1
|
Hameed H, Faheem S, Younas K, Jamshaid M, Ereej N, Hameed A, Munir R, Khokhar R. A comprehensive review on lipid-based nanoparticles via nose to brain targeting as a novel approach. J Microencapsul 2024:1-34. [PMID: 39286884 DOI: 10.1080/02652048.2024.2404414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
The central nervous system (CNS) has been a chief concern for millions of people worldwide, and many therapeutic medications are unable to penetrate the blood-brain barrier. Advancements in nanotechnology have enabled safe, effective, and precise delivery of medications towards specific brain regions by utilising a nose-to-brain targeting route. This method reduces adverse effects, increases medication bioavailability, and facilitates mucociliary clearance while promoting accumulation of drug in the targeted brain region. Recent developments in lipid-based nanoparticles, for instance solid lipid nanoparticles (SLNs), liposomes, nanoemulsions, and nano-structured lipid carriers have been explored. SLNs are currently the most promising drug carrier system because of their capability of transporting drugs across the blood-brain barrier at the intended brain site. This approach offers higher efficacy, controlled drug delivery, target specificity, longer circulation time, and a reduction in toxicity through a biomimetic mechanism.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Komel Younas
- Faculty of Pharmacy, University Paris Saclay, Orsay, France
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Nelofer Ereej
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Lahore, Pakistan
| | - Rabia Munir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rabia Khokhar
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
2
|
Kakuda L, Maia Campos PMBG, Oliveira WP. Development and Efficacy Evaluation of Innovative Cosmetic Formulations with Caryocar brasiliense Fruit Pulp Oil Encapsulated in Freeze-Dried Liposomes. Pharmaceutics 2024; 16:595. [PMID: 38794256 PMCID: PMC11124447 DOI: 10.3390/pharmaceutics16050595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Encapsulation and drying technologies allow the engineering of innovative raw materials from plant biodiversity, with potential applications in pharmaceutical and cosmetic fields. Lipid-based nanoencapsulation stands out for its efficiency, ease of production, and versatility in encapsulating substances, whether hydrophilic or lipophilic. This work aimed at encapsulating pequi oil in liposomes and freeze-dried liposomes to enhance its stability and functional benefits, such as skin hydration and anti-aging effects, for use in innovative cosmetic formulations. Pequi oil-extracted from the Caryocar brasiliense fruit pulp, a plant species from Brazilian plant biodiversity-is rich in secondary metabolites and fatty acids. Liposomes and dried liposomes offer controlled production processes and seamless integration into cosmetic formulations. The physicochemical analysis of the developed liposomes confirmed that the formulations are homogeneous and electrokinetically stable, as evidenced by consistent particle size distribution and zeta potential values, respectively. The gel-type formulations loaded with the dried liposomes exhibit enhanced skin hydration, improved barrier function, and refined microrelief, indicating improvements in skin conditions. These results highlight the potential of dried liposomes containing pequi oil for the development of innovative cosmeceutical products. This research contributes to the valorization of Brazilian biodiversity by presenting an innovative approach to leveraging the dermatological benefits of pequi oil in cosmetic applications.
Collapse
Affiliation(s)
| | | | - Wanderley P. Oliveira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil; (L.K.); (P.M.B.G.M.C.)
| |
Collapse
|
3
|
Krstonošić VS, Sazdanić DB, Ćirin DM, Nikolić IR, Hadnađev MS, Atanacković Krstonošić MT. Characterization of Oil-in-Water Emulsions Prepared with Triblock Copolymer Poloxamer 407 and Low-Molecular-Mass Surfactant Mixtures as Carriers of Grape Pomace Waste Polyphenols. Pharmaceutics 2024; 16:578. [PMID: 38794240 PMCID: PMC11124189 DOI: 10.3390/pharmaceutics16050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Natural antioxidants, such as grape pomace polyphenols, can be extracted by a surfactant-based green technology and incorporated into various emulsions. Therefore, this work aimed to investigate the physical stability and rheological characteristics of oil-in-water emulsions stabilized with poloxamer 407 (P407) and its mixtures with the low-molecular-mass surfactants Brij S20 (BS20) and Tween 60 (T60). Also, the influence of polyphenolic grape pomace extracts on the physical stability and rheological characteristics of the emulsions was examined. METHODS Grape pomace polyphenols were extracted by aqueous solutions of P407 and BS20/P407 and T60/P407 mixtures. Two different types of oil-in-water emulsions were examined: emulsions prepared with pure surfactants and emulsions prepared with surfactant-based polyphenol extracts of grape pomace. Both types contained 20% sunflower oil. Characterization of the emulsions comprised droplet size evaluation, rheology characteristics and creaming stability. RESULTS All the emulsions showed shear-thinning flow, while the rheological characteristics and creaming instability depended on the proportion of P407 in the emulsifier mixtures. Incorporation of grape pomace extracts had no effect on the investigated properties of the emulsions. CONCLUSION The presence of extracted polyphenols in emulsifier mixtures had no significant effects on the emulsions' physico-chemical characteristics and stability. Therefore, the investigated emulsions can be considered suitable carriers for polyphenol-rich extracts.
Collapse
Affiliation(s)
- Veljko S. Krstonošić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Darija B. Sazdanić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Dejan M. Ćirin
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Ivana R. Nikolić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Miroslav S. Hadnađev
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | | |
Collapse
|
4
|
Oargă (Porumb) DP, Cornea-Cipcigan M, Cordea MI. Unveiling the mechanisms for the development of rosehip-based dermatological products: an updated review. Front Pharmacol 2024; 15:1390419. [PMID: 38666029 PMCID: PMC11043540 DOI: 10.3389/fphar.2024.1390419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Rosa spp., commonly known as rosehips, are wild plants that have traditionally been employed as herbal remedies for the treatment of a wide range of disorders. Rosehip is a storehouse of vitamins, including A, B complex, C, and E. Among phytonutrients, vitamin C is found in the highest amount. As rosehips contain significant levels of vitamin C, they are perfect candidates for the development of skincare formulations that can be effectively used in the treatment of different skin disorders (i.e., scarring, anti-aging, hyperpigmentation, wrinkles, melasma, and atopic dermatitis). This research focuses on the vitamin C content of several Rosa sp. by their botanical and geographic origins, which according to research studies are in the following order: R. rugosa > R. montana > R. canina > R. dumalis, with lower levels in R. villosa and R. arvensis, respectively. Among rosehip species, R. canina is the most extensively studied species which also displays significant amounts of bioactive compounds, but also antioxidant, and antimicrobial activities (e.g., against Propionibacterium acnes, Staphylococcus aureus, S, epidermis, and S. haemolyticus). The investigation also highlights the use of rosehip extracts and oils to minimise the harmful effects of acne, which primarily affects teenagers in terms of their physical appearance (e.g., scarring, hyperpigmentation, imperfections), as well as their moral character (e.g., low self-confidence, bullying). Additionally, for higher vitamin C content from various rosehip species, the traditional (i.e., infusion, maceration, Soxhlet extraction) and contemporary extraction methods (i.e., supercritical fluid extraction, microwave-assisted, ultrasonic-assisted, and enzyme-assisted extractions) are highlighted, finally choosing the best extraction method for increased bioactive compounds, with emphasis on vitamin C content. Consequently, the current research focuses on assessing the potential of rosehip extracts as medicinal agents against various skin conditions, and the use of rosehip concentrations in skincare formulations (such as toner, serum, lotion, and sunscreen). Up-to-date studies have revealed that rosehip extracts are perfect candidates as topical application products in the form of nanoemulsions. Extensive in vivo studies have revealed that rosehip extracts also exhibit specific activities against multiple skin disorders (i.e., wound healing, collagen synthesis, atopic dermatitis, melasma, and anti-aging effects). Overall, with multiple dermatological actions and efficacies, rosehip extracts and oils are promising agents that require a thorough investigation of their functioning processes to enable their safe use in the skincare industry.
Collapse
Affiliation(s)
| | - Mihaiela Cornea-Cipcigan
- Laboratory of Cell Analysis and Plant Breeding, Department of Horticulture, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Mirela Irina Cordea
- Laboratory of Cell Analysis and Plant Breeding, Department of Horticulture, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
5
|
Flieger J, Raszewska-Famielec M, Radzikowska-Büchner E, Flieger W. Skin Protection by Carotenoid Pigments. Int J Mol Sci 2024; 25:1431. [PMID: 38338710 PMCID: PMC10855854 DOI: 10.3390/ijms25031431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Sunlight, despite its benefits, can pose a threat to the skin, which is a natural protective barrier. Phototoxicity caused by overexposure, especially to ultraviolet radiation (UVR), results in burns, accelerates photoaging, and causes skin cancer formation. Natural substances of plant origin, i.e., polyphenols, flavonoids, and photosynthetic pigments, can protect the skin against the effects of radiation, acting not only as photoprotectors like natural filters but as antioxidant and anti-inflammatory remedies, alleviating the effects of photodamage to the skin. Plant-based formulations are gaining popularity as an attractive alternative to synthetic filters. Over the past 20 years, a large number of studies have been published to assess the photoprotective effects of natural plant products, primarily through their antioxidant, antimutagenic, and anti-immunosuppressive activities. This review selects the most important data on skin photodamage and photoprotective efficacy of selected plant carotenoid representatives from in vivo studies on animal models and humans, as well as in vitro experiments performed on fibroblast and keratinocyte cell lines. Recent research on carotenoids associated with lipid nanoparticles, nanoemulsions, liposomes, and micelles is reviewed. The focus was on collecting those nanomaterials that serve to improve the bioavailability and stability of carotenoids as natural antioxidants with photoprotective activity.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Magdalena Raszewska-Famielec
- Faculty of Physical Education and Health, University of Physicl Education, Akademicka 2, 21-500 Biała Podlaska, Poland;
| | - Elżbieta Radzikowska-Büchner
- Department of Plastic, Reconstructive and Maxillary Surgery, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137 Street, 02-507 Warszawa, Poland;
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, K. Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
6
|
Araújo GDMS, Loureiro AIS, Rodrigues JL, Barros PAB, Halicki PCB, Ramos DF, Marinho MAG, Vaiss DP, Vaz GR, Yurgel VC, Bidone J, Muccillo-Baisch AL, Hort MA, Paulo AMC, Dora CL. Toward a Platform for the Treatment of Burns: An Assessment of Nanoemulsions vs. Nanostructured Lipid Carriers Loaded with Curcumin. Biomedicines 2023; 11:3348. [PMID: 38137569 PMCID: PMC10742090 DOI: 10.3390/biomedicines11123348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Curcumin is a highly promising substance for treating burns, owing to its anti-inflammatory, antioxidant, antimicrobial, and wound-healing properties. However, its therapeutic use is restricted due to its hydrophobic nature and low bioavailability. This study was conducted to address these limitations; it developed and tested two types of lipid nanocarriers, namely nanoemulsions (NE-CUR) and nanostructured lipid carriers (NLC-CUR) loaded with curcumin, and aimed to identify the most suitable nanocarrier for skin burn treatment. The study evaluated various parameters, including physicochemical characteristics, stability, encapsulation efficiency, release, skin permeation, retention, cell viability, and antimicrobial activity. The results showed that both nanocarriers showed adequate size (~200 nm), polydispersity index (~0.25), and zeta potential (~>-20 mV). They also showed good encapsulation efficiency (>90%) and remained stable for 120 days at different temperatures. In the release test, NE-CUR and NCL-CUR released 57.14% and 51.64% of curcumin, respectively, in 72 h. NE-CUR demonstrated better cutaneous permeation/retention in intact or scalded skin epidermis and dermis than NLC-CUR. The cell viability test showed no toxicity after treatment with NE-CUR and NLC-CUR up to 125 μg/mL. Regarding microbial activity assays, free curcumin has activity against P. aeruginosa, reducing bacterial growth by 75% in 3 h. NE-CUR inhibited bacterial growth by 65% after 24 h, and the association with gentamicin had favorable results, while NLC-CUR showed a lower inhibition. The results demonstrated that NE-CUR is probably the most promising nanocarrier for treating burns.
Collapse
Affiliation(s)
| | - Ana Isabel Sá Loureiro
- CEB-Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jamile Lima Rodrigues
- Graduate Program in Food Science and Engineering, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | | | | | - Daniela Fernandes Ramos
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | | | - Daniela Pastorim Vaiss
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Gustavo Richter Vaz
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Virginia Campello Yurgel
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Juliana Bidone
- Center of Chemical, Pharmaceutical, and Food Sciences, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil
| | - Ana Luiza Muccillo-Baisch
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Mariana Appel Hort
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Artur Manuel Cavaco Paulo
- CEB-Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cristiana Lima Dora
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
- Graduate Program in Food Science and Engineering, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| |
Collapse
|
7
|
Ngoc LTN, Moon JY, Lee YC. Plant Extract-Derived Carbon Dots as Cosmetic Ingredients. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2654. [PMID: 37836295 PMCID: PMC10574410 DOI: 10.3390/nano13192654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Plant extract-derived carbon dots (C-dots) have emerged as promising components for sustainability and natural inspiration to meet consumer demands. This review comprehensively explores the potential applications of C-dots derived from plant extracts in cosmetics. This paper discusses the synthesis methodologies for the generation of C-dots from plant precursors, including pyrolysis carbonization, chemical oxidation, hydrothermal, microwave-assisted, and ultrasonic methods. Plant extract-derived C-dots offer distinct advantages over conventional synthetic materials by taking advantage of the inherent properties of plants, such as antioxidant, anti-inflammatory, and UV protective properties. These outstanding properties are critical for novel cosmetic applications such as for controlling skin aging, the treatment of inflammatory skin conditions, and sunscreen. In conclusion, plant extract-derived C-dots combine cutting-edge nanotechnology and sustainable cosmetic innovation, presenting an opportunity to revolutionize the industry by offering enhanced properties while embracing eco-friendly practices.
Collapse
Affiliation(s)
- Le Thi Nhu Ngoc
- Department of Nano Science and Technology Convergence, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Ju-Young Moon
- Major in Beauty Convergence, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
8
|
Li J, Fan J, Hu F. Ultrasound-assisted acid/enzymatic hydrolysis preparation of loquat kernel porous starch: A carrier with efficient palladium loading capacity. Int J Biol Macromol 2023; 247:125676. [PMID: 37423443 DOI: 10.1016/j.ijbiomac.2023.125676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/17/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
Porous starch, with excellent renewal and thermodynamic stability characteristics, could be utilized as a novel carrier for metals. In this research, starch was obtained from wasted loquat kernel (LKS) and converted into loquat kernel porous starch (LKPS) through ultrasound-assisted acid/enzymatic hydrolysis. Then, LKS and LKPS were utilized for loading with palladium. The porous structures of LKPS were evaluated by the results of water/oil absorption rate and N2 adsorption analysis, and the physicochemical properties of LKPS and starch@Pd were analyzed by FT-IR, XRD, SEM-EDS, ICP-OES, and DSC-TAG. LKPS prepared by the synergistic method formed a better porous structure. Its specific surface area was 2.65 times that of LKS, and the water/oil absorption capabilities were considerably improved to 152.28 % and 129.59 %, respectively. XRD patterns showed that the presence of diffraction peaks at 39.7° and 47.1°, indicating successful palladium loading onto LKPS. The EDS and ICP-OES results revealed that the palladium loading capacity of LKPS was superior to that of LKS, with a significantly increased loading ratio of 2.08 %. In addition, LKPS@Pd exhibited excellent thermal stability, with a temperature range of 310-320 °C. Therefore, LKPS was a palladium carrier with highly efficient loading ratio, and LKPS@Pd had promising properties as a competent catalyst.
Collapse
Affiliation(s)
- Jing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Junwei Fan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Fei Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China.
| |
Collapse
|
9
|
Sallustio V, Farruggia G, di Cagno MP, Tzanova MM, Marto J, Ribeiro H, Goncalves LM, Mandrone M, Chiocchio I, Cerchiara T, Abruzzo A, Bigucci F, Luppi B. Design and Characterization of an Ethosomal Gel Encapsulating Rosehip Extract. Gels 2023; 9:gels9050362. [PMID: 37232954 DOI: 10.3390/gels9050362] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Rising environmental awareness drives green consumers to purchase sustainable cosmetics based on natural bioactive compounds. The aim of this study was to deliver Rosa canina L. extract as a botanical ingredient in an anti-aging gel using an eco-friendly approach. Rosehip extract was first characterized in terms of its antioxidant activity through a DPPH assay and ROS reduction test and then encapsulated in ethosomal vesicles with different percentages of ethanol. All formulations were characterized in terms of size, polydispersity, zeta potential, and entrapment efficiency. Release and skin penetration/permeation data were obtained through in vitro studies, and cell viability was assessed using an MTT assay on WS1 fibroblasts. Finally, ethosomes were incorporated in hyaluronic gels (1% or 2% w/v) to facilitate skin application, and rheological properties were studied. Rosehip extract (1 mg/mL) revealed a high antioxidant activity and was successfully encapsulated in ethosomes containing 30% ethanol, having small sizes (225.4 ± 7.0 nm), low polydispersity (0.26 ± 0.02), and good entrapment efficiency (93.41 ± 5.30%). This formulation incorporated in a hyaluronic gel 1% w/v showed an optimal pH for skin application (5.6 ± 0.2), good spreadability, and stability over 60 days at 4 °C. Considering sustainable ingredients and eco-friendly manufacturing technology, the ethosomal gel of rosehip extract could be an innovative and green anti-aging skincare product.
Collapse
Affiliation(s)
- Valentina Sallustio
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Giovanna Farruggia
- Pharmaceutical Biochemistry Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Massimiliano Pio di Cagno
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway
| | - Martina M Tzanova
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway
| | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-038 Lisboa, Portugal
| | - Helena Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-038 Lisboa, Portugal
| | - Lidia Maria Goncalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-038 Lisboa, Portugal
| | - Manuela Mandrone
- Pharmaceutical Botany Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40127 Bologna, Italy
| | - Ilaria Chiocchio
- Pharmaceutical Botany Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40127 Bologna, Italy
| | - Teresa Cerchiara
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Angela Abruzzo
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Federica Bigucci
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Barbara Luppi
- Drug Delivery Research Laboratory, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| |
Collapse
|
10
|
de Moraes Soares Araújo G, Lima Rodrigues J, Campello Yurgel V, Silva C, Manuel Cavaco Paulo A, Isabel Saì Loureiro A, Lima Dora C. Designing and characterization of curcumin-loaded nanotechnological dressings: A promising platform for skin burn treatment. Int J Pharm 2023; 635:122712. [PMID: 36803927 DOI: 10.1016/j.ijpharm.2023.122712] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Burns affect the skin and appendages, impair their function, and become favorable regions for bacterial infections. Owing to time-consuming and costly treatments, burns have been considered a public health problem. The limitations of the treatments used for burns have motivated the search for more efficient alternatives. Curcumin has several potential properties such as anti-inflammatory, healing, and antimicrobial activities. However, this compound is unstable and has low bioavailability. Therefore, nanotechnology could offer a solution for its application. This study aimed to develop and characterize dressings (or gauzes) impregnated with curcumin nanoemulsions that were prepared using two different techniques as a promising platform for skin burn treatment. In addition, the effect of cationization on curcumin release from the gauze was evaluated. Nanoemulsions were successfully prepared using two methods, ultrasound and a high-pressure homogenizer, with sizes of 135 nm and 144.55 nm, respectively. These nanoemulsions exhibited a low polydispersity index, adequate zeta potential, high encapsulation efficiency, and stability for up to 120 d. In vitro assays demonstrated a controlled release of curcumin between 2 and 240 h. No cytotoxicity was observed at concentrations of curcumin up to 75 µg/mL, and cell proliferation was observed. The incorporation of nanoemulsions in the gauze was successfully achieved, and the evaluation of curcumin release showed a faster release from cationized gauzes, whereas the non-cationized gauze promoted a more constant release.
Collapse
Affiliation(s)
- Gabriela de Moraes Soares Araújo
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil; LabNano - Nanotechnology Laboratory, Federal University of Rio Grande, Rio Grande 96203-900, Brazil, RS, Brazil
| | - Jamile Lima Rodrigues
- Graduate Program in Food Science and Engineering, Federal University of Rio Grande, Rio Grande 96203-900, Brazil, RS, Brazil; LabNano - Nanotechnology Laboratory, Federal University of Rio Grande, Rio Grande 96203-900, Brazil, RS, Brazil
| | - Virginia Campello Yurgel
- LabNano - Nanotechnology Laboratory, Federal University of Rio Grande, Rio Grande 96203-900, Brazil, RS, Brazil
| | - Carla Silva
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Ana Isabel Saì Loureiro
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Cristiana Lima Dora
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil; LabNano - Nanotechnology Laboratory, Federal University of Rio Grande, Rio Grande 96203-900, Brazil, RS, Brazil.
| |
Collapse
|
11
|
Rohilla S, Rohilla A, Narwal S, Dureja H, Bhagwat DP. Global Trends of Cosmeceutical in Nanotechnology: A Review. Pharm Nanotechnol 2023; 11:410-424. [PMID: 37157203 DOI: 10.2174/2211738511666230508161611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/25/2023] [Accepted: 02/22/2023] [Indexed: 05/10/2023]
Abstract
Nanotechnology suggests different innovative solutions to augment the worth of cosmetic products through the targeted delivery of content that manifests scientific innovation in research and development. Different nanosystems, like liposomes, niosomes, microemulsions, solid lipid nanoparticles, nanoform lipid carriers, nanoemulsions, and nanospheres, are employed in cosmetics. These nanosystems exhibit various innovative cosmetic functions, including site-specific targeting, controlled content release, more stability, improved skin penetration and enhanced entrapment efficiency of loaded compounds. Thus, cosmeceuticals are assumed as the highest-progressing fragment of the personal care industries that have progressed drastically over the years. In recent decades, cosmetic science has widened the origin of its application in different fields. Nanosystems in cosmetics are beneficial in treating different conditions like hyperpigmentation, wrinkles, dandruff, photoaging and hair damage. This review highlights the different nanosystems used in cosmetics for the targeted delivery of loaded content and commercially available formulations. Moreover, this review article has delineated different patented nanocosmetic formulation nanosystems and future aspects of nanocarriers in cosmetics.
Collapse
Affiliation(s)
- Seema Rohilla
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Smalkha, Panipat, Haryana, 132102, India
| | - Ankur Rohilla
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, 140413, Mohali, India
| | - Sonia Narwal
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Smalkha, Panipat, Haryana, 132102, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Deepak Prabhakar Bhagwat
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Smalkha, Panipat, Haryana, 132102, India
| |
Collapse
|
12
|
Plant Nanovesicles for Essential Oil Delivery. Pharmaceutics 2022; 14:pharmaceutics14122581. [PMID: 36559075 PMCID: PMC9784947 DOI: 10.3390/pharmaceutics14122581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Essential oils' therapeutic potential is highly recognized, with many applications rising due to reported anti-inflammatory, cardioprotective, neuroprotective, anti-aging, and anti-cancer effects. Nevertheless, clinical translation still remains a challenge, mainly due to essential oils' volatility and low water solubility and stability. The present review gathers relevant information and postulates on the potential application of plant nanovesicles to effectively deliver essential oils to target organs. Indeed, plant nanovesicles are emerging as alternatives to mammalian vesicles and synthetic carriers due to their safety, stability, non-toxicity, and low immunogenicity. Moreover, they can be produced on a large scale from various plant parts, enabling an easier, more rapid, and less costly industrial application that could add value to waste products and boost the circular economy. Importantly, the use of plant nanovesicles as delivery platforms could increase essential oils' bioavailability and improve chemical stability while reducing volatility and toxicity issues. Additionally, using targeting strategies, essential oils' selectivity, drug delivery, and efficacy could be improved, ultimately leading to dose reduction and patient compliance. Bearing this in mind, information on current pharmaceutical technologies available to enable distinct routes of administration of loaded vesicles is also discussed.
Collapse
|
13
|
Cui H, Xie W, Hua Z, Cao L, Xiong Z, Tang Y, Yuan Z. Recent Advancements in Natural Plant Colorants Used for Hair Dye Applications: A Review. Molecules 2022; 27:8062. [PMID: 36432162 PMCID: PMC9692289 DOI: 10.3390/molecules27228062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
There is an on-going demand in recent years for safer and "greener" hair coloring agents with the global consumer awareness of the adverse effects of synthetic hair dyes. The belief in sustainability and health benefits has focused the attention of the scientific community towards natural colorants that serve to replace their synthetic toxic counterparts. This review article encompasses the historical applications of a vast array of natural plant hair dyes and summarizes the possible coloration mechanisms (direct dyeing and mordant dyeing). Current information on phytochemicals (quinones, tannins, flavonoids, indigo, curcuminoids and carotenoids) used for hair dyeing are summarized, including their botanical sources, color chemistry and biological/toxicological activities. A particular focus is given on research into new natural hair dye sources along with eco-friendly, robust and cost-effective technologies for their processing and applications, such as the synthetic biology approach for colorant production, encapsulation techniques for stabilization and the development of inorganic nanocarriers. In addition, innovative in vitro approaches for the toxicological assessments of natural hair dye cosmetics are highlighted.
Collapse
Affiliation(s)
- Hongyan Cui
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Wenjing Xie
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Zhongjie Hua
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Lihua Cao
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Ziyi Xiong
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Ying Tang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
14
|
Buliga DI, Diacon A, Calinescu I, Popa I, Rusen E, Ghebaur A, Tutunaru O, Boscornea CA. Enhancing the light fastness of natural dyes by encapsulation in silica matrix. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Xiao Z, Sun P, Liu H, Zhao Q, Niu Y, Zhao D. Stimulus responsive microcapsules and their aromatic applications. J Control Release 2022; 351:198-214. [PMID: 36122896 DOI: 10.1016/j.jconrel.2022.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 10/31/2022]
Abstract
Fragrances and essential oils are promising for a wide range of applications due to their pleasant odors and diverse effects. However, direct addition to consumer products has the disadvantages of short retention time and easy deterioration of odor. At the same time, releasing a large amount of odor in a short time may be an unpleasant experience, which severely limits the practical application of aromatic substances. Microencapsulation perfectly solves these problems. Stimuli-responsive microcapsules, which combine environmental stimulation with microencapsulation, can not only effectively prevent the rapid decomposition and evaporation of aroma components, but also realize the "on-off" intelligent release of aroma substances to environmental changes, which have great promise in the field of fragrances. In this review, the application of stimuli-responsive microcapsules in fragrances is highlighted. Firstly, various encapsulation materials used to prepare stimuli-responsive aromatic microcapsules are described, mainly including some natural polymers, synthetic polymers, and inorganic materials. Subsequently, there is a detailed description of the common release mechanisms of stimuli-responsive aromatic microcapsules are described in detail. Finally, the application and future research directions are given for stimuli-responsive aromatic microcapsules in new textiles, food, paper, and leather.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Huiqin Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Qixuan Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
16
|
Dubey SK, Parab S, Achalla VPK, Narwaria A, Sharma S, Jaswanth Gowda BH, Kesharwani P. Microparticulate and nanotechnology mediated drug delivery system for the delivery of herbal extracts. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1531-1554. [PMID: 35404217 DOI: 10.1080/09205063.2022.2065408] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
There has been a growing interest in the scientific community to explore the complete potential of phytoconstituents, herbal or plant-based ingredients owing to a range of benefits they bring along. The herbal plants accommodate many phytoconstituents that are responsible for various activities such as anti-oxidant, antimicrobial, anticancer, anti-inflammatory, anti-allergic, hepatoprotective, etc. However, these phytoconstituents are highly sensitive to several environmental and physiological factors such as pH, oxygen, heat, temperature, humidity, stomach acid, enzymes, and light. Hence, there is need for the development of a drug delivery system that can protect the phytoconstituents from both internal and external conditions. In this regard, a microparticulate drug delivery system is considered amongst the ideal choice owing to its small size, ability to protect the environment-sensitive active constituents, in achieving sustained drug delivery, targeted drug delivery, protection of the drug from physiological conditions, minimizing drug-related side effects, etc.
Collapse
Affiliation(s)
| | - Shraddha Parab
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | | | | | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| |
Collapse
|
17
|
Jiménez-Morales JM, Hernández-Cuenca YE, Reyes-Abrahantes A, Ruiz-García H, Barajas-Olmos F, García-Ortiz H, Orozco L, Quiñones-Hinojosa A, Reyes-González J, Del Carmen Abrahantes-Pérez M. MicroRNA delivery systems in glioma therapy and perspectives: A systematic review. J Control Release 2022; 349:712-730. [PMID: 35905783 DOI: 10.1016/j.jconrel.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Gliomas are the deadliest of all primary brain tumors, and they constitute a serious global health problem. MicroRNAs (miRNAs) are gene expression regulators associated with glioma pathogenesis. Thus, miRNAs represent potential therapeutic agents for treating gliomas. However, miRNAs have not been established as part of the regular clinical armamentarium. This systemic review evaluates current molecular and pre-clinical studies with the aim of defining the most appealing supramolecular platform for administering therapeutic miRNA to patients with gliomas. An integrated analysis suggested that cationic lipid nanoparticles, functionalized with octa-arginine peptides, represent a potentially specific, practical, non-invasive intervention for treating gliomas. This supramolecular platform allows loading both hydrophilic (miRNA) and hydrophobic (anti-tumor drugs, like temozolomide) molecules. This systemic review is the first to describe miRNA delivery systems targeted to gliomas that integrate several types of molecules as active ingredients. Further experimental validation is warranted to confirm the practical value of miRNA delivery systems.
Collapse
Affiliation(s)
- José Marcos Jiménez-Morales
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Yanet Elisa Hernández-Cuenca
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Ander Reyes-Abrahantes
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Henry Ruiz-García
- Department of Neurosurgery, Mayo Clinic, Jacksonville, United States; Brain Tumor Stem Cell Research Laboratory, Mayo Clinic, Jacksonville, United States
| | - Francisco Barajas-Olmos
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Humberto García-Ortiz
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Lorena Orozco
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery, Mayo Clinic, Jacksonville, United States; Brain Tumor Stem Cell Research Laboratory, Mayo Clinic, Jacksonville, United States
| | - Jesús Reyes-González
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico.
| | | |
Collapse
|
18
|
Zhang Z, Zhang X, Fu Z, Cao L, Xiong Z, Tang Y, Feng Y. Fibrous palygorskite clays as versatile nanocarriers for skin delivery of tea tree oils in efficient acne therapy. Int J Pharm 2022; 623:121903. [PMID: 35697203 DOI: 10.1016/j.ijpharm.2022.121903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/16/2022] [Accepted: 06/07/2022] [Indexed: 02/02/2023]
Abstract
This paper presents a facile approach to develop palygorskite (Pal), a fibrous clay mineral, as a delivery system of tea tree oil (TTO) for topical acne therapy. The obtained TTO-Pal composite showed an efficient loading of TTO (27.4%) with a selective accumulation of terpine-4-ol and 1,8-cineole (two major antimicrobial TTO constituents), sustained release of TTO at skin physiological conditions (pH5.4, 32 °C) and superior skin sebum (2.2 g/g) absorbability. In vitro toxicological assessments showed that the Pal incorporation strategy significantly reduced the acute contact toxicity of TTO. The antimicrobial results revealed a preferable bacteriostatic effect for the TTO-Pal system towards opportunistic dermal pathogens (Escherichia coli, Staphylococcus aureus and Propionibacterium acnes) over the beneficial bacterium (Staphylococcus epidermis). Moreover, TTO-Pal based formulations exhibited pronounced clinical therapeutic efficacy in treating facial acne by rapidly reducing inflamed lesions, modulating skin sebum overproduction and restoring barrier function. This is the first report of using fibrous clay as a biocompatible nanocarrier system for topical delivery of essential oils in efficient management of facial acne with both in vitro and in vivo evidences, which may open perspectives for fibrous clay-drug delivery system in topical application and expand the high added value development of this mineral resource in the advanced healthcare fields.
Collapse
Affiliation(s)
- Zhaolun Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xi Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Zhengpeng Fu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Cao
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Ziyi Xiong
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Ying Tang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; Gansu West Attapulgite Application Research Institute, Baiyin, Gansu 730900, China.
| |
Collapse
|
19
|
Sallustio V, Chiocchio I, Mandrone M, Cirrincione M, Protti M, Farruggia G, Abruzzo A, Luppi B, Bigucci F, Mercolini L, Poli F, Cerchiara T. Extraction, Encapsulation into Lipid Vesicular Systems, and Biological Activity of Rosa canina L. Bioactive Compounds for Dermocosmetic Use. Molecules 2022; 27:molecules27093025. [PMID: 35566374 PMCID: PMC9104920 DOI: 10.3390/molecules27093025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Valorization of wild plants to obtain botanical ingredients could be a strategy for sustainable production of cosmetics. This study aimed to select the rosehip extract containing the greatest amounts of bioactive compounds and to encapsulate it in vesicular systems capable of protecting their own antioxidant activity. Chemical analysis of Rosa canina L. extracts was performed by LC-DAD-MS/MS and 1H-NMR and vitamins, phenolic compounds, sugars, and organic acids were detected as the main compounds of the extracts. Liposomes, prepared by the film hydration method, together with hyalurosomes and ethosomes, obtained by the ethanol injection method, were characterized in terms of vesicle size, polydispersity index, entrapment efficiency, zeta potential, in vitro release and biocompatibility on WS1 fibroblasts. Among all types of vesicular systems, ethosomes proved to be the most promising nanocarriers showing nanometric size (196 ± 1 nm), narrow polydispersity (0.20 ± 0.02), good entrapment efficiency (92.30 ± 0.02%), and negative zeta potential (−37.36 ± 0.55 mV). Moreover, ethosomes showed good stability over time, a slow release of polyphenols compared with free extract, and they were not cytotoxic. In conclusion, ethosomes could be innovative carriers for the encapsulation of rosehip extract.
Collapse
Affiliation(s)
- Valentina Sallustio
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (V.S.); (A.A.); (B.L.); (F.B.)
| | - Ilaria Chiocchio
- Pharmaceutical Botany Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40127 Bologna, Italy; (I.C.); (M.M.); (F.P.)
| | - Manuela Mandrone
- Pharmaceutical Botany Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40127 Bologna, Italy; (I.C.); (M.M.); (F.P.)
| | - Marco Cirrincione
- Pharmaco-Toxicological Analysis (PTA Lab.), Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (M.C.); (M.P.); (L.M.)
| | - Michele Protti
- Pharmaco-Toxicological Analysis (PTA Lab.), Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (M.C.); (M.P.); (L.M.)
| | - Giovanna Farruggia
- Pharmaceutical Biochemistry Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy;
| | - Angela Abruzzo
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (V.S.); (A.A.); (B.L.); (F.B.)
| | - Barbara Luppi
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (V.S.); (A.A.); (B.L.); (F.B.)
| | - Federica Bigucci
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (V.S.); (A.A.); (B.L.); (F.B.)
| | - Laura Mercolini
- Pharmaco-Toxicological Analysis (PTA Lab.), Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (M.C.); (M.P.); (L.M.)
| | - Ferruccio Poli
- Pharmaceutical Botany Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40127 Bologna, Italy; (I.C.); (M.M.); (F.P.)
| | - Teresa Cerchiara
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (V.S.); (A.A.); (B.L.); (F.B.)
- Correspondence: ; Tel.: +39-0512095615
| |
Collapse
|
20
|
Bora L, Avram S, Pavel IZ, Muntean D, Liga S, Buda V, Gurgus D, Danciu C. An Up-To-Date Review Regarding Cutaneous Benefits of Origanum vulgare L. Essential Oil. Antibiotics (Basel) 2022; 11:antibiotics11050549. [PMID: 35625193 PMCID: PMC9137521 DOI: 10.3390/antibiotics11050549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the plethora of pharmacological activities reported in the literature, Origanum vulgare L. is a valuable aromatic plant for the medicine of the XXI century. Recent studies highlight that Origanum vulgare L. essential oil (OvEo) has gained attention in the dermatological field due to the cosmeceutical potential correlated with the presence of thymol and carvacrol. As a result of the fulminant expansion of bacterial resistance to antibiotics and the aggressiveness of skin infections, OvEo was extensively studied for its antimicrobial activity against Staphyloccocus spp. and Pseudomonas aeruginosa. Moreover, researchers have also assessed the anti-inflammatory activity of OvEo, suggesting its tissue remodeling and wound healing potential. Whereas OvEo comprises important biological activities that are used in a wide range of pathologies, recently, essential oils have shown great potential in the development of new therapeutic alternatives for skin disorders, such as acne, wounds or aging. Furthermore, substantial efforts have been committed to the development of modern formulations, such as microemulsions and nanoemulsions, in order to create the possibility for topical application. The review brings to the fore the most recent findings in the dermatological field regarding potential plant-based therapies involving OvEo, emphasizing the modern pharmaceutical formulation approaches and the cutaneous benefits in skin disorders.
Collapse
Affiliation(s)
- Larisa Bora
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (L.B.); (S.A.); (I.Z.P.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Stefana Avram
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (L.B.); (S.A.); (I.Z.P.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Ioana Zinuca Pavel
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (L.B.); (S.A.); (I.Z.P.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Delia Muntean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Correspondence: ; Tel.: +40-723-662-855
| | - Sergio Liga
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Valentina Buda
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Discipline of Clinical Pharmacy, Communication in Pharmacy and Pharmaceutical Care, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Daniela Gurgus
- Department of Balneology, Medical Recovery and Rheumatology, Family Discipline, Center for Preventive Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Corina Danciu
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (L.B.); (S.A.); (I.Z.P.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
21
|
Qadir A, Ullah SNMN, Gupta DK, Khan N. Phytoconstituents loaded nanomedicines for the management of Acne. J Cosmet Dermatol 2022; 21:3240-3255. [DOI: 10.1111/jocd.14999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Abdul Qadir
- Department of Pharmaceutics School of pharmaceutical education and research Jamia Hamdard New Delhi 110062
- Department of Research and Developments Herbalfarm Health care Private Limited New Delhi 110020
| | | | - Dipak Kumar Gupta
- Department of Pharmaceutics School of pharmaceutical education and research Jamia Hamdard New Delhi 110062
| | - Nausheen Khan
- Department of Pharmacognosy and Phytochemistry school of pharmaceutical education and research Jamia Hamdard New Delhi 110062
| |
Collapse
|
22
|
Wang HV, Pickett LJ, Faraone N. Repellent and acaricidal activities of basil (Ocimum basilicum) essential oils and rock dust against Ixodes scapularis and Dermacentor variabilis ticks. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 86:583-598. [PMID: 35230583 DOI: 10.1007/s10493-022-00705-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Repellent and acaricidal activity of essential oils extracted from three varieties of basil (Ocimum basilicum L.) were evaluated on blacklegged ticks (Ixodes scapularis Say) and American dog ticks (Dermacentor variabilis Say) in laboratory conditions. Essential oils were extracted and characterized through gas chromatography-mass spectrometry, and tested at different concentrations for long-term repellent activity using horizontal bioassays. In addition, basil essential oils were combined with an inert material (i.e., granite rock dust) with known insecticidal and miticidal properties to assess acaricidal activities against adult ticks. Among the tested basil varieties, var. Jolina essential oil at 15% vol/vol concentration repelled 96% of tested ticks up to 2 h post-treatment. The EC50 for I. scapularis nymphs was 4.65% vol/vol (95% confidence interval: 4.73-4.57). In acaricidal tests, the combination of essential oil from var. Aroma 2 at 10% wt/wt with rock dust resulted in 100% tick mortality after only 24 h post-exposure, with a LD50 of 3.48% wt/wt (95% CI 4.05-2.91) for freshly prepared treatment tested on I. scapularis adults. The most common compounds detected in basil essential oils by GC-MS were linalool (52.2% in var. Nu Far, 48.2% in Aroma 2, 43.9% in Jolina), sabinene (6.71% in Nu Far, 8.99% in Aroma 2, 8.11% in Jolina), eugenol (11.2% in Jolina, 8.71% in Aroma 2), and estragole (18.2% in Nu Far). The use of essential oils alone and in combination with rock dust provides an innovative and environmentally friendly approach for managing ticks and inhibiting vector-borne disease transmission.
Collapse
Affiliation(s)
- Haozhe V Wang
- Department of Chemistry, Acadia University, Wolfville, NS, Canada
| | - Laura J Pickett
- Department of Chemistry, Acadia University, Wolfville, NS, Canada
| | | |
Collapse
|
23
|
Zhang YQ, Liang R, Liu C, Yang C. Improved stability and skin penetration through glycethosomes loaded with glycyrrhetinic acid. Int J Cosmet Sci 2022; 44:249-261. [PMID: 35303372 DOI: 10.1111/ics.12771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE In recent years, glycyrrhetinic acid (GA) has been popularly used in cosmetics because of its anti-inflammatory and anti-oxidant effects. However, due to the poor water solubility of GA and the barrier effect of human skin, the penetration of GA through the skin may be hindered. Liposomes are a common delivery system for functional compounds in cosmetics. Nonetheless, the stability and transdermal effect of traditional liposomes are limited. The aim of this work was to prepare a new liposome system that contained glycerol and ethanol to enhance the stability of the vesicles and promote the penetration of GA into the skin. METHODS The glycethosomes were prepared by ethanol injection and sonication method. The effects of different concentrations of glycerol and ethanol on the particle size, polydispersity (PDI), entrapment efficiency (EE), stability and rheological properties of vesicles were evaluated. Lipophilic and hydrophilic fluorescent probes were used to investigate the microviscosity of vesicles. In vitro permeation tests were performed with pig skin in Franz cells and the concentration of GA in different skin layers was determined by high performance liquid chromatography (HPLC). The ability of different vesicles to induce lipid extraction and fluidization was analyzed by using attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). RESULTS When glycerol was 50% and ethanol was 25%, the obtained glycethosomes had the smallest particle size and the best stability with a mean particle size of 94.5 nm, PDI 0.216 and 99.8% EE. Fluorescence probe studies indicated that the microviscosity of glycethosomes was the largest when the concentration of glycerol and ethanol was 50% and 25%, which was consistent with the storage stability of glycethosomes. It was found that the glycethosomes had the best transdermal effect and the total skin permeation percentage of GA was 20.67%, while that of ethosomes, glycerosomes, liposomes and dispersion were 10.56%, 9.38%, 7.78% and 5.02%, respectively. And glycethosomes had effectively lipid extraction and fluidization effect on the skin stratum corneum. CONCLUSION Compared to other traditional liposomes, glycethosomes can significantly improve the stability of vesicles and the transdermal effect of GA. Glycethosomes are promising vesicles for the delivery of GA.
Collapse
Affiliation(s)
- Ya-Qi Zhang
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Rong Liang
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Chunhuan Liu
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Cheng Yang
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| |
Collapse
|
24
|
Gervasi T, Calderaro A, Barreca D, Tellone E, Trombetta D, Ficarra S, Smeriglio A, Mandalari G, Gattuso G. Biotechnological Applications and Health-Promoting Properties of Flavonols: An Updated View. Int J Mol Sci 2022; 23:1710. [PMID: 35163632 PMCID: PMC8835978 DOI: 10.3390/ijms23031710] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Flavonols are a subclass of natural flavonoids characterized by a remarkable number of biotechnological applications and health-promoting properties. They attract researchers' attention due to many epidemiological studies supporting their usage. They are phytochemicals commonly present in our diet, being ubiquitous in the plant kingdom and, in particular, relatively very abundant in fruits and vegetables. All these aspects make flavonols candidates of choice for the valorization of products, based on the presence of a remarkable number of different chemical structures, each one characterized by specific chemical features capable of influencing biological targets inside the living organisms in very different manners. In this review, we analyzed the biochemical and physiological characteristics of flavonols focalizing our attention on the most promising compounds to shed some light on their increasing utilization in biotechnological applications in processing industries, as well as their suitable employment to improve the overall wellness of the humankind.
Collapse
Affiliation(s)
- Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Antonella Calderaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Giuseppe Gattuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| |
Collapse
|
25
|
Fathi F, Ebrahimi SN, Pereira DM, Estevinho BN, Rocha F. Preliminary studies of microencapsulation and anticancer activity of polyphenols extract from
Punica granatum
peels. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Faezeh Fathi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute Shahid Beheshti University Tehran Iran
| | - Samad N. Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute Shahid Beheshti University Tehran Iran
| | - David M. Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050‐313 Porto Portugal
| | - Berta N. Estevinho
- LEPABE ‐ Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering University of Porto, Rua Dr. Roberto Frias Porto Portugal
| | - Fernando Rocha
- LEPABE ‐ Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering University of Porto, Rua Dr. Roberto Frias Porto Portugal
| |
Collapse
|
26
|
Antitumoral Activities of Curcumin and Recent Advances to ImProve Its Oral Bioavailability. Biomedicines 2021; 9:biomedicines9101476. [PMID: 34680593 PMCID: PMC8533288 DOI: 10.3390/biomedicines9101476] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Curcumin, a main bioactive component of the Curcuma longa L. rhizome, is a phenolic compound that exerts a wide range of beneficial effects, acting as an antimicrobial, antioxidant, anti-inflammatory and anticancer agent. This review summarizes recent data on curcumin's ability to interfere with the multiple cell signaling pathways involved in cell cycle regulation, apoptosis and the migration of several cancer cell types. However, although curcumin displays anticancer potential, its clinical application is limited by its low absorption, rapid metabolism and poor bioavailability. To overcome these limitations, several curcumin-based derivatives/analogues and different drug delivery approaches have been developed. Here, we also report the anticancer mechanisms and pharmacokinetic characteristics of some derivatives/analogues and the delivery systems used. These strategies, although encouraging, require additional in vivo studies to support curcumin clinical applications.
Collapse
|
27
|
Nanosystems in Cosmetic Products: A Brief Overview of Functional, Market, Regulatory and Safety Concerns. Pharmaceutics 2021; 13:pharmaceutics13091408. [PMID: 34575484 PMCID: PMC8470546 DOI: 10.3390/pharmaceutics13091408] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Nanosystems exhibit various innovative physico-chemical properties as well as a range of cosmetic functions, including increased skin retention for loaded compounds. The worldwide nano-market has therefore been consistently extensive in recent decades. This review summarizes the most important properties of nanosystems that are employed in cosmetics, including composition, functions and interactions with skin, with particular attention being paid to marketed products. Moreover, the worldwide regulatory landscape of nanomaterials used as cosmetic ingredients is considered, and the main safety concerns are indicated. In general, advanced physico-chemical characterization is preliminarily needed to assess the safety of nanomaterials for human health and the environment. However, there is currently a shortfall in global legislation as a universally accepted and unambiguous definition of a nanomaterial is still lacking. Therefore, each country follows its own regulations. Anyhow, the main safety concerns arise from the European context, which is the most restrictive. Accordingly, the poor dermal permeation of nanomaterials generally limits their potential toxic effects, which should be mainly ascribed to unwanted or accidental exposure routes.
Collapse
|
28
|
Terescenco D, Hadj Benali L, Canivet F, Benoit le Gelebart M, Hucher N, Gore E, Picard C. Bio-sourced polymers in cosmetic emulsions: a hidden potential of the alginates as thickeners and gelling agents. Int J Cosmet Sci 2021; 43:573-587. [PMID: 34403151 DOI: 10.1111/ics.12732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The present work aims to investigate the impact of the alginates on the texture properties of cosmetic emulsions. For this purpose, five systems were selected: a classical emulsion without polymer and four emulsions containing polymers, as texture modifiers, at the level of 1%. Two different grades of alginates were chosen: one rich in mannuronic acid and one rich in guluronic acid. The objective was also to evaluate the potential of in-situ gelation during formulation. The guluronic rich sample was gelled to evaluate the effect on the texture properties. Finally, alginates-based systems were compared to the xanthan gum as a bio-sourced polymer reference. METHODS The sensory profile of the systems was established through a combination of prediction models and sensory analysis. The emulsion residual films obtained with natural polymers, Alginates and Xanthan Gum used as thickeners, as well as with the gelled version, were similar. However, the structural differences between polymers intervene during the characterisation of the sensory properties "before" and "during" application. A multi-scale physicochemical analysis was used to explain these differences. RESULTS Due to a controlled formulation process, the use of the polymers did not affect the microstructure of the emulsion which remained similar to the control one. The main impact of the polymers was observed on the macroscopic level: both alginates showed their unique textural signature, different from the classical Xanthan Gum. Due to weak structural differences, mechanical and textural properties were very close between the mannuronic rich and guluronic rich samples, when not gelled, compared to other emulsions. However, the molar mass and the mannuronic/guluronic acids ratio were proved to be crucial for the stretching and consistency properties, showing that this structural difference may have an impact when products are handled in traction and compression. CONCLUSION Meanwhile, the viscoelastic properties and the dynamic viscosity were greatly increased for the emulsion containing the gelled version of the alginate when compared to the classical polymers. The emulsion was also more consistent as proved by the textural analysis, pointing at better stability and suspension potential of the gelled emulsion versus the classical one containing the usual natural thickening agents.
Collapse
|
29
|
Liakopoulou A, Mourelatou E, Hatziantoniou S. Exploitation of traditional healing properties, using the nanotechnology's advantages: The case of curcumin. Toxicol Rep 2021; 8:1143-1155. [PMID: 34150524 PMCID: PMC8190487 DOI: 10.1016/j.toxrep.2021.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/02/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin (CUR) has a long history of use as an antimicrobial, anti-inflammatory and wound healing agent, for the treatment of various skin conditions. Encapsulation in nanocarriers may overcome the administration limitations of CUR, such as lipophilicity and photodegradation. Lipid nanocarriers with different matrix fluidity (Solid Lipid Nanoparticles; SLN, Nanostructured Lipid Carriers; NLC, and Nanoemulsion; NE) were prepared for the topical delivery of curcumin (CUR). The occlusive properties and film forming capacity, as well as the release profile of incorporated CUR, its protection against photodegradation and wound healing were studied in vitro, using empty nanocarriers or free CUR as control. The results suggest that incorporation of CUR in nanocarriers offers a significant protection against photodegradation that is not influenced by the matrix fluidity. However, this characteristic regulates properties such as the occlusion, the release rate and wound healing ability of CUR. Nanoparticles of low fluidity provided better surface occlusion, film forming capacity and retention of the incorporated CUR. All nanocarriers but especially NLC, achieved faster wound healing at lower dose of incorporated CUR. In conclusion, nanotechnology may enhance the action of CUR against skin conditions. Important characteristics of the nanocarrier such as matrix fluidity should be taken into consideration in the design of CUR nanosystems of optimal efficiency.
Collapse
Key Words
- BSA, bovine serum albumin
- CA, cellulose acetate
- CUR, curcumin
- Curcumin
- DLS, Dynamic Light Scattering
- DMEM, Dulbecco’s modified eagle medium
- DMSO, dimethyl sulfoxide
- DPBS, Dulbecco’s phosphate buffered saline
- ELS, Electrophoretic Light Scattering
- EtOH, ethanol
- FBS, fetal bovine serum
- MeOH, methanol
- NE, nanoemulsion
- NLC, nanostructured lipid carriers
- Nanoemulsion
- Nanostructured lipid carrier
- Occlusion
- P/S, penicillin/streptomycin
- PBS, phosphate buffered saline
- PdI, polydispersity index
- RH, relative humidity
- RT, room temperature
- SD, standard deviation
- SEM, scanning electron microscopy
- SLN, solid lipid nanoparticles
- Solid lipid nanoparticle
- TG, triglyceride
- Topical application
- UV-VIS, ultraviolet – visible spectrophotometry
- WFI, water for injection
- Wound healing
Collapse
Affiliation(s)
- Angeliki Liakopoulou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece
| | - Elena Mourelatou
- Laboratory of Pharmaceutical Technology, Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, 46 Makedonitissas Avenue, CY-2417, P.O. Box 24005, CY-1700, Nicosia, Cyprus
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece
| |
Collapse
|
30
|
Romes NB, Abdul Wahab R, Abdul Hamid M. The role of bioactive phytoconstituents-loaded nanoemulsions for skin improvement: a review. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1915869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Nissha Bharrathi Romes
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| | - Mariani Abdul Hamid
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| |
Collapse
|
31
|
Chen Q, Tai X, Li J, Li C, Guo L. High internal phase emulsions solely stabilized by natural oil-based nonionic surfactants as tea tree oil transporter. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Patel D, Chatterjee B. Identifying Underlying Issues Related to the Inactive Excipients of Transfersomes based Drug Delivery System. Curr Pharm Des 2021; 27:971-980. [PMID: 33069192 DOI: 10.2174/1381612826666201016144354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/02/2020] [Indexed: 11/22/2022]
Abstract
Transfersomes are bilayer vesicles composed of phospholipid and edge activators, which are mostly surfactant. Transfersomes based drug delivery system has gained a lot of interest of the pharmaceutical researchers for their ability to improve drug penetration and permeation through the skin. Transdermal drug delivery via transfersomes has the potential to overcome the challenge of low systemic availability. However, this complex vesicular system has different issues to consider for developing a successful transdermal delivery system. One of the major ingredients, phospholipid, has versatile sources and variable effect on the vesicle size and drug entrapment in transfersomes. The other one, termed as edge activators or surfactant, has some crucial consideration of skin damage and toxicity depending upon its type and concentration. A complex interaction between type and concentration of phospholipid and surfactant was observed, which affect the physicochemical properties of transfersomes. This review focuses on the practical factors related to these two major ingredients, such as phospholipid and surfactant. The origin, purity, desired concentration, the susceptibility of degradation, etc. are the important factors for selecting phospholipid. Regarding surfactants, the major aspects are type and desired concentration. A successful development of transfersomes based drug delivery system depends on the proper considerations of these factors and practical aspects.
Collapse
Affiliation(s)
- Drashti Patel
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
33
|
Leflunomide Sustained Skin Delivery Based on Sulfobetaine-Modified Chitosan Nanoparticles Embedded in Biodegradable Polyesters Films. Polymers (Basel) 2021; 13:polym13060960. [PMID: 33800966 PMCID: PMC8003864 DOI: 10.3390/polym13060960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 01/17/2023] Open
Abstract
The aim of the present study was to prepare a leflunomide (LFD) sustained release transdermal delivery system for the treatment of psoriasis. In this context, LFD-loaded nanoparticles (NPs) based on either neat chitosan (CS) or CS modified with [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SDAEM, a sulfobetaine zwitterionic compound) were initially prepared via ionotropic gelation and characterized in terms of in vitro dissolution, physicochemical, and antibacterial properties. Results showed that the use of the SDAEM-modified CS resulted in the formation of LFD-loaded NPs with improved wetting and solubilization properties, better in vitro dissolution profile characteristics (i.e., higher dissolution rate and extent), and improved (enhanced) antibacterial properties. The resultant LFD-loaded NPs were then embedded in suitable thin-film skin patches, prepared via spin-coating, utilizing two different biodegradable polyesters, namely methoxy polyethylene glycol-b-poly(L-lactide) (mPEG-b-PLA, at a ratio of 25/75 mPEG to PLA) and poly(lactic-co-glycolic acid) (PLGA at a ratio of 75/25 DL-lactide/glycolide copolymer). Results showed the formation of polymeric thin-films with no agglomeration (or trapped air) and uniform structure in all cases, while the LFD-loaded NPs were successfully embedded in the polymeric matrix. Analysis of the obtained in vitro dissolution profiles revealed a sustained release profile of the drug for up to approximately twelve days, while between the two proposed systems, the use of CS-SDAEM NPs (independently of the polyester type) was the most promising formulation approach.
Collapse
|
34
|
A Unique Acylated Flavonol Glycoside from Prunus persica (L.) var. Florida Prince: A New Solid Lipid Nanoparticle Cosmeceutical Formulation for Skincare. Antioxidants (Basel) 2021; 10:antiox10030436. [PMID: 33809166 PMCID: PMC7998748 DOI: 10.3390/antiox10030436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
Polyphenols are known dietary antioxidants. They have recently attracted considerable interest in uses to prevent skin aging and hyperpigmentation resulting from solar UV-irradiation. Prunus persica (L.) leaves are considered by-products and were reported to have a remarkable antioxidant activity due to their high content of polyphenols. This study aimed at the development of a cosmeceutical anti-aging and skin whitening cream preparation using ethanol leaves extract of Prunus persica (L.) (PPEE) loaded in solid lipid nanoparticles (SLNs) to enhance the skin delivery. Chemical investigation of PPEE showed significantly high total phenolic and flavonoids content with notable antioxidant activities (DPPH, ABTS, and β-carotene assays). A unique acylated kaempferol glycoside with a rare structure, kaempferol 3-O-β-4C1-(6″-O-3,4-dihydroxyphenylacetyl glucopyranoside) (KDPAG) was isolated for the first time and its structure fully elucidated. It represents the first example of acylation with 3,4-dihydroxyphenyl acetic acid in flavonoid chemistry. The in-vitro cytotoxicity studies against a human keratinocytes cell line revealed the non-toxicity of PPEE and PPEE-SLNs. Moreover, PPEE, PPEE-SLNs, and KDPAG showed good anti-elastase activity, comparable to that of N-(Methoxysuccinyl)-Ala-Ala-Pro-Val-chloromethyl ketone. Besides, PPEE-SLNs and KDPAG showed significantly (p < 0.001) higher anti-collagenase and anti-tyrosinase activities in comparison to EDTA and kojic acid, respectively. Different PPEE-SLNs cream formulae (2% and 5%) were evaluated for possible anti-wrinkle activity against UV-induced photoaging in a mouse model using a wrinkle scoring method and were shown to offer a highly significant protective effect against UV, as evidenced by tissue biomarkers (SOD) and histopathological studies. Thus, the current study demonstrates that Prunus persica leaf by-products provide an interesting, valuable resource for natural cosmetic ingredients. This provides related data for further studying the potential safe use of PPEE-SLNs in topical anti-aging cosmetic formulations with enhanced skin permeation properties.
Collapse
|
35
|
De Gaetano F, Cristiano MC, Venuti V, Crupi V, Majolino D, Paladini G, Acri G, Testagrossa B, Irrera A, Paolino D, Tommasini S, Ventura CA, Stancanelli R. Rutin-Loaded Solid Lipid Nanoparticles: Characterization and In Vitro Evaluation. Molecules 2021; 26:1039. [PMID: 33669321 PMCID: PMC7920302 DOI: 10.3390/molecules26041039] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/23/2022] Open
Abstract
This study was aimed at preparing and characterizing solid lipid nanoparticles loading rutin (RT-SLNs) for the treatment of oxidative stress-induced diseases. Phospholipon 80H® as a solid lipid and Polysorbate 80 as surfactant were used for the SLNs preparation, using the solvent emulsification/diffusion method. We obtained spherical RT-SLNs with low sizes, ranging from 40 to 60 nm (hydrodynamic radius) for the SLNs prepared starting from 2% and 5% (w/w) theoretical amount. All prepared formulations showed negative zeta-potential values. RT was efficiently encapsulated within SLNs, obtaining high encapsulation efficiency and drug content percentages, particularly for SLNs prepared with a 5% theoretical amount of RT. In vitro release profiles and analysis of the obtained data applying different kinetic models revealed Fickian diffusion as the main mechanism of RT release from the SLNs. The morphology of RT-SLNs was characterized by scanning electron microscopy (SEM), whereas the interactions between RT and the lipid matrix were investigated by Raman spectroscopy, evidencing spectral modifications of characteristic bands of RT due to the establishment of new interactions. Finally, antioxidant activity assay on human glioblastoma astrocytoma (U373) culture cells showed a dose-dependent activity for RT-SLNs, particularly at the highest assayed dose (50 μM), whereas the free drug showed the lesser activity.
Collapse
Affiliation(s)
- Federica De Gaetano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (V.C.); (S.T.); (C.A.V.)
| | - Maria Chiara Cristiano
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Catanzaro “Magna Græcia”, Campus Universitario “S. Venuta”, Viale S. Venuta, 88100 Catanzaro, Italy; (M.C.C.); (D.P.)
| | - Valentina Venuti
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (D.M.); (G.P.)
| | - Vincenza Crupi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (V.C.); (S.T.); (C.A.V.)
| | - Domenico Majolino
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (D.M.); (G.P.)
| | - Giuseppe Paladini
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (D.M.); (G.P.)
| | - Giuseppe Acri
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali, Università degli Studi di Messina, c/o A.O.U. Policlinico “G. Martino” Via Consolare Valeria 1, 98125 Messina, Italy; (G.A.); (B.T.)
| | - Barbara Testagrossa
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali, Università degli Studi di Messina, c/o A.O.U. Policlinico “G. Martino” Via Consolare Valeria 1, 98125 Messina, Italy; (G.A.); (B.T.)
| | - Alessia Irrera
- CNR-IPCF Istituto per i Processi Chimico Fisici, Viale Ferdinando Stagno D’Alcontres 37, 98158 Messina, Italy;
| | - Donatella Paolino
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Catanzaro “Magna Græcia”, Campus Universitario “S. Venuta”, Viale S. Venuta, 88100 Catanzaro, Italy; (M.C.C.); (D.P.)
| | - Silvana Tommasini
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (V.C.); (S.T.); (C.A.V.)
| | - Cinzia Anna Ventura
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (V.C.); (S.T.); (C.A.V.)
| | - Rosanna Stancanelli
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (V.C.); (S.T.); (C.A.V.)
| |
Collapse
|
36
|
Perinelli DR, Palmieri GF, Cespi M, Bonacucina G. Encapsulation of Flavours and Fragrances into Polymeric Capsules and Cyclodextrins Inclusion Complexes: An Update. Molecules 2020; 25:E5878. [PMID: 33322621 PMCID: PMC7763935 DOI: 10.3390/molecules25245878] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Flavours and fragrances are volatile compounds of large interest for different applications. Due to their high tendency of evaporation and, in most cases, poor chemical stability, these compounds need to be encapsulated for handling and industrial processing. Encapsulation, indeed, resulted in being effective at overcoming the main concerns related to volatile compound manipulation, and several industrial products contain flavours and fragrances in an encapsulated form for the final usage of customers. Although several organic or inorganic materials have been investigated for the production of coated micro- or nanosystems intended for the encapsulation of fragrances and flavours, polymeric coating, leading to the formation of micro- or nanocapsules with a core-shell architecture, as well as a molecular inclusion complexation with cyclodextrins, are still the most used. The present review aims to summarise the recent literature about the encapsulation of fragrances and flavours into polymeric micro- or nanocapsules or inclusion complexes with cyclodextrins, with a focus on methods for micro/nanoencapsulation and applications in the different technological fields, including the textile, cosmetic, food and paper industries.
Collapse
Affiliation(s)
- Diego Romano Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy; (G.F.P.); (M.C.); (G.B.)
| | | | | | | |
Collapse
|
37
|
Extraction, Characterization and Incorporation of Hypericum scruglii Extract in Ad Hoc Formulated Phospholipid Vesicles Designed for the Treatment of Skin Diseases Connected with Oxidative Stress. Pharmaceutics 2020; 12:pharmaceutics12111010. [PMID: 33113923 PMCID: PMC7690748 DOI: 10.3390/pharmaceutics12111010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/10/2023] Open
Abstract
An extract of Hypericum scruglii, an endangered endemic plant of Sardinia (Italy), was prepared and characterized. It was loaded in special phospholipid vesicles, glycerosomes, which were modified by adding maltodextrin (glucidex) and a polymer (gelatin or hyaluronan). The corresponding liposomes were also prepared and used as reference. The vesicles disclosed suitable physicochemical features for skin delivery. Indeed, their mean diameter ranged from 120 to 160 nm, they were homogeneously dispersed (polydispersity index ≤ 0.30), and their zeta potential was highly negative (~−45 mV). The vesicle dispersions maintained unchanged characteristics during 60 days of storage, were highly biocompatible, and were able to protect keratinocytes against damages due to oxidative stress induced by treating them with hydrogen peroxide. Vesicles were also capable of promoting cell proliferation and migration in vitro by means of a scratch wound assay. The results confirmed the fruitful delivery of the extract of H. scruglii in glycerosomes modified with glucidex and gelatin and their promising ability for skin protection and treatment.
Collapse
|
38
|
Nutrizio M, Pataro G, Carullo D, Carpentieri S, Mazza L, Ferrari G, Chemat F, Banović M, Režek Jambrak A. High Voltage Electrical Discharges as an Alternative Extraction Process of Phenolic and Volatile Compounds from Wild Thyme ( Thymus serpyllum L.): In Silico and Experimental Approaches for Solubility Assessment. Molecules 2020; 25:molecules25184131. [PMID: 32927598 PMCID: PMC7570489 DOI: 10.3390/molecules25184131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to evaluate the potential of green solvents for extractions of bioactive compounds (BACs) and essential oils from wild thyme (Thymus serpyllum L.) using theoretical and experimental procedures. Theoretical prediction was assessed by Hansen solubility parameters (HSPs) and conductor-like screening model for realistic solvents (COSMO-RS), to predict the most suitable solvents for extraction of BACs. An experimental procedure was performed by nonthermal technology high voltage electrical discharge (HVED) and it was compared with modified conventional extraction (CE). Obtained extracts were analyzed for chemical and physical changes during the treatment. Theoretical results for solution of BACs in ethanol and water, as green solvents, were confirmed by experimental results, while more accurate data was given by COSMO-RS assessment than HSPs. Results confirmed high potential of HVED for extraction of BACs and volatile compounds from wild thyme, in average, 2.03 times higher yield of extraction in terms of total phenolic content was found compared to CE. The main phenolic compound found in wild thyme extracts was rosmarinic acid, while the predominant volatile compound was carvacrol. Obtained extracts are considered safe and high-quality source reach in BACs that could be further used in functional food production.
Collapse
Affiliation(s)
- Marinela Nutrizio
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
- Correspondence: (M.N.); (A.R.J.); Tel.: +385-1460-5287 (M.N. & A.R.J.)
| | - Gianpiero Pataro
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy; (G.P.); (D.C.); (S.C.); (L.M.); (G.F.)
| | - Daniele Carullo
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy; (G.P.); (D.C.); (S.C.); (L.M.); (G.F.)
- ProdAl Scarl University of Salerno, 84084 Fisciano, Italy
| | - Serena Carpentieri
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy; (G.P.); (D.C.); (S.C.); (L.M.); (G.F.)
| | - Luisa Mazza
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy; (G.P.); (D.C.); (S.C.); (L.M.); (G.F.)
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy; (G.P.); (D.C.); (S.C.); (L.M.); (G.F.)
- ProdAl Scarl University of Salerno, 84084 Fisciano, Italy
| | - Farid Chemat
- GREEN Team Extraction, Université d’Avignon et des Pays du Vaucluse-INRA, UMR408, 84000 Avignon, France;
| | - Mara Banović
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
- Correspondence: (M.N.); (A.R.J.); Tel.: +385-1460-5287 (M.N. & A.R.J.)
| |
Collapse
|