peatland margins. In addition, the rate of peatland lateral expansion has increased during the last 1500 years in our study sites, challenging the current knowledge of the recent peatland expansion dynamics. We recorded lateral expansion rates of 0.1-6.4 cm/year from the sites studied. The rate of lateral expansion was restricted by local characteristics, especially the steepness of subsoil (p = .0108). Forest fires likely played an important role as the trigger for lateral expansion in southern study sites with large number of charcoal found at the basal layer of the peat cores. Depending on the scope of this recent lateral expansion across the vast northern peatlands, the effect on the carbon balance could be significant and should be taken into account when estimating the development of carbon pools in these crucial ecosystems.
Collapse
Affiliation(s)
- Teemu Juselius-Rajamäki
- Environmental Change Research Unit (ECRU), Ecosystems, Environment Research Programme, Faculty of Biological and Environmental Sciences, and Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Helsinki, Finland
| | - Minna Väliranta
- Environmental Change Research Unit (ECRU), Ecosystems, Environment Research Programme, Faculty of Biological and Environmental Sciences, and Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Helsinki, Finland
| | - Atte Korhola
- Environmental Change Research Unit (ECRU), Ecosystems, Environment Research Programme, Faculty of Biological and Environmental Sciences, and Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Norby RJ, Baxter T, Živković T, Weston DJ. Shading contributes to Sphagnum decline in response to warming. Ecol Evol 2023; 13:e10542. [PMID: 37732286 PMCID: PMC10507575 DOI: 10.1002/ece3.10542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
Experimental warming of an ombrotrophic bog in northern Minnesota has caused a rapid decline in the productivity and areal cover of Sphagnum mosses, affecting whole-ecosystem carbon balance and biogeochemistry. Direct effects of elevated temperature and the attendant drying are most likely the primary cause of the effects on Sphagnum, but there may also be responses to the increased shading from shrubs, which increased with increasing temperature. To evaluate the independent effects of reduction in light availability and deposition of shrub litter on Sphagnum productivity, small plots with shrubs removed were laid out adjacent to the warming experiment on hummocks and hollows in three blocks and with five levels of shading. Four plots were covered with neutral density shade cloth to simulate shading from shrubs of 30%-90% reduction in light; one plot was left open. Growth of Sphagnum angustifolium/fallax and S. divinum declined linearly with increasing shade in hollows, but there was no response to shade on hummocks, where higher irradiance in the open plots may have been inhibitory. Shading caused etiolation of Sphagnum-they were thin and spindly under the deepest shade. A dense mat of shrub litter, corresponding to the amount of shrub litter produced in response to warming, did not inhibit Sphagnum growth or cause increases in potentially toxic base cations. CO2 exchange and chlorophyll-a fluorescence of S. angustifolium/fallax from the 30% and 90% shade cloth plots were measured in the laboratory. Light response curves indicate that maximal light saturated photosynthesis was 42% greater for S. angustifolium/fallax grown under 30% shade cloth relative to plants grown under 90% shade cloth. The response of Sphagnum growth in response to increasing shade is consistent with the hypothesis that increased shade resulting from shrub expansion in response to experimental warming contributed to reduced Sphagnum growth.
Collapse
Affiliation(s)
- Richard J Norby
- Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee USA
| | - Taylor Baxter
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee USA
| | - Tatjana Živković
- Department of Biology Dalhousie University Halifax Nova Scotia Canada
- Biological Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - David J Weston
- Biological Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| |
Collapse
|
11
|
Zhao Y, Liu C, Li X, Ma L, Zhai G, Feng X. Sphagnum increases soil's sequestration capacity of mineral-associated organic carbon via activating metal oxides. Nat Commun 2023; 14:5052. [PMID: 37598219 PMCID: PMC10439956 DOI: 10.1038/s41467-023-40863-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023] Open
Abstract
Sphagnum wetlands are global hotspots for carbon storage, conventionally attributed to the accumulation of decay-resistant litter. However, the buildup of mineral-associated organic carbon (MAOC) with relatively slow turnover has rarely been examined therein. Here, employing both large-scale comparisons across major terrestrial ecosystems and soil survey along Sphagnum gradients in distinct wetlands, we show that Sphagnum fosters a notable accumulation of metal-bound organic carbon (OC) via activating iron and aluminum (hydr)oxides in the soil. The unique phenolic and acidic metabolites of Sphagnum further strengthen metal-organic associations, leading to the dominance of metal-bound OC in soil MAOC. Importantly, in contrast with limited MAOC sequestration potentials elsewhere, MAOC increases linearly with soil OC accrual without signs of saturation in Sphagnum wetlands. These findings collectively demonstrate that Sphagnum acts as an efficient 'rust engineer' that largely boosts the rusty carbon sink in wetlands, potentially increasing long-term soil carbon sequestration.
Collapse
Affiliation(s)
- Yunpeng Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengzhu Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingqi Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lixiao Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoqing Zhai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojuan Feng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Cao B, Bai C, Wu K, La T, Su Y, Che L, Zhang M, Lu Y, Gao P, Yang J, Xue Y, Li G. Tracing the future of epidemics: Coincident niche distribution of host animals and disease incidence revealed climate-correlated risk shifts of main zoonotic diseases in China. GLOBAL CHANGE BIOLOGY 2023; 29:3723-3746. [PMID: 37026556 DOI: 10.1111/gcb.16708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 06/06/2023]
Abstract
Climate has critical roles in the origin, pathogenesis and transmission of infectious zoonotic diseases. However, large-scale epidemiologic trend and specific response pattern of zoonotic diseases under future climate scenarios are poorly understood. Here, we projected the distribution shifts of transmission risks of main zoonotic diseases under climate change in China. First, we shaped the global habitat distribution of main host animals for three representative zoonotic diseases (2, 6, and 12 hosts for dengue, hemorrhagic fever, and plague, respectively) with 253,049 occurrence records using maximum entropy (Maxent) modeling. Meanwhile, we predicted the risk distribution of the above three diseases with 197,098 disease incidence records from 2004 to 2017 in China using an integrated Maxent modeling approach. The comparative analysis showed that there exist highly coincident niche distributions between habitat distribution of hosts and risk distribution of diseases, indicating that the integrated Maxent modeling is accurate and effective for predicting the potential risk of zoonotic diseases. On this basis, we further projected the current and future transmission risks of 11 main zoonotic diseases under four representative concentration pathways (RCPs) (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in 2050 and 2070 in China using the above integrated Maxent modeling with 1,001,416 disease incidence records. We found that Central China, Southeast China, and South China are concentrated regions with high transmission risks for main zoonotic diseases. More specifically, zoonotic diseases had diverse shift patterns of transmission risks including increase, decrease, and unstable. Further correlation analysis indicated that these patterns of shifts were highly correlated with global warming and precipitation increase. Our results revealed how specific zoonotic diseases respond in a changing climate, thereby calling for effective administration and prevention strategies. Furthermore, these results will shed light on guiding future epidemiologic prediction of emerging infectious diseases under global climate change.
Collapse
Affiliation(s)
- Bo Cao
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Chengke Bai
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Kunyi Wu
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Ting La
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yiyang Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lingyu Che
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Meng Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yumeng Lu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Pufan Gao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jingjing Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ying Xue
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Guishuang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
13
|
Kolari THM, Tahvanainen T. Inference of future bog succession trajectory from spatial chronosequence of changing aapa mires. Ecol Evol 2023; 13:e9988. [PMID: 37082320 PMCID: PMC10111175 DOI: 10.1002/ece3.9988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023] Open
Abstract
Climate change-driven vegetation changes can alter the ecosystem functions of northern peatlands. Several case studies have documented fen-to-bog transition (FBT) over recent decades, which can have major implications, as increased bog growth would likely cause cooling feedback. However, studies beyond individual cases are missing to infer if a common trajectory or many alternatives of FBT are in progress. We explored plant community and hydrology patterns during FBT of 23 boreal aapa mire complexes in Finland. We focused on mires where comparisons of historical (1940-1970) and new (2017-2019) aerial photographs indicated an expansion of Sphagnum-dominated zones. Vegetation plot and water chemistry data were collected from string-flark fens, transition zones with indications of Sphagnum increase, and bog zones; thus, in a chronosequence with a decadal time span. We ask, is there a common trajectory or many alternatives of FBT in progress, and what are the main characteristics (species and traits) of transitional plant communities? We found a pattern of fen-bog transitions via an increase in Sphagnum sect. Cuspidata (mainly S. majus and S. balticum), indicating a consistently high water table. Indicators only of transitional communities were scarce (Sphagnum lindbergii), but FBT had apparently facilitated shallow-rooted aerenchymatous vascular plants, especially Scheuchzeria palustris. Water pH consistently reflected the chronosequence with averages of 4.2, 3.9, and 3.8, from fen to transition and bog zones. Due to weak minerotrophy of string-flark fens, species richness increased towards bogs, but succession led to reduced beta diversity and homogenization among bog sites. Decadal chronosequence suggested a future fen-bog transition through a wet phase, instead of a drying trend. Transitional poor-fen vegetation was characterized by the abundance of Sphagnum lindbergii, S. majus, and Scheuchzeria palustris. Sphagnum mosses likely benefit from longer growing seasons and consistently wet and acidic conditions of aapa mires.
Collapse
Affiliation(s)
- Tiina H. M. Kolari
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandP.O. Box 111JoensuuFI‐80101Finland
| | - Teemu Tahvanainen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandP.O. Box 111JoensuuFI‐80101Finland
| |
Collapse
|
14
|
Ma XY, Xu H, Cao ZY, Shu L, Zhu RL. Will climate change cause the global peatland to expand or contract? Evidence from the habitat shift pattern of Sphagnum mosses. GLOBAL CHANGE BIOLOGY 2022; 28:6419-6432. [PMID: 35900846 DOI: 10.1111/gcb.16354] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Peatlands play a crucial role in the global carbon cycle. Sphagnum mosses (peat mosses) are considered to be the peatland ecosystem engineers and contribute to the carbon accumulation in the peatland ecosystems. As cold-adapted species, the dominance of Sphagnum mosses in peatlands will be threatened by climate warming. The response of Sphagnum mosses to climate change is closely related to the future trajectory of carbon fluxes in peatlands. However, the impact of climate change on the habitat suitability of Sphagnum mosses on a global scale is poorly understood. To predict the potential impact of climate change on the global distribution of Sphagnum mosses, we used the MaxEnt model to predict the potential geographic distribution of six Sphagnum species that dominate peatlands in the future (2050 and 2070) under two greenhouse gas emission scenarios (SSP1-2.6 and SSP5-8.5). The results show that the mean temperature of the coldest quarter, precipitation of the driest month, and topsoil calcium carbonate are the main factors affecting the habitat availability of Sphagnum mosses. As the climate warms, Sphagnum mosses tend to migrate northward. The suitable habitat and abundance of Sphagnum mosses increase extensively in the high-latitude boreal peatland (north of 50°N) and decrease on a large scale beyond the high-latitude boreal peatland. The southern edge of boreal peatlands would experience the greatest decline in the suitable habitat and richness of Sphagnum mosses with the temperature rising and would be a risk area for the transition from carbon sink to carbon source. The spatial-temporal pattern changes of Sphagnum mosses simulated in this study provide a reference for the development of management and conservation strategies for Sphagnum bogs.
Collapse
Affiliation(s)
- Xiao-Ying Ma
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hao Xu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zi-Yin Cao
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, China
| | - Lei Shu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, China
| | - Rui-Liang Zhu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, China
- Tiantong National Station of Forest Ecosystem, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, China
- Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai, China
| |
Collapse
|
15
|
Man B, Xiang X, Zhang J, Cheng G, Zhang C, Luo Y, Qin Y. Keystone Taxa and Predictive Functional Analysis of Sphagnum palustre Tank Microbiomes in Erxianyan Peatland, Central China. BIOLOGY 2022; 11:1436. [PMID: 36290340 PMCID: PMC9598613 DOI: 10.3390/biology11101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Sphagnum is a fundamental ecosystem of engineers, including more than 300 species around the world. These species host diverse microbes, either endosymbiotic or ectosymbiotic, and are key to carbon sequestration in peatland ecosystems. However, the linkages between different types of Sphagnum and the diversity and ecological functions of Sphagnum-associated microbiomes are poorly known, and so are their joint responses to ecological functions. Here, we systematically investigated endophytes in Sphagnum palustre via next-generation sequencing (NGS) techniques in the Erxianyan peatland, central China. The total bacterial microbiome was classified into 38 phyla and 55 classes, 122 orders and 490 genera. The top 8 phyla of Proteobacteria (33.69%), Firmicutes (11.94%), Bacteroidetes (9.42%), Actinobacteria (6.53%), Planctomycetes (6.37%), Gemmatimonadetes (3.05%), Acidobacteria (5.59%) and Cyanobacteria (1.71%) occupied 78.31% of total OTUs. The core microbiome of S. palustre was mainly distributed mainly in 7 phyla, 9 classes, 15 orders, 22 families and 43 known genera. There were many differences in core microbiomes compared to those in the common higher plants. We further demonstrate that the abundant functional groups have a substantial potential for nitrogen fixation, carbon cycle, nitrate metabolism, sulfate respiration and chitinolysis. These results indicate that potential ecological function of Sphagnum palustre in peatlands is partially rooted in its microbiomes, and that incorporating into functional groups of Sphagnum-associated microbiomes can promote mechanistic understanding of Sphagnum ecology in subalpine peatlands.
Collapse
Affiliation(s)
- Baiying Man
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Xing Xiang
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Junzhong Zhang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Higher Education Institutions, South West Forestry University, Kunming 650224, China
| | - Gang Cheng
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Chao Zhang
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Yang Luo
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Yangmin Qin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|