1
|
Cucick ACC, Obermaier L, Galvão Frota E, Suzuki JY, Nascimento KR, Fabi JP, Rychlik M, Franco BDGDM, Saad SMI. Integrating fruit by-products and whey for the design of folate-bioenriched innovative fermented beverages safe for human consumption. Int J Food Microbiol 2024; 425:110895. [PMID: 39222566 DOI: 10.1016/j.ijfoodmicro.2024.110895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Global concerns over folate deficiency, the risks of excessive synthetic folic acid consumption, and food loss implications for environmental sustainability and food security drive needs of innovative approaches that align food by-product valorisation with folate bio-enrichment. This study explored the use of three fruit by-products extracts (grape, passion fruit, and pitaya) and whey to develop a folate bio-enriched fermented whey-based beverage. Three strains (Lacticaseibacillus rhamnosus LGG, Bifidobacterium infantis BB-02, and Streptococcus thermophilus TH-4) were tested for folate production in different fermentation conditions in modified MRS medium and in a whey-based matrix prepared with water extracts of these fruit by-products. B. infantis BB-02 and S. thermophilus TH-4, alone and in co-culture, were the best folate producers. The selection of cultivation conditions, including the presence of different substrates and pH, with grape by-product water extract demonstrating the most substantial effect on folate production among the tested extracts, was crucial for successfully producing a biofortified fermented whey-based beverage (FWBB). The resulting FWBB provided 40.7 μg of folate per 100 mL after 24 h of fermentation at 37 °C, effectively leveraging food by-products. Moreover, the beverage showed no cytotoxicity in mouse fibroblast cells tests. This study highlights the potential for valorising fruit by-products and whey for the design of novel bioenriched foods, promoting health benefits and contributing to reduced environmental impact from improper disposal.
Collapse
Affiliation(s)
- Ana Clara Candelaria Cucick
- School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes, 580, CEP 05508-000 São Paulo, SP, Brazil; Food Research Center (FoRC), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Lisa Obermaier
- Chair of Analytical Chemistry, Technical University of Munich (TUM), Munich, Bavaria, Germany
| | - Elionio Galvão Frota
- School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes, 580, CEP 05508-000 São Paulo, SP, Brazil
| | - Juliana Yumi Suzuki
- School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes, 580, CEP 05508-000 São Paulo, SP, Brazil; Food Research Center (FoRC), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Karen Rebouças Nascimento
- School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes, 580, CEP 05508-000 São Paulo, SP, Brazil; Food Research Center (FoRC), University of São Paulo (USP), São Paulo, SP, Brazil
| | - João Paulo Fabi
- School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes, 580, CEP 05508-000 São Paulo, SP, Brazil; Food Research Center (FoRC), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Michael Rychlik
- Chair of Analytical Chemistry, Technical University of Munich (TUM), Munich, Bavaria, Germany
| | - Bernadette Dora Gombossy de Melo Franco
- School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes, 580, CEP 05508-000 São Paulo, SP, Brazil; Food Research Center (FoRC), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Susana Marta Isay Saad
- School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes, 580, CEP 05508-000 São Paulo, SP, Brazil; Food Research Center (FoRC), University of São Paulo (USP), São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Ho PY, Lin PX, Koh YC, Lin WS, Tang KL, Chen YH, Weerawatanakorn M, Pan MH. Exploring the Effects of Whole Food-Based Dragon Fruit on Metabolic Disorders in High-Fat Diet-Induced Mice. Mol Nutr Food Res 2024:e2400604. [PMID: 39363653 DOI: 10.1002/mnfr.202400604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Indexed: 10/05/2024]
Abstract
SCOPE Metabolic syndrome (MetS) significantly contributes to premature mortality, with obesity being a major risk factor. Dragon fruit, cultivated globally, exhibits bioactivity in preventing obesity-related diseases. Traditional studies using organic solvents for extraction do not align with actual consumption patterns. METHOD AND RESULTS This study evaluates whole red dragon fruit's effectiveness in ameliorating metabolic disorders using a high-fat diet-induced obesity model in mice for 20 weeks. The experimental groups include the supernatant (RS), precipitate (RP), and pomace (PO) of red dragon fruit juice, compared to the supernatant of white dragon fruit juice (WS). The study finds that dragon fruit extracts reduced adipose tissue weight, body fat percentage, pro-inflammatory cytokines, and improved blood lipid profiles. RP is the most effective, reducing body weight by 4.33 g, improving lipid metabolism and glucose homeostasis, and altering gut microbiota to enhance beneficial bacteria and short-chain fatty acids. RP's efficacy in preventing MetS and obesity is attributed to its bioactive components. CONCLUSION These findings advocate for using whole fruits in developing functional products, amplifying the agricultural economic value of red dragon fruit.
Collapse
Affiliation(s)
- Pin-Yu Ho
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan, ROC
| | - Pin-Xuan Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan, ROC
| | - Yen-Chun Koh
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan, ROC
| | - Wei-Sheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan, ROC
- Department of Food Science, National Quemoy University, Quemoy County, 89250, Taiwan, ROC
| | - Kai-Liang Tang
- Taichung District Agricultural Research and Extension station, Ministry of Agriculture, Songhuai Road, Dacun Township, Changhua County, 515008, Taiwan, ROC
| | - Yu-Hsin Chen
- Taichung District Agricultural Research and Extension station, Ministry of Agriculture, Songhuai Road, Dacun Township, Changhua County, 515008, Taiwan, ROC
| | - Monthana Weerawatanakorn
- Department of Agro-Industry, Naresuan University, 99 Moo 9, Thapho, Muang, Phitsanulok, 65000, Thailand
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan, ROC
- Department of Public Health, China Medical University, Taichung, 40402, Taiwan, ROC
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, 41354, Taiwan, ROC
| |
Collapse
|
3
|
Tripathi M, Diwan D, Shukla AC, Gaffey J, Pathak N, Dashora K, Pandey A, Sharma M, Guleria S, Varjani S, Nguyen QD, Gupta VK. Valorization of dragon fruit waste to value-added bioproducts and formulations: A review. Crit Rev Biotechnol 2024; 44:1061-1079. [PMID: 37743323 DOI: 10.1080/07388551.2023.2254930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 09/26/2023]
Abstract
Owing to the increasing worldwide population explosion, managing waste generated from the food sector has become a cross-cutting issue globally, leading to environmental, economic, and social issues. Circular economy-inspired waste valorization approaches have been increasing steadily, generating new business opportunities developing valuable bioproducts using food waste, especially fruit wastes, that may have several applications in energy-food-pharma sectors. Dragon fruit waste is one such waste resource, which is rich in several value-added chemicals and oils, and can be a renewable resource to produce several value-added compounds of potential applications in different industries. Pretreatment and extraction processes in biorefineries are important strategies for recovering value-added biomolecules. There are different methods of valorization, including green extractions and biological conversion approaches. However, microbe-based conversion is one of the advanced technologies for valorizing dragon fruit waste into bioethanol, bioactive products, pharmaceuticals, and other valued products by reusing or recycling them. This state-of-the-art review briefly overviews the dragon fruit waste management strategies and advanced eco-friendly and cost-effective valorization technologies. Furthermore, various applications of different valuable bioactive components obtained from dragon fruit waste have been critically discussed concerning various industrial sectors. Several industrial sectors, such as food, pharmaceuticals, and biofuels, have been critically reviewed in detail.
Collapse
Affiliation(s)
- Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya, India
| | - Deepti Diwan
- School of Medicine, Washington University, Saint Louis, MO, USA
| | | | - James Gaffey
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Kerry, Ireland
| | - Neelam Pathak
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya, India
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- School of Engineering, University of Petroleum and Energy Studies, Dehradun, India
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | | | - Sanjay Guleria
- Sher-e- Kashmir University of Agricultural Sciences and Technology of Jammu, Union Territory of Jammu and Kashmir, India
| | - Sunita Varjani
- School of Engineering, University of Petroleum and Energy Studies, Dehradun, India
- School of Energy and Environment, City University of Hon Kong, Kowloon, Hong Kong
| | - Quang D Nguyen
- Department of Bioengineering and Alcoholic Drink Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Vijai K Gupta
- Biorefining and Advanced Materials Research Centre, SRUC, Dumfries, UK
| |
Collapse
|
4
|
Erazo-Lara A, García-Pastor ME, Padilla-González PA, Valero D, Serrano M. Preharvest Elicitors as a Tool to Enhance Bioactive Compounds and Quality of Both Peel and Pulp of Yellow Pitahaya ( Selenicereus megalanthus Haw.) at Harvest and during Postharvest Storage. Int J Mol Sci 2024; 25:5435. [PMID: 38791472 PMCID: PMC11121277 DOI: 10.3390/ijms25105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Yellow pitahaya is a tropical fruit that has gained popularity in recent years. Natural elicitors are compounds that can stimulate the resistance and quality of fruits. The objective of this study was to evaluate the effects of natural elicitors, methyl salicylate (MeSa), methyl jasmonate (JaMe), salicylic acid (SA) and oxalic acid (OA) at concentrations of 0.1 mM (MeSa and JaMe) and 5 mM (SA and OA), applied to the yellow pitahaya fruits under greenhouse conditions. After full blossom, four applications were made with a frequency of 15 days. At the time of harvest and after storage, the following variables were evaluated: firmness (whole fruit), total soluble solids (TSS), total acidity (TA), phenolics and carotenoids (in the pulp), while phenolics, carotenoids, macronutrients and micronutrients were determined in the peel. The results showed MeSa advanced the fruit maturation, according to higher TSS, lower TA and firmness than MeJa-treated fruits, for which a delayed ripening process was shown. All treatments induced a higher polyphenolic concentration during storage. Regarding the alternative use of the peel as a by-product, the application of natural elicitors significantly increased the content of polyphenols, carotenoids, macronutrients and micronutrients in the peel, especially MeSa, which can be used as a bioactive compound in the food industry. In conclusion, the results indicate that natural elicitors can be an alternative to improve the quality and shelf life of yellow pitahaya fruits.
Collapse
Affiliation(s)
- Alex Erazo-Lara
- Escuela Politécnica Superior de Chimborazo (ESPOCH), Sede Morona Santiago, Macas 140101, Ecuador;
- Department of Food Technology, Escuela Politécnica Superiorde Orihuel—Centro de Investigación e Innovación Agroalimentario y Agroambiental, University Miguel Hernández, Ctra. Beniel Km. 3.2, 03312 Orihuela, Spain;
| | - María Emma García-Pastor
- Department of Applied Biology, Escuela Politécnica Superiorde Orihuel—Centro de Investigación e Innovación Agroalimentario y Agroambiental, University Miguel Hernández, Ctra. Beniel Km. 3.2, 03312 Orihuela, Spain;
| | - Pedro Antonio Padilla-González
- Department of Food Technology, Escuela Politécnica Superiorde Orihuel—Centro de Investigación e Innovación Agroalimentario y Agroambiental, University Miguel Hernández, Ctra. Beniel Km. 3.2, 03312 Orihuela, Spain;
| | - Daniel Valero
- Department of Food Technology, Escuela Politécnica Superiorde Orihuel—Centro de Investigación e Innovación Agroalimentario y Agroambiental, University Miguel Hernández, Ctra. Beniel Km. 3.2, 03312 Orihuela, Spain;
| | - María Serrano
- Department of Applied Biology, Escuela Politécnica Superiorde Orihuel—Centro de Investigación e Innovación Agroalimentario y Agroambiental, University Miguel Hernández, Ctra. Beniel Km. 3.2, 03312 Orihuela, Spain;
| |
Collapse
|
5
|
Kęska P, Gazda P, Siłka Ł, Mazurek K, Stadnik J. Nutrition Value of Baked Meat Products Fortified with Lyophilized Dragon Fruit ( Hylocereus undatus). Foods 2023; 12:3550. [PMID: 37835203 PMCID: PMC10572955 DOI: 10.3390/foods12193550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
This study evaluates the nutritional value of a baked pork meat product containing lyophilized dragon fruit pulp. The selected nutritional properties of a baked pork meat product fortified with lyophilized Hylocereus undatus pulp in doses of 0.5%, 1.5%, 2.5%, and 4% were evaluated. For this assessment, changes in the basic chemical composition of the products, the content of calcium, magnesium, potassium, iron, and phosphorus, and the profile of fatty acids were considered. Additionally, characteristics typical for meat products, such as pH, water activity, oxidation-reduction potential or thiobarbituric acid reactive substances, and antioxidant properties of the product during 21 days of refrigerated storage, were assessed. The findings indicate that the use of higher doses of lyophilizate, i.e., in the amounts of 2.5% and 4%, significantly (p < 0.05) increases the nutritional value of meat products, leading to an increase in the concentration of essential minerals important for the proper functioning of the human body (calcium, magnesium, potassium, and iron). These changes occurred without affecting the basic chemical composition (except for an increase in the content of fat and carbohydrates in the sample with the addition of 4% lyophilizate). The introduction of the fortification treatment improved the fatty acid profile, resulting in an increase in the content of C14:0, C16:0, C20:0, and C20:5n3. In addition, in the variant with a 4% dosage, there was an increased content of C8:0, C10:0, C16:1n7, C18:0, C18:1n9C + C18:1n9t, and C18:2n6C + C18:2n6t, C18:3n3 (alpha), C20:1n15, and C20:1n9. In this particular variant, an increase in saturated-, monounsaturated-, and polyunsaturated fatty acids was also observed, which was associated with an increased level of TBARS in meat products. However, the increase in the dose of lyophilizate caused an increase in the antiradical effect of meat extracts. Based on the results obtained, it seems reasonable to use a plant additive in the form of lyophilized dragon fruit pulp in the amount of 4.0% in the production of pork meat products.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Stadnik
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (P.K.)
| |
Collapse
|
6
|
Trindade AR, Paiva P, Lacerda V, Marques N, Neto L, Duarte A. Pitaya as a New Alternative Crop for Iberian Peninsula: Biology and Edaphoclimatic Requirements. PLANTS (BASEL, SWITZERLAND) 2023; 12:3212. [PMID: 37765376 PMCID: PMC10537634 DOI: 10.3390/plants12183212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Pitaya is one of the fruit species whose demand has increased in recent years due to the numerous health benefits and lucrative price of the fruit and its by-products. In Europe, the Iberian Peninsula and other Mediterranean countries are the ones with favorable climatic conditions for its cultivation. This document describes much of the history of pitaya in the Iberian Peninsula and the difficulties related to its cultivation. A bibliographical survey was carried out on the culture of pitaya in the world, focusing on the edaphoclimatic requirements, and on the possibility of this becoming a consolidated crop in the Iberian Peninsula. The relatively low water requirement of pitaya makes this crop sustainable among crops that require irrigation. In addition, we provide a perspective for use and research of this emerging crop. There has been an exponential growth of scientific publications on pitaya in the last decade; however, much more needs to be researched to know how to increase productivity as well as the sensory quality of fruits in different regions. This sustainable crop is a good option to diversify fruit production in the Iberian Peninsula.
Collapse
Affiliation(s)
- Ana Rita Trindade
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve (UAlg), Campus de Gambelas, 8005-139 Faro, Portugal
| | - Paulo Paiva
- Instituto Federal de Educação, Ciência e Tecnologia do Triangulo Mineiro (IFTM), Uberaba 38064-790, Brazil
| | - Vander Lacerda
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve (UAlg), Campus de Gambelas, 8005-139 Faro, Portugal
- Departamento de Produção Vegetal (Horticultura), Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Botucatu 18610-034, Brazil
| | - Natália Marques
- CEOT-Centro de Eletrónica, Optoeletrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Edif. 8, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Luís Neto
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve (UAlg), Campus de Gambelas, 8005-139 Faro, Portugal
| | - Amílcar Duarte
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve (UAlg), Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
7
|
Vilcapoma W, de Bruijn J, Elías-Peñafiel C, Espinoza C, Farfán-Rodríguez L, López J, Encina-Zelada CR. Optimization of Ultrasound-Assisted Extraction of Dietary Fiber from Yellow Dragon Fruit Peels and Its Application in Low-Fat Alpaca-Based Sausages. Foods 2023; 12:2945. [PMID: 37569214 PMCID: PMC10419239 DOI: 10.3390/foods12152945] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/13/2023] Open
Abstract
The main objective of this study was to optimize the extraction of dietary fiber (insoluble dietary fiber and soluble dietary fiber) and degree of esterification from yellow dragon fruit peels using ultrasound-assisted extraction. Additionally, the study aimed to investigate the potential application of this fiber as a fat replacement in alpaca-based sausages. The optimization process for extracting dietary fiber and degree of esterification involved considering various factors, including the liquid-to-solid ratio, pause time, and total ultrasound application time. A Box-Behnken design consisting of 15 treatments was employed to determine the optimal levels for ultrasound-assisted extraction. The optimized conditions were found to be a liquid-to-solid ratio = 30 mL/g, pause time = 1 s, and total ultrasound application time = 60 min, which resulted in the highest values of insoluble dietary fiber (61.3%), soluble dietary fiber (10.8%), and the lowest value of degree of esterification (39.7%). The predicted values were validated against experimental data and showed no significant differences (p > 0.05). Furthermore, a completely randomized design was utilized to assess the effect of dietary fiber on replacing fat content during the production of alpaca-based sausages. The findings revealed that up to 78% of the fat content could be successfully replaced by soluble dietary fiber obtained from yellow dragon fruit peels when compared to high-fat sausages. Additionally, experimental sausages using soluble dietary fiber showed similar (p > 0.05) quality characteristics, such as hardness (24.2 N), chewiness (11.8 N), springiness (0.900), cohesiveness (0.543), redness (a* = 17.4), and chroma values (20.0), as low-fat commercial sausages.
Collapse
Affiliation(s)
- Wilber Vilcapoma
- Departamento de Tecnología de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n Lima 12, Lima 15024, Peru
| | - Johannes de Bruijn
- Departamento de Agroindustrias, Universidad de Concepción, Av. Vicente Méndez, n°595, Chillán 3812120, Chile
| | - Carlos Elías-Peñafiel
- Departamento de Tecnología de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n Lima 12, Lima 15024, Peru
| | - Clara Espinoza
- Departamento de Tecnología de Alimentos, Universidad Nacional del Centro del Perú, Huancayo 12006, Peru
| | - Lucero Farfán-Rodríguez
- Departamento de Tecnología de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n Lima 12, Lima 15024, Peru
| | - Jorge López
- Departamento de Ingeniería Química, Facultad de Ingeniería Química, Universidad Nacional del Callao, Callao 09250, Peru
| | - Christian R. Encina-Zelada
- Departamento de Tecnología de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n Lima 12, Lima 15024, Peru
| |
Collapse
|
8
|
Yu ZR, Weng YM, Lee HY, Wang BJ. Partition of bioactive components from red pitaya fruit (Hylocereus polyrhizus) peels into different fractions using supercritical fluid fractionation technology. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Wang R, Li M, Brennan MA, Kulasiri D, Guo B, Brennan CS. Phenolic Release during In Vitro Digestion of Cold and Hot Extruded Noodles Supplemented with Starch and Phenolic Extracts. Nutrients 2022; 14:nu14183864. [PMID: 36145240 PMCID: PMC9504551 DOI: 10.3390/nu14183864] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary phenolic compounds must be released from the food matrix in the gastrointestinal tract to play a bioactive role, the release of which is interfered with by food structure. The release of phenolics (unbound and bound) of cold and hot extruded noodles enriched with phenolics (2.0%) during simulated in vitro gastrointestinal digestion was investigated. Bound phenolic content and X-ray diffraction (XRD) analysis were utilized to characterize the intensity and manner of starch-phenolic complexation during the preparation of extruded noodles. Hot extrusion induced the formation of more complexes, especially the V-type inclusion complexes, with a higher proportion of bound phenolics than cold extrusion, contributing to a more controlled release of phenolics along with slower starch digestion. For instance, during simulated small intestinal digestion, less unbound phenolics (59.4%) were released from hot extruded phenolic-enhanced noodles than from the corresponding cold extruded noodles (68.2%). This is similar to the release behavior of bound phenolics, that cold extruded noodles released more bound phenolics (56.5%) than hot extruded noodles (41.9%). For noodles extruded with rutin, the release of unbound rutin from hot extruded noodles and cold extruded noodles was 63.6% and 79.0%, respectively, in the small intestine phase, and bound rutin was released at a much lower amount from the hot extruded noodles (55.8%) than from the cold extruded noodles (89.7%). Hot extrusion may allow more potential bioaccessible phenolics (such as rutin), further improving the development of starchy foods enriched with controlled phenolics.
Collapse
Affiliation(s)
- Ruibin Wang
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Lincoln 7647, New Zealand
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
| | - Ming Li
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Margaret Anne Brennan
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Don Kulasiri
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Boli Guo
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Correspondence: (B.G.); (C.S.B.)
| | - Charles Stephen Brennan
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, VIC 3000, Australia
- Correspondence: (B.G.); (C.S.B.)
| |
Collapse
|
10
|
Li J, Chen J, Xiao G, Chen L, Guo X. Impact of kernel development on phenolic profiles and antioxidant activity in
Castanea henryi. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Jiaqi Li
- School of Food Science and Engineering Ministry of Education Engineering Research Centre of Starch & Protein Processing Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou 510640 China
| | - Jiayu Chen
- Xingxi Agro‐tech Extension and Service Station Zhenghe 353600 China
| | - Gengsheng Xiao
- College of Food Science and Technology Zhongkai University of Agriculture Engineering Guangzhou 510225 China
| | - Ling Chen
- School of Food Science and Engineering Ministry of Education Engineering Research Centre of Starch & Protein Processing Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou 510640 China
| | - Xinbo Guo
- School of Food Science and Engineering Ministry of Education Engineering Research Centre of Starch & Protein Processing Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou 510640 China
| |
Collapse
|
11
|
Cai S. Bioaccessibility and bioavailability of food‐derived bioactive ingredients and their health‐promoting effects: editorial. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shengbao Cai
- Faculty of Food Science and Engineering Kunming University of Science and Technology Yunnan Province Kunming 650500 China
| |
Collapse
|
12
|
Li X, Zhang ZH, Qiao J, Qu W, Wang MS, Gao X, Zhang C, Brennan CS, Qi X. Improvement of betalains stability extracted from red dragon fruit peel by ultrasound-assisted microencapsulation with maltodextrin. ULTRASONICS SONOCHEMISTRY 2022; 82:105897. [PMID: 34990969 PMCID: PMC8799603 DOI: 10.1016/j.ultsonch.2021.105897] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/25/2021] [Indexed: 05/24/2023]
Abstract
Natural betalains can be potential food additives because of their antioxidant activities, but they have poor thermal stability. In this study, betalains were extracted from red dragon fruit peel, and then encapsulated with maltodextrin by ultrasound method to increase the physicochemical properties of betalains microcapsules. The encapsulation efficiency of the betalains was above 79%, and the particle size and Zeta potential values were 275.46 nm and -29.01 mV, respectively. Compared to the control sample, onset temperature and DPPH free radical scavenging of betalains microcapsules under the modest ultrasound treatment (200 W, 5 min) was increased by 1.6 °C and 12.24%, respectively. This increase could be due to the ability of ultrasonification to create interactions between maltodextrin and betalains (as evidenced by FT-IR). Therefore, modest ultrasound treatment can be used for microcapsulation to improve the stability of betalains, and then expand the application of betalains in heat processed food field.
Collapse
Affiliation(s)
- Xiaolan Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhi-Hong Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jiaqi Qiao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Wenjuan Qu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Man-Sheng Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West XianJiahu Road, Changsha 410205, China
| | - Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Cunsheng Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | | | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
13
|
Huang Y, He M, Kasapis S, Brennan M, Brennan C. The influence of the fortification of red pitaya (
Hylocereus polyrhizus
) powder on the in vitro digestion, physical parameters, nutritional profile, polyphenols and antioxidant activity in the oat‐wheat bread. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yanyi Huang
- School of Science RMIT University Melbourne Australia
| | - Mengya He
- School of Science RMIT University Melbourne Australia
| | | | - Margaret Brennan
- Department of Wine, Food and Molecular Biosciences Lincoln University Christchurch New Zealand
| | | |
Collapse
|