1
|
Chen J, Duan Y, Zhou Y, Yang Q. Squeeze pumping of lipids and insecticides by ABCH transporter. Cell 2024:S0092-8674(24)01375-8. [PMID: 39721587 DOI: 10.1016/j.cell.2024.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/15/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
ATP-binding cassette (ABC) transporter subfamily H is only identified in arthropods and zebrafish. It transports lipids and is related to insecticide resistance. However, the precise mechanisms of its functions remain elusive. Here, we report cryoelectron microscopy (cryo-EM) structures of an ABCH from Tribolium castaneum, a worldwide pest of stored grains, in complex with an HEK293 cell-ceramide lipid, a fluorescent-labeled ceramide, a carbamate insecticide, and a maltose detergent inhibitor. We revealed a narrow, long, and arched substrate-binding tunnel in the transmembrane domains of the transporter dimer with two arginine-gated cytoplasmic entries for the binding and transport of lipids or insecticides. A pair of glutamines above the tunnel acts as a gate for directing substrate to be extruded via a vent-like hydrophilic exit to the extracellular side of the membrane upon ATP binding. Our structures and biochemical data provide mechanistic understanding of lipid transport, insecticide detoxification, and the inhibition of transporter activity by branched maltose detergents.
Collapse
Affiliation(s)
- Jinli Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yanwei Duan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuanyuan Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Qiao JW, Wu BJ, Wang WQ, Yuan CX, Su S, Zhang ZF, Fan YL, Liu TX. The ATP-binding cassette transporter subfamily G member 4 mediates cuticular hydrocarbon transport to regulate drought tolerance in Acyrthosiphon pisum. Int J Biol Macromol 2024; 278:134605. [PMID: 39127281 DOI: 10.1016/j.ijbiomac.2024.134605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
ABC transporters are a highly conserved membrane protein class that promote the transport of substances across membranes. Under drought conditions, insects primarily regulate the content of cuticular hydrocarbon (CHC) to retain water and prevent evaporative loss. Involvement of ABC transporter protein G (ABCG) subfamily genes in insect CHC transport has been relatively understudied. In this study, we demonstrated that ABCG4 gene in Acyrthosiphon pisum (ApABCG4) is involved in CHC transport and affects drought tolerance by regulating CHC accumulation. ApABCG4 is strongly expressed in the abdominal cuticle and embryonic stages of A. pisum. Effective silencing of ApABCG4 was achieved using RNAi, and the silencing duration was analyzed. ApABCG4 silencing resulted in a significant decrease in the total and component contents of the CHC and cuticular waxy coatings of A. pisum. Nevertheless, the internal hydrocarbon content remained unchanged. The lack of cuticular hydrocarbons significantly reduced the drought tolerance of A. pisum, shortening its survival time under drought stress. Drought stress caused significant upregulation of ApABCG4. Molecular docking showed that ApABCG4 has a high binding affinity for nine n-alkanes of CHC through electrostatic interactions. These results indicate that ApABCG4 is a novel RNAi target with key applications in aphid biological control.
Collapse
Affiliation(s)
- Jian-Wen Qiao
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Bing-Jin Wu
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Wen-Qiang Wang
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Cai-Xia Yuan
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Sha Su
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhan-Feng Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, P.R. China; College of Plant Protection, Northwest A&F University, Yangling Shaanxi 712100, China.
| | - Yong-Liang Fan
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, P.R. China; College of Plant Protection, Northwest A&F University, Yangling Shaanxi 712100, China.
| | - Tong-Xian Liu
- Institute of Entomology and Institute of Plant Health and Medicine, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
3
|
Naseer A, Singh VV, Sellamuthu G, Synek J, Mogilicherla K, Kokoska L, Roy A. Insights into the Detoxification of Spruce Monoterpenes by the Eurasian Spruce Bark Beetle. Int J Mol Sci 2024; 25:10209. [PMID: 39337695 PMCID: PMC11432361 DOI: 10.3390/ijms251810209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Plant defence mechanisms, including physical barriers like toughened bark and chemical defences like allelochemicals, are essential for protecting them against pests. Trees allocate non-structural carbohydrates (NSCs) to produce secondary metabolites like monoterpenes, which increase during biotic stress to fend off pests like the Eurasian spruce bark beetle, ESBB (Ips typographus). Despite these defences, the ESBB infests Norway spruce, causing significant ecological damage by exploiting weakened trees and using pheromones for aggregation. However, the mechanism of sensing and resistance towards host allelochemicals in ESBB is poorly understood. We hypothesised that the exposure of ESBB to spruce allelochemicals, especially monoterpenes, leads to an upsurge in the important detoxification genes like P450s, GSTs, UGTs, and transporters, and at the same time, genes responsible for development must be compromised. The current study demonstrates that exposure to monoterpenes like R-limonene and sabiene effectively elevated detoxification enzyme activities. The differential gene expression (DGE) analysis revealed 294 differentially expressed (DE) detoxification genes in response to R-limonene and 426 DE detoxification genes in response to sabiene treatments, with 209 common genes between the treatments. Amongst these, genes from the cytochrome P450 family 4 and 6 genes (CP4 and CP6), esterases, glutathione S-transferases family 1 (GSTT1), UDP-glucuronosyltransferase 2B genes (UDB), and glucose synthesis-related dehydrogenases were highly upregulated. We further validated 19 genes using RT-qPCR. Additionally, we observed similar high expression levels of detoxification genes across different monoterpene treatments, including myrcene and α-pinene, suggesting a conserved detoxification mechanism in ESBB, which demands further investigation. These findings highlight the potential for molecular target-based beetle management strategies targeting these key detoxification genes.
Collapse
Affiliation(s)
- Aisha Naseer
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Vivek Vikram Singh
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
- Institute of Forest Ecology, Slovak Academy of Sciences, Štúrova 2, 960 53 Zvolen, Slovakia
| | - Gothandapani Sellamuthu
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Jiří Synek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
- ICAR-Indian Institute of Rice Research (IIRR), Rajendra Nagar, Hyderabad 500030, Telangana, India
| | - Ladislav Kokoska
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| |
Collapse
|
4
|
Singamshetty S, Selvapandian U, Selvamani SB, Talya Chandrashekara S, Pathak J, Agarwal A, Thiruvengadam V, Ramasamy GG, Sushil SN, Kamanur M, Nara N, Mohan M. Transcriptome mining and expression analysis of ABC transporter genes in a monophagous herbivore, Leucinodes orbonalis (Crambidae: Lepidoptera). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101316. [PMID: 39216277 DOI: 10.1016/j.cbd.2024.101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Insecticide resistance is a global concern and requires immediate attention to manage dreadful insect pests. One of the resistance mechanisms adopted by insects is through ATP-binding cassette (ABC) transporter proteins. These proteins rapidly transport and eliminate the insecticidal molecules across the lipid membranes (Phase III detoxification mechanism). In the present study, we investigated the potential role of ABC transporter genes in imparting insecticide resistance in field-collected insecticide resistant larvae of eggplant shoot and fruit borer (Leucinodes orbonalis; Crambidae: Lepidoptera). Dose-mortality bioassays against five insecticidal molecules revealed moderate to high levels of insecticide resistance (32.2. to 134.1-fold). Thirty-one genes encoding ABC transporter proteins were mined from the transcriptome resources of L. orbonalis. They were classified under eight sub-families (ABCA to ABCH). Phylogenetic analysis indicated ABCG is the most divergent, composed of nine genes as compared to many other insects. Transcriptome analysis of the insecticide resistant and susceptible strains of L. orbonalis revealed differential expression of 13 ABC transporter genes. The altered expression of these genes was further validated using qRT-PCR. The knockdown studies indicated the involvement of ABCD1 and ABCG2 genes in chlorantraniliprole resistance in the insecticide-resistant strain of L. orbonalis. This study unveils the additional mechanisms employed by L. orbonalis in resisting insecticide toxicity through accelerated excretion mode. These ABCD and ABCG family genes could be candidate targets in developing genome-assisted pest management strategies in the future.
Collapse
Affiliation(s)
- Santoshkumar Singamshetty
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India; University of Agricultural Sciences, GKVK, Bengaluru 560 065, India
| | - Upasna Selvapandian
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India
| | - Selva Babu Selvamani
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India. https://twitter.com/MithranSelva
| | - Suman Talya Chandrashekara
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India; University of Agricultural Sciences, GKVK, Bengaluru 560 065, India
| | - Jyoti Pathak
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India. https://twitter.com/pjyoti29
| | - Aditi Agarwal
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India
| | | | | | - Satya Nand Sushil
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India
| | - Muralimohan Kamanur
- University of Agricultural Sciences, GKVK, Bengaluru 560 065, India. https://twitter.com/MMohan97227933
| | - Nagesha Nara
- University of Agricultural Sciences, GKVK, Bengaluru 560 065, India
| | - Muthugounder Mohan
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India.
| |
Collapse
|
5
|
Ohnuki S, Tokishita S, Kojima M, Fujiwara S. Effect of chlorpyrifos-exposure on the expression levels of CYP genes in Daphnia magna and examination of a possibility that an up-regulated clan 3 CYP, CYP360A8, reacts with pesticides. ENVIRONMENTAL TOXICOLOGY 2024; 39:3641-3653. [PMID: 38504311 DOI: 10.1002/tox.24224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Daphnia magna is a test organism used for ecological risk assessments of pesticides, but little is known about the expression levels of cytochrome P450s (CYP)s and their changes after pesticide exposure in the less than 24-h-olds used for ecotoxicity tests. In this study, D. magna juveniles were exposed to 0.2 μg/L of chlorpyrifos under the conditions for acute immobilization test as specified by the OECD test guideline for 24 h, and then the gene expression was compared between the control and chlorpyrifos-exposure groups by RNA-sequencing analysis, with a focus on CYP genes. Among 38 CYP genes expressed in the control group, seven were significantly up-regulated while two were significantly down-regulated in the chlorpyrifos-exposure group. Although the sublethal concentration of chlorpyrifos did not change their expression levels so drastically (0.8 < fold change < 2.6), CY360A8 of D. magna (DmCYP360A8), which had been proposed to be responsible for metabolism of xenobiotics, was abundantly expressed in controls yet up-regulated by chlorpyrifos. Therefore, homology modeling of DmCYP360A8 was performed based on the amino acid sequence, and then molecular docking simulations with the insecticides that were indicated to be metabolized by CYPs in D. magna were conducted. The results indicated that DmCYP360A8 could contribute to the metabolism of diazinon and chlorfenapyr but not chlorpyrifos. These findings suggest that chlorpyrifos is probably detoxified by other CYP(s) including up-regulated and/or constitutively expressed one(s).
Collapse
Affiliation(s)
- Shinpei Ohnuki
- Odawara Research Center, Nippon Soda Co., Ltd., Odawara, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Shinichi Tokishita
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masaki Kojima
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Shoko Fujiwara
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
6
|
Yang J, Xu X, Wu J, Champer J, Xie M. Involvement of miR-8510a-3p in response to Cry1Ac protoxin by regulating PxABCG3 in Plutella xylostella. Int J Biol Macromol 2024; 263:130271. [PMID: 38373570 DOI: 10.1016/j.ijbiomac.2024.130271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Overuse of insecticides has accelerated the evolution of insecticide resistance and created serious environmental concerns worldwide, thus incentivizing development of alternative methods. Bacillus thuringiensis (Bt) is an insecticidal bacterium that has been developed as a biopesticide to successfully control multiple species of pests. It operates by secreting several insect toxins such as Cry1Ac. However, metabolic resistance based on ATP-binding cassette (ABC) transporters may play a crucial role in the development of metabolic resistance to Bt. Here, we characterized an ABCG gene from the agricultural pest Plutella xylostella (PxABCG3) and found that it was highly expressed in a Cry1Ac-resistant strain, up-regulated after Cry1Ac protoxin treatment. Binding miR-8510a-3p to the coding sequence (CDS) of PxABCG3 was then confirmed by a luciferase reporter assay and RNA immunoprecipitation. miR-8510a-3p agomir delivery markedly reduced PxABCG3 expression in vivo and consequently decreased the tolerance of P. xylostella to Cry1Ac, while reduction of miR-8510a-3p significantly increased PxABCG3 expression, accompanied by an increased tolerance to Cry1Ac. Our results suggest that miR-8510a-3p could potentially be used as a novel molecular target against P. xylostella or other lepidopterans, providing novel insights into developing effective and environmentally friendly pesticides.
Collapse
Affiliation(s)
- Jie Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Xuejiao Xu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jiaqi Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jackson Champer
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Miao Xie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Mahalle RM, Sun W, Posos-Parra OA, Jung S, Mota-Sanchez D, Pittendrigh BR, Seong KM. Identification of differentially expressed miRNAs associated with diamide detoxification pathways in Spodoptera frugiperda. Sci Rep 2024; 14:4308. [PMID: 38383681 PMCID: PMC10881993 DOI: 10.1038/s41598-024-54771-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024] Open
Abstract
The fall armyworm (FAW) Spodoptera frugiperda is a severe economic pest of multiple crops globally. Control of this pest is often achieved using insecticides; however, over time, S. frugiperda has developed resistance to new mode of action compounds, including diamides. Previous studies have indicated diamide resistance is a complex developmental process involving multiple detoxification genes. Still, the mechanism underlying the possible involvement of microRNAs in post-transcriptional regulation of resistance has not yet been elucidated. In this study, a global screen of microRNAs (miRNAs) revealed 109 known and 63 novel miRNAs. Nine miRNAs (four known and five novel) were differentially expressed between insecticide-resistant and -susceptible strains. Gene Ontology analysis predicted putative target transcripts of the differentially expressed miRNAs encoding significant genes belonging to detoxification pathways. Additionally, miRNAs are involved in response to diamide exposure, indicating they are probably associated with the detoxification pathway. Thus, this study provides comprehensive evidence for the link between repressed miRNA expression and induced target transcripts that possibly mediate diamide resistance through post-transcriptional regulation. These findings highlight important clues for further research to unravel the roles and mechanisms of miRNAs in conferring diamide resistance.
Collapse
Affiliation(s)
- Rashmi Manohar Mahalle
- Institute of Agricultural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Weilin Sun
- Department of Entomology, Center for Urban and Industrial Pest Management, Purdue University, West Lafayette, IN, USA
| | - Omar A Posos-Parra
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Sunghoon Jung
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon, Republic of Korea
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - David Mota-Sanchez
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Barry R Pittendrigh
- Department of Entomology, Center for Urban and Industrial Pest Management, Purdue University, West Lafayette, IN, USA
| | - Keon Mook Seong
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
8
|
Sellamuthu G, Naseer A, Hradecký J, Chakraborty A, Synek J, Modlinger R, Roy A. Gene expression plasticity facilitates different host feeding in Ips sexdentatus (Coleoptera: Curculionidae: Scolytinae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104061. [PMID: 38151136 DOI: 10.1016/j.ibmb.2023.104061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Host shift is ecologically advantageous and a crucial driver for herbivore insect speciation. Insects on the non-native host obtain enemy-free space and confront reduced competition, but they must adapt to survive. Such signatures of adaptations can often be detected at the gene expression level. It is astonishing how bark beetles cope with distinct chemical environments while feeding on various conifers. Hence, we aim to disentangle the six-toothed bark beetle (Ips sexdentatus) response against two different conifer defences upon host shift (Scots pine to Norway spruce). We conducted bioassay and metabolomic analysis followed by RNA-seq experiments to comprehend the beetle's ability to surpass two different terpene-based conifer defence systems. Beetle growth rate and fecundity were increased when reared exclusively on spruce logs (alternative host) compared to pine logs (native host). Comparative gene expression analysis identified differentially expressed genes (DEGs) related to digestion, detoxification, transporter activity, growth, signalling, and stress response in the spruce-feeding beetle gut. Transporter genes were highly abundant during spruce feeding, suggesting they could play a role in pumping a wide variety of endogenous and xenobiotic compounds or allelochemicals out. Trehalose transporter (TRET) is also up-regulated in the spruce-fed beetle gut to maintain homeostasis and stress tolerance. RT-qPCR and enzymatic assays further corroborated some of our findings. Taken together, the transcriptional plasticity of key physiological genes plays a crucial role after the host shift and provides vital clues for the adaptive potential of bark beetles on different conifer hosts.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Aisha Naseer
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Jaromír Hradecký
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Amrita Chakraborty
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Forest Microbiome Team, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Jiří Synek
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Roman Modlinger
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Amit Roy
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Forest Microbiome Team, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic.
| |
Collapse
|
9
|
Wang L, He W, Lu JM, Sun J, Jiang SD, Wang JJ, Wei DD. Characterization and transcriptional expression of ABCG genes in Bactrocera dorsalis: Insights into their roles in fecundity and insecticidal stress response. Int J Biol Macromol 2023; 253:126836. [PMID: 37714235 DOI: 10.1016/j.ijbiomac.2023.126836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
The ATP-binding cassette (ABC) transporters are essential for regulating various physiological processes and insecticide resistance across different living organisms. ABCG subfamily genes have diverse functions in insects, but little is known about the function of ABCGs in a serious agricultural pest, Bactrocera dorsalis. In this study, 15 BdABCG genes were identified, and BdABCG6 and BdABCG11 were highly expressed in the pupal and adult stages, especially during the transition period from pupae to adults. Silencing of these two genes resulted in a significant reduction of egg production in B. dorsalis, confirming their importance in reproduction. Analysis of tissue expression patterns showed that most genes, including BdABCG1, 3, 8, and 14, exhibited tissue-specificity, with significantly higher expression levels observed in the intestine, Malpighian tubule, and fat body compared to other tissues. Meanwhile, the induction of malathion and avermectin can significantly upregulate the expression of the above four genes. Furthermore, knockdown of BdABCG3 by RNAi significantly increased the mortality of B. dorsalis upon exposure to avermectin, which suggested that BdABCG3 is involved in the transport or metabolism of avermectin in B. dorsalis. Overall, our work provides valuable insights into the function of BdABCGs involved in the reproduction and detoxification system of B. dorsalis.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Wang He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jin-Ming Lu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Jun Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Shi-Die Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
10
|
Wang L, Tian SH, Zhao W, Wang JJ, Wei DD. Overexpression of ABCB transporter genes confer multiple insecticide tolerances in Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105690. [PMID: 38072545 DOI: 10.1016/j.pestbp.2023.105690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023]
Abstract
Bactrocera dorsalis is a notable invasive pest that has developed resistance to several commonly used insecticides in the field, such as avermectin, beta-cypermethrin and malathion. Investigating the mechanisms of insecticide resistance in this pest is of paramount importance for ensuring its effective control. The ATP-binding cassette transporter subfamily B (ABCB) genes, responsible for encoding transmembrane efflux transporters, represent a potential source of insecticide detoxification activity or transportation that remains largely unexplored in B. dorsalis. In this study, seven BdABCB genes were identified and comprehensive analyzed based on the latest genome and transcriptome dataset. Subsequently, we characterized the expression profiles of these genes across different development stages and tissues, as well as under different insecticide exposures. The results showed that the BdABCB genes were expressed at all stages in B. dorsalis, with BdABCB2 and BdABCB7 being highly expressed in the pupal stage, while BdABCB5 and BdABCB6 were highly expressed in the larval stage. Besides, the BdABCBs were highly expressed in the detoxification metabolic tissues. Among them, BdABCB5 and BdABCB6 were significantly overexpressed in the midgut and Malpighian tubules, respectively. Furthermore, with the exception of BdABCB6, the expression levels of the other six BdABCBs were significantly up-regulated following induction with avermectin, beta-cypermethrin and malathion. Six BdABCBs (BdABCB1-5 and BdABCB7) were knocked down by RNA interference, and the interference efficiencies were 46.58%, 39.50%, 45.60%, 33.74%, 66.37% and 63.83%, respectively. After injecting dsBdABCBs, the mortality of flies increased by 25.23% to 39.67% compared to the control upon exposure to the three insecticides. These results suggested that BdABCBs play crucial roles in the detoxification or tolerance of B. dorsalis to multiple insecticides.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Shu-Hang Tian
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Wei Zhao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
11
|
Kefi M, Balabanidou V, Sarafoglou C, Charamis J, Lycett G, Ranson H, Gouridis G, Vontas J. ABCH2 transporter mediates deltamethrin uptake and toxicity in the malaria vector Anopheles coluzzii. PLoS Pathog 2023; 19:e1011226. [PMID: 37585450 PMCID: PMC10461823 DOI: 10.1371/journal.ppat.1011226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/28/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Contact insecticides are primarily used for the control of Anopheles malaria vectors. These chemicals penetrate mosquito legs and other appendages; the first barriers to reaching their neuronal targets. An ATP-Binding Cassette transporter from the H family (ABCH2) is highly expressed in Anopheles coluzzii legs, and further induced upon insecticide exposure. RNAi-mediated silencing of the ABCH2 caused a significant increase in deltamethrin mortality compared to control mosquitoes, coincident with a corresponding increase in 14C-deltamethrin penetration. RT-qPCR analysis and immunolocalization revealed ABCH2 to be mainly localized in the legs and head appendages, and more specifically, the apical part of the epidermis, underneath the cuticle. To unravel the molecular mechanism underlying the role of ABCH2 in modulating pyrethroid toxicity, two hypotheses were investigated: An indirect role, based on the orthology with other insect ABCH transporters involved with lipid transport and deposition of CHC lipids in Anopheles legs which may increase cuticle thickness, slowing down the penetration rate of deltamethrin; or the direct pumping of deltamethrin out of the organism. Evaluation of the leg cuticular hydrocarbon (CHC) content showed no affect by ABCH2 silencing, indicating this protein is not associated with the transport of leg CHCs. Homology-based modeling suggested that the ABCH2 half-transporter adopts a physiological homodimeric state, in line with its ability to hydrolyze ATP in vitro when expressed on its own in insect cells. Docking analysis revealed a deltamethrin pocket in the homodimeric transporter. Furthermore, deltamethrin-induced ATP hydrolysis in ABCH2-expressing cell membranes, further supports that deltamethrin is indeed an ABCH2 substrate. Overall, our findings pinpoint ABCH2 participating in deltamethrin toxicity regulation.
Collapse
Affiliation(s)
- Mary Kefi
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Chara Sarafoglou
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Jason Charamis
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Gareth Lycett
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Giorgos Gouridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
12
|
Chen DB, Xia RX, Li Q, Li YP, Cao HY, Liu YQ. Genome-Wide Identification of Detoxification Genes in Wild Silkworm Antheraea pernyi and Transcriptional Response to Coumaphos. Int J Mol Sci 2023; 24:ijms24119775. [PMID: 37298726 DOI: 10.3390/ijms24119775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
For a half-century, the commercial wild silkworm, Antheraea pernyi, has been protected by coumaphos, which is an internal organophosphorus insecticide used to kill the potential parasitic fly larvae inside. Knowledge about the detoxification genes of A. pernyi as well as the detoxification mechanism for this species remains severely limited. In this study, we identified 281 detoxification genes (32 GSTs, 48 ABCs, 104 CYPs, and 97 COEs) in the genome of this insect, which are unevenly distributed over 46 chromosomes. When compared to the domesticated silkworm, Bombyx mori, a lepidopteran model species, A. pernyi has a similar number of ABCs, but a greater number of GSTs, CYPs, and COEs. By transcriptome-based expression analysis, we found that coumaphos at a safe concentration level significantly changed the pathways related to ATPase complex function and the transporter complex in A. pernyi. KEGG functional enrichment analysis indicated that protein processing in the endoplasmic reticulum was the most affected pathway after coumaphos treatment. Finally, we identified four significantly up-regulated detoxification genes (ABCB1, ABCB3, ABCG11, and ae43) and one significantly down-regulated detoxification gene (CYP6AE9) in response to coumaphos treatment, suggesting that these five genes may contribute to detoxification of coumaphos in A. pernyi. Our study provides the first set of detoxification genes for wild silkworms from Saturniidae and highlights the importance of detoxification gene repertoire in insect pesticide tolerance.
Collapse
Affiliation(s)
- Dong-Bin Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Run-Xi Xia
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Qun Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Yu-Ping Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Hui-Ying Cao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Yan-Qun Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| |
Collapse
|
13
|
Kaleem Ullah RM, Gao F, Sikandar A, Wu H. Insights into the Effects of Insecticides on Aphids (Hemiptera: Aphididae): Resistance Mechanisms and Molecular Basis. Int J Mol Sci 2023; 24:ijms24076750. [PMID: 37047722 PMCID: PMC10094857 DOI: 10.3390/ijms24076750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
With the passage of time and indiscreet usage of insecticides on crops, aphids are becoming resistant to their effect. The different classes of insecticides, including organophosphates, carbamates, pyrethroids and neonicotinoids, have varied effects on insects. Furthermore, the molecular effects of these insecticides in aphids, including effects on the enzymatic machinery and gene mutation, are resulting in aphid resistance to the insecticides. In this review, we will discuss how aphids are affected by the overuse of pesticides, how resistance appears, and which mechanisms participate in the resistance mechanisms in various aphid species as significant crop pests. Gene expression studies were analyzed using the RNA-Seq technique. The stress-responsive genes were analyzed, and their expression in response to insecticide administration was determined. Putative insecticide resistance-related genes, cytochrome P450, glutathione S-transferase, carboxylesterase CarEs, ABC transporters, cuticle protein genes, and trypsin-related genes were studied. The review concluded that if insecticide-susceptible aphids interact with ample dosages of insecticides with sublethal effects, this will result in the upregulation of genes whose primary role is to detoxify insecticides. In the past decade, certain advancements have been observed regarding insecticide resistance on a molecular basis. Even so, not much is known about how aphids detoxify the insecticides at molecular level. Thus, to attain equilibrium, it is important to observe the manipulation of pest and insect species with the aim of restoring susceptibility to insecticides. For this purpose, this review has included critical insights into insecticide resistance in aphids.
Collapse
Affiliation(s)
- Rana Muhammad Kaleem Ullah
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Fukun Gao
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Aatika Sikandar
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Haiyan Wu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
14
|
Wang YH, Klobasa W, Chu FC, Huot O, Whitfield AE, Lorenzen M. Structural and functional insights into the ATP-binding cassette transporter family in the corn planthopper, Peregrinus maidis. INSECT MOLECULAR BIOLOGY 2023. [PMID: 36912710 DOI: 10.1111/imb.12840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The corn planthopper, Peregrinus maidis, is an economically important pest of maize and sorghum. Its feeding behaviour and the viruses it transmits can significantly reduce crop yield. The control of P. maidis and its associated viruses relies heavily on insecticides. However, control has proven difficult due to limited direct exposure of P. maidis to insecticides and rapid development of resistance. As such, alternative control methods are needed. In the absence of a genome assembly for this species, we first developed transcriptomic resources. Then, with the goal of finding targets for RNAi-based control, we identified members of the ATP-binding cassette transporter family and targeted specific members via RNAi. PmABCB_160306_3, PmABCE_118332_5 and PmABCF_24241_1, whose orthologs in other insects have proven important in development, were selected for knockdown. We found that RNAi-mediated silencing of PmABCB_160306_3 impeded ovary development; disruption of PmABCE_118332_5 resulted in localized melanization; and knockdown of PmABCE_118332_5 or PmABCF_24241_1 each led to high mortality within five days. Each phenotype is similar to that found when targeting the orthologous gene in other species and it demonstrates their potential for use in RNAi-based P. maidis control. The transcriptomic data and RNAi results presented here will no doubt assist with the development of new control methods for this pest.
Collapse
Affiliation(s)
- Yu-Hui Wang
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - William Klobasa
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Fu-Chyun Chu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Ordom Huot
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Marcé Lorenzen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27695, USA
| |
Collapse
|
15
|
Liu L, Hong B, Wei JW, Wu YT, Song LW, Wang SS. Transcriptional response and functional analysis of ATP-binding cassette transporters to tannic acid in pea aphid, Acyrthosiphon pisum (Harris). Int J Biol Macromol 2022; 220:250-257. [PMID: 35981673 DOI: 10.1016/j.ijbiomac.2022.08.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022]
Abstract
Although tannins are widely distributed in broad beans and alfalfa, the pea aphid (Acyrthosiphon pisum) can still destroy them. The ATP binding cassette (ABC) transporters participate in the metabolism of plant secondary metabolites and pesticides in insects. However, whether ABC transporter genes play a role in the metabolism of tannins in the pea aphid is unclear. Here, we found that verapamil (an ABC transporter inhibitor) significantly increased the mortality of tannic acid to pea aphid, which indicated that ABC transporter gene was related to the metabolism of tannic acid by pea aphid. Then, we identified 54 putative ABC transporter genes from the genome database of A. pisum. These genes were divided into eight subfamilies, ApABCA to ApABCH, of which subfamily G has the largest number of genes with 19, followed by the subfamily C with 14. RT-qPCR results show that the expression levels of ApABCA2, ApABCC7, ApABCG2, and ApABCG3 were highly expressed in the first instar, while those of ApABCA3, ApABCG6, ApABCG7, ApABCH3, and ApABCH4 were highly expressed in adults. Furthermore, transcription levels of many ABC transporter genes were induced by tannic acid. Especially, ApABCG17 and ApABCH2 were obviously induced after being exposed to tannic acid. Meanwhile, knockdown of ApABCG17 by RNA interference resulted in increased sensitivity of pea aphid to tannic acid. These results suggest that ApABCG17 may be involved in tannic acid metabolism in pea aphid. This study will help us to understand the mechanism of tannic acid metabolism in pea aphid, and provides a basis for further research on the physiological function of ABC transporter genes in pea aphid.
Collapse
Affiliation(s)
- Lei Liu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Bo Hong
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Jiang-Wen Wei
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Yi-Ting Wu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Li-Wen Song
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China.
| | - Sen-Shan Wang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China.
| |
Collapse
|
16
|
Lv Y, Yan K, Gao X, Chen X, Li J, Ding Y, Zhang H, Pan Y, Shang Q. Functional Inquiry into ATP-Binding Cassette Transporter Genes Contributing to Spirotetramat Resistance in Aphis gossypii Glover. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13132-13142. [PMID: 36194468 DOI: 10.1021/acs.jafc.2c04263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
ATP-binding cassette (ABC) transporters regulate the efflux of a broad spectrum of substrates to extracellular transporting, which play an important role in the detoxification process in arthropods. Here, we described a comprehensive approach to explore the involvement of ABC transporters in spirotetramat resistance in cotton aphids. In this study, synergism bioassays showed 17.05% and 35.42% increases in the toxicity to spirotetramat with the ABC inhibitor verapamil in adult and 3rd instar nymph aphids of the SR strain, respectively. In a competitive assay based on the microinjection of a fluorescent ABC transporter substrate, verapamil (a general ABC inhibitor) and spirotetramat significantly inhibited the elimination of Texas Red. Based on transcriptome data of midguts of spirotetramat-susceptible (SS) and -resistant (SR) strains, the expression levels of ABCB4, ABCB5, ABCF2, MRP11, and MRP12 were significantly upregulated in the SR strain midgut compared to that of the SS strain. Gene functional analysis based on ectopic expression and RNA interference (RNAi) proved that ABCB4, ABCB5, ABCF2, MRP11, and MRP12 were involved in the tolerance of cotton aphids to spirotetramat. Moreover, the upregulated ABCF2, ABCB4, and ABCB5 in the midgut of the SR strain contributed more to the resistance of spirotetramat in in vitro functional analysis. In summary, these results demonstrate that candidate ABC transporter genes in the midgut tissue were involved in spirotetramat resistance, which will help reveal the relationship between ABC transporters and the development of spirotetramat resistance in field populations.
Collapse
Affiliation(s)
- Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Hang Zhang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
17
|
Activating pathway of three metabolic detoxification phases via down-regulated endogenous microRNAs, modulates triflumezopyrim tolerance in the small brown planthopper, Laodelphax striatellus (Fallén). Int J Biol Macromol 2022; 222:2439-2451. [DOI: 10.1016/j.ijbiomac.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|
18
|
Li Z, Mao K, Jin R, Cai T, Qin Y, Zhang Y, He S, Ma K, Wan H, Ren X, Li J. miRNA novel_268 targeting NlABCG3 is involved in nitenpyram and clothianidin resistance in Nilaparvata lugens. Int J Biol Macromol 2022; 217:615-623. [PMID: 35853504 DOI: 10.1016/j.ijbiomac.2022.07.096] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/07/2022] [Accepted: 07/12/2022] [Indexed: 12/19/2022]
Abstract
The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most destructive pests that seriously threatens the high-quality and safe production of rice. However, due to the unscientific use of chemical insecticides, N. lugens has developed varying levels of resistance to insecticides, including nitenpyram and clothianidin. The ATP-binding cassette (ABC) transporter plays a nonnegligible role in phase III of the detoxification process, which may play an important role in insecticide resistance. In the present study, NlABCG3 was significantly overexpressed in both the NR and CR populations compared with susceptible populations. Silencing NlABCG3 significantly increased the susceptibility of BPH to nitenpyram and clothianidin. In addition, RNAi-mediated knockdown of three key genes in the miRNA biogenesis pathway altered the level of NlABCG3. Subsequently, the luciferase reporter assays demonstrated that novel_268 binds to the NlABCG3 coding region and downregulates its expression. Furthermore, injection of miRNA inhibitors or mimics of novel_268 significantly altered the susceptibility of N. lugens to nitenpyram and clothianidin. These results suggest that miRNA novel_268 targeting NlABCG3 is involved in nitenpyram and clothianidin resistance in N. lugens. These findings may help to enhance our knowledge of the transcriptional regulation of the ABC transporter that mediate insecticide resistance in N. lugens.
Collapse
Affiliation(s)
- Zhao Li
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, 40 Nongkenan Road, Hefei 230031, PR China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kaikai Mao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ruoheng Jin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Tingwei Cai
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yao Qin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunhua Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shun He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kangsheng Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hu Wan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xuexiang Ren
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, 40 Nongkenan Road, Hefei 230031, PR China.
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
19
|
Zhao Q, Shi L, He W, Li J, You S, Chen S, Lin J, Wang Y, Zhang L, Yang G, Vasseur L, You M. Genomic Variation in the Tea Leafhopper Reveals the Basis of Adaptive Evolution. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1092-1105. [PMID: 36041663 DOI: 10.1016/j.gpb.2022.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/27/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022]
Abstract
Tea green leafhopper (TGL), Empoasca onukii, is of biological and economic interest. Despite numerous studies, the mechanisms underlying its adaptation and evolution remain enigmatic. Here, we use previously untapped genome and population genetics approaches to examine how the pest adapted to different environmental variables and thus has expanded geographically. We complete a chromosome-level assembly and annotation of the E. onukii genome, showing notable expansions of gene families associated with adaptation to chemoreception and detoxification. Genomic signals indicating balancing selection highlight metabolic pathways involved in adaptation to a wide range of tea varieties grown across ecologically diverse regions. Patterns of genetic variations among 54 E. onukii samples unveil the population structure and evolutionary history across different tea-growing regions in China. Our results demonstrate that the genomic changes in key pathways, including those linked to metabolism, circadian rhythms, and immune system functions, may underlie the successful spread and adaptation of E. onukii. This work highlights the genetic and molecular bases underlying the evolutionary success of a species with broad economic impacts, and provides insights into insect adaptation to host plants, which will ultimately facilitate more sustainable pest management.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Longqing Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
| | - Weiyi He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinyu Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350001, China
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuai Chen
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Lin
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yibin Wang
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liwen Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
20
|
Li J, Lv Y, Yan K, Yang F, Chen X, Gao X, Wen S, Xu H, Pan Y, Shang Q. Functional analysis of cyantraniliprole tolerance ability mediated by ATP-binding cassette transporters in Aphis gossypii glover. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105104. [PMID: 35715043 DOI: 10.1016/j.pestbp.2022.105104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/02/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Cyantraniliprole, a second-generation anthranilic diamide insecticide, is widely used to control chewing and sucking pests. ATP-binding cassette transporters (ABCs) are a ubiquitous family of membrane proteins that play important roles in insect detoxification mechanisms. However, the potential effects of ABCs on cyantraniliprole-resistance remain unclear. In the present study, synergism bioassays revealed that verapamil, an ABC inhibitor, increased the toxicity of cyantraniliprole by 2.00- and 12.25-fold in the susceptible and cyantraniliprole-resistant strains of Aphis gossypii. Based on transcriptome data, the expression levels of ABCB4, ABCB5, ABCD1, ABCG4, ABCG7, ABCG13, ABCG16, ABCG17, ABCG26 and MRP12 were upregulated 1.56-, 1.32-, 1.51-, 2.03-, 1.65-, 1.50-, 4.18-, 6.07-, 4.68- and 4.69-fold, respectively, in the cyantraniliprole-resistant strain (CyR) compared to the susceptible strain (SS), as determined using RT-qPCR. Drosophila melanogaster ectopically overexpressing ABCB5, ABCG4, ABCG7, ABCG16, ABCG17, ABCG26 and MRP12 exhibited significantly increased tolerance to cyantraniliprole by 11.71-, 2.39-, 4.85-, 2.06-, 3.75-, 4.20- and 3.50-fold, respectively, with ABCB5 and ABCG family members being the most effective. Furthermore, the suppression of ABCB5, ABCG4, ABCG7, ABCG16, ABCG17, ABCG26 and MRP12 significantly increased the sensitivity of the CyR strain to cyantraniliprole. These results indicate that ABCs may play crucial roles in cyantraniliprole resistance and may provide information for shaping resistance management strategies.
Collapse
Affiliation(s)
- Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Fengting Yang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Shuyuan Wen
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Hongfei Xu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
21
|
Guan D, Yang X, Jiang H, Zhang N, Wu Z, Jiang C, Shen Q, Qian K, Wang J, Meng X. Identification and Validation of ATP-Binding Cassette Transporters Involved in the Detoxification of Abamectin in Rice Stem Borer, Chilo suppressalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4611-4619. [PMID: 35410476 DOI: 10.1021/acs.jafc.2c00414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chilo suppressalis has developed high levels of resistance to abamectin in many areas of China, while the underline resistance mechanisms are largely unclear. ATP-binding cassette (ABC) transporters function in transporting a large diversity of substrates including insecticides and play important roles in the detoxification metabolism of insects. In this study, synergism bioassay revealed that the ABC transporters were involved in the detoxification of C. suppressalis to abamectin. Six ABC transporter genes were upregulated in C. suppressalis after abamectin exposure, among which five genes CsABCC8, CsABCE1, CsABCF1, CsABCF2, and CsABCH1 were induced in the detoxification-related tissues. In addition, the five ABC transporters were recombinantly expressed in Sf9 cells, and the cytotoxicity assay showed that the viabilities of cells expressing CsABCC8 or CsABCH1 were significantly increased when compared with the viabilities of cells expressing EGFP after abamectin, chlorantraniliprole, cyantraniliprole, fipronil, and chlorpyrifos treatment, respectively. Overexpression of CsABCE1 significantly increased the viabilities of cells to abamectin, chlorantraniliprole, deltamethrin, and indoxacarb exposure, respectively. These results suggested that CsABCC8, CsABCE1, and CsABCH1 might participate in the detoxification and transport of abamectin and several other classes of insecticides in C. suppressalis. Our study provides valuable insights into the transport-related detoxification mechanisms in C. suppressalis and other insects.
Collapse
Affiliation(s)
- Daojie Guan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xuemei Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhaolu Wu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Chengyun Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qinwen Shen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
22
|
Ju D, Dewer Y, Zhang S, Hu C, Li P, Yang X. Genome-wide identification, characterization, and expression profiling of ATP-binding cassette (ABC) transporter genes potentially associated with abamectin detoxification in Cydia pomonella. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113152. [PMID: 34983008 DOI: 10.1016/j.ecoenv.2021.113152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/07/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The codling moth Cydia pomonella L. (Lepidoptera: Tortricidae) is one of the most notorious pests of pome fruits and walnuts worldwide, which has developed resistance to almost all classes of insecticides, including abamectin (ABM). ATP-binding cassette (ABC) transporters are thought to play a vital roles in insecticide detoxification by reducing the toxic concentrations of insecticides in an organism tissues. Despite the tremendous progress in understanding the detoxification mechanisms at the molecular level, the physiological functions of ABC transporters in insects have been poorly investigated. In this study, we found that the ABC inhibitor verapamil synergized significantly the toxicity of ABM, suggesting a potential role of ABC in detoxification. A total of 54 ABC genes were identified in the third-instar larvae of C. pomonella after treatment with sublethal doses (LD10 and LD30) of ABM. The expression profile of these genes in ABM-treated larvae at different time points (24, 48, 72 hr) using transcriptomic analysis (RNA-seq) was also investigated. The results showed that the expression of about 30 ABC genes was significantly co-upregulated after treatment. Several specific genes were up-regulated at 48 hr after treatment of larvae with LD10 ABM. Among these up-regulated genes, we found that the relative expression level of the CPOM19553 was 29.7-fold and 16.0-fold higher when larvae were exposed to ABM at the LD10 and LD30 doses compared to control, respectively. Unlike other ABC genes, only CPOM08323 exhibited significant expression levels in the head and cuticle of the third-instar larvae of C. pomonella exposed to the two sublethal doses of ABM, with no expression was observed in the detoxification tissues such as midgut and Malpighian tubule. This study suggests that these up-regulated genes may be involved in ABM resistance in C. pomonella. Our findings will provide an additional information required for further analysis of ABC transporter genes associated with xenobiotic metabolism in C. pomonella.
Collapse
Affiliation(s)
- Di Ju
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki 12618, Giza, Egypt
| | - Shipan Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Chao Hu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Peirong Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Xueqing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China.
| |
Collapse
|
23
|
Gao Q, Lin Y, Wang X, Jing D, Wang Z, He K, Bai S, Zhang Y, Zhang T. Knockout of ABC Transporter ABCG4 Gene Confers Resistance to Cry1 Proteins in Ostrinia furnacalis. Toxins (Basel) 2022; 14:toxins14010052. [PMID: 35051029 PMCID: PMC8780026 DOI: 10.3390/toxins14010052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/16/2022] Open
Abstract
Ostrinia furnacalis is an important borer on maize. Long-term and large-scale planting of transgenic corn has led O. furnacalis evolving resistance and reducing the control effect. Recently, high levels of resistance to Bt Cry1 toxins have been reported to be genetically linked to the mutation or down-regulation of ABC transporter subfamily G gene ABCG4 in O. furnacalis. In order to further determine the relationship between ABCG4 gene and the resistance to Cry1 toxins in O. furnacalis, the novel CRISPR/Cas9 genome engineering system was utilized to successfully construct ABCG4-KO knockout homozygous strain. Bioassay results indicated that an ABCG4-KO strain had a higher resistance to Cry1 proteins compared with a susceptible strain (ACB-BtS). The result indicates that the ABCG4 gene may act as a receptor of the Bt Cry1 toxin in O. furnacalis. Furthermore, the development time was significantly changed in the early stage ABCG4-KO larvae, and the population parameters were also significantly changed. In summary, our CRISPR/Cas9-mediated genome editing study presents evidence that ABCG4 gene is a functional receptor for Bt Cry1 toxins, laying the foundation for further clarification of the Bt resistance mechanism.
Collapse
Affiliation(s)
- Qing Gao
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Yaling Lin
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
- College of Plant Protection, Gansu Agriculture University, Lanzhou 730070, China
| | - Xiuping Wang
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
- Correspondence: (X.W.); (T.Z.)
| | - Dapeng Jing
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
| | - Zhenying Wang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
| | - Kanglai He
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
| | - Shuxiong Bai
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
| | - Yongjun Zhang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
| | - Tiantao Zhang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
- Correspondence: (X.W.); (T.Z.)
| |
Collapse
|
24
|
Chertemps T, Le Goff G, Maïbèche M, Hilliou F. Detoxification gene families in Phylloxera: Endogenous functions and roles in response to the environment. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100867. [PMID: 34246923 DOI: 10.1016/j.cbd.2021.100867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Phylloxera, Daktulosphaira vitifoliae, is an agronomic pest that feeds monophagously on grapevine, Vitis spp. host plants. Phylloxera manipulates primary and secondary plant metabolism to establish either leaf or root galls. We manually annotated 198 detoxification genes potentially involved in plant host manipulation, including cytochrome P450 (66 CYPs), carboxylesterase (20 CCEs), glutathione-S-transferase (10 GSTs), uridine diphosphate-glycosyltransferase (35 UGTs) and ABC transporter (67 ABCs) families. Transcriptomic expression patterns of these detoxification genes were analyzed for root and leaf galls. In addition to these transcriptomic analyses, we reanalyzed recent data from L1 and L2-3 stages feeding on tolerant and resistant rootstock. Data from two agricultural pest aphids, the generalist Myzus persicae and the Fabaceae specialist Acyrthosiphon pisum, and from the true bug vector of Chagas disease, Rhodnius prolixus, were used to perform phylogenetic analyses for each detoxification gene family. We found expansions of several gene sub-families in the genome of D. vitifoliae. Phylogenetically close genes were found to be organized in clusters in the same genomic position and orientation suggesting recent successive duplications. These results highlight the roles of the phylloxera detoxification gene repertoire in insect physiology and in adaptation to plant secondary metabolites, and provide gene candidates for further functional analyses.
Collapse
Affiliation(s)
- Thomas Chertemps
- Sorbonne Université, UPEC, Université Paris 7, INRAE, CNRS, IRD, Institute of Ecology and Environmental Sciences, Paris, France
| | - Gaëlle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, 400 Route des Chappes, 06903 Sophia Antipolis, France
| | - Martine Maïbèche
- Sorbonne Université, UPEC, Université Paris 7, INRAE, CNRS, IRD, Institute of Ecology and Environmental Sciences, Paris, France
| | - Frédérique Hilliou
- Université Côte d'Azur, INRAE, CNRS, ISA, 400 Route des Chappes, 06903 Sophia Antipolis, France.
| |
Collapse
|
25
|
Chen XD, Neupane S, Gill TA, Gossett H, Pelz-Stelinski KS, Stelinski LL. Comparative transcriptome analysis of thiamethoxam susceptible and resistant Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), using RNA-sequencing. INSECT SCIENCE 2021; 28:1708-1720. [PMID: 33475237 DOI: 10.1111/1744-7917.12901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/10/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), transmits the causal pathogen of huanglongbing and is a global pest of citrus. D. citri populations exhibit resistance to multiple insecticide modes of action in areas where these chemicals have been overused. We performed genome-wide transcriptional analysis for two field populations of D. citri (Wauchula and Lake Alfred, Florida, USA) that exhibit 1300-fold resistance to the neonicotinoid insecticide, thiamethoxam, and compared it to that of susceptible psyllids collected from the same area and without imposed selection. The Lake Alfred population responded to insecticide resistance by up-regulation of 240 genes and down-regulation of 148 others. The Wauchula population exhibited similar patterns to the Lake Alfred population with up-regulation of 253 genes and down-regulation of 115 others. Gene Ontology annotation associated with cellular processes, cell, and catalytic activity were assigned to differentially expressed genes (DEGs). The DEGs from Lake Alfred and Wauchula populations were mapped to Kyoto Encyclopedia of Gene and Genomes pathways and implicated enrichment of metabolic pathways, oxidative phosphorylation, extracellular matrix-receptor interaction, terpenoid backbone biosynthesis, and insect hormone biosynthesis in the resistant populations. Up-regulation of 60s ribosomal proteins, UDP-gluscoyltransferases, cytochrome c oxidases, and CYP and ABC transporters among thiamethoxam-resistant D. citri implicates a broad array of novel and conventionally understood resistance mechanisms.
Collapse
Affiliation(s)
- Xue Dong Chen
- Entomology and Nematology Department, University of Florida, Citrus Research and Education Center, 700 Experiment station Rd, Lake Alfred, FL, 33850, USA
| | - Surendra Neupane
- Entomology and Nematology Department, University of Florida, Citrus Research and Education Center, 700 Experiment station Rd, Lake Alfred, FL, 33850, USA
| | - Torrence A Gill
- Biology Department, Chowan University, One University Place, Murfreesboro, NC, 27855, USA
| | - Hunter Gossett
- Entomology and Nematology Department, University of Florida, Citrus Research and Education Center, 700 Experiment station Rd, Lake Alfred, FL, 33850, USA
| | - Kirsten S Pelz-Stelinski
- Entomology and Nematology Department, University of Florida, Citrus Research and Education Center, 700 Experiment station Rd, Lake Alfred, FL, 33850, USA
| | - Lukasz L Stelinski
- Entomology and Nematology Department, University of Florida, Citrus Research and Education Center, 700 Experiment station Rd, Lake Alfred, FL, 33850, USA
| |
Collapse
|
26
|
Genome Editing of Rice eIF4G Loci Confers Partial Resistance to Rice Black-Streaked Dwarf Virus. Viruses 2021; 13:v13102100. [PMID: 34696530 PMCID: PMC8539751 DOI: 10.3390/v13102100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 01/23/2023] Open
Abstract
Rice black-streaked dwarf disease, caused by rice black-streaked dwarf virus (RBSDV), is a serious constraint in Chinese rice production. Breeding disease-resistant varieties through multigene aggregation is considered an effective way to control diseases, but few disease-resistant resources have been characterized thus far. To develop novel resources for resistance to RBSDV through CRISPR/Cas9-mediated genome editing, a guide RNA sequence targeting exon 1 of eIF4G was designed and cloned into a binary vector, pHUE401. This recombinant vector was used to generate mutations in the rice cultivar Nipponbare via Agrobacterium-mediated transformation. This approach produced heritable homozygous mutations in the transgene-free T1 generation. Sequence analysis of the eIF4G target region from T1 transgenic plants identified 3 bp deletion mutants, and analysis of the predicted amino acid sequence identified one amino acid deletion in mutants that possess near full-length eIF4G. Furthermore, our data suggest that eIF4G may plays an important role in rice normal development, as there were no eIF4G knock-out homozygous mutants in T1 generation plants. When homozygous mutant lines were inoculated with RBSDV, they exhibited enhanced tolerance to virus infection, without visibly affecting plant growth and development. However, the eif4g mutant plants showed the same sensitivity to rice stripe virus (RSV) infection as wild-type plants. Notably, the wild-type and mutant N-termini of eIF4G interacted directly with RBSDV P8 in yeast and in planta. Additionally, compared to wild-type plants, the eIF4G transcript level was reduced twofold in the mutant plants. These results indicate that site-specific mutation of rice eIF4G successfully conferred partial resistance specific to RBSDV associated with less transcription of eIF4G in mutants. Therefore, this study demonstrates that the novel eIF4G alleles generated by CRISPR/Cas9 represent valuable disease-resistant resources that can be used to develop RBSDV-resistant varieties.
Collapse
|
27
|
Wang L, Zhu J, Cui L, Wang Q, Huang W, Ji X, Yang Q, Rui C. Overexpression of ATP-binding cassette transporters associated with sulfoxaflor resistance in Aphis gossypii glover. PEST MANAGEMENT SCIENCE 2021; 77:4064-4072. [PMID: 33899308 DOI: 10.1002/ps.6431] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Sulfoxaflor is a new insecticide for controlling against Aphis gossypii in the field. ATP-binding cassette (ABC) transporters belong to a large superfamily of proteins and play an important role in the detoxification process. However, the potential role of ABC transporters in sulfoxaflor resistance in A. gossypii is unknown. RESULTS In this study, an ABC transporter inhibitor, verapamil, dramatically increased the toxicity of sulfoxaflor in the resistant population with a synergistic ratio of 8.55. However, verapamil did not synergize sulfoxaflor toxicity in the susceptible population. The contents of ABC transporters were significantly increased in the Sul-R population. Based on RT-qPCR analysis, 10 of 23 ABC transcripts, ABCA1, ABCA2, ABCB1, ABCB5, ABCD1, ABCG7, ABCG16, ABCG26, ABCG27, and MRP7, were up-regulated in the Sul-R population compared to the Sus population. Meanwhile, inductive effects of ABCA1, ABCD1, ABCG7 and ABCG26 by sulfoxaflor were found in A. gossypii. Furthermore, knockdown of ABCA1 and ABCD1 using RNAi significantly increased the sulfoxaflor sensitivity in Sul-R aphids. CONCLUSION These results suggested that ABC transporters, especially the ABCA1 and ABCD1 genes, might be related with sulfoxaflor resistance in A. gossypii. This study will promote further work to validate the functional roles of these ABCs in sulfoxaflor resistance and might be helpful for the management of sulfoxaflor-resistant A. gossypii.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Junshu Zhu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Cui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qinqin Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Weiling Huang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xuejiao Ji
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qingjie Yang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Changhui Rui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
28
|
Shan J, Sun X, Li R, Zhu B, Liang P, Gao X. Identification of ABCG transporter genes associated with chlorantraniliprole resistance in Plutella xylostella (L.). PEST MANAGEMENT SCIENCE 2021; 77:3491-3499. [PMID: 33837648 DOI: 10.1002/ps.6402] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Plutella xylostella (L.) is a serious worldwide pest that feeds on cruciferous plants and has evolved resistance to different classes of insecticides used for its control, including chlorantraniliprole. ATP-binding cassette (ABC) transporters, constituting the largest transport family in organisms, are involved in phase III of the detoxification process and may play important roles in insecticide resistance. RESULTS A total of 15 ABC transporter transcripts from subfamily G were identified in P. xylostella based on the latest DBM genome. Synergism studies showed that treatment with verapamil, a potent inhibitor of ABC transporters, significantly increased the toxicity of chlorantraniliprole against larvae of two chlorantraniliprole-resistant P. xylostella populations (NIL and BL). ABCG2, ABCG5, ABCG6, ABCG9, ABCG11, ABCG14 and ABCG15 were significantly overexpressed in NIL and BL compared with the susceptible population (SS), and ABCG1, ABCG6, ABCG8, ABCG9, ABCG14 and ABCG15 were significantly upregulated after treatment with the LC50 of chlorantraniliprole in SS. Subsequently, ABCG6, ABCG9 and ABCG14, which were overexpressed in both NIL and BL and could be induced in SS, were chosen for functional study. RNAi-mediated knockdown of each of the three ABCGs significantly increased the sensitivity of larvae to chlorantraniliprole. These results confirmed that overexpression of ABCG6, ABCG9 and ABCG14 may contribute to chlorantraniliprole resistance in P. xylostella. CONCLUSION Overexpression of some genes in the ABCG subfamily is involved in P. xylostella resistance to chlorantraniliprole. These results may help to establish a foundation for further studies investigating the role played by ABC transporters in chlorantraniliprole resistance in P. xylostella or other insect pests. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinqiong Shan
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Xi Sun
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Ran Li
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Bin Zhu
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
29
|
He W, Wei DD, Xu HQ, Yang Y, Miao ZQ, Wang L, Wang JJ. Molecular Characterization and Transcriptional Expression Analysis of ABC Transporter H Subfamily Genes in the Oriental Fruit Fly. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1298-1309. [PMID: 33822985 DOI: 10.1093/jee/toab045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 06/12/2023]
Abstract
The oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephretidae), is a serious pest of fruits and vegetables and has developed high levels of insecticide resistance. ATP-binding cassette transporter genes (ABC transporters) are involved in mediating the energy-driven transport of many substances across membranes and are closely associated with development and insecticide detoxification. In this study, three ABC transporters in the H subfamily were identified, and the possible roles of these genes in B. dorsalis are discussed. Bioinformatics analysis revealed that those genes are conserved, typical of half-transporters. The expression profiles of BdABCH genes (BdABCHs) in the developmental stages, tissues, and following insecticide exposure, extreme temperature, warm- and cold-acclimated strain, starvation, and desiccation stress were determined by quantitative real-time PCR. Expression of BdABCHs can be detected in various tissues and in different developmental stages. They were most highly expressed in the hindgut and in newly emerged adults. The mRNA levels of BdABCHs in males (including most tissues and body segments) were higher than in females. The expression of BdABCH1 was significantly upregulated 3.8-fold in the cold-acclimated strain, and was significantly upregulated by 1.9-, 3.8- and 4.1-fold in the 0°C, starvation, and desiccation treatments, respectively. Treatment with malathion and avermectin at LD20 and LD30 concentrations produced no obvious changes in the levels of BdABCHs. BdABCHs may be involved in the transport of related hormones during eclosion, as well as water and inorganic salts. BdABCH1 also demonstrated that it is related to the ability to cope with adverse environments.
Collapse
Affiliation(s)
- Wang He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hui-Qian Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Yang Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Ze-Qing Miao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Lei Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
30
|
Rösner J, Tietmeyer J, Merzendorfer H. Functional analysis of ABCG and ABCH transporters from the red flour beetle, Tribolium castaneum. PEST MANAGEMENT SCIENCE 2021; 77:2955-2963. [PMID: 33620766 DOI: 10.1002/ps.6332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND ATP-binding cassette transporter (ABC transporter) subfamilies ABCA-C and ABCG-H have been implicated in insecticide detoxification, mostly based on findings of elevated gene expression in response to insecticide treatment. We previously characterized TcABCA-C genes from the model beetle and pest Tribolium castaneum and demonstrated that TcABCA and TcABCC genes are involved in the elimination of diflubenzuron, because RNA interference (RNAi)-mediated gene silencing increased susceptibility. In this study, we focused on the potential functions of TcABCG and TcABCH genes in insecticide detoxification. RESULTS When we silenced the expression of TcABCG-H genes using RNAi, we noticed a previously unreported developmental RNAi phenotype for TcABCG-4F, which is characterized by 50% mortality and ecdysial arrest during adult moult. When we knocked down the Drosophila brown orthologue TcABCG-XC, we did not obtain apparent eye colour phenotypes but did observe a loss of riboflavin uptake by Malpighian tubules. Next, we determined the expression profiles of all TcABCG-H genes in different tissues and developmental stages and analysed transcript levels in response to treatment with four chemically unrelated insecticides. We found that some genes were specifically upregulated after insecticide treatment. However, when we determined insecticide-induced mortalities in larvae that were treated by double-stranded RNA injection to silence those TcABCG-H genes that were upregulated, we did not observe a significant increase in susceptibility to insecticides. CONCLUSION Our findings suggest that the observed insecticide-dependent induction of TcABCG-H gene expression reflects an unspecific stress response, and hence underlines the significance of functional studies on insecticide detoxification. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Janin Rösner
- Department of Chemistry-Biology, University of Siegen, Siegen, Germany
| | - Johanne Tietmeyer
- Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Hans Merzendorfer
- Department of Chemistry-Biology, University of Siegen, Siegen, Germany
| |
Collapse
|
31
|
Wang L, Zhu J, Cui L, Wang Q, Huang W, Yang Q, Ji X, Rui C. Overexpression of Multiple UDP-Glycosyltransferase Genes Involved in Sulfoxaflor Resistance in Aphis gossypii Glover. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5198-5205. [PMID: 33877846 DOI: 10.1021/acs.jafc.1c00638] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
UDP-glycosyltransferases (UGTs) are major phase II enzymes involved in the metabolic detoxification of xenobiotics. In this study, two UGT-inhibitors, 5-nitrouracil and sulfinpyrazone, significantly increased sulfoxaflor toxicity against sulfoxaflor-resistant (Sul-R) Aphis gossypii, whereas there were no synergistic effects in susceptible (Sus) A. gossypii. The activity of UGTs in the Sul-R strain was significantly higher (1.35-fold) than that in the Sus strain. Further, gene expression determination demonstrated that 11 of 23 UGT genes were significantly upregulated (1.40- to 5.46-fold) in the Sul-R strain, among which the expression levels of UGT350A2, UGT351A4, UGT350B2, UGT342C2, and UGT343C2 could be induced by sulfoxaflor. Additionally, knockdown of UGT350A2, UGT351A4, UGT350B2, and UGT343C2 using RNA interference (RNAi) significantly increased sensitivity (1.57- to 1.76-fold) to sulfoxaflor in the Sul-R strain. These results suggested that UGTs might be involved in sulfoxaflor resistance in A. gossypii. These findings will facilitate further work to validate the functional roles of these UGT genes in sulfoxaflor resistance.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junshu Zhu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Li Cui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qinqin Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weiling Huang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingjie Yang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuejiao Ji
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Changhui Rui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
32
|
Cordova D, Benner EA, Clark DA, Bolgunas SP, Lahm GP, Gutteridge S, Rhoades DF, Wu L, Sopa JS, Rauh JJ, Barry JD. Pyrrole-2 carboxamides - A novel class of insect ryanodine receptor activators. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104798. [PMID: 33838722 DOI: 10.1016/j.pestbp.2021.104798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The ryanodine receptor (RyR) is an intracellular calcium channel critical to the regulation of insect muscle contraction and the target site of diamide insecticides such as chlorantraniliprole, cyantraniliprole and flubendiamide. To-date, diamides are the only known class of synthetic molecules with high potency against insect RyRs. Target-based screening of an informer library led to discovery of a novel class of RyR activators, pyrrole-2-carboxamides. Efforts to optimize receptor activity resulted in analogs with potency comparable to that of commercial diamides when tested against RyR of the fruit fly, Drosophila melanogaster. Surprisingly, testing of pyrrole-2-carboxamides in whole-insect screens showed poor insecticidal activity, which is partially attributed to differential selectivity among insect receptors and rapid detoxification. Among various lepidopteran species field resistance to diamide insecticides has been well documented and in many cases has been attributed to a single point mutation, G4946E, of the RyR gene. As with diamide insecticides, the G4946E mutation confers greatly reduced sensitivity to pyrrole-2-carboxamides. This, coupled with findings from radioligand binding studies, indicates a shared binding domain between anthranilic diamides and pyrrole-2-carboxamides.
Collapse
Affiliation(s)
- Daniel Cordova
- FMC, Agricultural Solutions Discovery Biology, Stine Research Center, 1090 Elkton Road, Newark, DE 19711, USA.
| | - Eric A Benner
- FMC, Agricultural Solutions Discovery Biology, Stine Research Center, 1090 Elkton Road, Newark, DE 19711, USA
| | - David A Clark
- FMC, Agricultural Solutions Discovery Biology, Stine Research Center, 1090 Elkton Road, Newark, DE 19711, USA
| | - Stephen P Bolgunas
- FMC, Agricultural Solutions Discovery Biology, Stine Research Center, 1090 Elkton Road, Newark, DE 19711, USA
| | - George P Lahm
- FMC, Agricultural Solutions Discovery Biology, Stine Research Center, 1090 Elkton Road, Newark, DE 19711, USA
| | - Steven Gutteridge
- FMC, Agricultural Solutions Discovery Biology, Stine Research Center, 1090 Elkton Road, Newark, DE 19711, USA
| | - Daniel F Rhoades
- FMC, Agricultural Solutions Discovery Biology, Stine Research Center, 1090 Elkton Road, Newark, DE 19711, USA
| | - Lihong Wu
- FMC, Agricultural Solutions Discovery Biology, Stine Research Center, 1090 Elkton Road, Newark, DE 19711, USA
| | - Jeffrey S Sopa
- ThermoFisher Scientific, 105 Pearl Wyn Lane, Rising Sun, MD 21911, United States of America
| | - James J Rauh
- 49 Ravens Rd. Winthrop, WA 98862, United States of America
| | - James D Barry
- FMC, Agricultural Solutions Discovery Biology, Stine Research Center, 1090 Elkton Road, Newark, DE 19711, USA
| |
Collapse
|
33
|
Identification and Expression Characterization of ATP-Binding Cassette (ABC) Transporter Genes in Melon Fly. INSECTS 2021; 12:insects12030270. [PMID: 33806814 PMCID: PMC8005081 DOI: 10.3390/insects12030270] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022]
Abstract
Simple Summary The melon fly, Zeugodacus cucurbitae, is an important agricultural pest. At present, chemical pesticide treatment is the main method for field control, but this promotes pesticide resistance by Z. cucurbitae, because of its frequent use. ABC transporters are involved in detoxification metabolism, but few studies have yet considered their expression in melon fly. In this study, we identified the ABC transporters genes at a genome-wide level in melon fly, and analysed their spatiotemporal expression patterns, as well as changes in expression after insecticides treatments. A total of 49 ABC transporters were identified, and their expression levels varied at different developmental stages and between tissues. After three insecticides treatment, ZcABCB7 and ZcABCC2 were up-regulated. After β-cypermethrin induction, tissues were dissected at 12, 24 and 48 h, and the expression levels of a number of ABC genes were highly expressed within the fat body. From these results, we conclude that ZcABCB7 and ZcABCC2 may be involved in detoxification metabolism, and that the fat body is the main tissue that plays this role. Abstract The ATP-binding cassette (ABC) transporter is a protein superfamily that transports specific substrate molecules across lipid membranes in all living species. In insects, ABC transporter is one of the major transmembrane protein families involved in the development of xenobiotic resistance. Here, we report 49 ABC transporter genes divided into eight subfamilies (ABCA-ABCH), including seven ABCAs, seven ABCBs, 10 ABCCs, two ABCDs, one ABCE, three ABCFs, 16 ABCGs, and three ABCHs according to phylogenetic analysis in Zeugodacus cucurbitae, a highly destructive insect pest of cucurbitaceous and other related crops. The expressions level of 49 ABC transporters throughout various developmental stages and within different tissues were evaluated by quantitative transcriptomic analysis, and their expressions in response to three different insecticides were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). These ABC transporter genes were widely expressed at developmental stages but most highly expressed in tissues of the midgut, fat body and Malpighian tube. When challenged by exposure to three insecticides, abamectin, β-cypermethrin, and dinotefuran, the expressions of ZcABCB7 and ZcABCC2 were significantly up-regulated. ZcABCB1, ZcABCB6, ZcABCB7, ZcABCC2, ZcABCC3, ZcABCC4, ZcABCC5, and ZcABCC7 were significantly up-regulated in the fat body at 24 h after β-cypermethrin exposure. These data suggest that ZcABCB7 and ZcABCC2 might play key roles in xenobiotic metabolism in Z. cucurbitae. Collectively, these data provide a foundation for further analysis of ABCs in Z. cucurbitae.
Collapse
|
34
|
Hou Z, Shi F, Ge S, Tao J, Ren L, Wu H, Zong S. Comparative transcriptome analysis of the newly discovered insect vector of the pine wood nematode in China, revealing putative genes related to host plant adaptation. BMC Genomics 2021; 22:189. [PMID: 33726671 PMCID: PMC7968331 DOI: 10.1186/s12864-021-07498-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In many insect species, the larvae/nymphs are unable to disperse far from the oviposition site selected by adults. The Sakhalin pine sawyer Monochamus saltuarius (Gebler) is the newly discovered insect vector of the pine wood nematode (Bursaphelenchus xylophilus) in China. Adult M. saltuarius prefers to oviposit on the host plant Pinus koraiensis, rather than P. tabuliformis. However, the genetic basis of adaptation of the larvae of M. saltuarius with weaken dispersal ability to host environments selected by the adult is not well understood. RESULTS In this study, the free amino and fatty acid composition and content of the host plants of M. saltuarius larvae, i.e., P. koraiensis and P. tabuliformis were investigated. Compared with P. koraiensis, P. tabuliformis had a substantially higher content of various free amino acids, while the opposite trend was detected for fatty acid content. The transcriptional profiles of larval populations feeding on P. koraiensis and P. tabuliformis were compared using PacBio Sequel II sequencing combined with Illumina sequencing. The results showed that genes relating to digestion, fatty acid synthesis, detoxification, oxidation-reduction, and stress response, as well as nutrients and energy sensing ability, were differentially expressed, possibly reflecting adaptive changes of M. saltuarius in response to different host diets. Additionally, genes coding for cuticle structure were differentially expressed, indicating that cuticle may be a potential target for plant defense. Differential regulation of genes related to the antibacterial and immune response were also observed, suggesting that larvae of M. saltuarius may have evolved adaptations to cope with bacterial challenges in their host environments. CONCLUSIONS The present study provides comprehensive transcriptome resource of M. saltuarius relating to host plant adaptation. Results from this study help to illustrate the fundamental relationship between transcriptional plasticity and adaptation mechanisms of insect herbivores to host plants.
Collapse
Affiliation(s)
- Zehai Hou
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Fengming Shi
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Sixun Ge
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Jing Tao
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Lili Ren
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Hao Wu
- Liaoning Provincial Key Laboratory of Dangerous Forest Pest Management and Control, Shenyang, China
| | - Shixiang Zong
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China.
| |
Collapse
|
35
|
Lu K, Li Y, Cheng Y, Li W, Song Y, Zeng R, Sun Z. Activation of the NR2E nuclear receptor HR83 leads to metabolic detoxification-mediated chlorpyrifos resistance in Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 173:104800. [PMID: 33771269 DOI: 10.1016/j.pestbp.2021.104800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Increased production of detoxification enzymes appears to be the primary route for insecticide resistance in many crop pests. However, the mechanisms employed by resistant insects for overexpression of detoxification genes involved in insecticide resistance remain obscure. We report here that the NR2E nuclear receptor HR83 plays a critical role in chlorpyrifos resistance by regulating the expression of detoxification genes in the brown planthopper (BPH), Nilaparvata lugens. HR83 was highly expressed in the fat body and ovary of adult females in chlorpyrifos-resistant BPHs. Knockdown of HR83 by RNA interference showed no effect on female fecundity, whereas caused a decrease of resistance to chlorpyrifos. This treatment also led to a dramatic reduction in the expression of multiple detoxification genes, including four UDP-glycosyltransferases (UGTs), three cytochrome P450 monooxygenases (P450s) and four carboxylesterases (CarEs). Among these HR83-regulated genes, UGT-1-3, UGT-2B10, CYP6CW1, CYP4CE1, CarE and Esterase E4-1 were over-expressed both in the fat body and ovary of the resistant BPHs. Functional analyses revealed that UGT-2B10, CYP4CE1, CarE and Esterase E4-1 are essential for the resistance of BPH to chlorpyrifos. Generally, this study implicates HR83 in the metabolic detoxification-mediated chlorpyrifos resistance and suggests that the regulation of detoxification genes may be an ancestral function of the NR2E nuclear receptor subfamily.
Collapse
Affiliation(s)
- Kai Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yimin Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yibei Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenru Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rensen Zeng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhongxiang Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
36
|
Meng X, Yang X, Wu Z, Shen Q, Miao L, Zheng Y, Qian K, Wang J. Identification and transcriptional response of ATP-binding cassette transporters to chlorantraniliprole in the rice striped stem borer, Chilo suppressalis. PEST MANAGEMENT SCIENCE 2020; 76:3626-3635. [PMID: 32406167 DOI: 10.1002/ps.5897] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/14/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND As the largest transporter gene family in metazoans, ATP-binding cassette (ABC) transporters regulate the efflux of a broad spectrum of substrates from the cytoplasm to the outside of the cell. In arthropods, ABC transporters are involved in phase III of the detoxification process, and play important roles in the metabolism and transport of insecticides. RESULTS We identified 54 ABC transporters from the genome and transcriptome of Chilo suppressalis, one of the most damaging pests of rice in China. The identified ABC transporters were classified into eight subfamilies (ABCA to ABCH) based on NCBI BLAST and phylogenetic analysis. Synergism studies showed that treatment with verapamil, a potent inhibitor of ABC transporters, resulted in significantly increased toxicity of chlorantraniliprole against C. suppressalis larvae. Among the 21 tested ABC genes, three ABC transporter genes including CsABCC8, CsABCG1C and CsABCH1 were significantly upregulated after chlorantraniliprole treatment. CONCLUSION ABC transporters play important roles in the detoxification and transport of chlorantraniliprole in C. suppressalis. The results from our study provide valuable information on C. suppressalis ABC transporters, and are helpful in understanding the roles of ABC transporters in chlorantraniliprole resistance mechanisms in C. suppressalis and other insect pests. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xuemei Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhaolu Wu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qinwen Shen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lijun Miao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yang Zheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
37
|
Rotenberg D, Baumann AA, Ben-Mahmoud S, Christiaens O, Dermauw W, Ioannidis P, Jacobs CGC, Vargas Jentzsch IM, Oliver JE, Poelchau MF, Rajarapu SP, Schneweis DJ, Snoeck S, Taning CNT, Wei D, Widana Gamage SMK, Hughes DST, Murali SC, Bailey ST, Bejerman NE, Holmes CJ, Jennings EC, Rosendale AJ, Rosselot A, Hervey K, Schneweis BA, Cheng S, Childers C, Simão FA, Dietzgen RG, Chao H, Dinh H, Doddapaneni HV, Dugan S, Han Y, Lee SL, Muzny DM, Qu J, Worley KC, Benoit JB, Friedrich M, Jones JW, Panfilio KA, Park Y, Robertson HM, Smagghe G, Ullman DE, van der Zee M, Van Leeuwen T, Veenstra JA, Waterhouse RM, Weirauch MT, Werren JH, Whitfield AE, Zdobnov EM, Gibbs RA, Richards S. Genome-enabled insights into the biology of thrips as crop pests. BMC Biol 2020; 18:142. [PMID: 33070780 PMCID: PMC7570057 DOI: 10.1186/s12915-020-00862-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set. RESULTS We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta. CONCLUSIONS Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species.
Collapse
Affiliation(s)
- Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Aaron A Baumann
- Virology Section, College of Veterinary Medicine, University of Tennessee, A239 VTH, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Sulley Ben-Mahmoud
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | - Olivier Christiaens
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Panagiotis Ioannidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Vassilika Vouton, 70013, Heraklion, Greece
- Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Chris G C Jacobs
- Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands
| | - Iris M Vargas Jentzsch
- Institute for Zoology: Developmental Biology, University of Cologne, 50674, Cologne, Germany
| | - Jonathan E Oliver
- Department of Plant Pathology, University of Georgia - Tifton Campus, Tifton, GA, 31793-5737, USA
| | | | - Swapna Priya Rajarapu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Derek J Schneweis
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Simon Snoeck
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Department of Biology, University of Washington, Seattle, WA, 98105, USA
| | - Clauvis N T Taning
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Dong Wei
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China and Ghent University, Ghent, Belgium
| | | | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Samuel T Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | | | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, 45233, USA
| | - Andrew Rosselot
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Kaylee Hervey
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Brandi A Schneweis
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sammy Cheng
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | | | - Felipe A Simão
- Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Kristen A Panfilio
- Institute for Zoology: Developmental Biology, University of Cologne, 50674, Cologne, Germany
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China and Ghent University, Ghent, Belgium
| | - Diane E Ullman
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | | | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Jan A Veenstra
- INCIA UMR 5287 CNRS, University of Bordeaux, Pessac, France
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Swiss Institute of Bioinformatics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
38
|
Pan Y, Zeng X, Wen S, Gao X, Liu X, Tian F, Shang Q. Multiple ATP-binding cassette transporters genes are involved in thiamethoxam resistance in Aphis gossypii glover. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 167:104558. [PMID: 32527432 DOI: 10.1016/j.pestbp.2020.104558] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
ATP-binding cassette (ABC) transporters represent the largest known group of efflux pumps, utilizing ATP to translocate a broad spectrum of substrates across lipid membranes, which play an important role in phase III of the detoxification process. The presence of ABC transporters and their potential association with insecticide resistance have not been investigated in Aphis gossypii, one of the most economically important agricultural pests worldwide. In this study, the ABC transporter inhibitor-verapamil significantly increased thiamethoxam toxicity against resistant cotton aphids, suggesting that ABCs are involved in thiamethoxam resistance. ABC transporter genes were identified using the A. gossypii genome database and transcriptome data. A total of 69 ABC transporters were identified and grouped into seven subfamilies (A-G), including 4 ABCAs, 5 ABCBs, 25 ABCCs, 2 ABCDs, 1 ABCE, 4 ABCFs and 30 ABCGs. Of these ABC transporters, 53 were predicted to be functional, 19 were full transporters, 30 were half-transporters and 4 had two NBDs. Subfamilies C and G accounted for 77% (32 and 45%, respectively) of the genes. The transcripts of 20 of 26 ABCs based on the transcriptome were upregulated, and ABCA1, ABCA2, ABCB1, ABCB4, ABCB8, ABCD1, ABCD2, ABCE1, ABCF1, ABCF3, ABCG7, ABCG15, ABCG17, ABCG24, ABCG27, ABCG30, MRP1, MRP7, MRP14 and MRP21 transcripts were significantly increased in the thiamethoxan resistant strain compared to the susceptible strain with qRT-PCR. The suppression of overexpressed ABCs (ABCA2, ABCD1, ABCD2, ABCE1 and ABCG15) significantly increased the thiamethoxam sensitivity of resistant aphids. These results suggest that ABC transporters might be involved in thiamethoxam resistance in A. gossypii and will facilitate further work to validate the functional roles of these ABCs in thiamethoxam resistance. These results are useful for understanding the multiple resistance mechanisms of thiamethoxam and the management of insecticide-resistant cotton aphids.
Collapse
Affiliation(s)
- Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China; School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiaochun Zeng
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Shuyuan Wen
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Xuemei Liu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Fayi Tian
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China; School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
39
|
Li Z, Cai T, Qin Y, Zhang Y, Jin R, Mao K, Liao X, Wan H, Li J. Transcriptional Response of ATP-Binding Cassette (ABC) Transporters to Insecticide in the Brown Planthopper, Nilaparvata lugens (Stål). INSECTS 2020; 11:insects11050280. [PMID: 32370222 PMCID: PMC7291042 DOI: 10.3390/insects11050280] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/23/2023]
Abstract
The ATP-binding cassette (ABC) transporter superfamily is one of the largest groups of proteins and plays a non-negligible role in phase III of the detoxification process, which is highly involved in the response of insects to environmental stress (plant secondary metabolites and insecticides). In the present study, in Nilaparvata lugens, we identified 32 ABC transporters, which are grouped into eight subfamilies (ABCA–H) based on phylogenetic analysis. The temporal and spatial expression profiles suggested that the nymphal stages (1st–5th) and adult males showed similarity, which was different from eggs and adult females, and NlABCA1, NlABCA2, NlABCB6, NlABCD2, NlABCG4, NlABCG12, NlABCG15, and NlABCH1 were highly expressed in the midgut and Malpighian tubules. In addition, ABCG12, which belongs to the ABC transporter G subfamily, was significantly upregulated after exposure to sulfoxaflor, nitenpyram, clothianidin, etofenprox, chlorpyrifos, and isoprocarb. Moreover, verapamil significantly increased the sensitivity of N. lugens to nitenpyram, clothianidin, etofenprox, chlorpyrifos, and isoprocarb. These results provide a basis for further research on ABC transporters involved in detoxification in N. lugens, and for a more comprehensive understanding of the response of N. lugens to environmental stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianhong Li
- Correspondence: ; Tel./Fax: +86-27-8728-6968
| |
Collapse
|
40
|
The ABCB Multidrug Resistance Proteins Do Not Contribute to Ivermectin Detoxification in the Colorado Potato Beetle, Leptinotarsa decemlineata (Say). INSECTS 2020; 11:insects11020135. [PMID: 32093187 PMCID: PMC7074147 DOI: 10.3390/insects11020135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/16/2023]
Abstract
The Colorado potato beetle, Leptinotarsa decemlineata (Say), is a significant agricultural pest that has developed resistance to many insecticides that are used to control it. Investigating the mechanisms of insecticide detoxification in this pest is important for ensuring its continued control, since they may be contributors to such resistance. Multidrug resistance (MDR) genes that code for the ABCB transmembrane efflux transporters are one potential source of insecticide detoxification activity that have not been thoroughly examined in L. decemlineata. In this study, we annotated the ABCB genes found in the L. decemlineata genome and then characterized the expression profiles across midgut, nerve, and Malpighian tubule tissues of the three full transporters identified. To investigate if these genes are involved in defense against the macrocyclic lactone insecticide ivermectin in this insect, each gene was silenced using RNA interference or MDR protein activity was inhibited using a chemical inhibitor, verapamil, before challenging the insects with a dose of ivermectin. Survival of the insects did not significantly change due to gene silencing or protein inhibition, suggesting that MDR transporters do not significantly contribute to defense against ivermectin in L. decemlineata.
Collapse
|
41
|
Rösner J, Merzendorfer H. Transcriptional plasticity of different ABC transporter genes from Tribolium castaneum contributes to diflubenzuron resistance. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103282. [PMID: 31740345 DOI: 10.1016/j.ibmb.2019.103282] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
The development of insecticide resistance challenges the sustainability of pest control and several studies have shown that ABC transporters contribute to this process. ABC transporters are known to transport a large range of chemically diverse molecules across cellular membranes, and therefore the identification of ABC transporters involved in insecticide resistance is difficult. Here, we describe a comprehensive strategy for the identification of whole sets of ABC transporters involved in insecticide resistance using the pest beetle, Tribolium castaneum (Tc) as a model. We analyzed the expression of ABCA to ABCC genes in different tissues and developmental stages using larvae that were sensitive or resistant to diflubenzuron (DFB). The mRNA levels of several ABC genes expressed in excretory or metabolic tissues such as midgut, Malpighian tubules or fat body were markedly upregulated in response to DFB. Next, we monitored mortality in the presence of the ABC inhibitor verapamil, and found that it causes sensitization to DFB. We furthermore established a competitive assay for the elimination of DFB, based on Texas Red (TR) fluorescence. We monitored TR elimination in larvae that were treated with DFB or different ABC inhibitors, and combinations of them. TR elimination was decreased significantly in the presence of DFB, verapamil and the ABCC inhibitor MK-571. The effect was synergized when DFB and verapamil were both present suggesting that the transport of TR and DFB involves overlapping sets of ABC transporters. Finally, we silenced the expression of DFB-responding ABC genes by RNA interference and then followed the survival rates after DFB exposure. Mortality increased particularly when specific ABCA and ABCC genes were silenced. Taken together, we were able to show that different ABC transporters expressed in metabolic and excretory tissues contribute to the elimination of DFB. Up- or down-regulation of gene expression occurs within a few days already at very low DFB concentrations. These results suggests that transcriptional plasticity of several ABC genes allows adaptation of the efflux capacity in different tissues to eliminate insecticides and/or their metabolites.
Collapse
Affiliation(s)
- Janin Rösner
- Department of Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57068, Siegen, Germany
| | - Hans Merzendorfer
- Department of Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57068, Siegen, Germany.
| |
Collapse
|
42
|
Pym A, Singh KS, Nordgren Å, Davies TGE, Zimmer CT, Elias J, Slater R, Bass C. Host plant adaptation in the polyphagous whitefly, Trialeurodes vaporariorum, is associated with transcriptional plasticity and altered sensitivity to insecticides. BMC Genomics 2019; 20:996. [PMID: 31856729 PMCID: PMC6923851 DOI: 10.1186/s12864-019-6397-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The glasshouse whitefly, Trialeurodes vaporariorum, is a damaging crop pest and an invasive generalist capable of feeding on a broad range of host plants. As such this species has evolved mechanisms to circumvent the wide spectrum of anti-herbivore allelochemicals produced by its host range. T. vaporariorum has also demonstrated a remarkable ability to evolve resistance to many of the synthetic insecticides used for control. RESULTS To gain insight into the molecular mechanisms that underpin the polyphagy of T. vaporariorum and its resistance to natural and synthetic xenobiotics, we sequenced and assembled a reference genome for this species. Curation of genes putatively involved in the detoxification of natural and synthetic xenobiotics revealed a marked reduction in specific gene families between this species and another generalist whitefly, Bemisia tabaci. Transcriptome profiling of T. vaporariorum upon transfer to a range of different host plants revealed profound differences in the transcriptional response to more or less challenging hosts. Large scale changes in gene expression (> 20% of genes) were observed during adaptation to challenging hosts with a range of genes involved in gene regulation, signalling, and detoxification differentially expressed. Remarkably, these changes in gene expression were associated with significant shifts in the tolerance of host-adapted T. vaporariorum lines to natural and synthetic insecticides. CONCLUSIONS Our findings provide further insights into the ability of polyphagous insects to extensively reprogram gene expression during host adaptation and illustrate the potential implications of this on their sensitivity to synthetic insecticides.
Collapse
Affiliation(s)
- Adam Pym
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Kumar Saurabh Singh
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Åsa Nordgren
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - T G Emyr Davies
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Christoph T Zimmer
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, Switzerland
| | - Jan Elias
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, Switzerland
| | - Russell Slater
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, Switzerland
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK.
| |
Collapse
|
43
|
Li L, Gao X, Lan M, Yuan Y, Guo Z, Tang P, Li M, Liao X, Zhu J, Li Z, Ye M, Wu G. De novo transcriptome analysis and identification of genes associated with immunity, detoxification and energy metabolism from the fat body of the tephritid gall fly, Procecidochares utilis. PLoS One 2019; 14:e0226039. [PMID: 31846465 PMCID: PMC6917277 DOI: 10.1371/journal.pone.0226039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/19/2019] [Indexed: 01/13/2023] Open
Abstract
The fat body, a multifunctional organ analogous to the liver and fat tissue of vertebrates, plays an important role in insect life cycles. The fat body is involved in protein storage, energy metabolism, elimination of xenobiotics, and production of immunity regulator-like proteins. However, the molecular mechanism of the fat body's physiological functions in the tephritid stem gall-forming fly, Procecidochares utilis, are still unknown. In this study, we performed transcriptome analysis of the fat body of P. utilis using Illumina sequencing technology. In total, 3.71 G of clean reads were obtained and assembled into 30,559 unigenes, with an average length of 539 bp. Among those unigenes, 21,439 (70.16%) were annotated based on sequence similarity to proteins in NCBI's non-redundant protein sequence database (Nr). Sequences were also compared to NCBI's non-redundant nucleotide sequence database (Nt), a manually curated and reviewed protein sequence database (SwissProt), and KEGG and gene ontology annotations were applied to better understand the functions of these unigenes. A comparative analysis was performed to identify unigenes related to detoxification, immunity and energy metabolism. Many unigenes involved in detoxification were identified, including 50 unigenes of putative cytochrome P450s (P450s), 18 of glutathione S-transferases (GSTs), 35 of carboxylesterases (CarEs) and 26 of ATP-binding cassette (ABC) transporters. Many unigenes related to immunity were identified, including 17 putative serpin genes, five peptidoglycan recognition proteins (PGRPs) and four lysozyme genes. In addition, unigenes potentially involved in energy metabolism, including 18 lipase genes, five fatty acid synthase (FAS) genes and six elongases of very long chain fatty acid (ELOVL) genes, were identified. This transcriptome improves our genetic understanding of P. utilis and the identification of a numerous transcripts in the fat body of P. utilis offer a series of valuable molecular resources for future studies on the functions of these genes.
Collapse
Affiliation(s)
- Lifang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Xi Gao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Mingxian Lan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yuan Yuan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Zijun Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Ping Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Mengyue Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Xianbin Liao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Jiaying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Zhengyue Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Min Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Guoxing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
44
|
Transcriptome Analysis and Identification of Insecticide Tolerance-Related Genes after Exposure to Insecticide in Sitobion avenae. Genes (Basel) 2019; 10:genes10120951. [PMID: 31757092 PMCID: PMC6947367 DOI: 10.3390/genes10120951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 01/07/2023] Open
Abstract
Aphids cause serious losses to the production of wheat. The grain aphid, Sitobion avenae, which is the dominant species of aphid in all wheat regions of China, is resistant to a variety of insecticides, including imidacloprid and chlorpyrifos. However, the resistance and mechanism of insecticide tolerance of S. avenae are still unclear. Therefore, this study employed transcriptome analysis to compare the expression patterns of stress response genes under imidacloprid and chlorpyrifos treatment for 15 min, 3 h, and 36 h of exposure. S. avenae adult transcriptome was assembled and characterized first, after which samples treated with insecticides for different lengths of time were compared with control samples, which revealed 60–2267 differentially expressed unigenes (DEUs). Among these DEUs, 31–790 unigenes were classified into 66–786 categories of gene ontology (GO) functional groups, and 24–760 DEUs could be mapped into 54–268 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Finally, 11 insecticide-tolerance-related unigenes were chosen to confirm the relative expression by quantitative real-time polymerase chain reaction (qRT-PCR) in each treatment. Most of the results between qRT-PCR and RNA sequencing (RNA-Seq) are well-established. The results presented herein will facilitate molecular research investigating insecticide resistance in S. avenae, as well as in other wheat aphids.
Collapse
|
45
|
Identification of candidate ATP-binding cassette transporter gene family members in Diaphorina citri (Hemiptera: Psyllidae) via adult tissues transcriptome analysis. Sci Rep 2019; 9:15842. [PMID: 31676883 PMCID: PMC6825165 DOI: 10.1038/s41598-019-52402-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
The ATP-binding cassette (ABC) transporters exist in all living organisms and play major roles in various biological functions by transporting a wide variety of substrates across membranes. The functions of ABC transporters in drug resistance have been extensively studied in vertebrates; however, they are rarely characterized in agricultural pests. The Asian citrus psyllid, Diaphorina citri, is one of the most damaging pests of the Citrus genus because of its transmission of Huanglongbing, also known as Yellow Dragon disease. In this study, the next-generation sequencing technique was applied to research the ABC transporters of D. citri. Fifty-three ABC transporter genes were found in the RNA-Seq data, and among these ABC transporters, 4, 4, 5, 2, 1, 4, 18 and 15 ABC proteins belonged to the ABCA-ABCH subfamilies, respectively. Different expression profiles of 52 genes between imidacloprid-resistant and imidacloprid-susceptible strains were studied by qRT-PCR; 5 ABCGs and 4 ABCHs were significantly upregulated in the imidacloprid-resistant strain. In addition, five of the nine upregulated genes were widely expressed in adult tissues in spatial expression analysis. The results suggest that these genes may play key roles in this phenotype. In general, this study contributed to our current understanding of D. citri resistance to insecticides.
Collapse
|
46
|
A systemic study of indoxacarb resistance in Spodoptera litura revealed complex expression profiles and regulatory mechanism. Sci Rep 2019; 9:14997. [PMID: 31628365 PMCID: PMC6802196 DOI: 10.1038/s41598-019-51234-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/24/2019] [Indexed: 11/09/2022] Open
Abstract
The tobacco cutworm, Spodoptera litura, is an important pest of crop and vegetable plants worldwide, and its resistance to insecticides have quickly developed. However, the resistance mechanisms of this pest are still unclear. In this study, the change in mRNA and miRNA profiles in the susceptible, indoxacarb-resistant and field indoxacarb-resistant strains of S. litura were characterized. Nine hundred and ten co-up-regulated and 737 co-down-regulated genes were identified in the resistant strains. Further analysis showed that 126 co-differentially expressed genes (co-DEGs) (cytochrome P450, carboxy/cholinesterase, glutathione S-transferase, ATP-binding cassette transporter, UDP-glucuronosyl transferase, aminopeptidase N, sialin, serine protease and cuticle protein) may play important roles in indoxacarb resistance in S. litura. In addition, a total of 91 known and 52 novel miRNAs were identified, and 10 miRNAs were co-differentially expressed in the resistant strains of S. litura. Furthermore, 10 co-differentially expressed miRNAs (co-DEmiRNAs) had predicted co-DEGs according to the expected miRNA-mRNA negative regulation pattern and 37 indoxacarb resistance-related co-DEGs were predicted to be the target genes. These results not only broadened our understanding of molecular mechanisms of insecticide resistance by revealing complicated profiles, but also provide important clues for further study on the mechanisms of miRNAs involved in indoxacarb resistance in S. litura.
Collapse
|
47
|
Yang H, Zhou C, Yang XB, Long GY, Jin DC. Effects of Insecticide Stress on Expression of NlABCG Transporter Gene in the Brown Planthopper, Nilaparvata lugens. INSECTS 2019; 10:insects10100334. [PMID: 31597380 PMCID: PMC6836012 DOI: 10.3390/insects10100334] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
The brown planthopper (BPH), Nilaparvata lugens, is an important pest of rice that severely affects production. Insecticides are an important means of controlling BPH, but their long-term use has led to resistance. To provide insight into BPH responses to insecticide stress, we determined the expression levels of BPH ABCG transporter genes under treatment with thiamethoxam, abamectin, and cyantraniliprole at LC10, LC25, LC50, and LC90. We cloned 13 BPH ABCG transporters, named NlABCG1 to NlABCG13. Conservative domain analysis showed that all 13 transporters have one nucleotide binding domain and one transmembrane domain, typical of semi-molecular transporters. Real-time quantitative PCR showed that thiamethoxam, abamectin, and cyantraniliprole stress increased the expression of some NlABCG transporters gene in BPH. However, after treatment with thiamethoxam at LC25 and abamectin at LC10, there was no significant upregulation of NlABCG. These results indicate that the expression of NlABCG varies in response to stress from different insecticides. These findings provide baseline information for further understanding of the molecular mechanisms of insecticide resistance in BPH.
Collapse
Affiliation(s)
- Hong Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China.
- College of Tobacco Science, Guizhou University, Guiyang 550025, China.
| | - Cao Zhou
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China.
| | - Xi-Bin Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China.
| | - Gui-Yun Long
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China.
| | - Dao-Chao Jin
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
48
|
Jia H, Peiling L, Yuan H, Wencai L, Zhifeng X, Lin H. P8 nuclear receptor responds to acaricides exposure and regulates transcription of P450 enzyme in the two-spotted spider mite, Tetranychus urticae. Comp Biochem Physiol C Toxicol Pharmacol 2019; 224:108561. [PMID: 31254664 DOI: 10.1016/j.cbpc.2019.108561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/16/2019] [Accepted: 06/25/2019] [Indexed: 01/19/2023]
Abstract
Spider mites are destructive arthropod pests on many crops and they have developed resistance to nearly all acaricides. In recent years, along with the application of high throughput sequencing, the molecular mechanisms of mite resistance had made a series of progress. But, the response in molecular level of mite exposure to acaricides, as well as the original mechanism of resistance development was still unclear. To disclose the deeply mechanisms, we used RNA sequencing to analyze the responses of mite exposure to a sublethal concentration (LC30) treatment of the three different action mode acaricides (Abamectin, Fenpropathrin, and Tebufenpyrad). A high number of differentially expressed genes may well be involved in detoxification and regulatory, with extensive overlap in differentially expressed genes between the three insecticide treatments. Two cytochrome P450 genes were co-up-regulated and one glutathione S-transferase genes were co-down-regulated in all the treatments, while carboxylesterase genes only had a response to abamectin. This interesting phenomenon revealed that P450 enzymes play an important role in the early stage of mite exposure to acaricide. Moreover, a P8 nuclear receptor gene was in response to stress caused by exposure to acaricides and RNA interference (RNAi) experiment indicated P8 nuclear receptor regulates the P450 enzyme activity and susceptibility of mites to acaricide. The differential response information of gene expression based on a large-scale sequence would provide some useful clues for studying the molecular mechanisms of mite resistance formation and development.
Collapse
Affiliation(s)
- Hu Jia
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Liu Peiling
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hu Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lu Wencai
- Institute of Agricultural Resources and Environment, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Xu Zhifeng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| | - He Lin
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
49
|
Chen X, Xia J, Shang Q, Song D, Gao X. UDP-glucosyltransferases potentially contribute to imidacloprid resistance in Aphis gossypii glover based on transcriptomic and proteomic analyses. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:98-106. [PMID: 31400791 DOI: 10.1016/j.pestbp.2019.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/25/2019] [Accepted: 06/02/2019] [Indexed: 06/10/2023]
Abstract
The cotton aphid, Aphis gossypii Glover, is a destructive global crop pest. Control of A. gossypii has relied heavily on the application of chemical insecticides. The cotton aphid has developed resistance to numerous insecticides, including imidacloprid, which has been widely used to control cotton pests in China since the 1990s. Our objective was to investigate the potential role of UDP-glycosyltransferases (UGTs) in imidacloprid resistance based on transcriptomic and proteomic analyses of field-originated imidacloprid-resistant (IMI_R) and -susceptible (IMI_S) A. gossypii clones. The transcriptomic and proteomic analyses revealed that 12 out of 512 differentially expressed genes and three out of 510 differentially expressed proteins were predicted as UDP-glycosyltransferase (UGT). Based on quantitative real-time PCR analysis, nine UGT genes, UGT343A4, UGT344A15, UGT344A16, UGT344B4, UGT344C7, UGT344C9, UGT344N4, UGT 24541, and UGT7630, were up-regulated in the IMI_R clone compared to the IMI_S clone. Meanwhile, UGT344A16, UGT344B4, UGT344C7, and UGT344N4 were overexpressed at the protein level based on western blot analysis. Furthermore, knockdown of UGT344B4 or UGT344C7 using RNA interference (RNAi) significantly increased sensitivity to imidacloprid in the IMI_R clone. In conclusion, UGTs potentially contributed to imidacloprid resistance in A. gossypii originating from cotton-growing regions of China. These results provide insights into the way we study insecticide resistance in cotton aphids.
Collapse
Affiliation(s)
- Xuewei Chen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Jin Xia
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Dunlun Song
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
50
|
Seong KM, Coates BS, Pittendrigh BR. Cytochrome P450s Cyp4p1 and Cyp4p2 associated with the DDT tolerance in the Drosophila melanogaster strain 91-R. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:136-143. [PMID: 31400775 DOI: 10.1016/j.pestbp.2019.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/29/2019] [Accepted: 06/12/2019] [Indexed: 06/10/2023]
Abstract
Cytochrome P450s are part of a super-gene family that has undergone gene duplication, divergence, over-expression and, in some cases, loss of function. One such case is the 91-R and 91-C strains of common origin, in Drosophila melanogaster, whereby 91-R (DDT resistant strain) overexpresses Cyp4p1 and Cyp4p2 and both genes are lost in 91-C (DDT susceptible strain). In this study, we used a comparative approach to demonstrate that transcription of Cyp4p1 and Cyp4p2 were constitutively up-regulated in the Drosophila melanogaster strain 91-R as compared to another DDT susceptible strain Canton-S which does not have a loss of function of these genes. Furthermore, significantly increased expression of Cyp4p1 and Cyp4p2 was induced in 91-R in response to sublethal DDT exposure, however, such induction did not occur in the DDT treated Canton-S. Additionally, fixed nucleotide variation within putative transcription factor binding sites of Cyp4p1 and Cyp4p2 promoters were observed between 91-R and Canton-S, however, their impact on transcription remains to be determined. Two GAL4/UAS transgenic strains with integrated heat shock-inducible Cyp4p1- or Cyp4p2-RNAi constructs within wild-type genetic backgrounds were developed. Following heat shock induction of Cyp4p1 and Cyp4p2 knockdown, these transgenic lines showed increased DDT mortality as compared to their corresponding non-heat shock controls. These results provide a functional link of Cyp4p1 and Cyp4p2 in conferring tolerance to DDT exposure.
Collapse
Affiliation(s)
- Keon Mook Seong
- Department of Entomology, Michigan State University, East Lansing, MI, USA.
| | - Brad S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA, USA
| | | |
Collapse
|