1
|
Zhao Z, Song H, Qi M, Liu Y, Zhang Y, Li S, Zhang H, Sun Y, Sun Y, Gao Z. Brain targeted polymeric micelles as drug carriers for ischaemic stroke treatment. J Drug Target 2025; 33:232-248. [PMID: 39403962 DOI: 10.1080/1061186x.2024.2417190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Ischaemic stroke is a central nervous system disease with high morbidity, recurrence and mortality rates. Thrombolytic and neuroprotective therapies are the main therapeutic strategies for ischaemic stroke, however, the poor delivery efficiency of thrombolytic and neuroprotective drugs to the brain limits their clinical application. So far, the development of nanomedicine has brought opportunities for the above challenges, which can not only realise the effective accumulation of drugs in the target site, but also improve the pharmacokinetic behaviour of the drugs. Among the most rapidly developing nanoparticles, micelles gradually emerging as an effective strategy for ischaemic stroke treatment due to their own unique advantages. This review provided an overview of targeted and response-release micelles based on the physicochemical properties of the ischaemic stroke microenvironment, summarised the targeting strategies for delivering micellar formulations to the thrombus, blood-brain barrier, and brain parenchyma, and finally described the potentials and challenges of polymeric micelles in the treatment of ischaemic stroke.
Collapse
Affiliation(s)
- Zirui Zhao
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Huijia Song
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Mengge Qi
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yurong Liu
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yanchao Zhang
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Shuo Li
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Huimin Zhang
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yongjun Sun
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yanping Sun
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Zibin Gao
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
2
|
Pensato U, Demchuk AM, Menon BK, Nguyen TN, Broocks G, Campbell BCV, Gutierrez Vasquez DA, Mitchell PJ, Hill MD, Goyal M, Ospel JM. Cerebral Infarct Growth: Pathophysiology, Pragmatic Assessment, and Clinical Implications. Stroke 2025; 56:219-229. [PMID: 39545332 DOI: 10.1161/strokeaha.124.049013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Cerebral ischemic injury occurs when blood flow drops below a critical level, resulting in an energy failure. The progressive transformation of hypoperfused viable tissue, the ischemic penumbra, into infarction is a mechanism shared by patients with ischemic stroke if timely reperfusion is not achieved. Yet, the pace at which this transformation occurs, known as the infarct growth rate (IGR), exhibits remarkable heterogeneity among patients, brain regions, and over time, reflecting differences in compensatory collateral flow and ischemic tolerance. We review (1) the pathophysiology of infarct growth, (2) the advantages and pitfalls of different approaches of IGR measurement, (3) research gaps for future studies, and (4) the clinical implications of stroke progressor phenotypes. The estimated average IGR in patients with acute large vessel occlusion stroke is 5.4 mL/h although there is wide variability based on ischemic stroke subtype, occlusion location, presence of collaterals, and patient baseline status. The IGR can be calculated using various pragmatic strategies, mostly either quantifying the extension of the infarct at a particular time and dividing this measure by the time that elapsed from symptom onset to imaging assessment or by using collateral blood flow status as a radiological surrogate marker. The IGR defines a spectrum of clinical stroke phenotypes, often dichotomized into fast and slow progressors. An IGR ≥10 mL/h and the perfusion metric hypoperfusion intensity ratio ≥0.5 are commonly used definitions of fast progressors. A nuanced understanding of the IGR and stroke progressor phenotypes could have clinical implications, including informing prognostication, acute decision-making in peripheral-to-comprehensive transfer patients eligible for thrombectomy, and selection for adjuvant neuroprotective agents.
Collapse
Affiliation(s)
- Umberto Pensato
- Department of Biomedical Sciences, Humanitas University, Milan, Italy (U.P.)
- Department of Neurology, IRCCS Humanitas Research Hospital, Milan, Italy (U.P.)
| | - Andrew M Demchuk
- Department of Clinical Neurosciences (A.M.D., B.K.M., M.D.H.), Cumming School of Medicine, University of Calgary, AB, Canada
| | - Bijoy K Menon
- Department of Clinical Neurosciences (A.M.D., B.K.M., M.D.H.), Cumming School of Medicine, University of Calgary, AB, Canada
| | - Thanh N Nguyen
- Department of Neurology (T.N.N.), Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, MA
- Department of Radiology (T.N.N.), Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, MA
| | - Gabriel Broocks
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Germany (G.B.)
- Department of Neurology (B.C.V.C.), Melbourne Brain Centre, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Bruce C V Campbell
- Department of Neurology (B.C.V.C.), Melbourne Brain Centre, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Diego A Gutierrez Vasquez
- Department of Neurology, School of Medicine, Pontifical Catholic University of Chile, Santiago (D.A.G.V.)
| | - Peter J Mitchell
- Department of Radiology (P.J.M.), Melbourne Brain Centre, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Michael D Hill
- Department of Clinical Neurosciences (A.M.D., B.K.M., M.D.H.), Cumming School of Medicine, University of Calgary, AB, Canada
| | - Mayank Goyal
- Department of Radiology (M.G., J.M.O.), Cumming School of Medicine, University of Calgary, AB, Canada
| | - Johanna M Ospel
- Department of Radiology (M.G., J.M.O.), Cumming School of Medicine, University of Calgary, AB, Canada
| |
Collapse
|
3
|
Lyden PD. Adverse Effects of Post-Recanalization Hemorrhagic Transformation: Asymptomatic but Not Inconsequential. Neurology 2024; 103:e210164. [PMID: 39541549 DOI: 10.1212/wnl.0000000000210164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Affiliation(s)
- Patrick D Lyden
- From the Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and Department of Neurology, Keck School of Medicine of USC, Los Angeles, CA
| |
Collapse
|
4
|
Deng Y, Wang G, Hou D, Zhang L, Pei C, Yang G. MiR-146a-5p downregulated TRAF6/NF-κB p65 pathway to attenuate the injury of HT-22 cells induced by oxygen-glucose deprivation/reoxygenation. In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00986-0. [PMID: 39644419 DOI: 10.1007/s11626-024-00986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/30/2024] [Indexed: 12/09/2024]
Abstract
MicroRNA-146a-5p (miR-146a-5p) actively participates in the process of cerebral ischemia-reperfusion (CI/R) injury. Dysregulation of the tumor necrosis factor receptor-associated factor 6 (TRAF6)/nuclear factor kappa-B (NF-κB) p65 axis is closely associated with inflammatory response. This study aimed to investigate the potential involvement of miR-146a-5p and TRAF6/NF-κB p65 in mediating CI/R progression in vitro. HT-22 cells were challenged with oxygen-glucose deprivation/reoxygenation (OGD/R) to simulate CI/R in vitro. HT-22 cells were transfected with miR-146a-5p mimics or TRAF6 overexpression constructs. The impact of miR-146a-5p on apoptosis, inflammation, and TRAF6/NF-κB p65 activation were investigated. OGD/R inhibited HT-22 cell viability, induced apoptosis, reduced miR-146a-5p levels and activated the TRAF6/NF-κB p65 pathway. MiR-146a-5p mimics reduced pro-inflammatory factor release, limited apoptosis-related protein expression, and inactivated the TRAF6/NF-κB p65 pathway in OGD/R-challenged HT-22 cells. Mechanistically, miR-146a-5p was verified to bind to TRAF6 3'UTR. TRAF6 overexpression reversed the beneficial effects of miR-146a-5p mimics on apoptosis, inflammation, and TRAF6/NF-κB p65 activation. This work revealed that miR-146a-5p targeted TRAF6 and suppressed the TRAF6/NF-κB p65 pathway, thereby reducing OGD/R-induced inflammation and apoptosis in HT-22 cells. These findings suggest the potential of the miR-146a-5p/TRAF6/NF-κB p65 axis in the treatment of CI/R.
Collapse
Affiliation(s)
- Yuan Deng
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Ganlan Wang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Dan Hou
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Lei Zhang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Chaoying Pei
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Guoshuai Yang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
| |
Collapse
|
5
|
Pushie MJ, Sylvain NJ, Hou H, Pendleton N, Wang R, Zimmermann L, Pally M, Cayabyab FS, Peeling L, Kelly ME. X-ray fluorescence mapping of brain tissue reveals the profound extent of trace element dysregulation in stroke pathophysiology. Metallomics 2024; 16:mfae054. [PMID: 39547935 PMCID: PMC11631071 DOI: 10.1093/mtomcs/mfae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
The brain is a privileged organ with regard to its trace element composition and maintains a robust barrier system to sequester this specialized environment from the rest of the body and the vascular system. Stroke is caused by loss of adequate blood flow to a region of the brain. Without adequate blood flow ischaemic changes begin almost immediately, triggering an ischaemic cascade, characterized by ion dysregulation, loss of function, oxidative damage, cellular degradation, and breakdown of the barrier that helps maintain this environment. Ion dysregulation is a hallmark of stroke pathophysiology and we observe that most elements in the brain are dysregulated after stroke. X-ray fluorescence-based detection of physiological changes in the neurometallome after stroke reveals profound ion dysregulation within the lesion and surrounding tissue. Not only are most elements significantly dysregulated after stroke, but the level of dysregulation cannot be predicted from a cell-level description of dysregulation. X-ray fluorescence imaging reveals that the stroke lesion retains <25% of essential K+ after stroke, but this element is not concomitantly elevated elsewhere in the organ. Moreover, elements like Na+, Ca2+, and Cl- are vastly elevated above levels available in normal brain tissue (>400%, >200%, and >150%, respectively). We hypothesize that weakening of the blood-brain barrier after stroke allows elements to freely diffuse down their concentration gradient so that the stroke lesion is in equilibrium with blood (and the compartments containing brain interstitial fluid and cerebrospinal fluid). The change observed for the neurometallome likely has consequences for the potential to rescue infarcted tissue, but also presents specific targets for treatment.
Collapse
Affiliation(s)
- M Jake Pushie
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Nicole J Sylvain
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Huishu Hou
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Nicole Pendleton
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Richard Wang
- College of Medicine, Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Liam Zimmermann
- College of Medicine, Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Maxwell Pally
- College of Arts & Science, Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Francisco S Cayabyab
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Lissa Peeling
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Michael E Kelly
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
6
|
Stoll G, Nieswandt B, Schuhmann MK. Ischemia/reperfusion injury in acute human and experimental stroke: focus on thrombo-inflammatory mechanisms and treatments. Neurol Res Pract 2024; 6:57. [PMID: 39582054 PMCID: PMC11587771 DOI: 10.1186/s42466-024-00355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Despite high recanalization rates of > 90% after endovascular thrombectomy (EVT) clinical outcome in around 50% of treated acute ischemic stroke (AIS) patients is still poor. Novel treatments augmenting the beneficial effects of recanalization are eagerly awaited, but this requires mechanistic insights to explain and overcome futile recanalization. MAIN BODY At least two mechanisms contribute to futile recanalization after cerebral large vessel occlusions (LVO): (i) the no reflow phenomenon as evidenced by randomly distributed areas without return of blood flow despite reperfusion of large cerebral arteries, and (ii) ischemia/reperfusion (I/R) injury, the paradoxically harmful aspect of blood flow return in transiently ischemic organs. There is accumulating evidence from experimental stroke models that platelets and leukocytes interact and partly obstruct the microvasculature under LVO, and that platelet-driven inflammation (designated thrombo-inflammation) extends into the reperfusion phase and causes I/R injury. Blocking of platelet glycoprotein receptors (GP) Ib and GPVI ameliorated inflammation and I/R injury providing novel therapeutic options. Recently, MRI studies confirmed a significant, up to 40% infarct expansion after recanalization in AIS thereby proofing the existance of I/R injury in the human brain. Moreover, analysis of minute samples of ischemic arterial blood aspirated directly from the pial cerebral collateral circulation under LVO during the routine EVT procedure confirmed platelet activation and platelet-driven leukocyte accumulation in AIS and, thus, the principal transferability of pathophysiological stroke mechanisms from rodents to man. Two recently published clinical phase 1b/2a trials targeted (thrombo-) inflammation in AIS: The ACTIMIS trial targeting platelet GPVI by glenzocimab provided encouraging safety signals in AIS similar to the ApTOLL trial targeting toll-like receptor 4, a central receptor guiding stroke-induced innate immunity. However, both studies were not powered to show clinical efficacy. CONCLUSIONS The fact that the significance of I/R injury in AIS has recently been formally established and given the decisive role of platelet-leukocytes interactions herein, new avenues for adjunct stroke treatments emerge. Adjusted study designs to increase the probability of success are of outmost importance and we look forward from what can be learned from the so far unpublished, presumbably negative ACTISAFE and MOST trials.
Collapse
Affiliation(s)
- Guido Stoll
- Institute of Experimental Biomedicine I, University Hospital Wurzburg, Josef-Schneider-Str. 2, 97080, Wurzburg, Germany.
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Wurzburg, Josef-Schneider-Str. 2, 97080, Wurzburg, Germany
- Rudolf Virchow Center, Center for Integrative and Translational Biomaging, University of Wurzburg, Josef-Schneider-Str. 2, 97080, Wurzburg, Germany
| | - Michael K Schuhmann
- Department of Neurology, University Hospital Wurzburg, Josef-Schneider-Str. 11, 97080, Wurzburg, Germany
| |
Collapse
|
7
|
Luo Y, Liu R, Yuan G, Pan Y. Polyphenols for stroke therapy: the role of oxidative stress regulation. Food Funct 2024; 15:11383-11399. [PMID: 39497601 DOI: 10.1039/d4fo01900h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Stroke is associated with a high incidence and disability rate, which seriously endangers human health. Oxidative stress (OS) plays a crucial role in the underlying pathologic progression of cerebral damage in stroke. Emerging experimental studies suggest that polyphenols have antioxidant potential and express protective effects after different types of strokes, but no breakthrough has been achieved in clinical studies. Nanomaterials, due to small characteristic sizes, can be used to deliver drugs, and have shown excellent performance in the treatment of various diseases. The drug delivery capability of nanomaterials has significant implications for the clinical translation and application of polyphenols. This comprehensive review introduces the mechanism of oxidative stress in stroke, and also summarizes the antioxidant effects of polyphenols on reactive oxygen species generation and oxidative stress after stroke. Also, the application characteristics and research progress of nanomaterials in the treatment of stroke with antioxidants are presented.
Collapse
Affiliation(s)
- Yusong Luo
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Ruolan Liu
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Guoqiang Yuan
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Yawen Pan
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
- Academician Workstation, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
8
|
Jiang H, Zhang C, Lin M, Yin Y, Deng S, Liu W, Zhuo B, Tian G, Du Y, Meng Z. Deciphering the mechanistic impact of acupuncture on the neurovascular unit in acute ischemic stroke: Insights from basic research in a narrative review. Ageing Res Rev 2024; 101:102536. [PMID: 39384155 DOI: 10.1016/j.arr.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Ischemic stroke(IS), a severe acute cerebrovascular disease, not only imposes a heavy economic burden on society but also presents numerous challenges in treatment. During the acute phase, while thrombolysis and thrombectomy serve as primary treatments, these approaches are restricted by a narrow therapeutic window. During rehabilitation, commonly used neuroprotective agents struggle with their low drug delivery efficiency and inadequate preclinical testing, and the long-term pharmacological and toxicity effects of nanomedicines remain undefined. Meanwhile, acupuncture as a therapeutic approach is widely acknowledged for its effectiveness in treating IS and has been recommended by the World Health Organization (WHO) as an alternative and complementary therapy, even though its exact mechanisms remain unclear. This review aims to summarize the known mechanisms of acupuncture and electroacupuncture (EA) in the treatment of IS. Research shows that acupuncture treatment mainly protects the neurovascular unit through five mechanisms: 1) reducing neuronal apoptosis and promoting neuronal repair and proliferation; 2) maintaining the integrity of the blood-brain barrier (BBB); 3) inhibiting the overactivation and polarization imbalance of microglia; 4) regulating the movement of vascular smooth muscle (VSM) cells; 5) promoting the proliferation of oligodendrocyte precursors. Through an in-depth analysis, this review reveals the multi-level, multi-dimensional impact of acupuncture treatment on the neurovascular unit (NVU) following IS, providing stronger evidence and a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Hailun Jiang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Chao Zhang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Mengxuan Lin
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yu Yin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shizhe Deng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wei Liu
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Bifang Zhuo
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Guang Tian
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yuzheng Du
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Zhihong Meng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
9
|
Monjazeb S, Chang HV, Lyden PD. Before, during, and after: An Argument for Safety and Improved Outcome of Thrombolysis in Acute Ischemic Stroke with Direct Oral Anticoagulant Treatment. Ann Neurol 2024; 96:871-886. [PMID: 39258443 PMCID: PMC11496014 DOI: 10.1002/ana.27058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/12/2024]
Abstract
Direct oral anticoagulants are the primary stroke prevention option in patients with atrial fibrillation. Anticoagulant use before stroke, however, might inhibit clinician comfort with thrombolysis if a stroke does occur. Resuming anticoagulants after ischemic stroke is also problematic for fear of hemorrhage. We describe extensive literature showing that thrombolysis is safe after stroke with direct anticoagulant use. Early reinstitution of direct anticoagulant treatment is associated with lower risk of embolic recurrence and lower hemorrhage risk. The use of direct anticoagulants before, during, and after thrombolysis appears to be safe and is likely to promote improved outcomes after ischemic stroke. ANN NEUROL 2024;96:871-886.
Collapse
Affiliation(s)
- Sanaz Monjazeb
- Department of Neurology, Zilkha Neurogenetic Institute of the Keck School of Medicine, 1501 San Pablo Ave, ZNI 245, Los Angeles, CA 90089
| | - Heather V. Chang
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute of the Keck School of Medicine, 1501 San Pablo Ave, ZNI 245, Los Angeles, CA 90089
| | - Patrick D. Lyden
- Department of Neurology, Zilkha Neurogenetic Institute of the Keck School of Medicine, 1501 San Pablo Ave, ZNI 245, Los Angeles, CA 90089
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute of the Keck School of Medicine, 1501 San Pablo Ave, ZNI 245, Los Angeles, CA 90089
| |
Collapse
|
10
|
Zidan M, Ghaei S, Bode FJ, Weller JM, Krueger N, Lehnen NC, Petzold GC, Radbruch A, Dorn F, Paech D. Clinical significance and prevalence of subarachnoid hyperdensities on flat detector CT after mechanical thrombectomy: does it really matter? J Neurointerv Surg 2024; 16:966-973. [PMID: 37648432 DOI: 10.1136/jnis-2023-020661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Subarachnoid hyperdensities after mechanical thrombectomy (MT) are a common finding. However, it is often regarded as clinically insignificant. OBJECTIVE With this single-center investigation, to identify the prevalence of subarachnoid hyperdensities following MT, associated predictors, and the impact on the clinical outcome of the patients. METHODS 383 patients from the stroke registry were analyzed for the presence of subarachnoid hyperdensities on flat detector CT (FDCT) directly after the completion of MT, and on follow-up dual-energy CT, then classified according to a visual grading scale. 178 patients were included with anterior circulation occlusions. Regression analysis was performed to identify significant predictors, and Kruskal-Wallis analysis and Χ2 test were performed to test the variables among the different groups. The primary outcome was the modified Rankin Scale (mRS) score at 90 days and was analyzed with the Wilcoxon-Mann-Whitney rank-sum test. RESULTS The prevalence of subarachnoid hyperdensities on FDCT was (66/178, 37.1%) with patients experiencing a significant unfavorable outcome (P=0.035). Significantly fewer patients with subarachnoid hyperdensities achieved a mRS score of ≤3 at 90 days 25/66 (37.9%) vs 60/112 (53.6%), P=0.043). In addition, mortality was significantly higher in the subarachnoid hyperdensities group (34.8% vs 19.6%, P=0.024). Distal occlusions and a higher number of device passes were significantly associated with subarachnoid hyperdensities (P=0.026) and (P=0.001), respectively. Patients who received intravenous tissue plasminogen activator had significantly fewer subarachnoid hyperdensities (P=0.029). CONCLUSIONS Postinterventional subarachnoid hyperdensities are a frequent finding after MT and are associated with neurological decline and worse functional outcome. They are more common with distal occlusions and multiple device passes.
Collapse
Affiliation(s)
- Mousa Zidan
- Department of Neuroradiology, University Hospital Bonn, Bonn, Nordrhein-Westfalen, Germany
| | - Shiwa Ghaei
- Department of Neuroradiology, University Hospital Bonn, Bonn, Nordrhein-Westfalen, Germany
| | - Felix J Bode
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | | | - Nadine Krueger
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Nils Christian Lehnen
- Department of Neuroradiology, University Hospital Bonn, Bonn, Nordrhein-Westfalen, Germany
| | - Gabor C Petzold
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Alexander Radbruch
- Department of Neuroradiology, University Hospital Bonn, Bonn, Nordrhein-Westfalen, Germany
| | - Franziska Dorn
- Department of Neuroradiology, University Hospital Bonn, Bonn, Nordrhein-Westfalen, Germany
- Department of Neuroradiology, LMU Klinikum der Universität München Medizinische Klinik und Poliklinik IV, Munchen, Bayern, Germany
| | - Daniel Paech
- Department of Neuroradiology, University Hospital Bonn, Bonn, Nordrhein-Westfalen, Germany
- Department of Radiology, German Cancer Research Centre, Heidelberg, Germany
| |
Collapse
|
11
|
Li ZR, Wang YY, Wang ZH, Qin QL, Huang C, Shi GS, He HY, Deng YH, He XY, Zhao XM. The positive role of transforming growth factor-β1 in ischemic stroke. Cell Signal 2024; 121:111301. [PMID: 39019338 DOI: 10.1016/j.cellsig.2024.111301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Ischemic stroke is one of the most disabling and fatal diseases around the world. The damaged brain tissues will undergo excessive autophagy, vascular endothelial cells injury, blood-brain barrier (BBB) impairment and neuroinflammation after ischemic stroke. However, there is no unified viewpoint on the underlying mechanism of brain damage. Transforming growth factor-β1 (TGF-β1), as a multi-functional cytokine, plays a crucial role in the intricate pathological processes and helps maintain the physiological homeostasis of brain tissues through various signaling pathways after ischemic stroke. In this review, we summarize the protective role of TGF-β1 in autophagic flux, BBB, vascular remodeling, neuroinflammation and other aspects after ischemic stroke. Based on the review, we believe that TGF-β1 could serve as a key target for treating ischemic stroke.
Collapse
Affiliation(s)
- Zi-Rong Li
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, China.
| | - Yong-Yan Wang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, China.
| | - Zi-Han Wang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, China.
| | - Qi-Lin Qin
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, China.
| | - Cheng Huang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, China.
| | - Guang-Sen Shi
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, China.
| | - Hong-Yun He
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, China; Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, China.
| | - Yi-Hao Deng
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, China.
| | - Xiu-Ying He
- Department of Anesthesiology, Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiao-Ming Zhao
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, China; Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
12
|
Zhao Q, Chen L, Zhang X, Yang H, Li Y, Li P. β-elemene promotes microglial M2-like polarization against ischemic stroke via AKT/mTOR signaling axis-mediated autophagy. Chin Med 2024; 19:86. [PMID: 38879549 PMCID: PMC11179363 DOI: 10.1186/s13020-024-00946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/14/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Resident microglia- and peripheric macrophage-mediated neuroinflammation plays a predominant role in the occurrence and development of ischemic stroke. Microglia undergo polarization to M1/M2-like phenotype under stress stimulation, which mediates intracellular inflammatory response. β-elemene is a natural sesquiterpene and possesses potent anti-inflammatory activity. This study aimed to investigate the anti-inflammatory efficacy and mechanism of β-elemene in ischemic stroke from the perspective of balancing microglia M1/M2-like polarization. METHODS The middle cerebral artery occlusion (MCAO) model and photothrombotic stroke model were established to explore the regulation effect of β-elemene on the cerebral ischemic injury. The LPS and IFN-γ stimulated BV-2 cells were used to demonstrate the anti-inflammatory effects and potential mechanism of β-elemene regulating M1/M2-like polarization in vitro. RESULTS In C57BL/6 J mice subjected to MCAO model and photothrombotic stroke model, β-elemene attenuated neurological deficit, reduced the infarction volume and neuroinflammation, thus improving ischemic stroke injury. β-elemene promoted the phenotype transformation of microglia from M1-like to M2-like, which prevented neurons from oxygen and glucose deprivation/reoxygenation (OGD/R) injury by inhibiting inflammatory factor release, thereby reducing neuronal apoptosis. Mechanically, β-elemene prevented the activation of TLR4/NF-κΒ and MAPK signaling pathway and increased AKT/mTOR mediated-autophagy, thereby promoting M2-like polarization of microglia. CONCLUSIONS These results indicated that β-elemene improved cerebral ischemic injury and promoted the transformation of microglia phenotype from M1-like to M2-like, at least in part, through AKT/mTOR-mediated autophagy. This study demonstrated that β-elemene might serve as a promising drug for alleviating ischemic stroke injury.
Collapse
Affiliation(s)
- Qiong Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China
| | - Lu Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China
| | - Xin Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China
| | - Yi Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, 211198, China.
| |
Collapse
|
13
|
Yang R, Yan F, Shen J, Wang T, Li M, Ni H. Geraniol attenuates oxygen-glucose deprivation/reoxygenation-induced ROS-dependent apoptosis and permeability of human brain microvascular endothelial cells by activating the Nrf-2/HO-1 pathway. J Bioenerg Biomembr 2024; 56:193-204. [PMID: 38446318 DOI: 10.1007/s10863-024-10011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Blood-brain barrier breakdown and ROS overproduction are important events during the progression of ischemic stroke aggravating brain damage. Geraniol, a natural monoterpenoid, possesses anti-apoptotic, cytoprotective, anti-oxidant, and anti-inflammatory activities. Our study aimed to investigate the effect and underlying mechanisms of geraniol in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced human brain microvascular endothelial cells (HBMECs). Apoptosis, caspase-3 activity, and cytotoxicity of HBMECs were evaluated using TUNEL, caspase-3 activity, and CCK-8 assays, respectively. The permeability of HBMECs was examined using FITC-dextran assay. Reactive oxygen species (ROS) production was measured using the fluorescent probe DCFH-DA. The protein levels of zonula occludens-1 (ZO-1), occludin, claudin-5, β-catenin, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) were determined by western blotting. Geraniol showed no cytotoxicity in HBMECs. Geraniol and ROS scavenger N-acetylcysteine (NAC) both attenuated OGD/R-induced apoptosis and increase of caspase-3 activity and the permeability to FITC-dextran in HBMECs. Geraniol relieved OGD/R-induced ROS accumulation and decrease of expression of ZO-1, occludin, claudin-5, and β-catenin in HBMECs. Furthermore, we found that geraniol activated Nrf2/HO-1 pathway to inhibit ROS in HBMECs. In conclusion, geraniol attenuated OGD/R-induced ROS-dependent apoptosis and permeability in HBMECs through activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Ronggang Yang
- Department of Neurological Intensive Resuscitation, Nanshi Hospital of Nanyang, Nanyang, 473000, China
| | - Feng Yan
- Department of Neurological Intensive Resuscitation, Nanshi Hospital of Nanyang, Nanyang, 473000, China
| | - Jiangyi Shen
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, 473000, China
| | - Tiancai Wang
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, 473000, China
| | - Menglong Li
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, 473000, China
| | - Hongzao Ni
- Department of Neurosurgery, Huai'an Second People's Hospital, the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223300, China.
| |
Collapse
|
14
|
Dai M, Yang J, Wang Z, Xue F, Wang Y, Hu E, Gong Y, Routledge MN, Qiao B. Aquaporins alteration revealed kidney damages in cerebral ischemia/reperfusion rats. Heliyon 2024; 10:e31532. [PMID: 38807874 PMCID: PMC11130722 DOI: 10.1016/j.heliyon.2024.e31532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Background Restoration of blood supply is a desired goal for the treatment of acute ischemic stroke. However, the restoration often leads to cerebral ischemia-reperfusion injury (CIR/I), which greatly increases the risk of non-neural organ damage. In particular, the acute kidney injury might be one of the most common complications. Aims The study aimed to understand the damage occurred and the potential molecular mechanisms. Methods The study was explored on the CIR/I rats generated by performing middle cerebral artery occlusion/reperfusion (MCAO/Reperfusion). The rats were evaluated with injury on the brains, followed by the non-neural organs including kidneys, livers, colons and stomachs. They were examined further with histopathological changes, and gene expression alterations by using RT-qPCR of ten aquaporins (Aqps) subtypes including Aqp1~Aqp9 and Aqp11. Furthermore, the Aqps expression profiles were constructed for each organ and analyzed by performing Principle Component Analysis. In addition, immunohistochemistry was explored to look at the protein expression of Aqp1, Aqp2, Aqp3 and Aqp4 in the rat kidneys. Results There was a prominent down-regulation profile in the MCAO/Reperfusion rat kidneys. The protein expression of Aqp1, Aqp2, Aqp3 and Aqp4 was decreased in the kidneys of the MCAO/Reperfusion rats. We suggested that the kidney was in the highest risk to be damaged following the CIR/I. Down-regulation of Aqp2, Aqp3 and Aqp4 was involved in the acute kidney injury induced by the CIR/I.
Collapse
Affiliation(s)
- Meng Dai
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Jinglei Yang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Zhaoyang Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Fangli Xue
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Yourui Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Enjie Hu
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Yunyun Gong
- School of Medicine, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Michael N. Routledge
- School of Medicine, University of Leicester, Leicester, LE1 7RH, United Kingdom
- Jiangsu University, Sch Food & Biol Engn, Zhenjiang, 212013, PR China
| | - Boling Qiao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| |
Collapse
|
15
|
Rajput P, Brookshier A, Kothari S, Eckstein L, Chang H, Liska S, Lamb J, Sances S, Lyden P. Differential Vulnerability and Response to Injury among Brain Cell Types Comprising the Neurovascular Unit. J Neurosci 2024; 44:e1093222024. [PMID: 38548341 PMCID: PMC11140689 DOI: 10.1523/jneurosci.1093-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 05/31/2024] Open
Abstract
The neurovascular unit (NVU) includes multiple different cell types, including neurons, astrocytes, endothelial cells, and pericytes, which respond to insults on very different time or dose scales. We defined differential vulnerability among these cell types, using response to two different insults: oxygen-glucose deprivation (OGD) and thrombin-mediated cytotoxicity. We found that neurons are most vulnerable, followed by endothelial cells and astrocytes. After temporary focal cerebral ischemia in male rats, we found significantly more injured neurons, compared with astrocytes in the ischemic area, consistent with differential vulnerability in vivo. We sought to illustrate different and shared mechanisms across all cell types during response to insult. We found that gene expression profiles in response to OGD differed among the cell types, with a paucity of gene responses shared by all types. All cell types activated genes relating to autophagy, apoptosis, and necroptosis, but the specific genes differed. Astrocytes and endothelial cells also activated pathways connected to DNA repair and antiapoptosis. Taken together, the data support the concept of differential vulnerability in the NVU and suggest that different elements of the unit will evolve from salvageable to irretrievable on different time scales while residing in the same brain region and receiving the same (ischemic) blood flow. Future work will focus on the mechanisms of these differences. These data suggest future stroke therapy development should target different elements of the NVU differently.
Collapse
Affiliation(s)
- Padmesh Rajput
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California 90089-2821
| | - Allison Brookshier
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California 90089-2821
| | - Shweta Kothari
- Chinook Therapeutics, Inc., Vancouver, British Columbia V5T 4T5, Canada
- Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Lillie Eckstein
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California 90089-2821
| | - Heather Chang
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California 90089-2821
| | - Sophie Liska
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California 90089-2821
| | - Jessica Lamb
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California 90089-2821
| | - Samuel Sances
- Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Patrick Lyden
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California 90089-2821
| |
Collapse
|
16
|
Zhang J, Chen Z, Chen Q. Advanced Nano-Drug Delivery Systems in the Treatment of Ischemic Stroke. Molecules 2024; 29:1848. [PMID: 38675668 PMCID: PMC11054753 DOI: 10.3390/molecules29081848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the frequency of strokes has been on the rise year by year and has become the second leading cause of death around the world, which is characterized by a high mortality rate, high recurrence rate, and high disability rate. Ischemic strokes account for a large percentage of strokes. A reperfusion injury in ischemic strokes is a complex cascade of oxidative stress, neuroinflammation, immune infiltration, and mitochondrial damage. Conventional treatments are ineffective, and the presence of the blood-brain barrier (BBB) leads to inefficient drug delivery utilization, so researchers are turning their attention to nano-drug delivery systems. Functionalized nano-drug delivery systems have been widely studied and applied to the study of cerebral ischemic diseases due to their favorable biocompatibility, high efficiency, strong specificity, and specific targeting ability. In this paper, we briefly describe the pathological process of reperfusion injuries in strokes and focus on the therapeutic research progress of nano-drug delivery systems in ischemic strokes, aiming to provide certain references to understand the progress of research on nano-drug delivery systems (NDDSs).
Collapse
Affiliation(s)
- Jiajie Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
17
|
Li Q, Guo J, Chen HS, Blauenfeldt RA, Hess DC, Pico F, Khatri P, Campbell BCV, Feng X, Abdalkader M, Saver JL, Nogueira RG, Jiang B, Li B, Yang M, Sang H, Yang Q, Qiu Z, Dai Y, Nguyen TN. Remote Ischemic Conditioning With Medical Management or Reperfusion Therapy for Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Neurology 2024; 102:e207983. [PMID: 38457772 PMCID: PMC11033986 DOI: 10.1212/wnl.0000000000207983] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/13/2023] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Remote ischemic conditioning (RIC) is a low-cost, accessible, and noninvasive neuroprotective treatment strategy, but its efficacy and safety in acute ischemic stroke are controversial. With the publication of several randomized controlled trials (RCTs) and the recent results of the RESIST trial, it may be possible to identify the patient population that may (or may not) benefit from RIC. This systematic review and meta-analysis aims to evaluate the effectiveness and safety of RIC in patients with ischemic stroke receiving different treatments by pooling data of all randomized controlled studies to date. METHODS We searched the PubMed, Embase, Cochrane, Elsevier, and Web of Science databases to obtain articles in all languages from inception until May 25, 2023. The primary outcome was the modified Rankin Scale (mRS) score at the specified endpoint time in the trial. The secondary outcomes were change in NIH Stroke Scale (NIHSS) and recurrence of stroke events. The safety outcomes were cardiovascular events, cerebral hemorrhage, and mortality. The quality of articles was evaluated through the Cochrane risk assessment tool. This study was registered in PROSPERO (CRD42023430073). RESULTS There were 7,657 patients from 22 RCTs included. Compared with the control group, patients who received RIC did not have improved mRS functional outcomes, regardless of whether they received medical management, reperfusion therapy with intravenous thrombolysis (IVT), or mechanical thrombectomy (MT). In the medical management group, patients who received RIC had decreased incidence of stroke recurrence (risk ratio 0.63, 95% CI 0.43-0.92, p = 0.02) and lower follow-up NIHSS score by 1.72 points compared with the control group (p < 0.00001). There was no increased risk of adverse events including death or cerebral hemorrhage in the IVT or medical management group. DISCUSSION In patients with ischemic stroke who are not eligible for reperfusion therapy, RIC did not affect mRS functional outcomes but significantly improved the NIHSS score at the follow-up endpoint and reduced stroke recurrence, without increasing the risk of cerebral hemorrhage or death. In patients who received IVT or MT, the benefit of RIC was not observed.
Collapse
Affiliation(s)
- Qi Li
- From the Department of Neurology (Q.L., X.F., B.J., B.L., M.Y., Z.Q., Y.D.), The 903rd Hospital of The Chinese People's Liberation Army, Hangzhou; Intensive Care Unit of Department of Neurology (J.G.), Ningbo Medical Center Lihuili Hospital; Department of Neurology (H.-S.C.), General Hospital of Northern Theater Command, Shenyang, China; Department of Neurology (R.A.B.), Aarhus University Hospital, Denmark; Department of Neurology (D.C.H.), Medical College of Georgia, Augusta University, Augusta; Neurology and Stroke Center (F.P.), Versailles Mignot Hospital, Paris, France; Department of Neurology (P.K.), University of Cincinnati, OH; Department of Medicine and Neurology (B.C.V.C.), Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Boston Medical Center (M.A., T.N.N.), Boston University Chobanian and Avedisian School of Medicine, MA; Department of Neurology (J.L.S.), University of California in Los Angeles; Department of Neurology and Neurosurgery (R.G.N.), University of Pittsburgh Medical Center, PA; Department of Neurology (H.S.), Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou; and Department of Neurology (Q.Y.), Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Jinxiu Guo
- From the Department of Neurology (Q.L., X.F., B.J., B.L., M.Y., Z.Q., Y.D.), The 903rd Hospital of The Chinese People's Liberation Army, Hangzhou; Intensive Care Unit of Department of Neurology (J.G.), Ningbo Medical Center Lihuili Hospital; Department of Neurology (H.-S.C.), General Hospital of Northern Theater Command, Shenyang, China; Department of Neurology (R.A.B.), Aarhus University Hospital, Denmark; Department of Neurology (D.C.H.), Medical College of Georgia, Augusta University, Augusta; Neurology and Stroke Center (F.P.), Versailles Mignot Hospital, Paris, France; Department of Neurology (P.K.), University of Cincinnati, OH; Department of Medicine and Neurology (B.C.V.C.), Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Boston Medical Center (M.A., T.N.N.), Boston University Chobanian and Avedisian School of Medicine, MA; Department of Neurology (J.L.S.), University of California in Los Angeles; Department of Neurology and Neurosurgery (R.G.N.), University of Pittsburgh Medical Center, PA; Department of Neurology (H.S.), Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou; and Department of Neurology (Q.Y.), Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Hui-Sheng Chen
- From the Department of Neurology (Q.L., X.F., B.J., B.L., M.Y., Z.Q., Y.D.), The 903rd Hospital of The Chinese People's Liberation Army, Hangzhou; Intensive Care Unit of Department of Neurology (J.G.), Ningbo Medical Center Lihuili Hospital; Department of Neurology (H.-S.C.), General Hospital of Northern Theater Command, Shenyang, China; Department of Neurology (R.A.B.), Aarhus University Hospital, Denmark; Department of Neurology (D.C.H.), Medical College of Georgia, Augusta University, Augusta; Neurology and Stroke Center (F.P.), Versailles Mignot Hospital, Paris, France; Department of Neurology (P.K.), University of Cincinnati, OH; Department of Medicine and Neurology (B.C.V.C.), Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Boston Medical Center (M.A., T.N.N.), Boston University Chobanian and Avedisian School of Medicine, MA; Department of Neurology (J.L.S.), University of California in Los Angeles; Department of Neurology and Neurosurgery (R.G.N.), University of Pittsburgh Medical Center, PA; Department of Neurology (H.S.), Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou; and Department of Neurology (Q.Y.), Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Rolf Ankerlund Blauenfeldt
- From the Department of Neurology (Q.L., X.F., B.J., B.L., M.Y., Z.Q., Y.D.), The 903rd Hospital of The Chinese People's Liberation Army, Hangzhou; Intensive Care Unit of Department of Neurology (J.G.), Ningbo Medical Center Lihuili Hospital; Department of Neurology (H.-S.C.), General Hospital of Northern Theater Command, Shenyang, China; Department of Neurology (R.A.B.), Aarhus University Hospital, Denmark; Department of Neurology (D.C.H.), Medical College of Georgia, Augusta University, Augusta; Neurology and Stroke Center (F.P.), Versailles Mignot Hospital, Paris, France; Department of Neurology (P.K.), University of Cincinnati, OH; Department of Medicine and Neurology (B.C.V.C.), Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Boston Medical Center (M.A., T.N.N.), Boston University Chobanian and Avedisian School of Medicine, MA; Department of Neurology (J.L.S.), University of California in Los Angeles; Department of Neurology and Neurosurgery (R.G.N.), University of Pittsburgh Medical Center, PA; Department of Neurology (H.S.), Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou; and Department of Neurology (Q.Y.), Xinqiao Hospital of Army Medical University, Chongqing, China
| | - David C Hess
- From the Department of Neurology (Q.L., X.F., B.J., B.L., M.Y., Z.Q., Y.D.), The 903rd Hospital of The Chinese People's Liberation Army, Hangzhou; Intensive Care Unit of Department of Neurology (J.G.), Ningbo Medical Center Lihuili Hospital; Department of Neurology (H.-S.C.), General Hospital of Northern Theater Command, Shenyang, China; Department of Neurology (R.A.B.), Aarhus University Hospital, Denmark; Department of Neurology (D.C.H.), Medical College of Georgia, Augusta University, Augusta; Neurology and Stroke Center (F.P.), Versailles Mignot Hospital, Paris, France; Department of Neurology (P.K.), University of Cincinnati, OH; Department of Medicine and Neurology (B.C.V.C.), Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Boston Medical Center (M.A., T.N.N.), Boston University Chobanian and Avedisian School of Medicine, MA; Department of Neurology (J.L.S.), University of California in Los Angeles; Department of Neurology and Neurosurgery (R.G.N.), University of Pittsburgh Medical Center, PA; Department of Neurology (H.S.), Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou; and Department of Neurology (Q.Y.), Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Fernando Pico
- From the Department of Neurology (Q.L., X.F., B.J., B.L., M.Y., Z.Q., Y.D.), The 903rd Hospital of The Chinese People's Liberation Army, Hangzhou; Intensive Care Unit of Department of Neurology (J.G.), Ningbo Medical Center Lihuili Hospital; Department of Neurology (H.-S.C.), General Hospital of Northern Theater Command, Shenyang, China; Department of Neurology (R.A.B.), Aarhus University Hospital, Denmark; Department of Neurology (D.C.H.), Medical College of Georgia, Augusta University, Augusta; Neurology and Stroke Center (F.P.), Versailles Mignot Hospital, Paris, France; Department of Neurology (P.K.), University of Cincinnati, OH; Department of Medicine and Neurology (B.C.V.C.), Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Boston Medical Center (M.A., T.N.N.), Boston University Chobanian and Avedisian School of Medicine, MA; Department of Neurology (J.L.S.), University of California in Los Angeles; Department of Neurology and Neurosurgery (R.G.N.), University of Pittsburgh Medical Center, PA; Department of Neurology (H.S.), Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou; and Department of Neurology (Q.Y.), Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Pooja Khatri
- From the Department of Neurology (Q.L., X.F., B.J., B.L., M.Y., Z.Q., Y.D.), The 903rd Hospital of The Chinese People's Liberation Army, Hangzhou; Intensive Care Unit of Department of Neurology (J.G.), Ningbo Medical Center Lihuili Hospital; Department of Neurology (H.-S.C.), General Hospital of Northern Theater Command, Shenyang, China; Department of Neurology (R.A.B.), Aarhus University Hospital, Denmark; Department of Neurology (D.C.H.), Medical College of Georgia, Augusta University, Augusta; Neurology and Stroke Center (F.P.), Versailles Mignot Hospital, Paris, France; Department of Neurology (P.K.), University of Cincinnati, OH; Department of Medicine and Neurology (B.C.V.C.), Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Boston Medical Center (M.A., T.N.N.), Boston University Chobanian and Avedisian School of Medicine, MA; Department of Neurology (J.L.S.), University of California in Los Angeles; Department of Neurology and Neurosurgery (R.G.N.), University of Pittsburgh Medical Center, PA; Department of Neurology (H.S.), Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou; and Department of Neurology (Q.Y.), Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Bruce C V Campbell
- From the Department of Neurology (Q.L., X.F., B.J., B.L., M.Y., Z.Q., Y.D.), The 903rd Hospital of The Chinese People's Liberation Army, Hangzhou; Intensive Care Unit of Department of Neurology (J.G.), Ningbo Medical Center Lihuili Hospital; Department of Neurology (H.-S.C.), General Hospital of Northern Theater Command, Shenyang, China; Department of Neurology (R.A.B.), Aarhus University Hospital, Denmark; Department of Neurology (D.C.H.), Medical College of Georgia, Augusta University, Augusta; Neurology and Stroke Center (F.P.), Versailles Mignot Hospital, Paris, France; Department of Neurology (P.K.), University of Cincinnati, OH; Department of Medicine and Neurology (B.C.V.C.), Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Boston Medical Center (M.A., T.N.N.), Boston University Chobanian and Avedisian School of Medicine, MA; Department of Neurology (J.L.S.), University of California in Los Angeles; Department of Neurology and Neurosurgery (R.G.N.), University of Pittsburgh Medical Center, PA; Department of Neurology (H.S.), Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou; and Department of Neurology (Q.Y.), Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Xinggang Feng
- From the Department of Neurology (Q.L., X.F., B.J., B.L., M.Y., Z.Q., Y.D.), The 903rd Hospital of The Chinese People's Liberation Army, Hangzhou; Intensive Care Unit of Department of Neurology (J.G.), Ningbo Medical Center Lihuili Hospital; Department of Neurology (H.-S.C.), General Hospital of Northern Theater Command, Shenyang, China; Department of Neurology (R.A.B.), Aarhus University Hospital, Denmark; Department of Neurology (D.C.H.), Medical College of Georgia, Augusta University, Augusta; Neurology and Stroke Center (F.P.), Versailles Mignot Hospital, Paris, France; Department of Neurology (P.K.), University of Cincinnati, OH; Department of Medicine and Neurology (B.C.V.C.), Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Boston Medical Center (M.A., T.N.N.), Boston University Chobanian and Avedisian School of Medicine, MA; Department of Neurology (J.L.S.), University of California in Los Angeles; Department of Neurology and Neurosurgery (R.G.N.), University of Pittsburgh Medical Center, PA; Department of Neurology (H.S.), Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou; and Department of Neurology (Q.Y.), Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Mohamad Abdalkader
- From the Department of Neurology (Q.L., X.F., B.J., B.L., M.Y., Z.Q., Y.D.), The 903rd Hospital of The Chinese People's Liberation Army, Hangzhou; Intensive Care Unit of Department of Neurology (J.G.), Ningbo Medical Center Lihuili Hospital; Department of Neurology (H.-S.C.), General Hospital of Northern Theater Command, Shenyang, China; Department of Neurology (R.A.B.), Aarhus University Hospital, Denmark; Department of Neurology (D.C.H.), Medical College of Georgia, Augusta University, Augusta; Neurology and Stroke Center (F.P.), Versailles Mignot Hospital, Paris, France; Department of Neurology (P.K.), University of Cincinnati, OH; Department of Medicine and Neurology (B.C.V.C.), Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Boston Medical Center (M.A., T.N.N.), Boston University Chobanian and Avedisian School of Medicine, MA; Department of Neurology (J.L.S.), University of California in Los Angeles; Department of Neurology and Neurosurgery (R.G.N.), University of Pittsburgh Medical Center, PA; Department of Neurology (H.S.), Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou; and Department of Neurology (Q.Y.), Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Jeffrey L Saver
- From the Department of Neurology (Q.L., X.F., B.J., B.L., M.Y., Z.Q., Y.D.), The 903rd Hospital of The Chinese People's Liberation Army, Hangzhou; Intensive Care Unit of Department of Neurology (J.G.), Ningbo Medical Center Lihuili Hospital; Department of Neurology (H.-S.C.), General Hospital of Northern Theater Command, Shenyang, China; Department of Neurology (R.A.B.), Aarhus University Hospital, Denmark; Department of Neurology (D.C.H.), Medical College of Georgia, Augusta University, Augusta; Neurology and Stroke Center (F.P.), Versailles Mignot Hospital, Paris, France; Department of Neurology (P.K.), University of Cincinnati, OH; Department of Medicine and Neurology (B.C.V.C.), Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Boston Medical Center (M.A., T.N.N.), Boston University Chobanian and Avedisian School of Medicine, MA; Department of Neurology (J.L.S.), University of California in Los Angeles; Department of Neurology and Neurosurgery (R.G.N.), University of Pittsburgh Medical Center, PA; Department of Neurology (H.S.), Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou; and Department of Neurology (Q.Y.), Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Raul G Nogueira
- From the Department of Neurology (Q.L., X.F., B.J., B.L., M.Y., Z.Q., Y.D.), The 903rd Hospital of The Chinese People's Liberation Army, Hangzhou; Intensive Care Unit of Department of Neurology (J.G.), Ningbo Medical Center Lihuili Hospital; Department of Neurology (H.-S.C.), General Hospital of Northern Theater Command, Shenyang, China; Department of Neurology (R.A.B.), Aarhus University Hospital, Denmark; Department of Neurology (D.C.H.), Medical College of Georgia, Augusta University, Augusta; Neurology and Stroke Center (F.P.), Versailles Mignot Hospital, Paris, France; Department of Neurology (P.K.), University of Cincinnati, OH; Department of Medicine and Neurology (B.C.V.C.), Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Boston Medical Center (M.A., T.N.N.), Boston University Chobanian and Avedisian School of Medicine, MA; Department of Neurology (J.L.S.), University of California in Los Angeles; Department of Neurology and Neurosurgery (R.G.N.), University of Pittsburgh Medical Center, PA; Department of Neurology (H.S.), Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou; and Department of Neurology (Q.Y.), Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Bingwu Jiang
- From the Department of Neurology (Q.L., X.F., B.J., B.L., M.Y., Z.Q., Y.D.), The 903rd Hospital of The Chinese People's Liberation Army, Hangzhou; Intensive Care Unit of Department of Neurology (J.G.), Ningbo Medical Center Lihuili Hospital; Department of Neurology (H.-S.C.), General Hospital of Northern Theater Command, Shenyang, China; Department of Neurology (R.A.B.), Aarhus University Hospital, Denmark; Department of Neurology (D.C.H.), Medical College of Georgia, Augusta University, Augusta; Neurology and Stroke Center (F.P.), Versailles Mignot Hospital, Paris, France; Department of Neurology (P.K.), University of Cincinnati, OH; Department of Medicine and Neurology (B.C.V.C.), Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Boston Medical Center (M.A., T.N.N.), Boston University Chobanian and Avedisian School of Medicine, MA; Department of Neurology (J.L.S.), University of California in Los Angeles; Department of Neurology and Neurosurgery (R.G.N.), University of Pittsburgh Medical Center, PA; Department of Neurology (H.S.), Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou; and Department of Neurology (Q.Y.), Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Bing Li
- From the Department of Neurology (Q.L., X.F., B.J., B.L., M.Y., Z.Q., Y.D.), The 903rd Hospital of The Chinese People's Liberation Army, Hangzhou; Intensive Care Unit of Department of Neurology (J.G.), Ningbo Medical Center Lihuili Hospital; Department of Neurology (H.-S.C.), General Hospital of Northern Theater Command, Shenyang, China; Department of Neurology (R.A.B.), Aarhus University Hospital, Denmark; Department of Neurology (D.C.H.), Medical College of Georgia, Augusta University, Augusta; Neurology and Stroke Center (F.P.), Versailles Mignot Hospital, Paris, France; Department of Neurology (P.K.), University of Cincinnati, OH; Department of Medicine and Neurology (B.C.V.C.), Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Boston Medical Center (M.A., T.N.N.), Boston University Chobanian and Avedisian School of Medicine, MA; Department of Neurology (J.L.S.), University of California in Los Angeles; Department of Neurology and Neurosurgery (R.G.N.), University of Pittsburgh Medical Center, PA; Department of Neurology (H.S.), Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou; and Department of Neurology (Q.Y.), Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Min Yang
- From the Department of Neurology (Q.L., X.F., B.J., B.L., M.Y., Z.Q., Y.D.), The 903rd Hospital of The Chinese People's Liberation Army, Hangzhou; Intensive Care Unit of Department of Neurology (J.G.), Ningbo Medical Center Lihuili Hospital; Department of Neurology (H.-S.C.), General Hospital of Northern Theater Command, Shenyang, China; Department of Neurology (R.A.B.), Aarhus University Hospital, Denmark; Department of Neurology (D.C.H.), Medical College of Georgia, Augusta University, Augusta; Neurology and Stroke Center (F.P.), Versailles Mignot Hospital, Paris, France; Department of Neurology (P.K.), University of Cincinnati, OH; Department of Medicine and Neurology (B.C.V.C.), Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Boston Medical Center (M.A., T.N.N.), Boston University Chobanian and Avedisian School of Medicine, MA; Department of Neurology (J.L.S.), University of California in Los Angeles; Department of Neurology and Neurosurgery (R.G.N.), University of Pittsburgh Medical Center, PA; Department of Neurology (H.S.), Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou; and Department of Neurology (Q.Y.), Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Hongfei Sang
- From the Department of Neurology (Q.L., X.F., B.J., B.L., M.Y., Z.Q., Y.D.), The 903rd Hospital of The Chinese People's Liberation Army, Hangzhou; Intensive Care Unit of Department of Neurology (J.G.), Ningbo Medical Center Lihuili Hospital; Department of Neurology (H.-S.C.), General Hospital of Northern Theater Command, Shenyang, China; Department of Neurology (R.A.B.), Aarhus University Hospital, Denmark; Department of Neurology (D.C.H.), Medical College of Georgia, Augusta University, Augusta; Neurology and Stroke Center (F.P.), Versailles Mignot Hospital, Paris, France; Department of Neurology (P.K.), University of Cincinnati, OH; Department of Medicine and Neurology (B.C.V.C.), Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Boston Medical Center (M.A., T.N.N.), Boston University Chobanian and Avedisian School of Medicine, MA; Department of Neurology (J.L.S.), University of California in Los Angeles; Department of Neurology and Neurosurgery (R.G.N.), University of Pittsburgh Medical Center, PA; Department of Neurology (H.S.), Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou; and Department of Neurology (Q.Y.), Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Qingwu Yang
- From the Department of Neurology (Q.L., X.F., B.J., B.L., M.Y., Z.Q., Y.D.), The 903rd Hospital of The Chinese People's Liberation Army, Hangzhou; Intensive Care Unit of Department of Neurology (J.G.), Ningbo Medical Center Lihuili Hospital; Department of Neurology (H.-S.C.), General Hospital of Northern Theater Command, Shenyang, China; Department of Neurology (R.A.B.), Aarhus University Hospital, Denmark; Department of Neurology (D.C.H.), Medical College of Georgia, Augusta University, Augusta; Neurology and Stroke Center (F.P.), Versailles Mignot Hospital, Paris, France; Department of Neurology (P.K.), University of Cincinnati, OH; Department of Medicine and Neurology (B.C.V.C.), Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Boston Medical Center (M.A., T.N.N.), Boston University Chobanian and Avedisian School of Medicine, MA; Department of Neurology (J.L.S.), University of California in Los Angeles; Department of Neurology and Neurosurgery (R.G.N.), University of Pittsburgh Medical Center, PA; Department of Neurology (H.S.), Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou; and Department of Neurology (Q.Y.), Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Zhongming Qiu
- From the Department of Neurology (Q.L., X.F., B.J., B.L., M.Y., Z.Q., Y.D.), The 903rd Hospital of The Chinese People's Liberation Army, Hangzhou; Intensive Care Unit of Department of Neurology (J.G.), Ningbo Medical Center Lihuili Hospital; Department of Neurology (H.-S.C.), General Hospital of Northern Theater Command, Shenyang, China; Department of Neurology (R.A.B.), Aarhus University Hospital, Denmark; Department of Neurology (D.C.H.), Medical College of Georgia, Augusta University, Augusta; Neurology and Stroke Center (F.P.), Versailles Mignot Hospital, Paris, France; Department of Neurology (P.K.), University of Cincinnati, OH; Department of Medicine and Neurology (B.C.V.C.), Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Boston Medical Center (M.A., T.N.N.), Boston University Chobanian and Avedisian School of Medicine, MA; Department of Neurology (J.L.S.), University of California in Los Angeles; Department of Neurology and Neurosurgery (R.G.N.), University of Pittsburgh Medical Center, PA; Department of Neurology (H.S.), Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou; and Department of Neurology (Q.Y.), Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Yi Dai
- From the Department of Neurology (Q.L., X.F., B.J., B.L., M.Y., Z.Q., Y.D.), The 903rd Hospital of The Chinese People's Liberation Army, Hangzhou; Intensive Care Unit of Department of Neurology (J.G.), Ningbo Medical Center Lihuili Hospital; Department of Neurology (H.-S.C.), General Hospital of Northern Theater Command, Shenyang, China; Department of Neurology (R.A.B.), Aarhus University Hospital, Denmark; Department of Neurology (D.C.H.), Medical College of Georgia, Augusta University, Augusta; Neurology and Stroke Center (F.P.), Versailles Mignot Hospital, Paris, France; Department of Neurology (P.K.), University of Cincinnati, OH; Department of Medicine and Neurology (B.C.V.C.), Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Boston Medical Center (M.A., T.N.N.), Boston University Chobanian and Avedisian School of Medicine, MA; Department of Neurology (J.L.S.), University of California in Los Angeles; Department of Neurology and Neurosurgery (R.G.N.), University of Pittsburgh Medical Center, PA; Department of Neurology (H.S.), Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou; and Department of Neurology (Q.Y.), Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Thanh N Nguyen
- From the Department of Neurology (Q.L., X.F., B.J., B.L., M.Y., Z.Q., Y.D.), The 903rd Hospital of The Chinese People's Liberation Army, Hangzhou; Intensive Care Unit of Department of Neurology (J.G.), Ningbo Medical Center Lihuili Hospital; Department of Neurology (H.-S.C.), General Hospital of Northern Theater Command, Shenyang, China; Department of Neurology (R.A.B.), Aarhus University Hospital, Denmark; Department of Neurology (D.C.H.), Medical College of Georgia, Augusta University, Augusta; Neurology and Stroke Center (F.P.), Versailles Mignot Hospital, Paris, France; Department of Neurology (P.K.), University of Cincinnati, OH; Department of Medicine and Neurology (B.C.V.C.), Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Boston Medical Center (M.A., T.N.N.), Boston University Chobanian and Avedisian School of Medicine, MA; Department of Neurology (J.L.S.), University of California in Los Angeles; Department of Neurology and Neurosurgery (R.G.N.), University of Pittsburgh Medical Center, PA; Department of Neurology (H.S.), Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou; and Department of Neurology (Q.Y.), Xinqiao Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
18
|
Rehman S, Nadeem A, Akram U, Sarwar A, Quraishi A, Siddiqui H, Malik MAJ, Nabi M, Ul Haq I, Cho A, Mazumdar I, Kim M, Chen K, Sepehri S, Wang R, Balar AB, Lakhani DA, Yedavalli VS. Molecular Mechanisms of Ischemic Stroke: A Review Integrating Clinical Imaging and Therapeutic Perspectives. Biomedicines 2024; 12:812. [PMID: 38672167 PMCID: PMC11048412 DOI: 10.3390/biomedicines12040812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Ischemic stroke poses a significant global health challenge, necessitating ongoing exploration of its pathophysiology and treatment strategies. This comprehensive review integrates various aspects of ischemic stroke research, emphasizing crucial mechanisms, therapeutic approaches, and the role of clinical imaging in disease management. It discusses the multifaceted role of Netrin-1, highlighting its potential in promoting neurovascular repair and mitigating post-stroke neurological decline. It also examines the impact of blood-brain barrier permeability on stroke outcomes and explores alternative therapeutic targets such as statins and sphingosine-1-phosphate signaling. Neurocardiology investigations underscore the contribution of cardiac factors to post-stroke mortality, emphasizing the importance of understanding the brain-heart axis for targeted interventions. Additionally, the review advocates for early reperfusion and neuroprotective agents to counter-time-dependent excitotoxicity and inflammation, aiming to preserve tissue viability. Advanced imaging techniques, including DWI, PI, and MR angiography, are discussed for their role in evaluating ischemic penumbra evolution and guiding therapeutic decisions. By integrating molecular insights with imaging modalities, this interdisciplinary approach enhances our understanding of ischemic stroke and offers promising avenues for future research and clinical interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Sana Rehman
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Arsalan Nadeem
- Department of Medicine, Allama Iqbal Medical College, Lahore 54700, Pakistan;
| | - Umar Akram
- Department of Medicine, Allama Iqbal Medical College, Lahore 54700, Pakistan;
| | - Abeer Sarwar
- Department of Medicine, Fatima Memorial Hospital College of Medicine and Dentistry, Lahore 54000, Pakistan; (A.S.); (H.S.)
| | - Ammara Quraishi
- Department of Medicine, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Hina Siddiqui
- Department of Medicine, Fatima Memorial Hospital College of Medicine and Dentistry, Lahore 54000, Pakistan; (A.S.); (H.S.)
| | | | - Mehreen Nabi
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Ihtisham Ul Haq
- Department of Medicine, Amna Inayat Medical College, Sheikhupura 54300, Pakistan;
| | - Andrew Cho
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Ishan Mazumdar
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Minsoo Kim
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Kevin Chen
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Sadra Sepehri
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Richard Wang
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Aneri B. Balar
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Dhairya A. Lakhani
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Vivek S. Yedavalli
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| |
Collapse
|
19
|
Ji Y, Chen Y, Tan X, Huang X, Gao Q, Ma Y, Yang S, Yin M, Yu M, Fang C, Wang Y, Shi Z, Chang J. Integrated transcriptomic and proteomic profiling reveals the key molecular signatures of brain endothelial reperfusion injury. CNS Neurosci Ther 2024; 30:e14483. [PMID: 37789643 PMCID: PMC11017417 DOI: 10.1111/cns.14483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Reperfusion therapy after ischemic stroke often causes brain microvascular injury. However, the underlying mechanisms are unclear. METHODS Transcriptomic and proteomic analyses were performed on human cerebral microvascular endothelial cells following oxygen-glucose deprivation (OGD) or OGD plus recovery (OGD/R) to identify molecules and signaling pathways dysregulated by reperfusion. Major findings were further validated in a mouse model of cerebral ischemia and reperfusion. RESULTS Transcriptomic analysis identified 390 differentially expressed genes (DEGs) between the OGD/R and OGD group. Pathway analysis indicated that these genes were mostly associated with inflammation, including the TNF signaling pathway, TGF-β signaling pathway, cytokine-cytokine receptor interaction, NOD-like receptor signaling pathway, and NF-κB signaling pathway. Proteomic analysis identified 201 differentially expressed proteins (DEPs), which were primarily associated with extracellular matrix destruction and remodeling, impairment of endothelial transport function, and inflammatory responses. Six genes (DUSP1, JUNB, NFKBIA, NR4A1, SERPINE1, and THBS1) were upregulated by OGD/R at both the mRNA and protein levels. In mice with cerebral ischemia and reperfusion, brain TNF signaling pathway was activated by reperfusion, and inhibiting TNF-α with adalimumab significantly attenuated reperfusion-induced brain endothelial inflammation. In addition, the protein level of THBS1 was substantially upregulated upon reperfusion in brain endothelial cells and the peri-endothelial area in mice receiving cerebral ischemia. CONCLUSION Our study reveals the key molecular signatures of brain endothelial reperfusion injury and provides potential therapeutic targets for the treatment of brain microvascular injury after reperfusion therapy in ischemic stroke.
Collapse
Affiliation(s)
- Yabin Ji
- Department of NeurologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Yiman Chen
- Department of NeurologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Xixi Tan
- Department of NeurologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- Department of NeurologyYangjiang People's HospitalYangjiangChina
| | - Xiaowen Huang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Qiang Gao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Yinzhong Ma
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Shilun Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Meifang Yin
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Min Yu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Cheng Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Zhu Shi
- Department of Neurology10th Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)DongguanChina
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| |
Collapse
|
20
|
Huang D, Awad ACA, Tang C, Chen Y. Demethylnobiletin ameliorates cerebral ischemia-reperfusion injury in rats through Nrf2/HO-1 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:1335-1349. [PMID: 37955318 DOI: 10.1002/tox.24036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Demethylnobiletin (DN), with a variety of biological activities, is a polymethoxy-flavanone (PMF) found in citrus. In the present study, we explored the biological activities and potential mechanism of DN to improve cerebral ischemia reperfusion injury (CIRI) in rats, and identified DN as a novel neuroprotective agent for patients with ischemic brain injury. METHODS Rat CIRI models were established via middle cerebral artery occlusion (MCAO). Primary nerve cells were isolated and cultured in fetal rat cerebral cortex in vitro, and oxygen-glucose deprivation/reperfusion (OGD/R) models of primary nerve cells were induced. After intervention with DN with different concentrations in MCAO rats and OGD/R nerve cells, 2,3,5-triphenyltetrazolium chloride staining was used to quantify cerebral infarction size in CIRI rats. Modified neurological severity score was utilized to assess neurological performance. Histopathologic staining and live/dead cell-viability staining was used to observe apoptosis. Levels of glutathione (GSH), superoxide dismutase (SOD), reactive oxygen species (ROS) and malondialdehyde (MDA) in tissues and cells were detected using commercial kits. DN level in serum and cerebrospinal fluid of MCAO rats were measured by liquid chromatography tandem mass spectrometry. In addition, expression levels of proteins like Kelch like ECH associated protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nfr2) and heme oxygenase 1 (HO-1) in the Nrf2/HO-1 pathway, and apoptosis-related proteins like Cleaved caspase-3, BCL-2-associated X protein (Bax) and B-cell lymphoma-2 (Bcl-2) were determined by Western blot and immunofluorescence. RESULTS DN can significantly enhance neurological function recovery by reducing cerebral infarction size and weakening neurocytes apoptosis in MCAO rats. It was further found that DN could improve oxidative stress (OS) injury of nerve cells by bringing down MDA and ROS levels and increasing SOD and GSH levels. Notably, DN exerts its pharmacological influences through entering blood-brain barrier. Mechanically, DN can reduce Keap1 expression while activate Nrf2 and HO-1 expression in neurocytes. CONCLUSIONS The protective effect of DN on neurocytes have been demonstrated in both in vitro and in vivo circumstances. It deserves to be developed as a potential neuroprotective agent through regulating the Nrf2/HO-1 signaling pathway to ameliorate neurocytes impairment caused by OS.
Collapse
Affiliation(s)
- Dan Huang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Faculty of Medicine/Clinical Campus/Lembah Sireh, Lincoln University college, Kota Bharu, Kelantan, Malaysia
| | - Ali Chyadmarzok Al Awad
- Faculty of Medicine/Clinical Campus/Lembah Sireh, Lincoln University college, Kota Bharu, Kelantan, Malaysia
| | - Chuai Tang
- Department of Rehabilitation Therapeutics, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yunqiang Chen
- Department of Rehabilitation Therapeutics, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
21
|
Franx BAA, van Tilborg GAF, Taha A, Bobi J, van der Toorn A, Van Heijningen CL, van Beusekom HMM, Wu O, Dijkhuizen RM. Hyperperfusion profiles after recanalization differentially associate with outcomes in a rat ischemic stroke model. J Cereb Blood Flow Metab 2024; 44:209-223. [PMID: 37873758 PMCID: PMC10993873 DOI: 10.1177/0271678x231208993] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/15/2023] [Accepted: 09/24/2023] [Indexed: 10/25/2023]
Abstract
Futile recanalization hampers prognoses of ischemic stroke after successful mechanical thrombectomy, hypothetically through post-recanalization perfusion deficits, onset-to-groin delays and sex effects. Clinically, acute multiparametric imaging studies remain challenging. We assessed possible relationships between these factors and disease outcome after experimental cerebral ischemia-reperfusion, using translational MRI, behavioral testing and multi-model inference analyses. Male and female rats (N = 60) were subjected to 45-/90-min filament-induced transient middle cerebral artery occlusion. Diffusion, T2- and perfusion-weighted MRI at occlusion, 0.5 h and four days after recanalization, enabled tracking of tissue fate, and relative regional cerebral blood flow (rrCBF) and -volume (rrCBV). Lesion areas were parcellated into core, salvageable tissue and delayed injury, verified by histology. Recanalization resulted in acute-to-subacute lesion volume reductions, most apparently in females (n = 19). Hyperacute normo-to-hyperperfusion in the post-ischemic lesion augmented towards day four, particularly in males (n = 23). Tissue suffering delayed injury contained higher ratios of hypoperfused voxels early after recanalization. Regressed against acute-to-subacute lesion volume change, increased rrCBF associated with lesion growth, but increased rrCBV with lesion reduction. Similar relationships were detected for behavioral outcome. Post-ischemic hyperperfusion may develop differentially in males and females, and can be beneficial or detrimental to disease outcome, depending on which perfusion parameter is used as explanatory variable.
Collapse
Affiliation(s)
- Bart AA Franx
- Biomedical MR Imaging and Spectroscopy group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Geralda AF van Tilborg
- Biomedical MR Imaging and Spectroscopy group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Aladdin Taha
- Erasmus MC, Cardiovascular Institute, Thorax Center, Department of Cardiology, Rotterdam, the Netherlands
| | - Joaquim Bobi
- Erasmus MC, Cardiovascular Institute, Thorax Center, Department of Cardiology, Rotterdam, the Netherlands
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Caroline L Van Heijningen
- Biomedical MR Imaging and Spectroscopy group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Heleen MM van Beusekom
- Erasmus MC, Cardiovascular Institute, Thorax Center, Department of Cardiology, Rotterdam, the Netherlands
| | - Ona Wu
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - on behalf of the CONTRAST consortium
- Biomedical MR Imaging and Spectroscopy group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
- Erasmus MC, Cardiovascular Institute, Thorax Center, Department of Cardiology, Rotterdam, the Netherlands
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
22
|
van der Knaap N, Franx BAA, Majoie CBLM, van der Lugt A, Dijkhuizen RM. Implications of Post-recanalization Perfusion Deficit After Acute Ischemic Stroke: a Scoping Review of Clinical and Preclinical Imaging Studies. Transl Stroke Res 2024; 15:179-194. [PMID: 36653525 PMCID: PMC10796479 DOI: 10.1007/s12975-022-01120-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023]
Abstract
The goal of reperfusion therapy for acute ischemic stroke (AIS) is to restore cerebral blood flow through recanalization of the occluded vessel. Unfortunately, successful recanalization does not always result in favorable clinical outcome. Post-recanalization perfusion deficits (PRPDs), constituted by cerebral hypo- or hyperperfusion, may contribute to lagging patient recovery rates, but its clinical significance remains unclear. This scoping review provides an overview of clinical and preclinical findings on post-ischemic reperfusion, aiming to elucidate the pattern and consequences of PRPD from a translational perspective. The MEDLINE database was searched for quantitative clinical and preclinical studies of AIS reporting PRPD based on cerebral circulation parameters acquired by translational tomographic imaging methods. PRPD and stroke outcome were mapped on a charting table, creating an overview of PRPD after AIS. Twenty-two clinical and twenty-two preclinical studies were included. Post-recanalization hypoperfusion is rarely reported in clinical studies (4/22) but unequivocally associated with detrimental outcome. Post-recanalization hyperperfusion is more commonly reported (18/22 clinical studies) and may be associated with positive or negative outcome. PRPD has been replicated in animal studies, offering mechanistic insights into causes and consequences of PRPD and allowing delineation of possible courses of PRPD. Complex relationships exist between PRPD and stroke outcome. Diversity in methods and lack of standardized definitions in reperfusion studies complicate the characterization of reperfusion patterns. Recommendations are made to advance the understanding of PRPD mechanisms and to further disentangle the relation between PRPD and disease outcome.
Collapse
Affiliation(s)
- Noa van der Knaap
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Bart A A Franx
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands.
| | - Charles B L M Majoie
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Aad van der Lugt
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
23
|
ter Schiphorst A, Turc G, Hassen WB, Oppenheim C, Baron JC. Incidence, severity and impact on functional outcome of persistent hypoperfusion despite large-vessel recanalization, a potential marker of impaired microvascular reperfusion: Systematic review of the clinical literature. J Cereb Blood Flow Metab 2024; 44:38-49. [PMID: 37871624 PMCID: PMC10905632 DOI: 10.1177/0271678x231209069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/02/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023]
Abstract
The reported incidence of persistent hypoperfusion despite complete recanalization as surrogate for impaired microvascular reperfusion (IMR) has varied widely among clinical studies, possibly due to differences in i) definition of complete recanalization, with only recent Thrombolysis in Cerebral Infarction (TICI) grading schemes allowing distinction between complete (TICI3) and partial recanalization with distal occlusions (TICI2c); ii) operational definition of IMR; and iii) consideration of potential alternative causes for hypoperfusion, notably carotid stenosis, re-occlusion and post-thrombectomy hemorrhage. We performed a systematic review to identify clinical studies that carried out brain perfusion imaging within 72 hrs post-thrombectomy for anterior circulation stroke and reported hypoperfusion rates separately for TICI3 and TICI2c grades. Authors were contacted if this data was missing. We identified eight eligible articles, altogether reporting 636 patients. The incidence of IMR after complete recanalization (i.e., TICI3) tended to decrease with the number of considered alternative causes of hypoperfusion: range 12.5-42.9%, 0-31.6% and 0-9.1% in articles that considered none, two or all three causes, respectively. No study reported the impact of IMR on functional outcome separately for TICI-3 patients. Based on this systematic review, IMR in true complete recanalization appears relatively rare, and reported incidence highly depends on definition used and consideration of confounding factors.
Collapse
Affiliation(s)
- Adrien ter Schiphorst
- Department of Neurology, University Hospital of Montpellier, CHU Gui de Chauliac, Montpellier, France
| | - Guillaume Turc
- Department of Neurology, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Université Paris Cité, Inserm U1266, FHU NeuroVasc, Paris, France
| | - Wagih Ben Hassen
- Department of Neuroradiology, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Université Paris Cité, Inserm U1266, Paris, France
| | - Catherine Oppenheim
- Department of Neuroradiology, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Université Paris Cité, Inserm U1266, Paris, France
| | - Jean-Claude Baron
- Department of Neurology, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Université Paris Cité, Inserm U1266, FHU NeuroVasc, Paris, France
| |
Collapse
|
24
|
Kageyama S, Ohashi T, Yoshida T, Kobayashi Y, Kojima A, Kobayashi D, Kojima T. Early mortality of emergency surgery for acute type A aortic dissection in octogenarians and nonagenarians: A multi-center retrospective study. J Thorac Cardiovasc Surg 2024; 167:65-75.e8. [PMID: 35277246 DOI: 10.1016/j.jtcvs.2022.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The clinical data on postoperative mortality and central nervous system (CNS) complications in older adults who underwent acute type A aortic dissection are limited. Thus, in this study we aimed to evaluate the association between age and early postoperative mortality and occurrence of CNS complications. METHODS This multicentric retrospective cohort study included 5 tertiary hospitals in Japan. All patients who underwent emergency surgery for acute type A aortic dissection between October 1998 and December 2019 were enrolled. The multilevel Cox proportional hazards model, which considered years as level 1, institutions as level 2, and surgeons as level 3, was used to evaluate the association between age and early postoperative hospital mortality and occurrence of CNS complications. RESULTS Of the 1037 patients, 227 (21.9%) were ≥80 years old and 810 (78.1%) were <80 years old. Overall, 134 patients (12.9%) died within 30 days postoperatively; among them, 42/227 (18.5%) and 92/810 (11.4%) were aged ≥80 and <80 years, respectively (hazard ratio [HR], 1.63; P = .0046). CNS complications within 30 days postoperatively occurred in 140/1037 (13.5%) patients; among them, 42/227 (18.5%) and 98/810 (12.1%) were aged ≥80 and <80 years, respectively (HR, 1.63; P = .011). In multivariate analysis, age ≥80 years was associated with mortality within 30 days postoperatively (adjusted HR, 2.37; 95% CI, 1.23-4.57; P = .01) but not with CNS complications (adjusted HR, 1.58; 95% CI, 0.93-2.69; P = .091). CONCLUSIONS The early postoperative mortality in older patients was approximately 50% higher than in the younger population. A thorough discussion regarding the surgical indications should be done.
Collapse
Affiliation(s)
- Soichiro Kageyama
- Department of Cardiovascular Surgery, Nagoya Tokushukai General Hospital, Kasugai-city, Aichi, Japan
| | - Takeki Ohashi
- Department of Cardiovascular Surgery, Nagoya Tokushukai General Hospital, Kasugai-city, Aichi, Japan
| | - Takeshi Yoshida
- Department of Cardiovascular Surgery, Matsubara Tokushukai Hospital, Matsubara-city, Osaka, Japan
| | - Yutaka Kobayashi
- Department of Cardiovascular Surgery, Uji Tokushukai Hospital, Makishima-cho, Uji-city, Kyoto, Japan
| | - Akinori Kojima
- Department of Cardiovascular Surgery, Nagoya Tokushukai General Hospital, Kasugai-city, Aichi, Japan
| | - Daiki Kobayashi
- Graduate School of Public Health, St Luke's International University, Tokyo, Japan
| | - Taiki Kojima
- Department of Anesthesiology, Aichi Children's Health and Medical Center, Obu-shi, Aichi, Japan.
| |
Collapse
|
25
|
Zhang Y, Jiang M, Gao Y, Zhao W, Wu C, Li C, Li M, Wu D, Wang W, Ji X. "No-reflow" phenomenon in acute ischemic stroke. J Cereb Blood Flow Metab 2024; 44:19-37. [PMID: 37855115 PMCID: PMC10905637 DOI: 10.1177/0271678x231208476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/04/2023] [Accepted: 09/13/2023] [Indexed: 10/20/2023]
Abstract
Acute ischemic stroke (AIS) afflicts millions of individuals worldwide. Despite the advancements in thrombolysis and thrombectomy facilitating proximal large artery recanalization, the resultant distal hypoperfusion, referred to "no-reflow" phenomenon, often impedes the neurological function restoration in patients. Over half a century of scientific inquiry has validated the existence of cerebral "no-reflow" in both animal models and human subjects. Furthermore, the correlation between "no-reflow" and adverse clinical outcomes underscores the necessity to address this phenomenon as a pivotal strategy for enhancing AIS prognoses. The underlying mechanisms of "no-reflow" are multifaceted, encompassing the formation of microemboli, microvascular compression and contraction. Moreover, a myriad of complex mechanisms warrant further investigation. Insights gleaned from mechanistic exploration have prompted advancements in "no-reflow" treatment, including microthrombosis therapy, which has demonstrated clinical efficacy in improving patient prognoses. The stagnation in current "no-reflow" diagnostic methods imposes limitations on the timely application of combined therapy on "no-reflow" post-recanalization. This narrative review will traverse the historical journey of the "no-reflow" phenomenon, delve into its underpinnings in AIS, and elucidate potential therapeutic and diagnostic strategies. Our aim is to equip readers with a swift comprehension of the "no-reflow" phenomenon and highlight critical points for future research endeavors.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Miaowen Jiang
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yuan Gao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chuanhui Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ming Li
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wu Wang
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xunming Ji
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Thorén M, Escudero-Martínez I, Andersson T, Chen SY, Tsao N, Khurana D, Beretta S, Peeters A, Tsivgoulis G, Roffe C, Ahmed N. Reperfusion by endovascular thrombectomy and early cerebral edema in anterior circulation stroke: Results from the SITS-International Stroke Thrombectomy Registry. Int J Stroke 2023; 18:1193-1201. [PMID: 37226337 PMCID: PMC10676032 DOI: 10.1177/17474930231180451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND A large infarct and expanding cerebral edema (CED) due to a middle cerebral artery occlusion confers a 70% mortality unless treated surgically. There is still conflicting evidence whether reperfusion is associated with a lower risk for CED in acute ischemic stroke. AIM To investigate the association of reperfusion with development of early CED after stroke thrombectomy. METHODS From the SITS-International Stroke Thrombectomy Registry, we selected patients with occlusion of the intracranial internal carotid or middle cerebral artery (M1 or M2). Successful reperfusion was defined as mTICI ⩾ 2b. Primary outcome was moderate or severe CED, defined as focal brain swelling ⩾1/3 of the hemisphere on imaging scans at 24 h. We used regression methods while adjusting for baseline variables. Effect modification by severe early neurological deficits, as indicators of large infarct at baseline and at 24 h, were explored. RESULTS In total, 4640 patients, median age 70 years and median National Institutes of Health Stroke Score (NIHSS) 16, were included. Of these, 86% had successful reperfusion. Moderate or severe CED was less frequent among patients who had reperfusion compared to patients without reperfusion: 12.5% versus 29.6%, p < 0.05, crude risk ratio (RR) 0.42 (95% confidence interval (CI): 0.37-0.49), and adjusted RR 0.50 (95% CI: 0.44-0.57). Analysis of effect modification indicated that severe neurological deficits weakened the association between reperfusion and lower risk of CED. The RR reduction was less favorable in patients with severe neurological deficits, defined as NIHSS score 15 or more at baseline and at 24 h, used as an indicator for larger infarction. CONCLUSION In patients with large artery anterior circulation occlusion stroke who underwent thrombectomy, successful reperfusion was associated with approximately 50% lower risk for early CED. Severe neurological deficit at baseline seems to be a predictor for moderate or severe CED also in patients with successful reperfusion by thrombectomy.
Collapse
Affiliation(s)
- Magnus Thorén
- Stroke Research Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Danderyd Hospital, Stockholm, Sweden
| | - Irene Escudero-Martínez
- Department of Neurology, Hospital Universitari i Politécnic La Fe, Valencia, Spain
- Neurovascular Research Laboratory, Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Tomas Andersson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Nicole Tsao
- Global Medical Affairs, Biogen, Cambridge, MA, USA
| | - Dheeraj Khurana
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Simone Beretta
- Department of Neurology and Stroke Unit, San Gerardo Hospital, Monza, Italy
| | - Andre Peeters
- Department of Neurology and Stroke Unit, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Georgios Tsivgoulis
- Second Department of Neurology, National & Kapodistrian University of Athens, Athens, Greece
| | | | - Niaz Ahmed
- Stroke Research Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
27
|
Cappellari M, Pracucci G, Saia V, Fainardi E, Casetta I, Sallustio F, Ruggiero M, Longoni M, Simonetti L, Zini A, Lazzarotti GA, Giannini N, Da Ros V, Diomedi M, Vallone S, Bigliardi G, Limbucci N, Nencini P, Ajello D, Marcheselli S, Burdi N, Boero G, Bracco S, Tassi R, Boghi A, Naldi A, Biraschi F, Nicolini E, Castellan L, Del Sette M, Allegretti L, Sugo A, Buonomo O, Dell'Aera C, Saletti A, De Vito A, Lafe E, Mazzacane F, Bergui M, Cerrato P, Feraco P, Piffer S, Augelli R, Vit F, Gasparotti R, Magoni M, Comelli S, Melis M, Menozzi R, Scoditti U, Cavasin N, Critelli A, Causin F, Baracchini C, Guzzardi G, Tarletti R, Filauri P, Orlandi B, Giorgianni A, Cariddi LP, Piano M, Motto C, Gallesio I, Sepe FN, Romano G, Grasso MF, Pauciulo A, Rizzo A, Comai A, Franchini E, Sicurella L, Galvano G, Mannino M, Mangiafico S, Toni D, On Behalf Of The Iretas Group. IV thrombolysis plus thrombectomy versus IV thrombolysis alone for minor stroke with anterior circulation large vessel occlusion from the IRETAS and Italian SITS-ISTR cohorts. Neurol Sci 2023; 44:4401-4410. [PMID: 37458843 DOI: 10.1007/s10072-023-06948-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/04/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION The aim of this study was to compare the outcomes of patients treated with intravenous thrombolysis (IVT) <4.5 h after symptom onset plus mechanical thrombectomy (MT) <6 h with those treated with IVT alone <4.5 h for minor stroke (NIHSS ≤5) with large vessel occlusion (LVO) in the anterior circulation. PATIENTS AND METHODS Patients enrolled in the Italian Registry of Endovascular Treatment in Acute Stroke (IRETAS) and in the Italian centers included in the SITS-ISTR were analyzed. RESULTS Among the patients with complete data on 24-h ICH type, 236 received IVT plus MT and 382 received IVT alone. IVT plus MT was significantly associated with unfavorable shift on 24-h ICH types (from no ICH to PH-2) (OR, 2.130; 95% CI, 1.173-3.868; p=0.013) and higher rate of PH (OR, 4.363; 95% CI, 1.579-12.055; p=0.005), sICH per ECASS II definition (OR, 5.527; 95% CI, 1.378-22.167; p=0.016), and sICH per NINDS definition (OR, 3.805; 95% CI, 1.310-11.046; p=0.014). Among the patients with complete data on 3-month mRS score, 226 received IVT plus MT and 262 received IVT alone. No significant difference was reported between IVT plus MT and IVT alone on mRS score 0-1 (72.1% versus 69.1%), mRS score 0-2 (79.6% versus 79%), and death (6.2% versus 6.1%). CONCLUSIONS Compared with IVT alone, IVT plus MT was associated with unfavorable shift on 24-h ICH types and higher rate of 24-h PH and sICH in patients with minor stroke and LVO in the anterior circulation. However, no difference was reported between the groups on 3-month functional outcome measures.
Collapse
Affiliation(s)
- Manuel Cappellari
- Stroke Unit, Azienda Ospedaliera Universitaria Integrata, Piazzale A. Stefani 1, 37126, Verona, Italy.
| | - Giovanni Pracucci
- Department of NEUROFARBA, Neuroscience Section, University of Florence, Florence, Italy
| | - Valentina Saia
- Neurology and Stroke Unit, S. Corona Hospital, Pietra Ligure, Italy
| | - Enrico Fainardi
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Neuroradiologia, Università degli Studi di Firenze, Ospedale Universitario Careggi, Firenze, Italy
| | - Ilaria Casetta
- Neurology Unit, University Hospital Arcispedale S. Anna, Ferrara, Italy
| | - Fabrizio Sallustio
- Unitá di Trattamento Neurovascolare, Ospedale dei Castelli-ASL6, Rome, Italy
| | - Maria Ruggiero
- Neuroradiologia, AUSL Romagna Ospedale Bufalini, Cesena, Italy
| | - Marco Longoni
- Neurologia e Stroke Unit Ospedale Bufalini Cesena, AUSL Romagna, Ravenna, Italy
| | - Luigi Simonetti
- UO Neuroradiologia Ospedale Maggiore-IRCCS Istituto di Scienze Neurologiche di Bologna, Bologna, Italy
| | - Andrea Zini
- Department of Neurology and Stroke Center, IRCCS Istituto di Scienze Neurologiche di Bologna, Maggiore Hospital, Bologna, Italy
| | | | - Nicola Giannini
- Neurological Institute, University Hospital of Pisa, Pisa, Italy
| | - Valerio Da Ros
- Interventional Radiology Unit, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Marina Diomedi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Nicola Limbucci
- Neurovascular Interventional Unit-Careggi University Hospital, Firenze, Italy
| | - Patrizia Nencini
- Stroke Unit, Azienda Ospedaliero Univarsitaria Careggi, Firenze, Italy
| | - Daniele Ajello
- Neuroradiology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Nicola Burdi
- Neuroradiology, SS. Annunziata Hospital, Taranto, Italy
| | | | - Sandra Bracco
- Neuroradiologia interventistica, Ospedale S. Maria delle Scotte-University Hospital, Siena, Italy
| | - Rossana Tassi
- Stroke Unit, Ospedale S. Maria delle Scotte-University Hospital, Siena, Italy
| | - Andrea Boghi
- SC Radiologia e Neuroradiologia, Ospedale San Giovanni Bosco, Torino, Italy
| | - Andrea Naldi
- S.C. Neurologia 2 Ospedale San Giovanni Bosco, Torino, Italy
| | - Francesco Biraschi
- Department of Human Neurosciences, Interventional Neuroradiology, Universita degli Studi di Roma Sapienza, Rome, Lazio, Italy
| | - Ettore Nicolini
- Emergency Department Stroke Unit, Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Lucio Castellan
- Department of Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Massimo Del Sette
- Neurology and Stroke Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Luca Allegretti
- Department of Neuroradiology, S. Corona Hospital, Pietra Ligure, Italy
| | - Annalisa Sugo
- Neurology and Stroke Unit, S. Corona Hospital, Pietra Ligure, Italy
| | - Orazio Buonomo
- Neuroradiology Unit, Department of Biomedical, Dental, Morphological and Functional Imaging Sciences-University of Messina, Messina, Italy
| | - Cristina Dell'Aera
- Stroke Unit, Department of Clinical and Experimental Medicine-University of Messina, Messina, Italy
| | - Andrea Saletti
- Servizio di Neuroradiologia, Arcispedale S. Anna-University Hospital, Ferrara, Italy
| | - Alessandro De Vito
- Neurology Division-Stroke Unit, Arcispedale S. Anna-University Hospital, Ferrara, Italy
| | - Elvis Lafe
- UOC Radiologia Diagnostica per Immagini 2-Neuroradiologia, Policlinico IRCCS San Matteo, Pavia, Italy
| | - Federico Mazzacane
- UO Neurologia d'Urgenza e Stroke Unit, IRCCS Fondazione Mondino, Pavia, Italy
| | - Mauro Bergui
- Università Torino Dipartimento Neuroscienze, Città della Salute e della Scienza-Molinette, Torino, Italy
| | - Paolo Cerrato
- Stroke Unit, Città della Salute e della Scienza-Molinette, Torino, Italy
| | - Paola Feraco
- U.O.C. Neuroradiologia diagnostica e Radiologia Interventistica, Ospedale Santa Chiara, Trento, Italy
| | - Silvio Piffer
- U.O.C Neurologia, Ospedale Santa Chiara, APSS di Trento, Trento, Italy
| | - Raffaele Augelli
- Neuroradiology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Federica Vit
- Stroke Unit, Azienda Ospedaliera Universitaria Integrata, Piazzale A. Stefani 1, 37126, Verona, Italy
| | | | | | - Simone Comelli
- Vascular and Interventional Neuroradiology Department, ARNAS G. Brotzu, Cagliari, Italy
| | - Maurizio Melis
- Neuroscience Department, ARNAS G. Brotzu, Cagliari, Italy
| | | | | | - Nicola Cavasin
- Neuroradiology Unit, Ospedale dell'Angelo, USSL 3 Serenissima, Mestre, Venice, Italy
| | - Adriana Critelli
- Neurology Unit, Ospedale dell'Angelo, USSL 3 Serenissima, Mestre, Venice, Italy
| | - Francesco Causin
- Department of Diagnostic Imaging and Interventional Radiology, Neuroradiology, Padua University Hospital, Padua, Italy
| | - Claudio Baracchini
- Stroke Unit and Neurosonology Laboratory, Department of Neuroscience, University of Padua School of Medicine, Padua, Italy
| | | | | | - Pietro Filauri
- UOSD Radiologia interventistica, p.o., Avezzano, AQ, Italy
| | | | - Andrea Giorgianni
- UOC Neuroradiologia, ASST Sette Laghi Varese-Ospedale di Circolo e Fondazione Macchi, Varese, Italy
| | | | - Mariangela Piano
- Interventional Neuroradiology Unit, Ospedale Niguarda, Milan, Italy
| | | | - Ivan Gallesio
- Neuroradiology Unit AO "SS. Antonio e Biagio e C. Arrigo", Alessandria, Italy
| | | | | | | | | | - Annalisa Rizzo
- Department of Neurology, Vito Fazzi Hospital, Lecce, Italy
| | - Alessio Comai
- Neuroradiologia, Ospedale Provinciale di Bolzano, Bolzano, Italy
| | | | | | | | | | - Salvatore Mangiafico
- IRCCS Neuromed, Pozzilli, IS, Italy
- Tor Vergata University, Rome, Italy
- Sapienza University, Rome, Italy
- S. Andrea Hospital, Rome, Italy
| | - Danilo Toni
- Emergency Department Stroke Unit, Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
28
|
Cappellari M, Pracucci G, Saia V, Sallustio F, Casetta I, Fainardi E, Capasso F, Nencini P, Vallone S, Bigliardi G, Saletti A, De Vito A, Ruggiero M, Longoni M, Semeraro V, Boero G, Silvagni U, Stancati F, Lafe E, Mazzacane F, Bracco S, Tassi R, Comelli S, Melis M, Romano D, Napoletano R, Menozzi R, Scoditti U, Chiumarulo L, Petruzzellis M, Vinci SL, Ferraù L, Taglialatela F, Zini A, Sanna A, Tassinari T, Iacobucci M, Nicolini E, Bergui M, Cerrato P, Giorgianni A, Princiotta Cariddi L, Amistà P, Russo M, Gallesio I, Sepe F, Comai A, Franchini E, Filauri P, Orlandi B, Besana M, Giossi A, Lazzarotti GA, Orlandi G, Castellano D, Naldi A, Plebani M, Zivelonghi C, Invernizzi P, Mangiafico S, Toni D. Predictors for hemorrhagic transformation and cerebral edema in stroke patients with first-pass complete recanalization. Int J Stroke 2023; 18:1238-1246. [PMID: 37337362 DOI: 10.1177/17474930231185690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
BACKGROUND Predictors of radiological complications attributable to reperfusion injury remain unknown when baseline setting is optimal for endovascular treatment and procedural setting is the best in stroke patients with large vessel occlusion (LVO). AIMS To identify clinical and radiological/procedural predictors for hemorrhagic transformation (HT) and cerebral edema (CED) at 24 hr in patients obtaining complete recanalization in one pass of thrombectomy for ischemic stroke ⩽ 6 h from symptom onset with intra-cranial anterior circulation LVO and ASPECTS ⩾ 6. METHODS We conducted a cohort study on prospectively collected data from 1400 patients enrolled in the Italian Registry of Endovascular Treatment in Acute Stroke. RESULTS HT was reported in 248 (18%) patients and early CED was reported in 260 (19.2%) patients. In the logistic regression model including predictors from a first model with clinical variables and from a second model with radiological/procedural variables, diabetes mellitus (odds ratio (OR) = 1.832, 95% confidence interval (CI) = 1.201-2.795), higher National Institutes of Health Stroke Scale (NIHSS) (OR = 1.076, 95% CI = 1.044-1.110), lower Alberta Stroke Program Early CT (ASPECTS) (OR = 0.815, 95% CI = 0.694-0.957), and longer onset-to-groin time (OR = 1.005, 95% CI = 1.002-1.007) were predictors of HT, whereas general anesthesia was inversely associated with HT (OR = 0.540, 95% CI = 0.355-0.820). Higher NIHSS (OR = 1.049, 95% CI = 1.021-1.077), lower ASPECTS (OR = 0.700, 95% CI = 0.613-0.801), intravenous thrombolysis (OR = 1.464, 95% CI = 1.061-2.020), longer onset-to-groin time (OR = 1.002, 95% CI = 1.001-1.005), and longer procedure time (OR = 1.009, 95% CI = 1.004-1.015) were predictors of early CED. After repeating a fourth logistic regression model including also good collaterals, the same variables remained predictors for HT and/or early CED, except diabetes mellitus and thrombolysis, while good collaterals were inversely associated with early CED (OR = 0.385, 95% CI = 0.248-0.599). CONCLUSIONS Higher NIHSS, lower ASPECTS, and longer onset-to-groin time were predictors for both HT and early CED. General anesthesia and good collaterals were inversely associated with HT and early CED, respectively. Longer procedure time was predictor of early CED.
Collapse
Affiliation(s)
- Manuel Cappellari
- Stroke Unit, DAI di Neuroscienze, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Elvis Lafe
- Policlinico IRCCS San Matteo, Pavia, Italy
| | | | - Sandra Bracco
- Ospedale S. Maria delle Scotte-University Hospital, Siena, Italy
| | - Rossana Tassi
- Ospedale S. Maria delle Scotte-University Hospital, Siena, Italy
| | | | | | - Daniele Romano
- AOU San Giovanni di Dio e Ruggi di Aragona, Salerno, Italy
| | | | | | | | | | | | | | | | | | - Andrea Zini
- IRCCS Istituto di Scienze Neurologiche di Bologna, Bologna, Italy
| | | | | | | | | | - Mauro Bergui
- Città della Salute e della Scienza-Molinette, Torino, Italy
| | - Paolo Cerrato
- Città della Salute e della Scienza-Molinette, Torino, Italy
| | - Andrea Giorgianni
- ASST Sette Laghi Varese-Ospedale di Circolo e Fondazione Macchi, Varese, Italy
| | | | | | - Monia Russo
- Ospedale S. Maria Misericordia, Rovigo, Italy
| | - Ivan Gallesio
- AO SS Antonio e Biagio e C. Arrigo, Alessandria, Italy
| | - Federica Sepe
- AO SS Antonio e Biagio e C. Arrigo, Alessandria, Italy
| | | | | | | | | | | | | | | | | | | | | | - Mauro Plebani
- Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | | | | | - Salvatore Mangiafico
- Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
- Tor Vergata University, Rome, Italy
- S. Andrea Hospital, Rome, Italy
| | | |
Collapse
|
29
|
Gomez F, El-Ghanem M, Feldstein E, Jagdeo M, Koul P, Nuoman R, Gupta G, Gandhi CD, Amuluru K, Al-Mufti F. Cerebral Ischemic Reperfusion Injury: Preventative and Therapeutic Strategies. Cardiol Rev 2023; 31:287-292. [PMID: 36129330 DOI: 10.1097/crd.0000000000000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acute ischemic stroke is a leading cause of morbidity and mortality in the United States. Treatment goals remain focused on restoring blood flow to compromised areas. However, a major concern arises after reperfusion occurs. Cerebral ischemic reperfusion injury is defined as damage to otherwise salvageable brain tissue occurring with the reestablishment of the vascular supply to that region. The pool of eligible patients for revascularization continues to grow, especially with the recently expanded endovascular therapeutic window. Neurointensivists should understand and manage complications of successful recanalization. In this review, we examine the pathophysiology, diagnosis, and potential management strategies in cerebral ischemic reperfusion injury.
Collapse
Affiliation(s)
- Francisco Gomez
- From the Department of Neurology, University of Missouri School of Medicine, Columbia, MO
| | - Mohammad El-Ghanem
- Department of Neuroendovascular Surgery, HCA Houston Healthcare, Houston, TX
| | - Eric Feldstein
- Westchester Medical Center, Maria Fareri Children's Hospital, Valhalla, NY
| | - Matt Jagdeo
- Westchester Medical Center, Maria Fareri Children's Hospital, Valhalla, NY
| | - Prateeka Koul
- Department of Neurology, Northshore-Long Island Jewish Medical Center, Manhasset, NY
| | - Rolla Nuoman
- Westchester Medical Center, Maria Fareri Children's Hospital, Valhalla, NY
| | - Gaurav Gupta
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Chirag D Gandhi
- Westchester Medical Center, Maria Fareri Children's Hospital, Valhalla, NY
| | - Krishna Amuluru
- Department of Neurological Surgery, University of Indiana, Indianapolis, IN
| | - Fawaz Al-Mufti
- Westchester Medical Center, Maria Fareri Children's Hospital, Valhalla, NY
| |
Collapse
|
30
|
Qu Y, Liu Y, Zhang H. ALDH2 activation attenuates oxygen-glucose deprivation/reoxygenation-induced cell apoptosis, pyroptosis, ferroptosis and autophagy. Clin Transl Oncol 2023; 25:3203-3216. [PMID: 37103763 DOI: 10.1007/s12094-023-03190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
PURPOSE It is previously reported that aldehyde dehydrogenase 2 family member (ALDH2) shows neuroprotective effects in cerebral ischemia/reperfusion injury. However, whether the protective effects are through mediating the programmed cell death is yet to be fully elucidated. METHODS In vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model was established in HT22 cells and mouse cortical neurons. Subsequently, ALDH2 expression were assessed by qRT-PCR and western blot. The methylation status was examined by methylation-specific PCR (MS-PCR). Then, ALDH2 expression was promoted and suppressed to explore the role of ALDH2 in OGD/R-treated cells. CCK-8 assay was applied to detect cell viability, and flow cytometry was applied to evaluate cell apoptosis. Western blot was applied to detect the apoptosis-related proteins (Caspase 3, Bcl-2 and Bax), necroptosis-related proteins (RIP3 and MLKL), pyroptosis-related proteins (NLRP3 and GSDMD), ferroptosis-related protein (ACSL4 and GPX4), and autophagy-related proteins (LC3B, and p62). IL-1β and IL-18 production was evaluated by ELISA assay. Reactive oxygen species production and Fe2+ content were evaluated by the corresponding detection kit. RESULTS In OGD/R-treated cells, ALDH2 expression was decreased, which was due to the hypermethylation of ALDH2 in the promoter region. ALDH2 overexpression improved cell viability and ALDH2 knockdown suppressed cell viability in OGD/R-treated cells. We also found that ALDH2 overexpression attenuated OGD/R-induced cell apoptosis, pyroptosis, ferroptosis and autophagy, while ALDH2 knockdown facilitated the OGD/R-induced cell apoptosis, pyroptosis, ferroptosis and autophagy. CONCLUSIONS Collectively, our results implied that ALDH2 attenuated OGD/R-induced cell apoptosis, pyroptosis, ferroptosis and autophagy to promote cell viability in HT22 cells and mouse cortical neurons.
Collapse
Affiliation(s)
- Yun Qu
- Department of Emergency, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Yuanyuan Liu
- Department of Emergency, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Huilong Zhang
- Department of Neurology, Yuhuangding Hospital Affiliated to Qingdao University, No. 20 Yudong Road, Zhifu District, Yantai, 264000, Shandong, China.
| |
Collapse
|
31
|
Kan Y, Li S, Zhang B, Ding Y, Zhao W, Ji X. No-reflow phenomenon following stroke recanalization therapy: Clinical assessment advances: A narrative review. Brain Circ 2023; 9:214-221. [PMID: 38284109 PMCID: PMC10821681 DOI: 10.4103/bc.bc_37_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 01/30/2024] Open
Abstract
The no-reflow phenomenon (NRP) after successful vascular recanalization in acute ischemic stroke (AIS) has become a major cause of poor clinical prognosis and ineffective recanalization. However, there is currently no clear definition or unified clinical assessment method for the NRP. Therefore, it is urgent to clarify the clinical evaluation criteria for the NRP and develop new no-reflow evaluation techniques so that remedial treatment can be applied to AIS patients suffering from the NRP. In this brief review, a variety of NRP assessment methods and defining criteria for clinical practice are presented.
Collapse
Affiliation(s)
- Yuan Kan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sijie Li
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Bowei Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Wu X, Li JR, Fu Y, Chen DY, Nie H, Tang ZP. From static to dynamic: live observation of the support system after ischemic stroke by two photon-excited fluorescence laser-scanning microscopy. Neural Regen Res 2023; 18:2093-2107. [PMID: 37056116 PMCID: PMC10328295 DOI: 10.4103/1673-5374.369099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 02/17/2023] Open
Abstract
Ischemic stroke is one of the most common causes of mortality and disability worldwide. However, treatment efficacy and the progress of research remain unsatisfactory. As the critical support system and essential components in neurovascular units, glial cells and blood vessels (including the blood-brain barrier) together maintain an optimal microenvironment for neuronal function. They provide nutrients, regulate neuronal excitability, and prevent harmful substances from entering brain tissue. The highly dynamic networks of this support system play an essential role in ischemic stroke through processes including brain homeostasis, supporting neuronal function, and reacting to injuries. However, most studies have focused on postmortem animals, which inevitably lack critical information about the dynamic changes that occur after ischemic stroke. Therefore, a high-precision technique for research in living animals is urgently needed. Two-photon fluorescence laser-scanning microscopy is a powerful imaging technique that can facilitate live imaging at high spatiotemporal resolutions. Two-photon fluorescence laser-scanning microscopy can provide images of the whole-cortex vascular 3D structure, information on multicellular component interactions, and provide images of structure and function in the cranial window. This technique shifts the existing research paradigm from static to dynamic, from flat to stereoscopic, and from single-cell function to multicellular intercommunication, thus providing direct and reliable evidence to identify the pathophysiological mechanisms following ischemic stroke in an intact brain. In this review, we discuss exciting findings from research on the support system after ischemic stroke using two-photon fluorescence laser-scanning microscopy, highlighting the importance of dynamic observations of cellular behavior and interactions in the networks of the brain's support systems. We show the excellent application prospects and advantages of two-photon fluorescence laser-scanning microscopy and predict future research developments and directions in the study of ischemic stroke.
Collapse
Affiliation(s)
- Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jia-Rui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yu Fu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan-Yang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hao Nie
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhou-Ping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
33
|
de Melo PS, Parente J, Rebello-Sanchez I, Marduy A, Gianlorenco AC, Kyung Kim C, Choi H, Song JJ, Fregni F. Understanding the Neuroplastic Effects of Auricular Vagus Nerve Stimulation in Animal Models of Stroke: A Systematic Review and Meta-Analysis. Neurorehabil Neural Repair 2023; 37:564-576. [PMID: 37272448 DOI: 10.1177/15459683231177595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND Transauricular vagus nerve stimulation (taVNS) is being studied as a feasible intervention for stroke, but the mechanisms by which this non-invasive technique acts in the cortex are still broadly unknown. OBJECTIVES This study aimed to systematically review the current pre-clinical evidence in the auricular vagus nerve stimulation (aVNS) neuroplastic effects in stroke. METHODS We searched, in December of 2022, in Medline, Cochrane, Embase, and Lilacs databases. The authors executed the extraction of the data on Excel. The risk of bias was evaluated by adapted Cochrane Collaboration's tool for animal studies (SYRCLES's RoB tool). RESULTS A total of 8 studies published between 2015 and 2022 were included in this review, including 391 animal models. In general, aVNS demonstrated a reduction in neurological deficits (SMD = -1.97, 95% CI -2.57 to -1.36, I2 = 44%), in time to perform the adhesive removal test (SMD = -2.26, 95% CI -4.45 to -0.08, I2 = 81%), and infarct size (SMD = -1.51, 95% CI -2.42 to -0.60, I2 = 58%). Regarding the neuroplasticity markers, aVNS showed to increase microcapillary density, CD31 proliferation, and BDNF protein levels and RNA expression. CONCLUSIONS The studies analyzed show a trend of results that demonstrate a significant effect of the auricular vagal nerve stimulation in stroke animal models. Although the aggregated results show high heterogeneity and high risk of bias. More studies are needed to create solid conclusions.
Collapse
Affiliation(s)
- Paulo S de Melo
- Department of Medicine, Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - João Parente
- Department of Medicine, Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ingrid Rebello-Sanchez
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Anna Marduy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- União Metropolitana de Ensino e Cultura (UNIME) Salvador, Bahia, Brazil
| | - Anna Carolyna Gianlorenco
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Physical Therapy, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Chi Kyung Kim
- Department of Neurology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, Republic of Korea
- Neurive Co., Ltd., Gimhae, Republic of Korea
| | - Jae-Jun Song
- Neurive Co., Ltd., Gimhae, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Seoul, Republic of Korea
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Chen F, Zhan J, Al Mamun A, Tao Y, Huang S, Zhao J, Zhang Y, Xu Y, Du S, Lu W, Li X, Chen Z, Xiao J. Sulforaphane protects microvascular endothelial cells in lower limb ischemia/reperfusion injury mice. Food Funct 2023; 14:7176-7194. [PMID: 37462424 DOI: 10.1039/d3fo01801f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Background: Microvascular damage is a key pathological factor in acute lower limb ischemia/reperfusion (I/R) injury. Current evidence suggests that sulforaphane (SFN) protects tissue from I/R injury. However, the role of SFN in acute lower limb I/R injury remains elusive. This study aimed to investigate the role and potential mechanism of SFN in I/R-related microvascular damage in the limb. Methods: Limb viability was evaluated by laser Doppler imaging, tissue edema analysis and histological analysis. Western blotting and immunofluorescence were applied to analyze the levels of apoptosis, oxidative stress, autophagy, transcription factor EB (TFEB) activity and mucolipin 1 (MCOLN1)-calcineurin signaling pathway. Results: SFN administration significantly ameliorated I/R-induced hypoperfusion, tissue edema, skeletal muscle fiber injury and endothelial cell (EC) damage in the limb. Pharmacological inhibition of NFE2L2 (nuclear factor, erythroid 2 like 2) reversed the anti-oxidation and anti-apoptosis effects of SFN on ECs. Additionally, silencing of TFEB by interfering RNA abolished the SFN-induced autophagy restoration, anti-oxidant response and anti-apoptosis effects on ECs. Furthermore, silencing of MCOLN1 by interfering RNA and pharmacological inhibition of calcineurin inhibited the activity of TFEB induced by SFN, demonstrating that SFN regulates the activity of TFEB through the MCOLN1-calcineurin signaling pathway. Conclusion: SFN protects microvascular ECs against I/R injury by TFEB-mediated autophagy restoration and anti-oxidant response.
Collapse
Affiliation(s)
- Fanfeng Chen
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiayu Zhan
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yibing Tao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Shanshan Huang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiaxin Zhao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yitie Xu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Shenghu Du
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Wei Lu
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xiaokun Li
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Zimiao Chen
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
| | - Jian Xiao
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
35
|
Chang Q, Li Y, Xue M, Yu C, He J, Duan X. Serum amyloid A is a potential predictor of prognosis in acute ischemic stroke patients after intravenous thrombolysis. Front Neurol 2023; 14:1219604. [PMID: 37483455 PMCID: PMC10359907 DOI: 10.3389/fneur.2023.1219604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Objectives Inflammation shows a notable relationship to acute ischemic stroke's (AIS) occurrence and prognosis. However, existing research has confirmed that serum amyloid A (SAA) is an inflammatory biomarker. The aim of this paper was to investigate the association between SAA and the three-month clinical results of acute AIS patients after intravenous thrombolysis (IVT). Methods The evaluation of AIS patients with complete medical records was carried out by prospectively investigating patients hospitalized in our department between January 2020 and February 2023. The SAA levels were examined with the use of an immunosorbent assay kit that shows a relationship with the enzyme (Invitrogen Corp). Patients were dichotomized into favorable (mRS score of 0, 1 or 2) and unfavorable (mRS score of 3, 4, 5, or 6) results with the use of the modified Rankin Scale (mRS). Results A total of 405 AIS patients who were subjected to IVT therapy were prospectively covered. To be specific, 121 (29.88%) patients had an unfavorable prognosis during the follow-up for 3 months. On that basis, patients achieving unfavorable results gained notably greater SAA levels (39.77 (IQR 38.32-46.23) vs.31.23 (IQR 27.44-34.47), p < 0.001) during hospitalization in comparison to patients with a better result. In the analysis with multiple variates, SAA was adopted to achieve the independent prediction of the three-month unfavorable clinical results of acute AIS patients after IVT [OR:2.874 (95% CI, 1.764-4.321), p < 0.001]. When the fundamental confounding factors were regulated, the odds ratio (OR) of unfavorable prognosis after AIS patients undergoing IVT therapy was 4.127 (95% CI = 1.695-10.464, p = 0.032) for the maximum tertile of SAA in terms of the minimal tertile. With an AUC of 0.703 (95% CI, 0.649-0.757), SAA revealed a notably more effective discriminating capability in terms of CRP, NLR, EMR, and WBC. SAA as a predictor in terms of the prediction of three-month unfavorable results after AIS patients undergoing IVT therapy achieved specificity and sensitivity of 84.45% and 77.23%, as well as an optimal cut-off value (COV) of 37.39. Conclusion SAA level that is up-regulated during hospitalization is capable of serving as an effective marker in terms of the prediction of unfavorable three-month results in AIS patients after IVT.
Collapse
Affiliation(s)
- Qi Chang
- Department of Neurology, First Affiliated Hospital of Anhui University of Science and Technology (First People’s Hospital of Huainan), Huainan, China
| | - Yaqiang Li
- Department of Neurology, First Affiliated Hospital of Anhui University of Science and Technology (First People’s Hospital of Huainan), Huainan, China
- Department of Neurology, People’s Hospital of Lixin County, Bozhou, China
| | - Min Xue
- Department of Neurology, First Affiliated Hospital of Anhui University of Science and Technology (First People’s Hospital of Huainan), Huainan, China
| | - Chuanqing Yu
- Department of Neurology, First Affiliated Hospital of Anhui University of Science and Technology (First People’s Hospital of Huainan), Huainan, China
| | - Jiale He
- Department of Neurology, First Affiliated Hospital of Anhui University of Science and Technology (First People’s Hospital of Huainan), Huainan, China
| | - Xun Duan
- Department of Neurology, First Affiliated Hospital of Anhui University of Science and Technology (First People’s Hospital of Huainan), Huainan, China
| |
Collapse
|
36
|
Chen J, Xu S, Lee H, Wu L, He X, Zhao W, Zhang M, Ma Y, Ding Y, Fu Y, Wu C, Li M, Jiang M, Cheng H, Li S, Ma T, Ji X, Wu D. Hypothermic neuroprotection by targeted cold autologous blood transfusion in a non-human primate stroke model. Sci Bull (Beijing) 2023:S2095-9273(23)00392-4. [PMID: 37391345 DOI: 10.1016/j.scib.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/06/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
Over decades, nearly all attempts to translate the benefits of therapeutic hypothermia in stroke models of lower-order species to stroke patients have failed. Potentially overlooked reasons may be biological gaps between different species and the mismatched initiation of therapeutic hypothermia in translational studies. Here, we introduce a novel strategy of selective therapeutic hypothermia in a non-human primate ischemia-reperfusion model, in which autologous blood was cooled ex vivo and the cool blood transfusion was administered at the middle cerebral artery just after the onset of reperfusion. Cold autologous blood cooled the targeted brain rapidly to below 34 °C while the rectal temperature remained around 36 °C with the assistance of a heat blanket during a 2-h hypothermic process. Therapeutic hypothermia or extracorporeal-circulation related complications were not observed. Cold autologous blood treatment reduced infarct sizes, preserved white matter integrity, and improved functional outcomes. Together, our results suggest that therapeutic hypothermia, induced by cold autologous blood transfusion, was achieved in a feasible, swift, and safe way in a non-human primate model of stroke. More importantly, this novel hypothermic approach conferred neuroprotection in a clinically relevant model of ischemic stroke due to reduced brain damage and improved neurofunction. This study reveals an underappreciated potential for this novel hypothermic modality for acute ischemic stroke in the era of effective reperfusion.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Shuaili Xu
- China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Hangil Lee
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit MI 46801, USA
| | - Longfei Wu
- Department of Neurology, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Xiaoduo He
- China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Mo Zhang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yanhui Ma
- Department of Anesthesiology, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit MI 46801, USA
| | - Yongjuan Fu
- Department of Pathology, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Ming Li
- Department of Neurosurgery, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China
| | - Miuwen Jiang
- Interdisciplinary Innovation Institute of Medicine and Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Huakun Cheng
- Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin 1500036, China
| | - Shengli Li
- Department of Laboratory Animal Science, Capital Medical University, Beijing 100069, China
| | - Ting Ma
- Department of Anesthesiology, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China; Interdisciplinary Innovation Institute of Medicine and Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Di Wu
- China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
37
|
Zeng Y, Hao L, Chen Y, Liu S, Fan Y, Zhao Z, Wang Y, Chen Q, Li Y. Optimizing intra-arterial hypothermia scheme for acute ischemic stroke in an MCAO/R rat model. Sci Rep 2023; 13:9566. [PMID: 37311853 DOI: 10.1038/s41598-023-35824-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
Hypothermia is a promising neuroprotective treatment. This study aims to explore and optimize the intervention scheme of intra-arterial hypothermia (IAH) in a middle cerebral artery occlusion and reperfusion (MCAO/R) rat model. The MCAO/R model was established with a thread that could be retracted 2 h after occlusion. Cold normal saline was injected into the internal carotid artery (ICA) through a microcatheter in different infusion conditions. Grouping followed an orthogonal design (L9[34]) based on three critical factors closely associated with IAH: perfusate temperature (4, 10, 15 °C), infusion flow rate (1/3, 1/2, 2/3 blood flow rate of ICA), and duration (10, 20, 30 min), resulting in 9 subgroups (H1, H2 to H9). A myriad of indexes were monitored, such as vital signs, blood parameters, changes in local ischemic brain tissue temperature (Tb), ipsilateral jugular venous bulb temperature (Tjvb), and the core temperature of the anus (Tcore). After 24 h and 72 h of cerebral ischemia, cerebral infarction volume, cerebral water content, and neurological function were assessed to explore the optimal IAH conditions. The results revealed that the three critical factors were independent predictors for cerebral infarction volume, cerebral water content, and neurological function. The optimal perfusion conditions were 4 °C, 2/3 RICA (0.50 ml/min) for 20 min, and there was a significant correlation between Tb and Tjvb (R = 0.994, P < 0.001). The vital signs, blood routine tests and biochemical indexes showed no significant abnormal changes. These findings revealed that IAH was safe and feasible with the optimized scheme in an MCAO/R rat model.
Collapse
Affiliation(s)
- Yuqi Zeng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Lei Hao
- Department of Neurology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Quanshan District, Xuzhou, 221006, Jiangsu Province, China
| | - Yue Chen
- Department of Neurology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Shuyi Liu
- Department of Neurology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Yong Fan
- Central Laboratory, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Zhenhua Zhao
- Department of Neurology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Yinzhou Wang
- Department of Neurology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
- Fujian Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, 350000, China.
| | - Yongkun Li
- Department of Neurology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
- Fujian Provincial Key Laboratory of Emergency Medicine, Department of Emergency, Fujian Provincial Hospital, Fuzhou, 350001, China.
| |
Collapse
|
38
|
Kan X, Yan Z, Wang F, Tao X, Xue T, Chen Z, Wang Z, Chen G. Efficacy and safety of remote ischemic conditioning for acute ischemic stroke: A comprehensive meta-analysis from randomized controlled trials. CNS Neurosci Ther 2023. [PMID: 37183341 PMCID: PMC10401132 DOI: 10.1111/cns.14240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Remote ischemic conditioning (RIC) is a remote, transient, and noninvasive procedure providing temporary ischemia and reperfusion. However, there is no comprehensive literature investigating the efficacy and safety of RIC for the treatment of acute ischemic stroke. In the present study, we performed a comprehensive meta-analysis of the available studies. METHODS MEDLINE, Embase, the Cochrane Library database (CENTRAL), and ClinicalTrials.gov were searched before Sep 7, 2022. The data were analyzed using Review Manager 5.4.1 software, Stata version 16.0 software, and R 4.2.0 software. Odds ratio (OR), mean difference (MD), and corresponding 95% CIs were pooled using fixed-effects meta-analysis. RESULTS We pooled 6392 patients from 17 randomized controlled trials. Chronic RIC could reduce the recurrence of ischemic stroke at the endpoints (OR 0.67, 95% CI [0.51, 0.87]). RIC could also improve the prognosis of patients at 90 days as assessed by mRS score (mRS 0-1: OR 1.29, 95% CI [1.09, 1.52]; mRS 0-2: OR 1.22, 95% CI [1.01, 1.48]) and at the endpoints assessed by NIHSS score (MD -0.99, 95% CI [-1.45, -0.53]). RIC would not cause additional adverse events such as death (p = 0.72), intracerebral hemorrhage events (p = 0.69), pneumonia (p = 0.75), and TIA (p = 0.24) but would inevitably cause RIC-related adverse events (OR 26.79, 95% CI [12.08, 59.38]). CONCLUSIONS RIC could reduce the stroke recurrence and improve patients' prognosis. Intervention on bilateral upper limbs, 5 cycles, and a length of 50 min in each intervention might be an optimal protocol for RIC at present. RIC could be an effective therapy for patients not eligible for reperfusion therapy. RIC would not cause other adverse events except for relatively benign RIC-related adverse events.
Collapse
Affiliation(s)
- Xiuji Kan
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Zeya Yan
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyu Tao
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhouqing Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College of Soochow University, Suzhou, China
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College of Soochow University, Suzhou, China
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College of Soochow University, Suzhou, China
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
39
|
Kloka JA, Friedrichson B, Wülfroth P, Henning R, Zacharowski K. Microvascular Leakage as Therapeutic Target for Ischemia and Reperfusion Injury. Cells 2023; 12:1345. [PMID: 37408180 DOI: 10.3390/cells12101345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 07/07/2023] Open
Abstract
Reperfusion injury is a very common complication of various indicated therapies such as the re-opening of vessels in the myocardium or brain as well as reflow in hemodynamic shutdown (cardiac arrest, severe trauma, aortic cross-clamping). The treatment and prevention of reperfusion injury has therefore been a topic of immense interest in terms of mechanistic understanding, the exploration of interventions in animal models and in the clinical setting in major prospective studies. While a wealth of encouraging results has been obtained in the lab, the translation into clinical success has met with mixed outcomes at best. Considering the still very high medical need, progress continues to be urgently needed. Multi-target approaches rationally linking interference with pathophysiological pathways as well as a renewed focus on aspects of microvascular dysfunction, especially on the role of microvascular leakage, are likely to provide new insights.
Collapse
Affiliation(s)
- Jan Andreas Kloka
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Benjamin Friedrichson
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | | | | | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| |
Collapse
|
40
|
Li J, Qiu Y, Zhang C, Wang H, Bi R, Wei Y, Li Y, Hu B. The role of protein glycosylation in the occurrence and outcome of acute ischemic stroke. Pharmacol Res 2023; 191:106726. [PMID: 36907285 DOI: 10.1016/j.phrs.2023.106726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Acute ischemic stroke (AIS) is a serious and life-threatening disease worldwide. Despite thrombolysis or endovascular thrombectomy, a sizeable fraction of patients with AIS have adverse clinical outcomes. In addition, existing secondary prevention strategies with antiplatelet and anticoagulant drugs therapy are not able to adequately decrease the risk of ischemic stroke recurrence. Thus, exploring novel mechanisms for doing so represents an urgent need for the prevention and treatment of AIS. Recent studies have discovered that protein glycosylation plays a critical role in the occurrence and outcome of AIS. As a common co- and post-translational modification, protein glycosylation participates in a wide variety of physiological and pathological processes by regulating the activity and function of proteins or enzymes. Protein glycosylation is involved in two causes of cerebral emboli in ischemic stroke: atherosclerosis and atrial fibrillation. Following ischemic stroke, the level of brain protein glycosylation becomes dynamically regulated, which significantly affects stroke outcome through influencing inflammatory response, excitotoxicity, neuronal apoptosis, and blood-brain barrier disruption. Drugs targeting glycosylation in the occurrence and progression of stroke may represent a novel therapeutic idea. In this review, we focus on possible perspectives about how glycosylation affects the occurrence and outcome of AIS. We then propose the potential of glycosylation as a therapeutic drug target and prognostic marker for AIS patients in the future.
Collapse
Affiliation(s)
- Jianzhuang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanmei Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunlin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hailing Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanhao Wei
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
41
|
Zhang X, Jia B, Wang A, Miao Z. The relationship between antiplatelet therapies and the outcome of endovascular treatment for acute ischemic stroke. Clin Neurol Neurosurg 2023; 229:107716. [PMID: 37099852 DOI: 10.1016/j.clineuro.2023.107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/28/2023] [Accepted: 04/16/2023] [Indexed: 04/28/2023]
Abstract
PURPOSE We conducted this study to investigate the safety and efficacy of antiplatelet therapies (APT) for acute ischemic patients received endovascular treatment (EVT). METHODS The population of our study was derived from a nationwide multicentered registry conducted by 111 centers in China. Patients were divided to groups of no APT, single APT (SAPT) or dual APT (DAPT) according to the APT received at 24 h after EVT. The primary outcome was 90-day functional independence, and the safety outcomes included the symptomatic intracranial hemorrhage (sICH), any type of intracranial hemorrhage, and all-caused death within 90 days. Patient characteristics, procedural data, and outcomes were analyzed. RESULTS A total of 1679 patients were included in this study, 71.42% of whom received oral APT at 24 h after EVT, and the initial time was 20.53(13.94-27.17) hours after recanalization or the end of procedure. 90-day functional independence was significantly more observed in patients with DAPT (54.02% vs. 33.64%; adjusted odds ratio [OR] 1.940, 95% CI 1.444-2.606), but not in SAPT (40.75% vs. 33.64%; adjusted OR 1.280, 95% CI 0.907-1.804) compared with patients without APT. APT increased the risk of sICH (1.14% vs. 0, p = 0.036). Both the application of DAPT (adjusted OR 0.264, 95% CI 0.178-0.392, p < 0.001) and SAPT (adjusted OR 0.341, 95% CI 0.213-0.545, p < 0.001) could reduce the 90-day mortality. CONCLUSIONS In this uncontrolled series of patients APT at 24 h after EVT showed improvement of the patients' functional independence and reduction of mortality, even though the rate of sICH was increased, especially in the DAPT-group.
Collapse
Affiliation(s)
- Xuelei Zhang
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China; Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baixue Jia
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongrong Miao
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
42
|
Qiao N, An Z, Fu Z, Chen X, Tong Q, Zhang Y, Ren H. Kinsenoside alleviates oxidative stress-induced blood-brain barrier dysfunction via promoting Nrf2/HO-1 pathway in ischemic stroke. Eur J Pharmacol 2023; 949:175717. [PMID: 37054938 DOI: 10.1016/j.ejphar.2023.175717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
An ischemic stroke usually causes blood-brain barrier (BBB) damage and excessive oxidative stress (OS) levels. Kinsenoside (KD), a major effective compound extracted in Chinese herbal medicine Anoectochilus roxburghii (Orchidaceae), has anti-OS effects. The present study focused on exploring KD's protection against OS-mediated cerebral endothelial cell damage and BBB damage within the mouse model. Intracerebroventricular administration of KD upon reperfusion after 1 h ischemia decreased infarct volumes, neurological deficit, brain edema, neuronal loss, and apoptosis 72 h post-ischemic stroke. KD improved BBB structure and function, as evidenced by a lower 18F-fluorodeoxyglucose pass rate of the BBB and upregulation of tight junction (TJ) proteins such as occludin, claudin-5, and zonula occludens-1 (ZO-1). KD protected bEnd.3 endothelial cells from oxygen and glucose deprivation/reoxygenation (OGD/R) injury in an in-vitro study. Meanwhile, OGD/R reduced transepithelial electronic resistance, whereas KD significantly increased TJ protein levels. Furthermore, based on in-vivo and in-vitro research, KD alleviated OS in endothelial cells, which is related to nuclear factor, erythroid 2 like 2 (Nrf2) nuclear translocation as well as Nrf2/haem oxygenase 1 signaling protein stimulation. Our findings demonstrated that KD might serve as a potential compound for treating ischemic stroke involving antioxidant mechanisms.
Collapse
Affiliation(s)
- Nan Qiao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohong An
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeyu Fu
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Xingyu Chen
- Department of Clinical Laboratory, The Central Hospital of Wuhan, Wuhan, China
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hong Ren
- Biobank, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
43
|
Rajendram P, Ikram A, Fisher M. Combined Therapeutics: Future Opportunities for Co-therapy with Thrombectomy. Neurotherapeutics 2023; 20:693-704. [PMID: 36943636 PMCID: PMC10275848 DOI: 10.1007/s13311-023-01369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
Stroke is an urgent public health issue with millions of patients worldwide living with its devastating effects. The advent of thrombolysis and endovascular thrombectomy has transformed the hyperacute care of these patients. However, a significant proportion of patients receiving these therapies still goes on to have unfavorable outcomes and many more remain ineligible for these therapies based on our current guidelines. The future of stroke care will depend on an expansion of the scope of thrombolysis and endovascular thrombectomy to patients outside traditional time windows, more distal occlusions, and large vessel occlusions with mild clinical deficits, for whom clinical trial results have not proven therapeutic efficacy. Novel cytoprotective therapies targeting the ischemic cascade and reperfusion injury therapy, in combination with our existing treatment modalities, should be explored to further improve outcomes for these patients with acute ischemic stroke. In this review, we will review the current status of thrombolysis and thrombectomy, suggest additional data that is needed to enhance these therapies, and discuss how cytoprotection might be combined with thrombectomy.
Collapse
Affiliation(s)
- Phavalan Rajendram
- Division of Stroke and Cerebrovascular Diseases, Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Palmer Building Room 127, 330 Brookline Avenue, Boston, MA, 02215-5400, USA.
| | - Asad Ikram
- Division of Stroke and Cerebrovascular Diseases, Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Palmer Building Room 127, 330 Brookline Avenue, Boston, MA, 02215-5400, USA
| | - Marc Fisher
- Division of Stroke and Cerebrovascular Diseases, Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Palmer Building Room 127, 330 Brookline Avenue, Boston, MA, 02215-5400, USA
| |
Collapse
|
44
|
Sokolova IB, Gorshkova OP. Cell Therapy: A New Technology for Cerebral Circulation Restoration after Ischemia/Reperfusion. Acta Naturae 2023; 15:75-80. [PMID: 37538806 PMCID: PMC10395779 DOI: 10.32607/actanaturae.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/07/2023] [Indexed: 08/05/2023] Open
Abstract
Cell therapy with mesenchymal stem cells (MSCs) may be a promising technique for cerebral blood flow restoration after transient ischemia. Before a practical application of the cell material, 7-9 days are required for its cultivation. We studied the efficacy of human MSC (hMSC) transplantation performed 7 days after cerebral ischemia/reperfusion (I/R) to help recover cerebral circulation. The intravital micrograph technique was used to comparatively evaluate the vasculature density in the pia mater and the reactivity of the pial arteries in response to acetylcholine (ACh) in rats after I/R (clamping of both carotid arteries and a simultaneous decrease in and strict maintenance of the mean BP at 45 ± 2 mm Hg for 12 min) and with/without hMSC transplantation. Perfusion (P) in the sensorimotor cortex was assessed using laser dopplerography. After 14 and 21 days, the vasculature density in I/R-affected rats was 1.2- to 1.4-fold and 1.2- to 1.3-fold lower, respectively, than that in the controls. The number of ACh-dilated arteries decreased 1.6- to 1.9-fold and 1.2- to 1.7-fold 14 and 21 days after I/R, respectively. After 21 days, the P level decreased 1.6-fold, on average. Administration of hMSCs on day 7 after I/R resulted in complete recovery of the vasculature density by day 14. ACh-mediated dilatation fully recovered only in arteries of less than 40 μm in diameter within 21 days. After 21 days, the P level was 1.2-fold lower than that in the controls but significantly higher than that in rats after I/R without hMSCs. Delayed administration of MSCs after a transient cerebral ischemic attack affords the time for the procedures required to prepare cell material for transplantation and provides a good therapeutic response in the pial microvasculature.
Collapse
Affiliation(s)
- I. B. Sokolova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, 199034 Russian Federation
| | - O. P. Gorshkova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, 199034 Russian Federation
| |
Collapse
|
45
|
Ji Y, Gao Q, Ma Y, Wang F, Tan X, Song D, Hoo RLC, Wang Z, Ge X, Han H, Guo F, Chang J. An MMP-9 exclusive neutralizing antibody attenuates blood-brain barrier breakdown in mice with stroke and reduces stroke patient-derived MMP-9 activity. Pharmacol Res 2023; 190:106720. [PMID: 36893823 DOI: 10.1016/j.phrs.2023.106720] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Rapid upregulation of matrix metalloproteinase 9 (MMP-9) leads to blood-brain barrier (BBB) breakdown following stroke, but no MMP-9 inhibitors have been approved in clinic largely due to their low specificities and side effects. Here, we explored the therapeutic potential of a human IgG monoclonal antibody (mAb), L13, which was recently developed with exclusive neutralizing specificity to MMP-9, nanomolar potency, and biological function, using mouse stroke models and stroke patient samples. We found that L13 treatment at the onset of reperfusion following cerebral ischemia or after intracranial hemorrhage (ICH) significantly reduced brain tissue injury and improved the neurological outcomes of mice. Compared to control IgG, L13 substantially attenuated BBB breakdown in both types of stroke model by inhibiting MMP-9 activity-mediated degradations of basement membrane and endothelial tight junction proteins. Importantly, these BBB-protective and neuroprotective effects of L13 in wild-type mice were comparable to Mmp9 genetic deletion and fully abolished in Mmp9 knockout mice, highlighting the in vivo target specificity of L13. Meanwhile, ex vivo co-incubation with L13 significantly neutralized the enzymatic activities of human MMP-9 in the sera of ischemic and hemorrhagic stroke patients, or in the peri-hematoma brain tissues from hemorrhagic stroke patients. Overall, we demonstrated that MMP-9 exclusive neutralizing mAbs constitute a potential feasible therapeutic approach for both ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Yabin Ji
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiang Gao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China; Department of Neurosurgery, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Yinzhong Ma
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fang Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China
| | - Xixi Tan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Neurology, Yangjiang People's Hospital, Yangjiang 529500, China
| | - Dengpan Song
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China
| | - Ruby L C Hoo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Zening Wang
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Hongjie Han
- Department of Neurosurgery, Pingdingshan Second People's Hospital, Pingdingshan 467000, China
| | - Fuyou Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China.
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
46
|
Chen X, Liu HY, Niu SL, Zhou T, Yuan W, Zheng PF, Chen Q, Luo SL, Gu J, Zhangsun DT, Ouyang Q. Development of sertraline analogues as potential anti-ischemic stroke agents. Eur J Med Chem 2023; 252:115273. [PMID: 36948129 DOI: 10.1016/j.ejmech.2023.115273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
Ischemic stroke (IS) is harmful to human health and social development, and there is no medicine available at present. To find the hit compound for treating ischemic stroke, we screened 28 FDA approved nervous system drugs by using an in vitro OGD-induced stroke model. Notably, our in vitro and in vivo studies demonstrated that low-dose sertraline had good neuroprotective activities, while high-dose sertraline showed significant toxicity. Interestingly, the same high-dose sertraline in the control group did not exhibit any obvious toxic effect. Therefore, it is important to modify the structure of sertraline to improve the activity and reduce the toxicity. Stereoisomers of sertraline were first investigated to analyze the influence of stereochemistry on the neuroprotective activities, which showed no obvious difference. Then we evaluated the activity of our previously reported sertraline analogues and found that introducing amide or alkane groups to the amino moiety might be beneficial to enhance the activity and reduce the toxicity. Thus, 10 new analogues were designed, synthesized, and evaluated. Among them, compound OY-201 showed the best safety and neuroprotective activity in both in vitro and in vivo models. Moreover, it exhibited good blood-brain barrier (BBB) permeability, indicating its potential for the development of anti-ischemic stroke drugs.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Hong-Yuan Liu
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing, 400038, China
| | - Sheng-Li Niu
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing, 400038, China
| | - Ting Zhou
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Wen Yuan
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing, 400038, China
| | - Peng-Fei Zheng
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing, 400038, China
| | - Qiong Chen
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Su-Lan Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China; Medical College, Guangxi University, Nanning, 530004, China
| | - Jing Gu
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing, 400038, China.
| | - Dong-Ting Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| | - Qin Ouyang
- Department of Pharmaceutical Chemistry, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
47
|
Wu F, Lai S, Fu D, Liu J, Wang C, Feng H, Liu J, Li Z, Li P. Neuroprotective Effects and Metabolomics Study of Protopanaxatriol (PPT) on Cerebral Ischemia/Reperfusion Injury In Vitro and In Vivo. Int J Mol Sci 2023; 24:ijms24021789. [PMID: 36675303 PMCID: PMC9861888 DOI: 10.3390/ijms24021789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Stroke, one of the leading causes of disability and death worldwide, is a severe neurological disease that threatens human life. Protopanaxatriol (PPT), panaxatriol-type saponin aglycone, is a rare saponin that exists in Panax ginseng and Panax Noto-ginseng. In this study, we established an oxygen-glucose deprivation (OGD)-PC12 cell model and middle cerebral artery occlusion/reperfusion (MCAO/R) model to evaluate the neuroprotective effects of PPT in vitro and in vivo. In addition, metabolomics analysis was performed on rat plasma and brain tissue samples to find relevant biomarkers and metabolic pathways. The results showed that PPT could significantly regulate the levels of LDH, MDA, SOD, TNF-α and IL-6 factors in OGD-PC12 cells in vitro. PPT can reduce the neurological deficit score and infarct volume of brain tissue in rats, restore the integrity of the blood-brain barrier, reduce pathological damage, and regulate TNF-α, IL-1β, IL-6, MDA, and SOD factors. In addition, the results of metabolomics found that PPT can regulate 19 biomarkers involving five metabolic pathways, including amino acid metabolism, arachidonic acid metabolism, sphingolipid metabolism, and glycerophospholipid metabolism. Thus, it could be inferred that PPT might serve as a novel natural agent for MCAO/R treatment.
Collapse
Affiliation(s)
- Fulin Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Sihan Lai
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Dongxing Fu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Juntong Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hao Feng
- College of Basic Medicine Sciences, Jilin University, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Correspondence: (Z.L.); (P.L.); Tel.: +86-0431-8561-9803 (P.L.)
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Correspondence: (Z.L.); (P.L.); Tel.: +86-0431-8561-9803 (P.L.)
| |
Collapse
|
48
|
Wang YH, Long HP, Zhang SX, Liu J, Zhao HQ, Yi J, Linga J. Network pharmacology-based and pharmacological evaluation of the effects of Curcumae Radix on cerebral ischemia–Reperfusion injury. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2023. [DOI: 10.4103/2311-8571.370154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
49
|
Ni H, Lu GD, Hang Y, Jia ZY, Cao YZ, Shi HB, Liu S, Zhao LB. Association between Infarct Location and Hemorrhagic Transformation of Acute Ischemic Stroke following Successful Recanalization after Mechanical Thrombectomy. AJNR Am J Neuroradiol 2023; 44:54-59. [PMID: 36521961 PMCID: PMC9835909 DOI: 10.3174/ajnr.a7742] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/16/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE The association between infarct location and hemorrhagic transformation of acute ischemic stroke after mechanical thrombectomy is not understood. We aimed to evaluate the association between CTP-based ischemic core variables at admission and hemorrhagic transformation after a successful thrombectomy. MATERIALS AND METHODS We retrospectively analyzed patients who underwent endovascular thrombectomy for acute anterior circulation large-vessel occlusion between October 2019 and June 2021. We enrolled 146 patients with visible ischemic core on pretreatment CTP who had successful reperfusion. The ischemic core infarct territories were classified into the cortical and subcortical areas and then qualitatively and quantitatively analyzed by CTP. Logistic regression and receiver operating characteristic curve analyses were performed to determine the association between ischemic core variables and hemorrhagic transformation. RESULTS Of the 146 patients analyzed, 72 (49.3%) had hemorrhagic transformation and 23 (15.8%) had symptomatic intracerebral hemorrhage. Multivariate analysis showed that subcortical infarcts were independently associated with hemorrhagic transformation (OR, 8.06; 95% CI, 2.31-28.10; P = .001) and subcortical infarct volume was independently linked to symptomatic intracerebral hemorrhage (OR, 1.05; 95% CI, 1.01-1.09; P = .039). The receiver operating characteristic curve indicated that subcortical infarcts can predict hemorrhagic transformation accurately (area under the curve = 0.755; 95% CI, 0.68-0.82; P < .001) and subcortical infarct volume can predict symptomatic intracerebral hemorrhage (area under the curve = 0.694; 95% CI, 0.61-0.77; P = .002). CONCLUSIONS Subcortical infarcts seen on CTP at admission are associated with hemorrhagic transformation in patients after successful thrombectomy, and subcortical infarct volume may influence the risk of symptomatic intracerebral hemorrhage.
Collapse
Affiliation(s)
- H Ni
- From the Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - G-D Lu
- From the Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Y Hang
- From the Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Z-Y Jia
- From the Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Y-Z Cao
- From the Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - H-B Shi
- From the Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - S Liu
- From the Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - L-B Zhao
- From the Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
50
|
Shao R, Liu L, Xu J, Lan P, Wu G, Shi H, Li R, Zhuang Y, Han S, Li Y, Zhao P, Xu M, Tang Z. Acidosis in arterial blood gas testing is associated with clinical outcomes after endovascular thrombectomy. Front Neurol 2022; 13:1077043. [PMID: 36619912 PMCID: PMC9811946 DOI: 10.3389/fneur.2022.1077043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background Despite recanalization, some of the patients undergoing endovascular thrombectomy (EVT) still suffer from unfavorable outcomes. Patients with poor prognoses are often accompanied by acidosis in arterial blood gas (ABG) testing. We, therefore, explored the ABG testing results in the early phase of recanalization and analyzed their association with poor prognosis. Patients and methods We identified all patients with ischemic stroke and successful endovascular recanalization for anterior circulation vessel occlusion between June 2019 and May 2022. ABG testing was performed in all patients within 0-30 min and 8 h after endovascular therapy. We investigated the relationship between the ABG testing results with symptomatic intracerebral hemorrhage (sICH), hemicraniectomy, and mortality. Results A total of 123 patients with stroke after endovascular thrombectomy were analyzed. Of those, eight (6.5%) patients had postinterventional sICH. Acidosis was associated with sICH. Decreased HCO 3 - levels and HCO 3 - levels at 8 h after EVT were independently related to a higher risk of sICH. Twelve (9.8%) patients underwent hemicraniectomy for postischemic malignant edema and similar results were found for hemicraniectomy. Increased lactate at 8 h after EVT and decreased HCO 3 - levels at 8 h after EVT were closely associated with hemicraniectomy. Twenty-two (17.9%) patients died within 3 months. Decreased HCO 3 - levels were independently related to mortality, as were decreased pH levels at 8 h after EVT and decreased HCO 3 - levels at 8 h after EVT. Conclusion Acidosis is associated with clinical outcomes after endovascular therapy and may help to select patients with poor prognosis in the acute early phase of recanalization.
Collapse
Affiliation(s)
- Rui Shao
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lei Liu
- Department of Internal Medicine, The Affiliated Hospital of China University of Petroleum (East China), Qingdao, China
| | - Juan Xu
- Neurological Intensive Care Department, Shengli Oilfield Central Hospital, Dongying City, China
| | - Pengpeng Lan
- Neurological Intensive Care Department, Shengli Oilfield Central Hospital, Dongying City, China
| | - Guiping Wu
- Neurological Intensive Care Department, Shengli Oilfield Central Hospital, Dongying City, China
| | - Hongfeng Shi
- Neurological Intensive Care Department, Shengli Oilfield Central Hospital, Dongying City, China
| | - Ruili Li
- Neurological Intensive Care Department, Shengli Oilfield Central Hospital, Dongying City, China
| | - Yingle Zhuang
- Neurological Intensive Care Department, Shengli Oilfield Central Hospital, Dongying City, China
| | - Shanshan Han
- Neurological Intensive Care Department, Shengli Oilfield Central Hospital, Dongying City, China
| | - Yan Li
- Neurological Intensive Care Department, Shengli Oilfield Central Hospital, Dongying City, China
| | - Ping Zhao
- Neurological Intensive Care Department, Shengli Oilfield Central Hospital, Dongying City, China
| | - Min Xu
- Neurological Intensive Care Department, Shengli Oilfield Central Hospital, Dongying City, China,*Correspondence: Min Xu ✉
| | - Ziren Tang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China,Ziren Tang ✉
| |
Collapse
|