1
|
Sun A, Fan L, Zhang Z, Liu Y, Chen X, Peng Y, Li X. A metabolomics approach reveals the pharmacological effects and mechanisms of Cistanche tubulosa stems and its combination with fluoxetine on depression in comorbid with sexual dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118891. [PMID: 39362326 DOI: 10.1016/j.jep.2024.118891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried succulent stems of Cistanche tubulosa (Schenk) Wight are utilized in traditional medicine for tonifying kidney yang, which have shown to be effective in alleviating depression-like behaviors or male sexual dysfunction, respectively. However, the pharmacological effects and mechanisms of C. tubulosa and its combinations in the treatment of depression in comorbid with sexual dysfunction remain unclear. AIM OF THE STUDY This study aims to elucidate the pharmacological effects and mechanisms of C. tubulosa aqueous extract (CTE) and its combination with fluoxetine (FLX) on depression in comorbid with sexual dysfunction. MATERIALS AND METHODS A mouse model of depression in comorbid with sexual dysfunction was created using the chronic unpredictable mild stress (CUMS) procedure. The therapeutic effects of CTE and its combination with FLX were assessed using depressive-like and mating behavior experiments, histopathological analysis, and hypothalamic-pituitary-gonadal (HPG) axis function evaluation. The mechanisms were explored by integrated serum and testicular metabolomics combined with network correlation analysis. RESULTS CTE was confirmed to significantly improve depressive-like behaviors, reduce mating abilities, testicular histopathological damage, and HPG axis hormone secretion disorders in CUMS mice. Subsequently, mechanism exploration findings indicated that CTE might exert its effect by regulating potential efficacy-related biomarkers (isobutyrylglycine, citric acid, D-galactose) to improve certain metabolic pathways centered around steroid hormone biosynthesis and tricarboxylic acid (TCA) cycle. Furthermore, the combination of CTE and FLX exhibited stronger antidepressant effects than FLX alone, and ameliorated the exacerbated sexual dysfunction induced by FLX. These effects were achieved through the regulation of potential efficacy-related biomarkers (17α-hydroxypregnenolone, tetrahydrodeoxy-corticosterone, sphingosine, cortol, thymine, and L-histidine), thereby improving disorders in glycerophospholipid and histidine metabolism. CONCLUSION In conclusion, the amelioration effects of CTE and its combination with FLX on depression in comorbid with sexual dysfunction were confirmed for the first time. This key mechanism may be achieved by modulating the levels of potential efficacy-related biomarkers, and then emphatically intervene in steroid hormone biosynthesis, TCA cycle, glycerophospholipid and histidine metabolism. The study offers a new perspective for the development and utilization of C. tubulosa.
Collapse
Affiliation(s)
- An Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Fan
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhengxu Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yixin Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaonan Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Yang L, Li H, Wu H, Sun X, Liu S, Lang K, He Z. Astral-based DIA proteomics explored the flavor enhancement mechanism of Chinese traditional smoked bacon by staphylococcal co-fermentation. Food Chem 2025; 463:141563. [PMID: 39395352 DOI: 10.1016/j.foodchem.2024.141563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
The proteolysis pattern during mixed fermentation of Staphylococcus cohnii WX-M8 and S. saprophyticus MY-A10 on Chinese bacon was still unknown. In this study, the changing laws of protein degradation products during staphylococcal mixed fermentation were analyzed, followed by an investigation of endogenous enzymes and cellular components, and finally an examination of flavor profiles. Results indicated that mixed fermentation improved protein degradation and promoted the production of peptides and free amino acids (FAAs). Proteolysis of S. saprophyticus MY-A10 was non-specific, and it promoted protein degradation by cooperating with cathepsin L1. S. cohnii WX-M8 was specific and acted mainly with calpain-3 in the thin filament. The fulfillment of S. cohnii WX-M8 function was enhanced in the presence of S. saprophyticus MY-A10. Mixed fermentation showed synergism with endogenous peptidases in degrading peptides to small-molecule peptides or FAAs and complementarity with endogenous dehydrogenases in converting FAAs to volatile organic compounds (VOCs).
Collapse
Affiliation(s)
- Li Yang
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Hongjun Li
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Engineering Research Center of Regional Food, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Han Wu
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Xueling Sun
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Shuyun Liu
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Kaitong Lang
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Zhifei He
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Engineering Research Center of Regional Food, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China.
| |
Collapse
|
3
|
Hattori S, Yoshikawa N, Liu W, Matsukawa T, Kubokawa M, Yoshida K, Yoshihara M, Tamauchi S, Ikeda Y, Yokoi A, Shimizu Y, Niimi K, Kajiyama H. Understanding the impact of spatial immunophenotypes on the survival of endometrial cancer patients through the ProMisE classification. Cancer Immunol Immunother 2025; 74:70. [PMID: 39751650 DOI: 10.1007/s00262-024-03919-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVES We focused on how the immunophenotypes based on the distribution of CD8-positive tumor-infiltrating lymphocytes (TILs) relate to the endometrial cancer (EC) molecular subtypes and patients' prognosis. PATIENTS AND METHODS Two cohorts of EC patients (total n = 145) were analyzed and categorized using the Molecular Risk Classifier for Endometrial cancer (ProMisE): POLEmut (POLE mutation), MMRd (mismatch repair deficiency), NSMP (no specific molecular profile), and p53abn (p53 abnormality). CD8-positive TILs, within the central tumor and the invasive margin, were examined by using immunohistochemical staining and advanced image-analysis software. It was investigated whether these immunophenotypes correlate with the molecular subtypes and patients' survival. RNA-sequencing (RNA-seq) was used to explore tumor-derived factors influencing these immunophenotypes. RESULTS Three distinct immunophenotypes (inflamed, excluded, and desert) based on the CD8-positive TIL patterns were identified in EC patients. Notably, the inflamed phenotype was most frequently observed in the POLEmut and MMRd subtypes, while the desert phenotype was predominant in the NSMP subtype; however, other immunophenotypes were also observed. All p53abn subtype showed the non-inflamed (excluded or desert) phenotype. The prognosis was markedly poorer in the patients with the non-inflamed phenotype than in those with the inflamed phenotype. The RNA-seq analysis showed that the expression of MYC target genes and type-1 interferon response genes was enriched in the non-inflamed phenotype in MMRd and NSMP subtypes, respectively. CONCLUSION Evaluating not only the molecular classification but also the immunophenotype may lead to more personalized immunotherapy in EC and elucidating the mechanisms that underlie the formation of the three immunophenotypes could lead to the discovery of new immunotherapy targets.
Collapse
Affiliation(s)
- Satomi Hattori
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, 65, Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, 65, Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8560, Japan.
| | - Wenting Liu
- Department of Obstetrics and Gynecology Collaborative Research, Bell Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Matsukawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, 65, Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
| | - Mei Kubokawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, 65, Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, 65, Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, 65, Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
| | - Satoshi Tamauchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, 65, Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
| | - Yoshiki Ikeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, 65, Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, 65, Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
| | - Yusuke Shimizu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, 65, Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, 65, Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, 65, Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
| |
Collapse
|
4
|
Zhang J, Wu F, Wang J, Qin Y, Pan Y. Unveiling the Metabolomic Profile of Oily Sensitive Skin: A Non-Invasive Approach. Int J Mol Sci 2024; 25:11033. [PMID: 39456816 PMCID: PMC11507585 DOI: 10.3390/ijms252011033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Skin barrier impairment is becoming increasingly common due to changes in lifestyle and modern living environments. Oily sensitive skin (OSS) is a condition that is characterized by an impaired skin barrier. Thus, examining the differences between OSS and healthy skin will enable a more objective evaluation of the characteristics of OSS and facilitate investigations of potential treatments. Initially, a self-assessment questionnaire was used to identify patients with OSS. Biophysical measurements and LAST scores were used to determine whether skin barrier function was impaired. Epidermal biophysical properties, including skin hydration, transepidermal water loss (TEWL), sebum content, erythema index (EI), and a* value, were measured with noninvasive instruments. We subsequently devised a noninvasive D-square sampling technique to identify changes in the skin metabolome in conjunction with an untargeted metabolomics analysis with an Orbitrap Q ExactiveTM series mass spectrometer. In the stratum corneum of 47 subjects, 516 skin metabolites were identified. In subjects with OSS, there was an increase in the abundance of 15 metabolites and a decrease in the abundance of 48 metabolites. The participants with OSS were found to have the greatest disruptions in sphingolipid and amino acid metabolism. The results revealed that an impaired skin barrier is present in patients with OSS and offers a molecular target for screening for skin barrier damage.
Collapse
Affiliation(s)
| | | | | | | | - Yao Pan
- Department of Cosmetics, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (F.W.); (J.W.); (Y.Q.)
| |
Collapse
|
5
|
Gou L, Li L, Wei S, Tian Y, Hou X, Wu L. Sensitive detection of histamine utilizing the SERS platform combined with an azo coupling reaction and a composite hydrophobic layer. Talanta 2024; 278:126531. [PMID: 39002262 DOI: 10.1016/j.talanta.2024.126531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Herein, the surface-enhanced Raman scattering (SERS) platform was combined with an azo coupling reaction and an aluminum alloy covered with a hydrophobic layer of praseodymium oxide and stearic acid complexes for the detection of histamine. The praseodymium oxide on aluminum alloy was successfully synthesized by the rare-earth-salt-solution boiling bath method and modified by stearic acid. Its surface exhibits a water contact angle (WCA) of 125.0°. Through the azo derivatization reaction with 3-amino-5-mercapto-1,2,4-triazole (AMTA) diazonium salts, histamine can be converted into the derivatization product with higher Raman activity. The mixture of the derivatization product and β-cyclodextrin-modified Ag nanoparticles (β-CD-AgNPs) were dropped onto the surface of an aluminum alloy covered with a hydrophobic layer of praseodymium oxide and stearic acid complexes, and dried for SERS measurement. The intensity ratio between the SERS peaks at 1246 cm-1 and 1104 cm-1 (I1246/I1104) of the derivatization product was used for the quantification of histamine. Under the selected conditions, the limit of detection (LOD) and the limit of quantification (LOQ) for this method were 7.2 nM (S/N = 3) and 24 nM (S/N = 10), respectively. The relative standard deviation (RSD) of this method for the determination of 1 μM histamine was 6.1 % (n = 20). The method was also successfully used for the determination of histamine in fish samples with recoveries ranging from 92 % to 111 %. The present method is simple, sensitive, reliable, and may provide a new approach for preparing the composite hydrophobic layer that can enhance SERS signals through hydrophobic condensation effect. Meanwhile, it may have a promising future in the determination of small molecular compounds containing an imidazole ring.
Collapse
Affiliation(s)
- Lichen Gou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ling Li
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Siqi Wei
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yunfei Tian
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiandeng Hou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China; Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Li Wu
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
6
|
Xiang H, Zhao B, Fang Y, Jiang L, Zhong R. Haemonchus contortus alters distribution and utilization of protein and amino acids in different tissues of host sheep. Vet Parasitol 2024; 331:110289. [PMID: 39173409 DOI: 10.1016/j.vetpar.2024.110289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
The objective was to determine host animal protein/amino acid redistribution and use among the abomasum, duodenum and muscle of sheep infected with Haemonchus contortus. Sixteen male Ujumqin sheep (32.4 ± 3.9 kg) were dewormed and randomly assigned to two groups, infected or not infected with H. contortus (GIN and CON). The GIN group had lower (P < 0.05) dry matter intake, average daily gain, and live body weight than CON, with extensive focal infiltration of lymphocytes in the lamina propria and bottom of the abomasal epithelium. In the abomasum and duodenum, there were 100 and 220 genes, respectively, that were up-regulated, whereas 56 and 149 were down-regulated. In the abomasum, the most enriched KEGG pathways were related to immunity and inflammation reaction, including: viral protein interaction with cytokine and cytokine receptor (P = 0.017), influenza A (P = 0.030), IL-17 signaling pathway (P = 0.030). In the duodenum, KEGG pathways were more enriched in nutrient metabolism, including pancreatic secretion (P < 0.001), protein digestion and absorption (P < 0.001), graft-versus-host disease (P = 0.004). Furthermore, most genes related with the above KEGG pathways were increased in the abomasum but decreased in the duodenum. Amino acid profiles in abomasum and duodenum of CON and GIN groups were clustered in a partial least-squares discriminant analysis model, with significant changes in 36 and 19 metabolites in abomasal and duodenal chyme, respectively. Further confirmed by transcriptome-targeted metabolome association analysis, GIN mainly enhanced metabolism of arginine and sulphur amino acids in abomasum and those metabolic pathways were associated. Meanwhile, GIN mainly decreased pyruvate related amino acid metabolism in duodenum. Moreover, concentrations of Arg (P = 0.036), His (P = 0.027), and Cys (P = 0.046) in longissimus thoracis et lumborum were decreased in GIN, whereas concentrations of Gly (P = 0.012) and Ala (P = 0.046) were increased. In conclusion, H. contortus enhanced metabolism of arginine and sulphur amino acids in the abomasum; decreased pyruvate metabolism in the duodenum; and drove more protein/amino acids for abomasal tissues to resist physical and immune damage, reducing protein and amino acids in duodenum and muscle for support host growth. Specific nutrients (such like arginine, histidine, and cysteine) may play important role in control gastrointestinal nematode infection for ruminant.
Collapse
Affiliation(s)
- Hai Xiang
- Jilin Province Cross-regional Cooperation Science and Technology Innovation Center of Feed Processing and Herbivorous Livestock Precision Feeding, Jilin Provincial Laboratory of Grassland Farming, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Beijing 101408, China
| | - Bao Zhao
- Jilin Province Cross-regional Cooperation Science and Technology Innovation Center of Feed Processing and Herbivorous Livestock Precision Feeding, Jilin Provincial Laboratory of Grassland Farming, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China
| | - Yi Fang
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Beijing 102206, China
| | - Rongzhen Zhong
- Jilin Province Cross-regional Cooperation Science and Technology Innovation Center of Feed Processing and Herbivorous Livestock Precision Feeding, Jilin Provincial Laboratory of Grassland Farming, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China.
| |
Collapse
|
7
|
Alqahtani A, Alqahtani T, Abdelazim AH. Development of fluorescence chemo sensor for selective histamine determination in spiked human plasma samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123711. [PMID: 38042122 DOI: 10.1016/j.saa.2023.123711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Histamine is crucial for controlling a variety of physiological processes and its dysregulation is linked to various pathological conditions, including allergic disorders, autoimmune diseases and inflammatory conditions. Herein, a novel fluorescence chemo sensor was produced to measure histamine in the pure form and spiked human plasma matrix. The proposed method is based on chemical transformation of histamine into a fluorescent product, N-(2-(1H-imidazol-4-yl) ethyl)-2-bromoacetamide, exhibiting unique fluorescence properties compared to non-fluorescent histamine molecule. This transformation occurs through a sequence of chemical reactions involving the interaction of histamine with trimethylamine, resulting in the formation of a nucleophilic intermediate that subsequently reacts with electrophilic bromoacetyl bromide. The transformed fluorescent product demonstrates an emission at 340 nm after being excited at 250 nm. Significant concentration-dependent fluorescence enhancement was obtained enabling histamine determination. The procedures were examined for accuracy, precision, selectivity, and robustness in line with the ICH M10 recommendations. The method exhibits a lower limit of quantification at 0.25 ng/mL and dynamic detection throughout a linearity range of 1-200 ng/mL, providing accurate assessment of histamine in the plasma matrix.
Collapse
Affiliation(s)
- Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, 62529 Abha, Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, 62529 Abha, Saudi Arabia
| | - Ahmed H Abdelazim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Cairo, Egypt.
| |
Collapse
|
8
|
Mohamed WA, Hassanen EI, Mansour HA, Ibrahim MA, Azouz RA, Mahmoud MA. Novel insights on the probable mechanism associated with histamine oral model-inducing neuropathological and behavioral toxicity in rats. J Biochem Mol Toxicol 2024; 38:e23653. [PMID: 38348711 DOI: 10.1002/jbt.23653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/29/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024]
Abstract
Histamine (HIS) is an important chemical mediator that causes vasodilation and contributes to anaphylactic reactions. Recently, HIS is an understudied neurotransmitter in the central nervous system, and its potential role in neuroinflammation and neurodegeneration is a critical area of research. So, the study's goal is to investigate the consequences of repeated oral intake of HIS on the rat's brain and explore the mechanistic way of its neurotoxicity. Thirty male rats were divided into three groups (n = 10). The following treatments were administered orally to all rats every day for 14 days. Group (1) was given distilled water, whereas groups (2 & 3) were given HIS at dosage levels 250 and 500 mg/kg body weight (BWT), respectively. Brain tissue samples were collected at 7- and 14-days from the beginning of the experiment. Our results revealed that continuous oral administration of HIS at both doses for 14 days significantly reduced the BWT and induced severe neurobehavioral changes, including depression, dullness, lethargy, tremors, abnormal walking, and loss of spatial learning and memory in rats. In all HIS receiving groups, HPLC data showed a considerable raise in the HIS contents of the brain. Additionally, the daily consumption of HIS causes oxidative stress that is dose- and time-dependent which is characterized by elevation of malondialdehyde levels along with reduction of catalase activity and reduced glutathione levels. The neuropathological lesions were commonly observed in the cerebrum, striatum, and cerebellum and confirmed by the immunohistochemistry staining that demonstrating moderate to strong caspase-3 and inducible nitric oxide synthase expressions in all HIS receiving groups, mainly those receiving 500 mg/kg HIS. NF-κB, TNF-α, and IL-1β gene levels were also upregulated at 7- and 14-days in all HIS groups, particularly in those getting 500 mg/kg. We concluded that ROS-induced apoptosis and inflammation was the essential mechanism involved in HIS-mediated neurobehavioral toxicity and histopathology.
Collapse
Affiliation(s)
- Wafaa A Mohamed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hayam A Mansour
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Rehab A Azouz
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mahmoud A Mahmoud
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
Wang D, Guo Q, Wu Z, Li M, He B, Du Y, Zhang K, Tao Y. Molecular mechanism of antihistamines recognition and regulation of the histamine H 1 receptor. Nat Commun 2024; 15:84. [PMID: 38167898 PMCID: PMC10762250 DOI: 10.1038/s41467-023-44477-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Histamine receptors are a group of G protein-coupled receptors (GPCRs) that play important roles in various physiological and pathophysiological conditions. Antihistamines that target the histamine H1 receptor (H1R) have been widely used to relieve the symptoms of allergy and inflammation. Here, to uncover the details of the regulation of H1R by the known second-generation antihistamines, thereby providing clues for the rational design of newer antihistamines, we determine the cryo-EM structure of H1R in the apo form and bound to different antihistamines. In addition to the deep hydrophobic cavity, we identify a secondary ligand-binding site in H1R, which potentially may support the introduction of new derivative groups to generate newer antihistamines. Furthermore, these structures show that antihistamines exert inverse regulation by utilizing a shared phenyl group that inserts into the deep cavity and block the movement of the toggle switch residue W4286.48. Together, these results enrich our understanding of GPCR modulation and facilitate the structure-based design of novel antihistamines.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China
| | - Qiong Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China
| | - Zhangsong Wu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Ming Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China
| | - Binbin He
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Kaiming Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China.
| | - Yuyong Tao
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China.
| |
Collapse
|
10
|
Banoei MM, McIntyre LA, Stewart DJ, Mei SHJ, Courtman D, Watpool I, Granton J, Marshall J, dos Santos C, Walley KR, Schlosser K, Fergusson DA, Winston BW. Metabolomics Analysis of Mesenchymal Stem Cell (MSC) Therapy in a Phase I Clinical Trial of Septic Shock: An Exploratory Study. Metabolites 2023; 13:1142. [PMID: 37999238 PMCID: PMC10673547 DOI: 10.3390/metabo13111142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Sepsis is the result of an uncontrolled host inflammatory response to infection that may lead to septic shock with multiorgan failure and a high mortality rate. There is an urgent need to improve early diagnosis and to find markers identifying those who will develop septic shock and certainly a need to develop targeted treatments to prevent septic shock and its high mortality. Herein, we explore metabolic alterations due to mesenchymal stromal cell (MSC) treatment of septic shock. The clinical findings for this study were already reported; MSC therapy was well-tolerated and safe in patients in this phase I clinical trial. In this exploratory metabolomics study, 9 out of 30 patients received an escalating dose of MSC treatment, while 21 patients were without MSC treatment. Serum metabolomics profiling was performed to detect and characterize metabolite changes due to MSC treatment and to help determine the sample size needed for a phase II clinical trial and to define a metabolomic response to MSC treatment. Serum metabolites were measured using 1H-NMR and HILIC-MS at times 0, 24 and 72 h after MSC infusion. The results demonstrated the significant impact of MSC treatment on serum metabolic changes in a dose- and time-dependent manner compared to non-MSC-treated septic shock patients. This study suggests that plasma metabolomics can be used to assess the response to MSC therapy and that treatment-related metabolomics effects can be used to help determine the sample size needed in a phase II trial. As this study was not powered to detect outcome, how the treatment-induced metabolomic changes described in this study of MSC-treated septic shock patients are related to outcomes of septic shock in the short and long term will need to be explored in a larger adequately powered phase II clinical trial.
Collapse
Affiliation(s)
- Mohammad M. Banoei
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada;
| | - Lauralyn A. McIntyre
- Department of Medicine (Division of Critical Care), University of Ottawa, Ottawa, ON K1H 8L6, Canada;
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada; (D.J.S.); (S.H.J.M.); (D.C.); (I.W.); (K.S.); (D.A.F.)
- Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Duncan J. Stewart
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada; (D.J.S.); (S.H.J.M.); (D.C.); (I.W.); (K.S.); (D.A.F.)
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Shirley H. J. Mei
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada; (D.J.S.); (S.H.J.M.); (D.C.); (I.W.); (K.S.); (D.A.F.)
- Department of Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
| | - David Courtman
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada; (D.J.S.); (S.H.J.M.); (D.C.); (I.W.); (K.S.); (D.A.F.)
- Department of Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Irene Watpool
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada; (D.J.S.); (S.H.J.M.); (D.C.); (I.W.); (K.S.); (D.A.F.)
| | - John Granton
- Department of Medicine, University of Toronto, Toronto, ON M5G 2N2, Canada;
| | - John Marshall
- Department of Surgery and Critical Care Medicine, Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, The University of Toronto, Toronto, ON M5B 1W8, Canada; (J.M.); (C.d.S.)
| | - Claudia dos Santos
- Department of Surgery and Critical Care Medicine, Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, The University of Toronto, Toronto, ON M5B 1W8, Canada; (J.M.); (C.d.S.)
| | - Keith R. Walley
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada;
| | - Kenny Schlosser
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada; (D.J.S.); (S.H.J.M.); (D.C.); (I.W.); (K.S.); (D.A.F.)
- Department of Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Dean A. Fergusson
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada; (D.J.S.); (S.H.J.M.); (D.C.); (I.W.); (K.S.); (D.A.F.)
- Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Brent W. Winston
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada;
- Departments of Medicine and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | | | | |
Collapse
|
11
|
Lim S, Oh S, Nguyen QTN, Kim M, Zheng S, Fang M, Yi TH. Rosa davurica Inhibited Allergic Mediators by Regulating Calcium and Histamine Signaling Pathways. PLANTS (BASEL, SWITZERLAND) 2023; 12:1572. [PMID: 37050198 PMCID: PMC10097250 DOI: 10.3390/plants12071572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Rosa davurica Pall. exhibits antioxidant, antiviral, and anti-inflammatory properties; however, its pharmacological mechanism in allergy is yet to be understood. This study confirmed the effects of R. davurica Pall. leaf extract (RLE) on allergy as a new promising material. To evaluate the therapeutic potential of RLE against allergy, we investigated the effects of RLE on the regulatory β-hexosaminidase, histamine, histidine decarboxylase (HDC), Ca2+ influx, nitric oxide (NO), and cytokines induced by lipopolysaccharide (LPS) and DNP-IgE/BSA in Raw 264.7 and RBL-2H3 cells. Furthermore, we examined the effects of RLE on the signaling pathways of mitogen-activated protein kinase (MAPK) and Ca2+ pathways. After stimulating Raw 264.7 cells with LPS, RLE reduced the release of inflammatory mediators, such as NO, cyclooxygenase (COX)-2, inducible nitric oxygen synthase (iNOS), interleukin (IL)-1β, -6, and tumor necrosis factor (TNF)-α. Also, RLE reduced the β-hexosaminidase, histamine, HDC, Ca2+ influx, Ca2+ pathways, and phosphorylation of MAPK in DNP-IgE/BSA-stimulated RBL-2H3 cells. Our studies indicated that RLE is a valuable ingredient for treating allergic diseases by regulating cytokine release from macrophages and mast cell degranulation. Consequently, these results suggested that RLE may serve as a possible alternative promising material for treating allergies.
Collapse
Affiliation(s)
- Seojun Lim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (S.L.); (Q.T.N.N.); (M.K.); (M.F.)
| | - Sarang Oh
- Snowwhitefactory Co., Ltd., 807 Nonhyeon-ro, Gangnam-gu, Seoul 06032, Republic of Korea; (S.O.); (S.Z.)
| | - Quynh T. N. Nguyen
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (S.L.); (Q.T.N.N.); (M.K.); (M.F.)
| | - Myeongju Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (S.L.); (Q.T.N.N.); (M.K.); (M.F.)
| | - Shengdao Zheng
- Snowwhitefactory Co., Ltd., 807 Nonhyeon-ro, Gangnam-gu, Seoul 06032, Republic of Korea; (S.O.); (S.Z.)
| | - Minzhe Fang
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (S.L.); (Q.T.N.N.); (M.K.); (M.F.)
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (S.L.); (Q.T.N.N.); (M.K.); (M.F.)
| |
Collapse
|
12
|
Hu G, Wang L, Li X, Qi J. Rapidly and accurately screening histidine decarboxylase inhibitors from Radix Paeoniae alba using ultrafiltration-high performance liquid chromatography/mass spectrometry combined with enzyme channel blocking and directional enrichment technique. J Chromatogr A 2023; 1693:463859. [PMID: 36868086 DOI: 10.1016/j.chroma.2023.463859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Histidine Decarboxylase (HDC), an unique enzyme responsible for the synthesis of histamine, which is an important mediator in allergy. Inhibition of HDC activity to decrease histamine production is one way to alleviate allergic symptoms. Traditional Chinese medicines (TCMs) with reported anti-allergy effect is one of important source to search for natural HDC inhibitor. Ultrafiltration combined with high-performance liquid chromatography/mass spectrometry (UF-HPLC/MS) is an effective method for screening HDC inhibitor from TCMs. Nevertheless, false-positive and false-negative results caused by the non-specific binding and the neglection of the trace active compounds are major problems in this method. In this study, an integrated strategy that combined UF-HPLC/MS with enzyme channel blocking (ECB) technique and directional enrichment (DE) technique was developed to seek natural HDC inhibitors from Radix Paeoniae alba (RPA), and at the same time, to reduce false-positive and false-negative results. HDC activity was detected to determine the validity of the screened compounds by RP-HPLC-FD in vitro. Molecular docking was applied to assay the binding affinity and binding sites. As a result, three compounds were screened from low content components of RPA after the DE. Among them, two non-specific compounds were eliminated by ECB, and the specific compound was identified as catechin, which has obvious HDC inhibition activity with IC50 0.52 mM. Furthermore, gallic acid (IC50 1.8 mM) and paeoniflorin (IC50>2 mM) from high content components of RPA were determined having HDC inhibitory activity. In conclusion, the integrated strategy of UF-HPLC/MS combined with ECB and DE technique is an effective mode for rapid and accurate screening and identification of natural HDC inhibitors from TCMs.
Collapse
Affiliation(s)
- Guizhou Hu
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Lu Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210012, PR China
| | - Xinqi Li
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jin Qi
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
13
|
Goldman J, Liu SQ, Tefft BJ. Anti-Inflammatory and Anti-Thrombogenic Properties of Arterial Elastic Laminae. Bioengineering (Basel) 2023; 10:bioengineering10040424. [PMID: 37106611 PMCID: PMC10135563 DOI: 10.3390/bioengineering10040424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Elastic laminae, an elastin-based, layered extracellular matrix structure in the media of arteries, can inhibit leukocyte adhesion and vascular smooth muscle cell proliferation and migration, exhibiting anti-inflammatory and anti-thrombogenic properties. These properties prevent inflammatory and thrombogenic activities in the arterial media, constituting a mechanism for the maintenance of the structural integrity of the arterial wall in vascular disorders. The biological basis for these properties is the elastin-induced activation of inhibitory signaling pathways, involving the inhibitory cell receptor signal regulatory protein α (SIRPα) and Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1). The activation of these molecules causes deactivation of cell adhesion- and proliferation-regulatory signaling mechanisms. Given such anti-inflammatory and anti-thrombogenic properties, elastic laminae and elastin-based materials have potential for use in vascular reconstruction.
Collapse
|
14
|
Oktariani AF, Ramona Y, Sudaryatma PE, Dewi IAMM, Shetty K. Role of Marine Bacterial Contaminants in Histamine Formation in Seafood Products: A Review. Microorganisms 2022; 10:microorganisms10061197. [PMID: 35744715 PMCID: PMC9227395 DOI: 10.3390/microorganisms10061197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Histamine is a toxic biogenic amine commonly found in seafood products or their derivatives. This metabolite is produced by histamine-producing bacteria (HPB) such as Proteus vulgaris, P. mirabilis, Enterobacter aerogenes, E. cloacae, Serratia fonticola, S. liquefaciens, Citrobacter freundii, C. braakii, Clostridium spp., Raoultella planticola, R. ornithinolytica, Vibrio alginolyticus, V. parahaemolyticus, V. olivaceus, Acinetobacter lowffi, Plesiomonas shigelloides, Pseudomonas putida, P. fluorescens, Aeromonas spp., Photobacterium damselae, P. phosphoreum, P. leiognathi, P. iliopiscarium, P. kishitanii, and P. aquimaris. In this review, the role of these bacteria in histamine production in fish and seafood products with consequences for human food poisoning following consumption are discussed. In addition, methods to control their activity in countering histamine production are proposed.
Collapse
Affiliation(s)
- Adnorita Fandah Oktariani
- Doctoral Study Program of Biology, Faculty of Mathematics and Natural Sciences, Udayana University, Denpasar 80361, Bali, Indonesia;
- PT. Intimas Surya, Denpasar 80222, Bali, Indonesia
| | - Yan Ramona
- Doctoral Study Program of Biology, Faculty of Mathematics and Natural Sciences, Udayana University, Denpasar 80361, Bali, Indonesia;
- Integrated Laboratory for Biosciences and Biotechnology, Udayana University, Denpasar 80361, Bali, Indonesia
- Correspondence: (Y.R.); (K.S.); Tel.: +62-85101523213 (Y.R.)
| | | | - Ida Ayu Mirah Meliana Dewi
- School of Biology, Faculty of Mathematics and Natural Sciences, Udayana University, Denpasar 80361, Bali, Indonesia;
| | - Kalidas Shetty
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
- Correspondence: (Y.R.); (K.S.); Tel.: +62-85101523213 (Y.R.)
| |
Collapse
|
15
|
Jiménez D, Torres Arias M. Immunouniverse of SARS-CoV-2. Immunol Med 2022; 45:186-224. [PMID: 35502127 DOI: 10.1080/25785826.2022.2066251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
SARS-CoV-2 virus has become a global health problem that has caused millions of deaths worldwide. The infection can present with multiple clinical features ranging from asymptomatic or mildly symptomatic patients to patients with severe or critical illness that can even lead to death. Although the immune system plays an important role in pathogen control, SARS-CoV-2 can drive dysregulation of this response and trigger severe immunopathology. Exploring the mechanisms of the immune response involved in host defense against SARS-CoV-2 allows us to understand its immunopathogenesis and possibly detect features that can be used as potential therapies to eliminate the virus. The main objective of this review on SARS-CoV-2 is to highlight the interaction between the virus and the immune response. We explore the function and action of the immune system, the expression of molecules at the site of infection that cause hyperinflammation and hypercoagulation disorders, the factors leading to the development of pneumonia and subsequent severe acute respiratory distress syndrome which is the leading cause of death in patients with COVID-19.
Collapse
Affiliation(s)
- Dennis Jiménez
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Marbel Torres Arias
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador.,Laboratorio de Inmunología y Virología, CENCINAT, GISAH, Universidad de las Fuerzas Armadas, Sangolquí, Pichincha, Ecuador
| |
Collapse
|
16
|
Matsushita M, Fujita K, Hatano K, Hayashi T, Kayama H, Motooka D, Hase H, Yamamoto A, Uemura T, Yamamichi G, Tomiyama E, Koh Y, Kato T, Kawashima A, Uemura M, Nojima S, Imamura R, Mubeen A, Netto GJ, Tsujikawa K, Nakamura S, Takeda K, Morii E, Nonomura N. High‐fat diet promotes prostate cancer growth through histamine signaling. Int J Cancer 2022; 151:623-636. [DOI: 10.1002/ijc.34028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 12/09/2022]
Affiliation(s)
- Makoto Matsushita
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
- Department of Urology, Kindai University Faculty of Medicine Osakasayama Japan
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Takuji Hayashi
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine Suita Japan
- WPI Immunology Frontier Research Center Osaka University Suita Japan
- Institute for Advanced Co‐Creation Studies Osaka University Suita Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases Osaka University Suita Japan
| | - Hiroaki Hase
- Laboratory of Cell Biology and Physiology, Osaka University Graduate School of Pharmaceutical Sciences Suita Japan
| | - Akinaru Yamamoto
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Toshihiko Uemura
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Gaku Yamamichi
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Eisuke Tomiyama
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Yoko Koh
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Taigo Kato
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Atsunari Kawashima
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Motohide Uemura
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine Suita Japan
| | - Ryoichi Imamura
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| | - Aysha Mubeen
- Department of Pathology UAB School of Medicine Birmingham Alabama USA
| | - George J. Netto
- Department of Pathology UAB School of Medicine Birmingham Alabama USA
| | - Kazutake Tsujikawa
- Laboratory of Cell Biology and Physiology, Osaka University Graduate School of Pharmaceutical Sciences Suita Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases Osaka University Suita Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine Suita Japan
- WPI Immunology Frontier Research Center Osaka University Suita Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine Suita Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine Suita Japan
| |
Collapse
|
17
|
Zhao Y, Zhang X, Jin H, Chen L, Ji J, Zhang Z. Histamine Intolerance-A Kind of Pseudoallergic Reaction. Biomolecules 2022; 12:454. [PMID: 35327646 PMCID: PMC8945898 DOI: 10.3390/biom12030454] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Histamine intolerance (HIT) is a common disorder associated with impaired histamine metabolism. Notwithstanding, it is often misdiagnosed as other diseases because of its lack of specific clinical manifestations. HIT did not gain traction until the early 21st century. In this review, we will focus on the latest research and elaborate on the clinical manifestations of HIT, including its manifestations in special populations such as atopic dermatitis (AD) and chronic urticaria (CU), as well as the latest understanding of its etiology and pathogenesis. In addition, we will explore the latest treatment strategies for HIT and the treatment of specific cases.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China; (Y.Z.); (X.Z.); (L.C.)
- Department of Dermatology and Venereology, Suzhou Medical College of Soochow University, Suzhou 215000, China;
| | - Xiaoyan Zhang
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China; (Y.Z.); (X.Z.); (L.C.)
- Department of Dermatology and Venereology, Suzhou Medical College of Soochow University, Suzhou 215000, China;
| | - Hengxi Jin
- Department of Dermatology and Venereology, Suzhou Medical College of Soochow University, Suzhou 215000, China;
| | - Lu Chen
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China; (Y.Z.); (X.Z.); (L.C.)
- Department of Dermatology and Venereology, Suzhou Medical College of Soochow University, Suzhou 215000, China;
| | - Jiang Ji
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China; (Y.Z.); (X.Z.); (L.C.)
- Department of Dermatology and Venereology, Suzhou Medical College of Soochow University, Suzhou 215000, China;
| | - Zhongwei Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong 226001, China
| |
Collapse
|
18
|
Zhu B, Zhang Z, Wang X, Zhang W, Shi H, Song Z, Ding S, Yang X. Abnormal histidine metabolism promotes macrophage lipid accumulation under Ox-LDL condition. Biochem Biophys Res Commun 2022; 588:161-167. [PMID: 34954523 DOI: 10.1016/j.bbrc.2021.12.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/02/2022]
Abstract
Distinct macrophage populations exert highly heterogeneity and perform various functions, among which, a crucial function of lipid metabolism is highlighted. However, the role of histidine metabolism disorder in macrophage lipid metabolism remains elusive. Addressed this question, we sorted and cultured the bone marrow-derived macrophages (BMDMs) of histidine decarboxylase (Hdc) knockout (Hdc-/-) mice with an in vitro oxidized low-density lipoprotein (ox-LDL) model, and detected the intracellular lipids by Oil Red O staining as well as lipid probe staining. Astemizole, a canonical and long-acting histamine H1 receptor (H1R) antagonist, was applied to elucidate the impact of antagonizing the H1R-dependent signaling pathway on macrophage lipid metabolism. Subsequently, the differential expressed genes were screened and analyzed in the bone marrow-derived CD11b+ immature myeloid cells of Hdc-/- and Hdc+/+ mice with a high fat diet by the microarray study. The expression levels of cholesterol metabolism-related genes were examined by qRT-PCR to explore underlying mechanisms. Lastly, we used a high-sensitivity histidine probe to detect the intracellular histidine in the BMDMs after oxidative stress. The results revealed that histidine metabolism disorder and histamine deficiency aggravated lipid accumulation in the ox-LDL-treated BMDMs. The expression level of H1R gene in the BMDMs was down-regulated after ox-LDL stimulation. The disruption of the H1R-dependent signaling pathway by astemizole further exacerbated ox-LDL-induced lipid deposition in the BMDMs partly by up-regulating scavenger receptor class A (SR-A) for lipid intake, down-regulating neutral cholesteryl ester hydrolase (nCEH) for cholesterol esterification and down-regulating ATP-binding cassette transporters A1 (ABCA1) and ABCG1 for reverse cholesterol transport. The intracellular histidine increased under ox-LDL condition, which was further increased by Hdc knockout. Collectively, these results partially reveal the relationship between histidine metabolism and lipid metabolism in the BMDMs and offer a novel strategy for lipid metabolism disorder-associated diseases.
Collapse
Affiliation(s)
- Baoling Zhu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhiwei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiangfei Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weiwei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hongyu Shi
- Department of Cardiology, Wusong Hospital of Zhongshan Hospital, Fudan University, Shanghai, 200940, China
| | - Zhifeng Song
- Department of Oral Mucosa and Periodontitis, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200433, China
| | - Suling Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Cardiology, Wusong Hospital of Zhongshan Hospital, Fudan University, Shanghai, 200940, China.
| |
Collapse
|
19
|
Kon M, Ishikawa T, Ohashi Y, Yamada H, Ogasawara M. Epigallocatechin gallate stimulated histamine production and downregulated histamine H1 receptor in oral cancer cell lines expressing histidine decarboxylase. J Oral Biosci 2022; 64:120-130. [PMID: 35031480 DOI: 10.1016/j.job.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/29/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Increased histamine production and the overexpression of receptors (H1R∼H4R) has been reported in several tumors. The effects of TGFβ1 and epigallocatechin gallate (EGCG) on histamine synthesizing enzymes (HDCs), and the histamine transporter systems and receptors were investigated in this study. METHODS Four oral cancer cell lines (HSC2, HSC3, HSC4, and SAS) were treated with or without TGFβ1 or EGCG for 24 h. The expression levels of HDC, SLC22A3, H1R∼H4R, and TAS2R14 were investigated by Western blotting. Histamine concentrations were determined using the enzyme immune assay. Bitter taste receptor (TAS2R14 and TAS2R39) mRNAs were investigated by RT-PCR. RESULTS Varying expression levels of HDC, SLC22A3, H1R∼H4R, and TAS2R14 were observed in the four cell lines, where histamine concentrations were found to be ∼500 fmol/ml in cell culture media and induced 2-2.5 times higher amounts of histamine following EGCG treatment. TGFβ1 increased HDC expression in three cell lines, SLC22A3 expression in three cell lines, H1R expression in two cell lines, H2R expression in three cell lines, H3R expression in three cell lines, and H4R expression in three cell lines. EGCG decreased HDC expression in all four cell lines, SLC22A3 expression in three expression, H1R expression in all four cell lines, H2R expression in two cell lines, H3R expression in three cell lines, and H4R expression in two cell lines. CONCLUSIONS EGCG upregulated histamine production and decreased the expression level of H1R in the oral cancer cell lines. It might prove useful for cancer therapy during histamine regulation.
Collapse
Affiliation(s)
- Masashi Kon
- Division of Oral and Maxillofacial Surgery, Department of Oral Surgery, Iwate Medical University, Iwate, Japan; Division of Bioregulatory Pharmacology, Department of Pharmacology, Iwate Medical University, Iwate, Japan
| | - Taichi Ishikawa
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Iwate, Japan
| | - Yu Ohashi
- Division of Oral and Maxillofacial Surgery, Department of Oral Surgery, Iwate Medical University, Iwate, Japan
| | - Hiroyuki Yamada
- Division of Oral and Maxillofacial Surgery, Department of Oral Surgery, Iwate Medical University, Iwate, Japan
| | - Masahito Ogasawara
- Division of Bioregulatory Pharmacology, Department of Pharmacology, Iwate Medical University, Iwate, Japan.
| |
Collapse
|
20
|
Toyama S, Tominaga M, Takamori K. Connections between Immune-Derived Mediators and Sensory Nerves for Itch Sensation. Int J Mol Sci 2021; 22:12365. [PMID: 34830245 PMCID: PMC8624544 DOI: 10.3390/ijms222212365] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022] Open
Abstract
Although histamine is a well-known itch mediator, histamine H1-receptor blockers often lack efficacy in chronic itch. Recent molecular and cellular based studies have shown that non-histaminergic mediators, such as proteases, neuropeptides and cytokines, along with their cognate receptors, are involved in evocation and modulation of itch sensation. Many of these molecules are produced and secreted by immune cells, which act on sensory nerve fibers distributed in the skin to cause itching and sensitization. This understanding of the connections between immune cell-derived mediators and sensory nerve fibers has led to the development of new treatments for itch. This review summarizes current knowledge of immune cell-derived itch mediators and neuronal response mechanisms, and discusses therapeutic agents that target these systems.
Collapse
Affiliation(s)
- Sumika Toyama
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
| | - Mitsutoshi Tominaga
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
- Anti-Aging Skin Research Laboratory, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan
| | - Kenji Takamori
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
- Anti-Aging Skin Research Laboratory, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan
- Department of Dermatology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Chiba 279-0021, Japan
| |
Collapse
|
21
|
An analysis of urine and serum amino acids in critically ill patients upon admission by means of targeted LC-MS/MS: a preliminary study. Sci Rep 2021; 11:19977. [PMID: 34620961 PMCID: PMC8497565 DOI: 10.1038/s41598-021-99482-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis, defined as a dysregulated host response to infection, causes the interruption of homeostasis resulting in metabolic changes. An examination of patient metabolites, such as amino acids, during the early stage of sepsis may facilitate diagnosing and assessing the severity of the sepsis. The aim of this study was to compare patterns of urine and serum amino acids relative to sepsis, septic shock and survival. Urine and serum samples were obtained from healthy volunteers (n = 15) once or patients (n = 15) within 24 h of a diagnosis of sepsis or septic shock. Concentrations of 25 amino acids were measured in urine and serum samples with liquid chromatography-electrospray mass spectrometry. On admission in the whole cohort, AAA, ABA, mHis, APA, Gly-Pro and tPro concentrations were significantly lower in the serum than in the urine and Arg, Gly, His, hPro, Leu, Ile, Lys, Orn, Phe, Sarc, Thr, Tyr, Asn and Gln were significantly higher in the serum than in the urine. The urine Gly-Pro concentration was significantly higher in septic shock than in sepsis. The serum Cit concentration was significantly lower in septic shock than in sepsis. The urine ABA, mHis and Gly-Pro, and serum Arg, hPro and Orn concentrations were over two-fold higher in the septic group compared to the control group. Urine and serum amino acids measured in septic patients on admission to the ICU may shed light on a patient’s metabolic condition during sepsis or septic shock.
Collapse
|
22
|
Sharma A, Muresanu DF, Patnaik R, Menon PK, Tian ZR, Sahib S, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Skaper SD, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma HS. Histamine H3 and H4 receptors modulate Parkinson's disease induced brain pathology. Neuroprotective effects of nanowired BF-2649 and clobenpropit with anti-histamine-antibody therapy. PROGRESS IN BRAIN RESEARCH 2021; 266:1-73. [PMID: 34689857 DOI: 10.1016/bs.pbr.2021.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Military personnel deployed in combat operations are highly prone to develop Parkinson's disease (PD) in later lives. PD largely involves dopaminergic pathways with hallmarks of increased alpha synuclein (ASNC), and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) precipitating brain pathology. However, increased histaminergic nerve fibers in substantia nigra pars Compacta (SNpc), striatum (STr) and caudate putamen (CP) associated with upregulation of Histamine H3 receptors and downregulation of H4 receptors in human cases of PD is observed in postmortem cases. These findings indicate that modulation of histamine H3 and H4 receptors and/or histaminergic transmission may induce neuroprotection in PD induced brain pathology. In this review effects of a potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist, in association with monoclonal anti-histamine antibodies (AHmAb) in PD brain pathology is discussed based on our own observations. Our investigation shows that chronic administration of conventional or TiO2 nanowired BF 2649 (1mg/kg, i.p.) or CLBPT (1mg/kg, i.p.) once daily for 1 week together with nanowired delivery of HAmAb (25μL) significantly thwarted ASNC and p-tau levels in the SNpC and STr and reduced PD induced brain pathology. These observations are the first to show the involvement of histamine receptors in PD and opens new avenues for the development of novel drug strategies in clinical strategies for PD, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Stephen D Skaper
- Anesthesiology & Intensive Care, Department of Pharmacology, University of Padua, Padova, Italy
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
23
|
The Function of the Histamine H4 Receptor in Inflammatory and Inflammation-Associated Diseases of the Gut. Int J Mol Sci 2021; 22:ijms22116116. [PMID: 34204101 PMCID: PMC8200986 DOI: 10.3390/ijms22116116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Histamine is a pleiotropic mediator involved in a broad spectrum of (patho)-physiological processes, one of which is the regulation of inflammation. Compounds acting on three out of the four known histamine receptors are approved for clinical use. These approved compounds comprise histamine H1-receptor (H1R) antagonists, which are used to control allergic inflammation, antagonists at H2R, which therapeutically decrease gastric acid release, and an antagonist at H3R, which is indicated to treat narcolepsy. Ligands at H4R are still being tested pre-clinically and in clinical trials of inflammatory diseases, including rheumatoid arthritis, asthma, dermatitis, and psoriasis. These trials, however, documented only moderate beneficial effects of H4R ligands so far. Nevertheless, pre-clinically, H4R still is subject of ongoing research, analyzing various inflammatory, allergic, and autoimmune diseases. During inflammatory reactions in gut tissues, histamine concentrations rise in affected areas, indicating its possible biological effect. Indeed, in histamine-deficient mice experimentally induced inflammation of the gut is reduced in comparison to that in histamine-competent mice. However, antagonists at H1R, H2R, and H3R do not provide an effect on inflammation, supporting the idea that H4R is responsible for the histamine effects. In the present review, we discuss the involvement of histamine and H4R in inflammatory and inflammation-associated diseases of the gut.
Collapse
|
24
|
Histamine Intolerance in Children: A Narrative Review. Nutrients 2021; 13:nu13051486. [PMID: 33924863 PMCID: PMC8144954 DOI: 10.3390/nu13051486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022] Open
Abstract
Histamine intolerance is defined as a disequilibrium of accumulated histamine and the capacity for histamine degradation. This clinical term addresses a non-immunologically mediated pathology when histamine ingested with food is not particularly high, however its degradation is decreased. This paper aims to provide a narrative review on etiopathology, epidemiology, possible diagnostic algorithms and diagnostic challenges of histamine intolerance in children. The clinical picture of histamine intolerance in children is similar to that observed in adults apart from male predominance found in paediatric patients. Both in children and adults, a histamine-reduced diet is typically the treatment of choice. Diamine oxidase supplementation offers another treatment option. There is no symptom or test pathognomonic for histamine intolerance. Nevertheless, manifestations of chronic gastrointestinal symptoms, measurements of diamine oxidase deficits, positive results of histamine provocation tests and improvement in symptoms with histamine-reduced diet considerably increase the probability of histamine intolerance diagnosis. These factors have been included in the proposed diagnostic algorithm for histamine intolerance. In children histamine intolerance most likely co-occurs with allergies and bowel diseases, which creates an additional diagnostic challenge. As the evidence for children is poor further research is needed the determine epidemiology, validate diagnostic algorithms and establish possible treatment options regarding histamine intolerance.
Collapse
|
25
|
Moya-García AA, Pino-Ángeles A, Sánchez-Jiménez F, Urdiales JL, Medina MÁ. Histamine, Metabolic Remodelling and Angiogenesis: A Systems Level Approach. Biomolecules 2021; 11:415. [PMID: 33799732 PMCID: PMC8000605 DOI: 10.3390/biom11030415] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Histamine is a highly pleiotropic biogenic amine involved in key physiological processes including neurotransmission, immune response, nutrition, and cell growth and differentiation. Its effects, sometimes contradictory, are mediated by at least four different G-protein coupled receptors, which expression and signalling pathways are tissue-specific. Histamine metabolism conforms a very complex network that connect many metabolic processes important for homeostasis, including nitrogen and energy metabolism. This review brings together and analyses the current information on the relationships of the "histamine system" with other important metabolic modules in human physiology, aiming to bridge current information gaps. In this regard, the molecular characterization of the role of histamine in the modulation of angiogenesis-mediated processes, such as cancer, makes a promising research field for future biomedical advances.
Collapse
Affiliation(s)
- Aurelio A. Moya-García
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (A.A.M.-G.); (M.Á.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
| | - Almudena Pino-Ángeles
- Unidad de Lípidos y Arteriosclerosis, Servicio de Medicina Interna, Hospital Universitario Reina Sofia, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Francisca Sánchez-Jiménez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 29010 Málaga, Spain;
| | - José Luis Urdiales
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (A.A.M.-G.); (M.Á.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 29010 Málaga, Spain;
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (A.A.M.-G.); (M.Á.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 29010 Málaga, Spain;
| |
Collapse
|
26
|
Pham L, Baiocchi L, Kennedy L, Sato K, Meadows V, Meng F, Huang CK, Kundu D, Zhou T, Chen L, Alpini G, Francis H. The interplay between mast cells, pineal gland, and circadian rhythm: Links between histamine, melatonin, and inflammatory mediators. J Pineal Res 2021; 70:e12699. [PMID: 33020940 PMCID: PMC9275476 DOI: 10.1111/jpi.12699] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
Abstract
Our daily rhythmicity is controlled by a circadian clock with a specific set of genes located in the suprachiasmatic nucleus in the hypothalamus. Mast cells (MCs) are major effector cells that play a protective role against pathogens and inflammation. MC distribution and activation are associated with the circadian rhythm via two major pathways, IgE/FcεRI- and IL-33/ST2-mediated signaling. Furthermore, there is a robust oscillation between clock genes and MC-specific genes. Melatonin is a hormone derived from the amino acid tryptophan and is produced primarily in the pineal gland near the center of the brain, and histamine is a biologically active amine synthesized from the decarboxylation of the amino acid histidine by the L-histidine decarboxylase enzyme. Melatonin and histamine are previously reported to modulate circadian rhythms by pathways incorporating various modulators in which the nuclear factor-binding near the κ light-chain gene in B cells, NF-κB, is the common key factor. NF-κB interacts with the core clock genes and disrupts the production of pro-inflammatory cytokine mediators such as IL-6, IL-13, and TNF-α. Currently, there has been no study evaluating the interdependence between melatonin and histamine with respect to circadian oscillations in MCs. Accumulating evidence suggests that restoring circadian rhythms in MCs by targeting melatonin and histamine via NF-κB may be promising therapeutic strategy for MC-mediated inflammatory diseases. This review summarizes recent findings for circadian-mediated MC functional roles and activation paradigms, as well as the therapeutic potentials of targeting circadian-mediated melatonin and histamine signaling in MC-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Linh Pham
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Science and Mathematics, Texas A&M University – Central Texas, Killeen, TX, USA
| | | | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chiung-Kuei Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
27
|
Moriguchi T, Takai J. Histamine and histidine decarboxylase: Immunomodulatory functions and regulatory mechanisms. Genes Cells 2020; 25:443-449. [PMID: 32394600 PMCID: PMC7497259 DOI: 10.1111/gtc.12774] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 01/06/2023]
Abstract
Histamine is a bioactive monoamine that is synthesized by the enzymatic activity of histidine decarboxylase (HDC) in basophils, mast cells, gastric enterochromaffin‐like (ECL) cells and histaminergic neuronal cells. Upon a series of cellular stimuli, these cells release stored histamine, which elicits allergies, inflammation, and gastric acid secretion and regulates neuronal activity. Recent studies have shown that certain other types of myeloid lineage cells also produce histamine with HDC induction under various pathogenic stimuli. Histamine has been shown to play a series of pathophysiological roles by modulating immune and inflammatory responses in a number of disease conditions, whereas the mechanistic aspects underlying induced HDC expression remain elusive. In the present review, we summarize the current understanding of the regulatory mechanism of Hdc gene expression and the roles played by histamine in physiological contexts as well as pathogenic processes. We also introduce a newly developed histaminergic cell‐monitoring transgenic mouse line (Hdc‐BAC‐GFP) that serves as a valuable experimental tool to identify the source of histamine and dissect upstream regulatory signals.
Collapse
Affiliation(s)
- Takashi Moriguchi
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jun Takai
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|