1
|
Wang S, Wei R, Ma X, Guo J, Aizaz M, Li F, Wang J, Wang H, He H. The host protein CALCOCO2 interacts with bovine viral diarrhoea virus Npro, inhibiting type I interferon production and thereby promoting viral replication. Virulence 2024; 15:2289764. [PMID: 38047736 PMCID: PMC10730213 DOI: 10.1080/21505594.2023.2289764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Bovine viral diarrhoea-mucosal disease caused by bovine viral diarrhoea virus (BVDV) is a major infectious disease that affects the cattle industry. The nonstructural protein Npro of BVDV antagonizes the type I interferon (IFN-I) pathway, thereby escaping the host immune response. The exact mechanism by which Npro uses host proteins to inhibit IFN-I production is unclear. The host protein CALCOCO2 was identified as a binding partner of Npro using a yeast two-hybrid screen. The interaction between Npro and CALCOCO2 was confirmed by yeast co-transformation, co-immunoprecipitation assays, and GST pull-down assays. The stable overexpression of CALCOCO2 markedly promoted BVDV propagation, while the knockdown of CALCOCO2 significantly inhibited BVDV replication in MDBK cells. Interestingly, CALCOCO2 inhibited IFN-I and IFN-stimulated gene production in BVDV-infected cells. Ectopic expression of CALCOCO2 effectively reduced IRF3 protein levels via the proteasome pathway. CALCOCO2 was found to promote Npro-mediated ubiquitination degradation of IRF3 by interacting with IRF3. Our results demonstrate the molecular mechanism by which Npro recruits the CALCOCO2 protein to regulate IRF3 degradation to inhibit IFN-I production.
Collapse
Affiliation(s)
- Song Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Ran Wei
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Xiaomei Ma
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jin Guo
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Muhammad Aizaz
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Fangxu Li
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
2
|
Liu W, Yuan C, Fu B, Xie J, Li W, Zhang G, Ma Z, Jiao P. E3 ubiquitin ligase ANKIB1 attenuates antiviral immune responses by promoting K48-linked polyubiquitination of MAVS. Cell Rep 2024; 43:114687. [PMID: 39213157 DOI: 10.1016/j.celrep.2024.114687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/15/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Upon sensing cytosolic viral RNA, retinoic acid-inducible gene-I-like receptors (RLRs) interact with mitochondrial antiviral signaling proteins (MAVSs) to activate IRF3 and nuclear factor κB (NF-κB) signaling, initiating innate immune responses. Thus, RLR activation plays a vital role in the removal of invasive RNA viruses while maintaining immune homeostasis. However, inadequate or excessive activation of immunity can cause harm and can even lead to lethal consequences. In this study, we identify an E3 ligase, ankyrin repeat and IBR domain containing 1 (ANKIB1), which suppresses RLR signaling via MAVS. ANKIB1 binds to MAVS to enhance K48-linked polyubiquitination with K311R, causing proteasomal degradation of MAVS. Deficiency of ANKIB1 significantly increases the RLR-mediated production of type I interferon (IFN) along with pro-inflammatory factors. Consequently, ANKIB1 deficiency remarkably increases antiviral immunity and decreases viral replication in vivo. Therefore, we reveal that ANKIB1 restricts RLR-induced innate immune activation, indicating its potential role as a therapeutic target for viral infections.
Collapse
Affiliation(s)
- Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Cui Yuan
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Buwen Fu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiufeng Xie
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenqing Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Guozhi Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhenling Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Pengtao Jiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Zhang WK, Yan JM, Chu M, Li B, Gu XL, Jiang ZZ, Li ZM, Liu PP, Yu TM, Zhou CM, Yu XJ. Bunyavirus SFTSV nucleoprotein exploits TUFM-mediated mitophagy to impair antiviral innate immunity. Autophagy 2024:1-18. [PMID: 39189526 DOI: 10.1080/15548627.2024.2393067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome is an emerging viral hemorrhagic fever caused by a tick-borne bunyavirus, severe fever with thrombocytopenia syndrome virus (SFTSV), with a high case fatality. We previously found that SFTSV nucleoprotein (NP) induces macroautophagy/autophagy to facilitate virus replication. However, the role of NP in antagonizing host innate immunity remains unclear. Mitophagy, a selected form of autophagy, eliminates damaged mitochondria to maintain mitochondrial homeostasis. Here, we demonstrate that SFTSV NP triggers mitophagy to degrade MAVS (mitochondrial antiviral signaling protein), thereby blocking MAVS-mediated antiviral signaling to escape the host immune response. Mechanistically, SFTSV NP translocates to mitochondria by interacting with TUFM (Tu translation elongation factor, mitochondrial), and mediates mitochondrial sequestration into phagophores through interacting with LC3, thus inducing mitophagy. Notably, the N-terminal LC3-interacting region (LIR) motif of NP is essential for mitophagy induction. Collectively, our results demonstrated that SFTSV NP serves as a novel virulence factor, inducing TUFM-mediated mitophagy to degrade MAVS and evade the host immune response.Abbreviation: 3-MA: 3-methyladenine; ACTB: actin beta; co-IP: co-immunoprecipitation; CQ: chloroquine; DAPI: 4',6-diamidino-2-phenylindole, dihydrochloride; DMSO: dimethyl sulfoxide; FCCP: carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GFP: green fluorescent protein; HTNV: Hantan virus; IAV: influenza A virus; IFN: interferon; LAMP1: lysosomal associated membraneprotein 1; LIR: LC3-interacting region; MAP1LC3B/LC3B: microtubule associatedprotein 1 light chain 3 beta; MAVS: mitochondrial antiviral signaling protein; Mdivi-1: mitochondrial division inhibitor 1; MOI: multiplicity of infection; MT-CO2/COXII: mitochondrially encoded cytochrome C oxidase II; NP: nucleoprotein; NSs: nonstructural proteins; poly(I:C): polyinosinic:polycytidylic acid; RIGI: RNA sensor RIG-I; RLR: RIGI-like receptor; SFTSV: severe fever withthrombocytopenia syndrome virus; TCID50: 50% tissue culture infectiousdose; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20:translocase of outer mitochondrial membrane 20; TUFM: Tu translation elongationfactor, mitochondrial.
Collapse
Affiliation(s)
- Wen-Kang Zhang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Jia-Min Yan
- Department of Laboratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Min Chu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Bang Li
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Xiao-Lan Gu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Ze-Zheng Jiang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Ze-Min Li
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Pan-Pan Liu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Tian-Mei Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Chuan-Min Zhou
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Li L, Liu Z, Liang R, Yang M, Yan Y, Jiao Y, Jiao Z, Hu X, Li M, Shen Z, Peng G. Novel mutation N588 residue in the NS1 protein of feline parvovirus greatly augments viral replication. J Virol 2024; 98:e0009324. [PMID: 38591899 PMCID: PMC11092363 DOI: 10.1128/jvi.00093-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
Feline parvovirus (FPV) infection is highly fatal in felines. NS1, which is a key nonstructural protein of FPV, can inhibit host innate immunity and promote viral replication, which is the main reason for the severe pathogenicity of FPV. However, the mechanism by which the NS1 protein disrupts host immunity and regulates viral replication is still unclear. Here, we identified an FPV M1 strain that is regulated by the NS1 protein and has more pronounced suppression of innate immunity, resulting in robust replication. We found that the neutralization titer of the FPV M1 strain was significantly lower than that of the other strains. Moreover, FPV M1 had powerful replication ability, and the FPV M1-NS1 protein had heightened efficacy in repressing interferon-stimulated genes (ISGs) expression. Subsequently, we constructed an FPV reverse genetic system, which confirmed that the N588 residue of FPV M1-NS1 protein is a key amino acid that bolsters viral proliferation. Recombinant virus containing N588 also had stronger ability to inhibit ISGs, and lower ISGs levels promoted viral replication and reduced the neutralization titer of the positive control serum. Finally, we confirmed that the difference in viral replication was abolished in type I IFN receptor knockout cell lines. In conclusion, our results demonstrate that the N588 residue of the NS1 protein is a critical amino acid that promotes viral proliferation by increasing the inhibition of ISGs expression. These insights provide a reference for studying the relationship between parvovirus-mediated inhibition of host innate immunity and viral replication while facilitating improved FPV vaccine production.IMPORTANCEFPV infection is a viral infectious disease with the highest mortality rate in felines. A universal feature of parvovirus is its ability to inhibit host innate immunity, and its ability to suppress innate immunity is mainly accomplished by the NS1 protein. In the present study, FPV was used as a viral model to explore the mechanism by which the NS1 protein inhibits innate immunity and regulates viral replication. Studies have shown that the FPV-NS1 protein containing the N588 residue strongly inhibits the expression of host ISGs, thereby increasing the viral proliferation titer. In addition, the presence of the N588 residue can increase the proliferation titer of the strain 5- to 10-fold without affecting its virulence and immunogenicity. In conclusion, our findings provide new insights and guidance for studying the mechanisms by which parvoviruses suppress innate immunity and for developing high-yielding FPV vaccines.
Collapse
Affiliation(s)
- Lisha Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zirui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Rui Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengfang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuanyuan Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuzhou Jiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhe Jiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaoshuai Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengxia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
5
|
Huang Y, Wang X, Lv Z, Hu X, Xu B, Yang H, Xiao T, Liu Q. Comparative Transcriptomics Analysis Reveals Unique Immune Response to Grass Carp Reovirus Infection in Barbel Chub ( Squaliobarbus curriculus). BIOLOGY 2024; 13:214. [PMID: 38666826 PMCID: PMC11047996 DOI: 10.3390/biology13040214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
Grass carp (Ctenopharyngodon idella) and barbel chub (Squaliobarbus curriculus)-both Leuciscinae subfamily species-demonstrate differences in grass carp reovirus (GCRV) infection resistance. We infected barbel chubs with type II GCRV and subjected their liver, spleen, head kidney, and trunk kidney samples to investigate anti-GCRV immune mechanisms via RNA sequencing and quantitative real-time polymerase chain reaction (qRT-PCR). We identified 139, 970, 867, and 2374 differentially expressed genes (DEGs) in the liver, spleen, head kidney, and trunk kidney, respectively. Across all four tissues, gene ontology analysis revealed significant immune response-related DEG enrichment, and the Kyoto Encyclopedia of Genes and Genomes analysis revealed pattern recognition receptor (PRR) and cytokine-related pathway enrichment. We noted autophagy pathway enrichment in the spleen, head kidney, and trunk kidney; apoptosis pathway enrichment in the spleen and trunk kidney; and complement- and coagulation-cascade pathway enrichment in only the spleen. Comparative transcriptome analysis between GCRV-infected barbel chubs and uninfected barbel chubs comprehensively revealed that PRR, cytokine-related, complement- and coagulation-cascade, apoptosis, and autophagy pathways are potential key factors influencing barbel chub resistance to GCRV infection. qRT-PCR validation of 11 immune-related DEGs confirmed our RNA-seq data's accuracy. These findings provide a theoretical foundation and empirical evidence for the understanding of GCRV infection resistance in barbel chub and hybrid grass carp-barbel chub breeding.
Collapse
Affiliation(s)
- Yuhong Huang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
| | - Xiaodong Wang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
| | - Zhao Lv
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
- Yuelushan Lab, Changsha 410128, China
| | - Xudong Hu
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
- Yuelushan Lab, Changsha 410128, China
| | - Baohong Xu
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
- Yuelushan Lab, Changsha 410128, China
| | - Hong Yang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
| | - Tiaoyi Xiao
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
- Yuelushan Lab, Changsha 410128, China
| | - Qiaolin Liu
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Y.H.); (X.W.); (Z.L.); (X.H.); (B.X.); (H.Y.)
- Yuelushan Lab, Changsha 410128, China
| |
Collapse
|
6
|
Demian WL, Cormier O, Mossman K. Immunological features of bats: resistance and tolerance to emerging viruses. Trends Immunol 2024; 45:198-210. [PMID: 38453576 DOI: 10.1016/j.it.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/09/2024]
Abstract
Bats are among the most diverse mammalian species, representing over 20% of mammalian diversity. The past two decades have witnessed a disproportionate spillover of viruses from bats to humans compared with other mammalian hosts, attributed to the viral richness within bats, their phylogenetic likeness to humans, and increased human contact with wildlife. Unique evolutionary adaptations in bat genomes, particularly in antiviral protection and immune tolerance genes, enable bats to serve as reservoirs for pandemic-inducing viruses. Here, we discuss current limitations and advances made in understanding the role of bats as drivers of pandemic zoonoses. We also discuss novel technologies that have revealed spatial, dynamic, and physiological factors driving virus and host coevolution.
Collapse
Affiliation(s)
- Wael L Demian
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Olga Cormier
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Karen Mossman
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
7
|
Manríquez RA, Sandoval M, Loncoman C, Tafalla C, Avendaño-Herrera R, Cárcamo JG. Epigenetic reprogramming around IFN1 and IFNy2 promoters in rainbow trout cells inoculated with infectious pancreatic necrosis virus (IPNV). FISH & SHELLFISH IMMUNOLOGY 2023; 140:108947. [PMID: 37454879 DOI: 10.1016/j.fsi.2023.108947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Infectious pancreatic necrosis virus (IPNV) has proven to effectively evade the host antiviral responses. This study clarifies whether the modulation of the antiviral immune response exerted by IPNV involves epigenetic mechanisms. An in-silico characterization of the rainbow trout IFN1 and IFNγ2 promoters was performed, identifying the islands or sequences rich in CpG dinucleotides and the putative transcription factor binding sites (TBS) for both gene promoters. RTS11 cells (rainbow trout monocyte/macrophage) were infected with IPNV, and the course of viral infection was followed up to 48 h post infection (hpi). Infected cells showed increased IFN1 and IFNγ2 transcriptional expression at 6 and 24 hpi, respectively. IPNV infection caused increases and decreases in global IFNγ2 promoter methylation at 6 and 24 hpi, respectively. The CpG dinucleotides at positions -392 and + 38 of this promoter were the most sensitive to methylation changes. The IFN1 promoter remained fully unmethylated during the course of the infection, similar to the control. The changes in the methylation pattern observed for the IFNγ2 promoter were coincident with the changes in DNA methyltransferase (DNMT) expression levels, increasing at 6 hpi and decreasing below basal level at 24 hpi. Similarly, the H4 histones associated with the IFN1 and IFNγ2 promoters were hyperacetylated at 6 hpi, subsequently decreasing their acetylation below basal levels at 24 hpi, in both promoters. Coincidentally with the above, overexpression of histone acetyltransferase (HAT) was observed at 6 hpi and of histone deacetylase (HDAC) at 24 hpi, with return to baseline of HAT. These results suggest that IPNV would epigenetically modulate the expression of IFN1 by changing acetylation levels of the histones H4 associated with its promoter. Also, the modulation of the expression of IFNy2 would be by switching methylation/demethylation levels of its promoter, in addition to changes in acetylation levels of histones H4 associated with this promoter. This study is the first to demonstrate the effect of epigenetic reprogramming after IPNV infection in salmonid cells, demonstrating that promoter methylation/demethylation level and changes in the histone code associated with promoters may play a role in the modulation of the immune response induced by the virus.
Collapse
Affiliation(s)
- René A Manríquez
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Valdivia, Chile
| | - Moisés Sandoval
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Valdivia, Chile
| | - Carlos Loncoman
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Tafalla
- Animal Health Research Center (CISA), INIA-CSIC, Valdeolmos-Alalpardo, 28130, Madrid, Spain
| | - R Avendaño-Herrera
- Interdisciplinary Center for Aquaculture Research (INCAR), Valdivia, Chile; Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Universidad Andrés Bello, Viña del Mar, Chile; Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Juan G Cárcamo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Valdivia, Chile.
| |
Collapse
|
8
|
Li S, Fan G, Li X, Cai Y, Liu R. Modulation of type I interferon signaling by natural products in the treatment of immune-related diseases. Chin J Nat Med 2023; 21:3-18. [PMID: 36641230 DOI: 10.1016/s1875-5364(23)60381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 01/15/2023]
Abstract
Type I interferon (IFN) is considered as a bridge between innate and adaptive immunity. Proper activation or inhibition of type I IFN signaling is essential for host defense against pathogen invasion, tumor cell proliferation, and overactive immune responses. Due to intricate and diverse chemical structures, natural products and their derivatives have become an invaluable source inspiring innovative drug discovery. In addition, some natural products have been applied in clinical practice for infection, cancer, and autoimmunity over thousands of years and their promising curative effects and safety have been well-accepted. However, whether these natural products are primarily targeting type I IFN signaling and specific molecular targets involved are not fully elucidated. In the current review, we thoroughly summarize recent advances in the pharmacology researches of natural products for their type I IFN activity, including both agonism/activation and antagonism/inhibition, and their potential application as therapies. Furthermore, the source and chemical nature of natural products with type I IFN activity are highlighted and their specific molecular targets in the type I IFN pathway and mode of action are classified. In conclusion, natural products possessing type I IFN activity represent promising therapeutic strategies and have a bright prospect in the treatment of infection, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
9
|
Liu W, Ma Z, Wu Y, Yuan C, Zhang Y, Liang Z, Yang Y, Zhang W, Jiao P. MST4 negatively regulates type I interferons production via targeting MAVS-mediated pathway. Cell Commun Signal 2022; 20:103. [PMID: 35820905 PMCID: PMC9274187 DOI: 10.1186/s12964-022-00922-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cytosolic RNA sensing can elicit immune responses against viral pathogens. However, antiviral responses must be tightly regulated to avoid the uncontrolled production of type I interferons (IFN) that might have deleterious effects on the host. Upon bacterial infection, the germinal center kinase MST4 can directly phosphorylate the adaptor TRAF6 to limit the inflammatory responses, thereby avoiding the damage caused by excessive immune activation. However, the molecular mechanism of how MST4 regulates virus-mediated type I IFN production remains unknown. METHODS The expression levels of IFN-β, IFIT1, and IFIT2 mRNA were determined by RT-PCR. The expression levels of p-IRF3, IRF3, RIG-I, MAVS, and MST4 proteins were determined by Western blot. The effect of secreted level of IFN-β was measured by ELISA. The relationship between MST4 and MAVS was investigated by immunofluorescence staining and coimmunoprecipitation. RESULTS In this study, we reported that MST4 can act as a negative regulator of type I IFN production. Ectopic expression of MST4 suppressed the Poly (I:C) (polyino-sinic-polycytidylic acid)- and Sendai virus (SeV)-triggered production of type I IFN, while the knockdown of MST4 enhanced the production of type I IFN. Mechanistically, upon SeV infection, the MST4 competed with TRAF3 to bind to the 360-540 domain of MAVS, thereby inhibiting the TRAF3/MAVS association. Additionally, MST4 facilitated the interaction between the E3 ubiquitin ligase Smurf1 and MAVS. This promoted the K48-linked ubiquitination of MAVS, thereby accelerating the ubiquitin-mediated proteasome degradation of MAVS. CONCLUSIONS Our findings showed that MST4 acted as a crucial negative regulator of RLR-mediated type I IFN production. Video Abstract.
Collapse
Affiliation(s)
- Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Zhenling Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yaru Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Cui Yuan
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yanyan Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zeyang Liang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yu Yang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenwen Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengtao Jiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Alphonse N, Dickenson RE, Alrehaili A, Odendall C. Functions of IFNλs in Anti-Bacterial Immunity at Mucosal Barriers. Front Immunol 2022; 13:857639. [PMID: 35663961 PMCID: PMC9159784 DOI: 10.3389/fimmu.2022.857639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Type III interferons (IFNs), or IFNλs, are cytokines produced in response to microbial ligands. They signal through the IFNλ receptor complex (IFNLR), which is located on epithelial cells and select immune cells at barrier sites. As well as being induced during bacterial or viral infection, type III IFNs are produced in response to the microbiota in the lung and intestinal epithelium where they cultivate a resting antiviral state. While the multiple anti-viral activities of IFNλs have been extensively studied, their roles in immunity against bacteria are only recently emerging. Type III IFNs increase epithelial barrier integrity and protect from infection in the intestine but were shown to increase susceptibility to bacterial superinfections in the respiratory tract. Therefore, the effects of IFNλ can be beneficial or detrimental to the host during bacterial infections, depending on timing and biological contexts. This duality will affect the potential benefits of IFNλs as therapeutic agents. In this review, we summarize the current knowledge on IFNλ induction and signaling, as well as their roles at different barrier sites in the context of anti-bacterial immunity.
Collapse
Affiliation(s)
- Noémie Alphonse
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,Immunoregulation Laboratory, Francis Crick Institute, London, United Kingdom
| | - Ruth E Dickenson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Abrar Alrehaili
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Charlotte Odendall
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
11
|
Song Q, Zhao X, Cao C, Duan M, Shao C, Jiang S, Zhou B, Zhou Y, Dong W, Yang Y, Wang X, Song H. Research advances on interferon (IFN) response during BVDV infection. Res Vet Sci 2022; 149:151-158. [DOI: 10.1016/j.rvsc.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/21/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022]
|
12
|
Xu L, Li X, Gao X, Liu S, Pang Z, Wang Z. Viral suppression of type I interferon signaling by NSs proteins of DBV, SFSV and UUKV via NSs-mediated RIG-I degradation. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
13
|
Van Winkle JA, Peterson ST, Kennedy EA, Wheadon MJ, Ingle H, Desai C, Rodgers R, Constant DA, Wright AP, Li L, Artyomov MN, Lee S, Baldridge MT, Nice TJ. A homeostatic interferon-lambda response to bacterial microbiota stimulates preemptive antiviral defense within discrete pockets of intestinal epithelium. eLife 2022; 11:74072. [PMID: 35137688 PMCID: PMC8853662 DOI: 10.7554/elife.74072] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Interferon-lambda (IFN-λ) protects intestinal epithelial cells (IECs) from enteric viruses by inducing expression of antiviral IFN-stimulated genes (ISGs). Here, we find that bacterial microbiota stimulate a homeostatic ISG signature in the intestine of specific pathogen-free mice. This homeostatic ISG expression is restricted to IECs, depends on IEC-intrinsic expression of IFN-λ receptor (Ifnlr1), and is associated with IFN-λ production by leukocytes. Strikingly, imaging of these homeostatic ISGs reveals localization to pockets of the epithelium and concentration in mature IECs. Correspondingly, a minority of mature IECs express these ISGs in public single-cell RNA sequencing datasets from mice and humans. Furthermore, we assessed the ability of orally administered bacterial components to restore localized ISGs in mice lacking bacterial microbiota. Lastly, we find that IECs lacking Ifnlr1 are hyper-susceptible to initiation of murine rotavirus infection. These observations indicate that bacterial microbiota stimulate ISGs in localized regions of the intestinal epithelium at homeostasis, thereby preemptively activating antiviral defenses in vulnerable IECs to improve host defense against enteric viruses.
Collapse
Affiliation(s)
- Jacob A Van Winkle
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, United States
| | - Stefan T Peterson
- Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Elizabeth A Kennedy
- Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Michael J Wheadon
- Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Harshad Ingle
- Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Chandni Desai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Rachel Rodgers
- Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - David A Constant
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, United States
| | - Austin P Wright
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, United States
| | - Lena Li
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, United States
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Sanghyun Lee
- Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Megan T Baldridge
- Department of Medicine, Washington University School of Medicine, St Louis, United States
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, United States
| |
Collapse
|
14
|
Wang J, Du L, Tang H. Suppression of Interferon-α Treatment Response by Host Negative Factors in Hepatitis B Virus Infection. Front Med (Lausanne) 2021; 8:784172. [PMID: 34901094 PMCID: PMC8651562 DOI: 10.3389/fmed.2021.784172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 02/05/2023] Open
Abstract
Chronic hepatitis B virus (CHB) infection remains a major global public health issue for which there is still lacking effective curative treatment. Interferon-α (IFN-α) and its pegylated form have been approved as an anti-HBV drug with the advantage of antiviral activity and host immunity against HBV infection enhancement, however, IFN-α treatment failure in CHB patients is a challenging obstacle with 70% of CHB patients respond poorly to exogenous IFN-α treatment. The IFN-α treatment response is negatively regulated by both viral and host factors, and the role of viral factors has been extensively illustrated, while much less attention has been paid to host negative factors. Here, we summarized evidence of host negative regulators and parameters involved in IFN-α therapy failure, review the mechanisms responsible for these effects, and discuss the possible improvement of IFN-based therapy and the rationale of combining the inhibitors of negative regulators in achieving an HBV cure.
Collapse
Affiliation(s)
- Jiayi Wang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Abstract
Complement-opsonized HIV-1 triggers efficient antiviral type I interferon (IFN) responses in dendritic cells (DCs), which play an important role in protective responses at the earliest stages in retroviral infection. In contrast, HIV-1 suppresses or escapes sensing by STING- and MAVS-associated sensors. Here, we identified a complement receptor-mediated sensing pathway, where DCs are activated in CCR5/RLR (RIG-I/MDA5)/MAVS/TBK1-dependent fashion. Increased fusion of complement-opsonized HIV-1 via complement receptor 4 and CCR5 leads to increased incoming HIV-1 RNA in the cytoplasm, sensed by a nonredundant cooperative effect of RIG-I and MDA5. Moreover, complement-opsonized HIV-1 down-modulated the MAVS-suppressive Raf-1/PLK1 pathway, thereby opening the antiviral recognition pathway via MAVS. This in turn was followed by MAVS aggregation and subsequent TBK1/IRF3/NF-κB activation in DCs exposed to complement- but not non-opsonized HIV-1. Our data strongly suggest that complement is important in the induction of efficient antiviral immune responses by preventing HIV-1 suppressive mechanisms as well as inducing specific cytosolic sensors.
Collapse
|
16
|
Fontoura MA, Rocha RF, Marques RE. Neutrophil Recruitment and Participation in Severe Diseases Caused by Flavivirus Infection. Life (Basel) 2021; 11:717. [PMID: 34357089 PMCID: PMC8304117 DOI: 10.3390/life11070717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are first-line responders to infections and are recruited to target tissues through the action of chemoattractant molecules, such as chemokines. Neutrophils are crucial for the control of bacterial and fungal infections, but their role in the context of viral infections has been understudied. Flaviviruses are important human viral pathogens transmitted by arthropods. Infection with a flavivirus may result in a variety of complex disease manifestations, including hemorrhagic fever, encephalitis or congenital malformations. Our understanding of flaviviral diseases is incomplete, and so is the role of neutrophils in such diseases. Here we present a comprehensive overview on the participation of neutrophils in severe disease forms evolving from flavivirus infection, focusing on the role of chemokines and their receptors as main drivers of neutrophil function. Neutrophil activation during viral infection was shown to interfere in viral replication through effector functions, but the resulting inflammation is significant and may be detrimental to the host. For congenital infections in humans, neutrophil recruitment mediated by CXCL8 would be catastrophic. Evidence suggests that control of neutrophil recruitment to flavivirus-infected tissues may reduce immunopathology in experimental models and patients, with minimal loss to viral clearance. Further investigation on the roles of neutrophils in flaviviral infections may reveal unappreciated functions of this leukocyte population while increasing our understanding of flaviviral disease pathogenesis in its multiple forms.
Collapse
Affiliation(s)
- Marina Alves Fontoura
- Brazilian Biosciences National Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, Campinas 13083-100, Brazil; (M.A.F.); (R.F.R.)
- Cellular and Structural Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-865, Brazil
| | - Rebeca Fróes Rocha
- Brazilian Biosciences National Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, Campinas 13083-100, Brazil; (M.A.F.); (R.F.R.)
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-970, Brazil
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, Campinas 13083-100, Brazil; (M.A.F.); (R.F.R.)
| |
Collapse
|
17
|
Chang MX. The negative regulation of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) signaling pathway in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104038. [PMID: 33548290 DOI: 10.1016/j.dci.2021.104038] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/30/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
At each stage of innate immune response, there are stimulatory and inhibitory signals that modulate the strength and character of the response. RIG-I-like receptor (RLR) signaling pathway plays pivotal roles in antiviral innate immune response. Recent studies have revealed the molecular mechanisms that viral infection leads to the activation of RLRs-mediated downstream signaling cascades and the production of type I interferons (IFNs). However, antiviral immune responses must be tightly regulated in order to prevent detrimental type I IFNs production. Previous reviews have highlighted negative regulation of RLR signaling pathway, which mainly target to directly regulate RIG-I, MDA5, MAVS and TBK1 function in mammals. In this review, we summarize recent advances in our understanding of negative regulators of RLR signaling pathway in teleost, with specific focus on piscine and viral regulatory mechanisms that directly or indirectly inhibit the function of RIG-I, MDA5, LGP2, MAVS, TRAF3, TBK1, IRF3 and IRF7 both in the steady state or upon viral infection. We also further discuss important directions for future studies, especially for non-coding RNAs and post-translational modifications via fish specific TRIM proteins. The knowledge of negative regulators of RLR signaling pathway in teleost will shed new light on the critical information for potential therapeutic purposes.
Collapse
Affiliation(s)
- Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
18
|
Petro TM. IFN Regulatory Factor 3 in Health and Disease. THE JOURNAL OF IMMUNOLOGY 2021; 205:1981-1989. [PMID: 33020188 DOI: 10.4049/jimmunol.2000462] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
Immunity to viruses requires an array of critical cellular proteins that include IFN regulatory factor 3 (IRF3). Consequently, most viruses that infect vertebrates encode proteins that interfere with IRF3 activation. This review describes the cellular pathways linked to IRF3 activation and where those pathways are targeted by human viral pathogens. Moreover, key regulatory pathways that control IRF3 are discussed. Besides viral infections, IRF3 is also involved in resistance to some bacterial infections, in anticancer immunity, and in anticancer therapies involving DNA damage agents. A recent finding shows that IRF3 is needed for T cell effector functions that are involved in anticancer immunity and also in T cell autoimmune diseases. In contrast, unregulated IRF3 activity is clearly not beneficial, considering it is implicated in certain interferonopathies, in which heightened IRF3 activity leads to IFN-β-induced disease. Therefore, IRF3 is involved largely in maintaining health but sometimes contributing to disease.
Collapse
Affiliation(s)
- Thomas M Petro
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583; and Nebraska Center for Virology, University of Nebraska Medical Center, Lincoln, NE 68583
| |
Collapse
|
19
|
A comparative review of pathogenesis and host innate immunity evasion strategies among the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV). Arch Microbiol 2021; 203:1943-1951. [PMID: 33682075 PMCID: PMC7937358 DOI: 10.1007/s00203-021-02265-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 12/09/2022]
Abstract
COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has put the global public health at its highest threat around the world. Previous epidemic caused by the acute respiratory syndrome coronavirus (SARS-CoV) in 2002 is also considered since both the coronaviruses resulted in the similar clinical complications. The outbreak caused by the Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 had a low rate of disease transmission and death cases. Modes of entry by MERS and SARS coronaviruses are similar to that of SARS-CoV-2, except MERS-CoV utilize different receptor. They all belong to the lineage C of β-coronavirus. Based on the information from the previous reports, the present review is mainly focused on the mechanisms of disease progression by each of these viruses in association to their strategies to escape the host immunity. The viral entry is the first step of pathogenesis associated with attachment of viral spike protein with host receptor help releasing the viral RNA into the host cell. Models of molecular pathogenesis are outlined with virus strategies escaping the host immunity along with the role of various inflammatory cytokines and chemokines in the process. The molecular aspects of pathogenesis have also been discussed.
Collapse
|
20
|
Yu HY, Gao DM, Zhou W, Xia BB, He ZY, Wu B, Jiang MZ, Wang ML, Zhao J. Expression, Purification, and Bioactivity of a Soluble Recombinant Ovine Interferon-tau in Escherichia Coli. J Vet Res 2021; 65:101-108. [PMID: 33817402 PMCID: PMC8009580 DOI: 10.2478/jvetres-2021-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/27/2021] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Ovine interferon-tau (oIFN-τ) is a newly discovered type I interferon. This study used biochemical techniques to transform the oIFN-τ gene into Escherichia coli to obtain the mass and soluble expression of the recombinant protein. MATERIAL AND METHODS First, total RNA was extracted from fresh sheep embryonic tissues with TRIzol reagent and then used as a template to reverse transcribe and amplify the mature oIFN-τ gene with RT-PCR. The amplified product was next digested with the HindIII and XhoI restriction enzymes and inserted into the pET-32a(+) vector to construct the prokaryotic expression plasmid. The corrected in-frame recombinant plasmid, pET-32a(+)-oIFN-τ, was transformed into E. coli Rosetta (DE3) competent cells. After induction with isopropyl-beta-D-thiogalactopyranoside (IPTG), the recombinant protein was detected in bacteria. Finally, the bacteria were lysed by sonication, and the recombinant protein was purified by nickel affinity chromatography and DEAE anion exchange chromatography. RESULTS The protein was confirmed to be oIFN-τ, which mainly existed in the soluble lysate fraction, as proven by SDS-PAGE and Western blot assays. CONCLUSION Purified IFN-τ exists mostly in a soluble form, and its anti-vesicular stomatitis virus (VSV) activity reached 7.08×10(6)IU/mL.
Collapse
Affiliation(s)
- Hai-Yang Yu
- Department of Microbiology, Anhui Medical University, Hefei, Anhui Province, 230032, P.R. China
| | - Dong-Mei Gao
- Department of Clinical Laboratory, Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230032, P.R. China
| | - Wei Zhou
- Wuhu Interferon Bio-products Industry Research Institute Co., Ltd., Wuhu, Anhui Province, 241007, P.R. China
| | - Bing-Bing Xia
- Wuhu Interferon Bio-products Industry Research Institute Co., Ltd., Wuhu, Anhui Province, 241007, P.R. China
| | - Zhi-Yuan He
- Wuhu Interferon Bio-products Industry Research Institute Co., Ltd., Wuhu, Anhui Province, 241007, P.R. China
| | - Bo Wu
- Wuhu Interferon Bio-products Industry Research Institute Co., Ltd., Wuhu, Anhui Province, 241007, P.R. China
| | - Min-Zhi Jiang
- Wuhu Interferon Bio-products Industry Research Institute Co., Ltd., Wuhu, Anhui Province, 241007, P.R. China
| | - Ming-Li Wang
- Department of Microbiology, Anhui Medical University, Hefei, Anhui Province, 230032, P.R. China
- Wuhu Interferon Bio-products Industry Research Institute Co., Ltd., Wuhu, Anhui Province, 241007, P.R. China
| | - Jun Zhao
- Department of Microbiology, Anhui Medical University, Hefei, Anhui Province, 230032, P.R. China
- Wuhu Interferon Bio-products Industry Research Institute Co., Ltd., Wuhu, Anhui Province, 241007, P.R. China
- Wuhu Overseas Students Pioneer Park, Wuhu, Anhui Province, 241007, P.R. China
| |
Collapse
|
21
|
Zhang H, Song X, Li T, Wang J, Xing B, Zhai X, Luo J, Hu X, Hou X, Wei L. DDX1 from Cherry valley duck mediates signaling pathways and anti-NDRV activity. Vet Res 2021; 52:9. [PMID: 33472667 PMCID: PMC7816157 DOI: 10.1186/s13567-020-00889-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/29/2020] [Indexed: 11/23/2022] Open
Abstract
Novel duck reovirus (NDRV) causes severe economic losses to the duck industry, which is characterized by hemorrhagic spots and necrotic foci of the livers and spleens. DEAD-box helicase 1 (DDX1) plays a critical role in the innate immune system against viral infection. However, the role of duck DDX1 (duDDX1) in anti-RNA virus infection, especially in the anti-NDRV infection, has yet to be elucidated. In the present study, the full-length cDNA of duDDX1 (2223 bp encode 740 amino acids) was firstly cloned from the spleen of healthy Cherry valley ducks, and the phylogenetic tree indicated that the duDDX1 has the closest relationship with Anas platyrhynchos in the bird branch. The duDDX1 mRNA was widely distributed in all tested tissues, especially in the duodenum, liver, and spleen. Overexpression of duDDX1 in primary duck embryo fibroblast (DEF) cells triggered the activation of transcription factors IRF-7 and NF-κB, as well as IFN-β expression, and the expression of the Toll-like receptors (TLR2, TLR3, and TLR4) was significantly increased. Importantly, after overexpressing or knocking down duDDX1 and infecting NDRV in DEF cells, duDDX1 inhibits the replication of NDRV virus and also regulates the expression of pattern recognition receptors and cytokines. This indicates that duDDX1 may play an important role in the innate immune response of ducks to NDRV. Collectively, we first cloned DDX1 from ducks and analyzed its biological functions. Secondly, we proved that duck DDX1 participates in anti-NDRV infection, and innovated new ideas for the prevention and control of duck virus infection.
Collapse
Affiliation(s)
- Huihui Zhang
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, Shandong Province, China
| | - Xingdong Song
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, Shandong Province, China
| | - Tianxu Li
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, Shandong Province, China
| | - Jinchao Wang
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, Shandong Province, China
| | - Bin Xing
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, Shandong Province, China
| | - Xinyu Zhai
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, Shandong Province, China
| | - Jinjian Luo
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, Shandong Province, China
| | - Xiaofang Hu
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, Shandong Province, China
| | - Xiaolan Hou
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, Shandong Province, China
| | - Liangmeng Wei
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, Shandong Province, China. .,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, College of Basic Medical Sciences, Shandong First Medical University, Tai'an, 271000, Shandong Province, China.
| |
Collapse
|
22
|
Efstathiou C, Abidi SH, Harker J, Stevenson NJ. Revisiting respiratory syncytial virus's interaction with host immunity, towards novel therapeutics. Cell Mol Life Sci 2020; 77:5045-5058. [PMID: 32556372 PMCID: PMC7298439 DOI: 10.1007/s00018-020-03557-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022]
Abstract
Every year there are > 33 million cases of Respiratory Syncytial Virus (RSV)-related respiratory infection in children under the age of five, making RSV the leading cause of lower respiratory tract infection (LRTI) in infants. RSV is a global infection, but 99% of related mortality is in low/middle-income countries. Unbelievably, 62 years after its identification, there remains no effective treatment nor vaccine for this deadly virus, leaving infants, elderly and immunocompromised patients at high risk. The success of all pathogens depends on their ability to evade and modulate the host immune response. RSV has a complex and intricate relationship with our immune systems, but a clearer understanding of these interactions is essential in the development of effective medicines. Therefore, in a bid to update and focus our research community's understanding of RSV's interaction with immune defences, this review aims to discuss how our current knowledgebase could be used to combat this global viral threat.
Collapse
Affiliation(s)
- C Efstathiou
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - S H Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - J Harker
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
| | - N J Stevenson
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
23
|
Li Y, Zhang J, Wang C, Qiao W, Li Y, Tan J. IFI44L expression is regulated by IRF-1 and HIV-1. FEBS Open Bio 2020; 11:105-113. [PMID: 33159419 PMCID: PMC7780093 DOI: 10.1002/2211-5463.13030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/24/2020] [Accepted: 11/04/2020] [Indexed: 11/21/2022] Open
Abstract
Interferon (IFN)‐inducible 44 like (IFI44L) is an IFN‐stimulated gene (ISG), which is located on the same chromosome as the known antiviral ISG IFI44. Expression of IFI44L is induced by IFN and HIV‐1 infection. However, the mechanism by which IFN‐I induces IFI44L production has not yet been determined. In this study, we analyzed transcriptional regulation of IFI44L via cloning of the IFI44L promoter. We found that IFI44L has two IFN‐stimulated response elements (ISRE), which are necessary for the basal level of IFI44L transcription. IFN‐I and IFN‐II can activate the IFI44L promoter through one of the two ISREs. IFN regulatory factor (IRF)‐1 can activate transcription of IFI44L by binding to one of the ISREs. Additionally, co‐transfection of the IFI44L promoter with an HIV‐1 infectious clone or HIV‐1 infection activated IFI44L promoter transcription, but did not upregulate IFI44L expression via ISREs. These findings will help to understand the interaction between IFI44L and HIV‐1, and aid in elucidation of the role of IFI44L in the antiviral innate immune response.
Collapse
Affiliation(s)
- Yutong Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Junshi Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenchen Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yue Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.,Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
24
|
Li Z, Yang Y, Lu H, Zhang J, Xu R, Shi J, Lan Y, Guan J, Zhao K, He H, Gao F, He W. Porcine haemagglutinating encephalomyelitis virus deactivates transcription factor IRF3 and limits type I interferon production. Vet Microbiol 2020; 252:108918. [PMID: 33191000 DOI: 10.1016/j.vetmic.2020.108918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/01/2020] [Indexed: 12/24/2022]
Abstract
Porcine haemagglutinating encephalomyelitis virus (PHEV) is a member of coronavirus that causes acute infectious disease and high mortality in piglets. The transcription factor IRF3 is a central regulator of type I interferon (IFN) innate immune signalling. Here, we report that PHEV infection of RAW264.7 cells results in strong suppression of IFN-β production in the early stage. A comparative analysis of the upstream effector of IFN-β transcription demonstrated that deactivation of IRF3, but not p65 or ATF-2 proteins, is uniquely attributed to failure of early IFN-β induction. Moreover, the RIG-I/MDA5/MAVS/TBK1-dependent protective response that regulates the IRF3 pathway is not disrupted by PHEV and works well underlying the deactivated IRF3-mediated IFN-β inhibition. After challenge with poly(I:C), a synthetic analogue of dsRNA used to stimulate IFN-β secretion in the TLR-controlled pathway, we show that PHEV and poly(I:C) regulate IFN-β-induction via two different pathways. Collectively, our findings reveal that deactivation of IRF3 is a specific mechanism that contributes to termination of type I IFN signalling during early infection with PHEV independent of the conserved RIG-I/MAVS/MDA5/TBK1-mediated innate immune response.
Collapse
Affiliation(s)
- Zi Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yawen Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Huijun Lu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Jing Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rongyi Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Junchao Shi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yungang Lan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kui Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongbin He
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Disease Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Feng Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Wenqi He
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
25
|
Lu LF, Li ZC, Zhang C, Zhou XY, Zhou Y, Jiang JY, Chen DD, Li S, Zhang YA. Grass Carp Reovirus (GCRV) Giving Its All to Suppress IFN Production by Countering MAVS Signaling Transduction. Front Immunol 2020; 11:545302. [PMID: 33193312 PMCID: PMC7649419 DOI: 10.3389/fimmu.2020.545302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/06/2020] [Indexed: 01/05/2023] Open
Abstract
Viruses typically target host RIG-I-like receptors (RLRs), a group of key factors involved in interferon (IFN) production, to enhance viral infection. To date, though immune evasion methods to contradict IFN production have been characterized for a series of terrestrial viruses, the strategies employed by fish viruses remain unclear. Here, we report that all grass carp reovirus (GCRV) proteins encoded by segments S1 to S11 suppress mitochondrial antiviral signaling protein (MAVS)-mediated IFN expression. First, the GCRV viral proteins blunted the MAVS-induced expression of IFN, and impair MAVS antiviral capacity significantly. Interestingly, subsequent co-immunoprecipitation experiments demonstrated that all GCRV viral proteins interacted with several RLR cascades, especially with TANK-binding kinase 1 (TBK1) which was the downstream factor of MAVS. To further illustrate the mechanisms of these interactions between GCRV viral proteins and host RLRs, two of the viral proteins, NS79 (S4) and VP3 (S3), were selected as representative proteins for two distinguished mechanisms. The obtained data demonstrated that NS79 was phosphorylated by gcTBK1, leading to the reduction of host substrate gcIRF3/7 phosphorylation. On the other hand, VP3 degraded gcMAVS and the degradation was significantly reversed by 3-MA. The biological effects of both NS79 and VP3 were consistently found to be related to the suppression of IFN expression and the promotion of viral evasion. Our findings shed light on the special evasion mechanism utilized by fish virus through IFN regulation, which might differ between fish and mammals.
Collapse
Affiliation(s)
- Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Yu Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
26
|
Phanthong S, Densumite J, Seesuay W, Thanongsaksrikul J, Teimoori S, Sookrung N, Poovorawan Y, Onvimala N, Guntapong R, Pattanapanyasat K, Chaicumpa W. Human Antibodies to VP4 Inhibit Replication of Enteroviruses Across Subgenotypes and Serotypes, and Enhance Host Innate Immunity. Front Microbiol 2020; 11:562768. [PMID: 33101238 PMCID: PMC7545151 DOI: 10.3389/fmicb.2020.562768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a highly contagious disease that usually affects infants and young children (<5 years). HFMD outbreaks occur frequently in the Asia-Pacific region, and these outbreaks are associated with enormous healthcare and socioeconomic burden. There is currently no specific antiviral agent to treat HFMD and/or the severe complications that are frequently associated with the enterovirus of serotype EV71. Therefore, the development of a broadly effective and safe anti-enterovirus agent is an existential necessity. In this study, human single-chain antibodies (HuscFvs) specific to the EV71-internal capsid protein (VP4) were generated using phage display technology. VP4 specific-HuscFvs were linked to cell penetrating peptides to make them cell penetrable HuscFvs (transbodies), and readily accessible to the intracellular target. The transbodies, as well as the original HuscFvs that were tested, entered the enterovirus-infected cells, bound to intracellular VP4, and inhibited replication of EV71 across subgenotypes A, B, and C, and coxsackieviruses CVA16 and CVA6. The antibodies also enhanced the antiviral response of the virus-infected cells. Computerized simulation, indirect and competitive ELISAs, and experiments on cells infected with EV71 particles to which the VP4 and VP1-N-terminus were surface-exposed (i.e., A-particles that don’t require receptor binding for infection) indicated that the VP4 specific-antibodies inhibit virus replication by interfering with the VP4-N-terminus, which is important for membrane pore formation and virus genome release leading to less production of virus proteins, less infectious virions, and restoration of host innate immunity. The antibodies may inhibit polyprotein/intermediate protein processing and cause sterically strained configurations of the capsid pentamers, which impairs virus morphogenesis. These antibodies should be further investigated for application as a safe and broadly effective HFMD therapy.
Collapse
Affiliation(s)
- Siratcha Phanthong
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Jaslan Densumite
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Watee Seesuay
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Jeeraphong Thanongsaksrikul
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Bangkok, Thailand
| | - Salma Teimoori
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Nitat Sookrung
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand.,Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yong Poovorawan
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Napa Onvimala
- Department of Medical Science, Ministry of Public Health, National Institute of Health, Nonthaburi, Thailand
| | - Ratigorn Guntapong
- Department of Medical Science, Ministry of Public Health, National Institute of Health, Nonthaburi, Thailand
| | - Kovit Pattanapanyasat
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| |
Collapse
|
27
|
Schwanke H, Stempel M, Brinkmann MM. Of Keeping and Tipping the Balance: Host Regulation and Viral Modulation of IRF3-Dependent IFNB1 Expression. Viruses 2020; 12:E733. [PMID: 32645843 PMCID: PMC7411613 DOI: 10.3390/v12070733] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
The type I interferon (IFN) response is a principal component of our immune system that allows to counter a viral attack immediately upon viral entry into host cells. Upon engagement of aberrantly localised nucleic acids, germline-encoded pattern recognition receptors convey their find via a signalling cascade to prompt kinase-mediated activation of a specific set of five transcription factors. Within the nucleus, the coordinated interaction of these dimeric transcription factors with coactivators and the basal RNA transcription machinery is required to access the gene encoding the type I IFN IFNβ (IFNB1). Virus-induced release of IFNβ then induces the antiviral state of the system and mediates further mechanisms for defence. Due to its key role during the induction of the initial IFN response, the activity of the transcription factor interferon regulatory factor 3 (IRF3) is tightly regulated by the host and fiercely targeted by viral proteins at all conceivable levels. In this review, we will revisit the steps enabling the trans-activating potential of IRF3 after its activation and the subsequent assembly of the multi-protein complex at the IFNβ enhancer that controls gene expression. Further, we will inspect the regulatory mechanisms of these steps imposed by the host cell and present the manifold strategies viruses have evolved to intervene with IFNβ transcription downstream of IRF3 activation in order to secure establishment of a productive infection.
Collapse
Affiliation(s)
- Hella Schwanke
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Markus Stempel
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
28
|
Abstract
Immune responses to infectious agents are initiated when a pathogen or its components bind to pattern recognition receptors (PRRs). PRR binding sets off a cascade of events that activates immune responses. We now show that, in addition to activating immune responses, PRR signaling also initiates an immunosuppressive response, probably to limit inflammation. The importance of the current findings is that blockade of immunomodulatory signaling, which is mediated by the upregulation of the CD47 molecule, can lead to enhanced immune responses to any pathogen that triggers PRR signaling. Since most or all pathogens trigger PRRs, CD47 blockade could be used to speed up and strengthen both innate and adaptive immune responses when medically indicated. Such immunotherapy could be done without a requirement for knowing the HLA type of the individual, the specific antigens of the pathogen, or, in the case of bacterial infections, the antimicrobial resistance profile. It is well understood that the adaptive immune response to infectious agents includes a modulating suppressive component as well as an activating component. We now show that the very early innate response also has an immunosuppressive component. Infected cells upregulate the CD47 “don’t eat me” signal, which slows the phagocytic uptake of dying and viable cells as well as downstream antigen-presenting cell (APC) functions. A CD47 mimic that acts as an essential virulence factor is encoded by all poxviruses, but CD47 expression on infected cells was found to be upregulated even by pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that encode no mimic. CD47 upregulation was revealed to be a host response induced by the stimulation of both endosomal and cytosolic pathogen recognition receptors (PRRs). Furthermore, proinflammatory cytokines, including those found in the plasma of hepatitis C patients, upregulated CD47 on uninfected dendritic cells, thereby linking innate modulation with downstream adaptive immune responses. Indeed, results from antibody-mediated CD47 blockade experiments as well as CD47 knockout mice revealed an immunosuppressive role for CD47 during infections with lymphocytic choriomeningitis virus and Mycobacterium tuberculosis. Since CD47 blockade operates at the level of pattern recognition receptors rather than at a pathogen or antigen-specific level, these findings identify CD47 as a novel potential immunotherapeutic target for the enhancement of immune responses to a broad range of infectious agents.
Collapse
|
29
|
High Throughput Screening of FDA-Approved Drug Library Reveals the Compounds that Promote IRF3-Mediated Pro-Apoptotic Pathway Inhibit Virus Replication. Viruses 2020; 12:v12040442. [PMID: 32295140 PMCID: PMC7232324 DOI: 10.3390/v12040442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 12/13/2022] Open
Abstract
Interferon (IFN) regulatory factor 3 (IRF3) is the key transcription factor for the induction of IFN and antiviral genes. The absence of antiviral genes in IRF3 deficiency leads to susceptibility to a wide range of viral infections. Previously, we uncovered a function for nontranscriptional IRF3 (nt-IRF3), RLR (RIG-I-like receptor)-induced IRF3-mediated pathway of apoptosis (RIPA), which triggers apoptotic killing of virus-infected cells. Using knock-in mice expressing a transcriptionally inactive, but RIPA-active, IRF3 mutant, we demonstrated the relative contribution of RIPA to host antiviral defense. Given that RIPA is a cellular antiviral pathway, we hypothesized that small molecules that promote RIPA in virus-infected cells would act as antiviral agents. To test this, we conducted a high throughput screen of a library of FDA-approved drugs to identify novel RIPA activators. Our screen identified doxorubicin as a potent RIPA-activating agent. In support of our hypothesis, doxorubicin inhibited the replication of vesicular stomatitis virus, a model rhabdovirus, and its antiviral activity depended on its ability to activate IRF3 in RIPA. Surprisingly, doxorubicin inhibited the transcriptional activity of IRF3. The antiviral activity of doxorubicin was expanded to flavivirus and herpesvirus that also activate IRF3. Mechanistically, doxorubicin promoted RIPA by activating the extracellular signal-regulated kinase (ERK) signaling pathway. Finally, we validated these results using another RIPA-activating compound, pyrvinium pamoate, which showed a similar antiviral effect without affecting the transcriptional activity of IRF3. Therefore, we demonstrate that the RIPA branch of IRF3 can be targeted therapeutically to prevent virus infection.
Collapse
|
30
|
Saeed AFUH, Ruan X, Guan H, Su J, Ouyang S. Regulation of cGAS-Mediated Immune Responses and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902599. [PMID: 32195086 PMCID: PMC7080523 DOI: 10.1002/advs.201902599] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/14/2020] [Indexed: 05/08/2023]
Abstract
Early detection of infectious nucleic acids released from invading pathogens by the innate immune system is critical for immune defense. Detection of these nucleic acids by host immune sensors and regulation of DNA sensing pathways have been significant interests in the past years. Here, current understandings of evolutionarily conserved DNA sensing cyclic GMP-AMP (cGAMP) synthase (cGAS) are highlighted. Precise activation and tight regulation of cGAS are vital in appropriate innate immune responses, senescence, tumorigenesis and immunotherapy, and autoimmunity. Hence, substantial insights into cytosolic DNA sensing and immunotherapy of indispensable cytosolic sensors have been detailed to extend limited knowledge available thus far. This Review offers a critical, in-depth understanding of cGAS regulation, cytosolic DNA sensing, and currently established therapeutic approaches of essential cytosolic immune agents for improved human health.
Collapse
Affiliation(s)
- Abdullah F. U. H. Saeed
- The Key Laboratory of Innate Immune Biology of Fujian ProvinceProvincial University Key Laboratory of Cellular Stress Response and Metabolic RegulationBiomedical Research Center of South ChinaKey Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Fujian Key Laboratory of Special Marine Bio‐resources Sustainable UtilizationThe Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic AdministrationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and Technology (Qingdao)Qingdao266237China
- College of Chemistry and Materials ScienceFujian Normal UniversityFuzhou350117China
| | - Xinglin Ruan
- Department of NeurologyFujian Medical University Union Hospital29 Xinquan Road Gulou DistrictFuzhou350001China
| | - Hongxin Guan
- The Key Laboratory of Innate Immune Biology of Fujian ProvinceProvincial University Key Laboratory of Cellular Stress Response and Metabolic RegulationBiomedical Research Center of South ChinaKey Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Fujian Key Laboratory of Special Marine Bio‐resources Sustainable UtilizationThe Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic AdministrationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
| | - Jingqian Su
- The Key Laboratory of Innate Immune Biology of Fujian ProvinceProvincial University Key Laboratory of Cellular Stress Response and Metabolic RegulationBiomedical Research Center of South ChinaKey Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Fujian Key Laboratory of Special Marine Bio‐resources Sustainable UtilizationThe Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic AdministrationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian ProvinceProvincial University Key Laboratory of Cellular Stress Response and Metabolic RegulationBiomedical Research Center of South ChinaKey Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Fujian Key Laboratory of Special Marine Bio‐resources Sustainable UtilizationThe Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic AdministrationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and Technology (Qingdao)Qingdao266237China
| |
Collapse
|
31
|
Dumbrepatil AB, Zegalia KA, Sajja K, Kennedy RT, Marsh ENG. Targeting viperin to the mitochondrion inhibits the thiolase activity of the trifunctional enzyme complex. J Biol Chem 2020; 295:2839-2849. [PMID: 31980458 DOI: 10.1074/jbc.ra119.011526] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/09/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding the mechanisms by which viruses evade host cell immune defenses is important for developing improved antiviral therapies. In an unusual twist, human cytomegalovirus co-opts the antiviral radical SAM enzyme viperin (virus-inhibitory protein, endoplasmic reticulum-associated, interferon-inducible) to enhance viral infectivity. This process involves translocation of viperin to the mitochondrion, where it binds the β-subunit (HADHB) of the mitochondrial trifunctional enzyme complex that catalyzes thiolysis of β-ketoacyl-CoA esters as part of fatty acid β-oxidation. Here we investigated how the interaction between these two enzymes alters their activities and affects cellular ATP levels. Experiments with purified enzymes indicated that viperin inhibits the thiolase activity of HADHB, but, unexpectedly, HADHB activates viperin, leading to synthesis of the antiviral nucleotide 3'-deoxy-3',4'-didehydro-CTP. Measurements of enzyme activities in lysates prepared from transfected HEK293T cells expressing these enzymes mirrored the findings obtained with purified enzymes. Thus, localizing viperin to mitochondria decreased thiolase activity, and coexpression of HADHB significantly increased viperin activity. Furthermore, targeting viperin to mitochondria also increased the rate at which HADHB is retrotranslocated out of mitochondria and degraded, providing an additional mechanism by which viperin reduces HADHB activity. Targeting viperin to mitochondria decreased cellular ATP levels by more than 50%, consistent with the enzyme disrupting fatty acid catabolism. These results provide biochemical insight into the mechanism by which human cytomegalovirus subverts viperin; they also provide a biochemical rationale for viperin's recently discovered role in regulating thermogenesis in adipose tissues.
Collapse
Affiliation(s)
- Arti B Dumbrepatil
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| | - Kelcie A Zegalia
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| | - Keerthi Sajja
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055; Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055.
| |
Collapse
|
32
|
Comprehensive Mutagenesis of Herpes Simplex Virus 1 Genome Identifies UL42 as an Inhibitor of Type I Interferon Induction. J Virol 2019; 93:JVI.01446-19. [PMID: 31511375 DOI: 10.1128/jvi.01446-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022] Open
Abstract
In spite of several decades of research focused on understanding the biology of human herpes simplex virus 1 (HSV-1), no tool has been developed to study its genome in a high-throughput fashion. Here, we describe the creation of a transposon insertion mutant library of the HSV-1 genome. Using this tool, we aimed to identify novel viral regulators of type I interferon (IFN-I). HSV-1 evades the host immune system by encoding viral proteins that inhibit the type I interferon response. Applying differential selective pressure, we identified the three strongest viral IFN-I regulators in HSV-1. We report that the viral polymerase processivity factor UL42 interacts with the host transcription factor IFN regulatory factor 3 (IRF-3), inhibiting its phosphorylation and downstream beta interferon (IFN-β) gene transcription. This study represents a proof of concept for the use of high-throughput screening of the HSV-1 genome in investigating viral biology and offers new targets both for antiviral therapy and for oncolytic vector design.IMPORTANCE This work is the first to report the use of a high-throughput mutagenesis method to study the genome of HSV-1. We report three novel viral proteins potentially involved in regulating the host type I interferon response. We describe a novel mechanism by which the viral protein UL42 is able to suppress the production of beta interferon. The tool we introduce in this study can be used to study the HSV-1 genome in great detail to better understand viral gene functions.
Collapse
|
33
|
MHC Class I Molecules Exacerbate Viral Infection by Disrupting Type I Interferon Signaling. J Immunol Res 2019; 2019:5370706. [PMID: 31583257 PMCID: PMC6754968 DOI: 10.1155/2019/5370706] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/16/2019] [Indexed: 01/26/2023] Open
Abstract
MHC class I molecules are key in the presentation of antigen and initiation of adaptive CD8+ T cell responses. In addition to its classical activity, MHC I may possess nonclassical functions. We have previously identified a regulatory role of MHC I in TLR signaling and antibacterial immunity. However, its role in innate antiviral immunity remains unknown. In this study, we found a reduced viral load in MHC I-deficient macrophages that was independent of type I IFN production. Mechanically, MHC I mediated viral suppression by inhibiting the type I IFN signaling pathway, which depends on SHP2. Cross-linking MHC I at the membrane increased SHP2 activation and further suppressed STAT1 phosphorylation. Therefore, our data revealed an inhibitory role of MHC I in type I IFN response to viral infection and expanded our understanding of MHC I and antigen presentation.
Collapse
|
34
|
Zhang YW, Lin Y, Yu HY, Tian RN, Li F. Characteristic genes in THP‑1 derived macrophages infected with Mycobacterium tuberculosis H37Rv strain identified by integrating bioinformatics methods. Int J Mol Med 2019; 44:1243-1254. [PMID: 31364746 PMCID: PMC6713430 DOI: 10.3892/ijmm.2019.4293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis (M. tb) is a highly successful pathogen that has co-existed with humans for 1,000's of years. As the cornerstone of the immune system, macrophages are a key part of innate immunity. They ingest and degrade foreign substances including aging cells and microorganisms, coordinate the inflammatory process, and are the first line of defense against M. tb infection. Recent advances in cellular mycobacteriology have indicated that M. tb uses an remarkably complex strategy to disrupt macrophage function, in order to counteract the antimicrobial mechanisms of the innate and adaptive immune responses, thereby achieving immune escape. With the popularity of microarray technology, a variety of public platforms have provided a variety of gene expression data associated with physiological and disease conditions. Meta-analysis can systematically and quantitatively analyze multiple independent data concerning the same disease, greatly improving the statistical significance and credibility of the gene expression data analysis performed. In the present study, 6 microarray expression datasets of human acute monocytic leukemia THP-1 cell line infected by M. tb H37Rv strain were collected from the GEO database. A total of 4 high-quality datasets were identified using meta-analysis methods in R language, and 306 differentially expressed genes with statistical significance were obtained. Then, a protein-protein interaction (PPI) network of these differentially expressed genes was constructed on the Search Tool for the Retrieval of Interacting Genes/Proteins Database online tool and visualized by Cytoscape v. 3.6.1 software. Using CentiScape and MCODE plugin in the Cytoscape software to mine the functional modules associated with M. tb infection process, 32 characteristic genes were identified. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis was performed on the 32 characteristic genes, and it was demonstrated that these genes were primarily associated with the type I interferon (IFN) pathway. In the established model of THP-1-derived macrophages infected by M. tb, the actual differential expression levels of IFN-stimulated gene 15 (ISG15), 2′-5-oligoadenylate synthetase like (OASL), IFN regulatory factor 7 (IRF7) and DExD/H-box helicase 58 (DDX58), the first 4 genes of the 32 characteristic genes, were verified by reverse transcription quantitative polymerase chain reaction. The results were consistent with the results of microarray analysis. The association between ISG15, OASL and IRF7 and TB infection was also verified. Although a number of studies have identified that the type I IFN pathway may assist M. tb to achieve immune escape, the present study used a meta-analysis of microarray data and PPI network analysis to examine some of the novel genes identified in the IFN pathway. The results furthered the understanding of the molecular mechanisms of the TB immune response and provided a novel perspective for future therapeutic goals.
Collapse
Affiliation(s)
- Yu-Wei Zhang
- Department of Pathogen Biology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan Lin
- Department of Pathogen Biology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hui-Yuan Yu
- School of Bethune Medical, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ruo-Nan Tian
- Department of Pathogen Biology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Fan Li
- Department of Pathogen Biology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
35
|
Bais SS, Ratra Y, Khan NA, Pandey R, Kushawaha PK, Tomar S, Medigeshi G, Singh A, Basak S. Chandipura Virus Utilizes the Prosurvival Function of RelA NF-κB for Its Propagation. J Virol 2019; 93:e00081-19. [PMID: 31043529 PMCID: PMC6600208 DOI: 10.1128/jvi.00081-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/23/2019] [Indexed: 11/20/2022] Open
Abstract
Chandipura virus (CHPV), a cytoplasmic RNA virus, has been implicated in several outbreaks of acute encephalitis in India. Despite the relevance of CHPV to human health, how the virus interacts with the host signaling machinery remains obscure. In response to viral infections, mammalian cells activate RelA/NF-κB heterodimers, which induce genes encoding interferon beta (IFN-β) and other immune mediators. Therefore, RelA is generally considered to be an antiviral transcription factor. However, RelA activates a wide spectrum of genes in physiological settings, and there is a paucity of direct genetic evidence substantiating antiviral RelA functions. Using mouse embryonic fibroblasts, we genetically dissected the role of RelA in CHPV pathogenesis. We found that CHPV indeed activated RelA and that RelA deficiency abrogated the expression of IFN-β in response to virus infections. Unexpectedly, infection of Rela-/- fibroblasts led to a decreased CHPV yield. Our investigation clarified that RelA-dependent synthesis of prosurvival factors restrained infection-inflicted cell death and that exacerbated cell death processes prevented multiplication of CHPV in RelA-deficient cells. Chikungunya virus, a cytopathic RNA virus associated also with epidemics, required RelA, and Japanese encephalitis virus, which produced relatively minor cytopathic effects in fibroblasts, circumvented the need of RelA for their propagation. In sum, we documented a proviral function of the pleiotropic factor RelA linked to its prosurvival properties. RelA promoted the growth of cytopathic RNA viruses by extending the life span of infected cells, which serve as the replicative niche of intracellular pathogens. We argue that our finding bears significance for understanding host-virus interactions and may have implications for antiviral therapeutic regimes.IMPORTANCE RelA/NF-κB participates in a wide spectrum of physiological processes, including shaping immune responses against invading pathogens. In virus-infected cells, RelA typically induces the expression of IFN-β, which restrains viral propagation in neighboring cells involving paracrine mechanisms. Our study suggested that RelA might also play a proviral role. A cell-autonomous RelA activity amplified the yield of Chandipura virus, a cytopathic RNA virus associated with human epidemics, by extending the life span of infected cells. Our finding necessitates a substantial revision of our understanding of host-virus interactions and indicates a dual role of NF-κB signaling during the course of RNA virus infections. Our study also bears significance for therapeutic regimes which alter NF-κB activities while alleviating the viral load.
Collapse
Affiliation(s)
- Sachendra S Bais
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Yashika Ratra
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Naseem A Khan
- Translational Health Sciences and Technology Institute, Faridabad, India
| | - Rakesh Pandey
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Pramod K Kushawaha
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | | | - Abhyudai Singh
- Biomedical Engineering Department, University of Delaware, Newark, New Jersey, USA
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
36
|
Zhao C, Zhao W. TANK-binding kinase 1 as a novel therapeutic target for viral diseases. Expert Opin Ther Targets 2019; 23:437-446. [DOI: 10.1080/14728222.2019.1601702] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chunyuan Zhao
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, China
| |
Collapse
|
37
|
Ronza P, Robledo D, Bermúdez R, Losada AP, Pardo BG, Martínez P, Quiroga MI. Integrating Genomic and Morphological Approaches in Fish Pathology Research: The Case of Turbot ( Scophthalmus maximus) Enteromyxosis. Front Genet 2019; 10:26. [PMID: 30766546 PMCID: PMC6365611 DOI: 10.3389/fgene.2019.00026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/16/2019] [Indexed: 01/04/2023] Open
Abstract
Enteromyxosis, caused by Enteromyxum scophthalmi, is one of the most devastating diseases stemming from myxozoan parasites in turbot (Scophthalmus maximus L.), being a limiting factor for its production. The disease develops as a cachectic syndrome, associated to catarrhal enteritis and leukocytic depletion, with morbidity and mortality rates usually reaching 100%. To date, no effective treatment exists and there are different unknown issues concerning its pathogenesis. The gross and microscopic lesions associated to enteromyxosis have been thoroughly described, and several morphopathological studies have been carried out to elucidate the mechanisms of this host-parasite interaction. More recently, efforts have been focused on a multidisciplinary approach, combining histopathology and transcriptome analysis, which has provided significant advances in the understanding of the pathogenesis of this parasitosis. RNA-Seq technology was applied at early and advanced stages of the disease on fishes histologically evaluated and classified based on their lesional degree. In the same way, the transcriptomic data were analyzed in relation to the morphopathological picture and the course of the disease. In this paper, a comprehensive review of turbot enteromyxosis is presented, starting from the disease description up to the most novel information extracted by an integrated approach on the infection mechanisms and host response. Further, we discuss ongoing strategies toward a full understanding of host-pathogen interaction and the identification of suitable biomarkers for early diagnosis and disease management strategies.
Collapse
Affiliation(s)
- Paolo Ronza
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| | - Diego Robledo
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, The University of Edinburgh, Midlothian, United Kingdom
| | - Roberto Bermúdez
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| | - Ana Paula Losada
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| | - Belén G Pardo
- Departamento de Zoología, Genética y Antropología Física, Universidade de Santiago de Compostela, Lugo, Spain
| | - Paulino Martínez
- Departamento de Zoología, Genética y Antropología Física, Universidade de Santiago de Compostela, Lugo, Spain
| | - María Isabel Quiroga
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
38
|
Rasti M, Khanbabaei H, Teimoori A. An update on enterovirus 71 infection and interferon type I response. Rev Med Virol 2019; 29:e2016. [PMID: 30378208 PMCID: PMC7169063 DOI: 10.1002/rmv.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
Enteroviruses are members of Pichornaviridae family consisting of human enterovirus group A, B, C, and D as well as nonhuman enteroviruses. Hand, foot, and mouth disease (HFMD) is a serious disease which is usually seen in the Asia-Pacific region in children. Enterovirus 71 and coxsackievirus A16 are two important viruses responsible for HFMD which are members of group A enterovirus. IFN α and β are two cytokines, which have a major activity in the innate immune system against viral infections. Most of the viruses have some weapons against these cytokines. EV71 has two main proteases called 2A and 3C, which are important for polyprotein processing and virus maturation. Several studies have indicated that they have a significant effect on different cellular pathways such as interferon production and signaling pathway. The aim of this study was to investigate the latest findings about the interaction of 2A and 3C protease of EV71 and IFN production/signaling pathway and their inhibitory effects on this pathway.
Collapse
Affiliation(s)
- Mojtaba Rasti
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Hashem Khanbabaei
- Medical Physics Department, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Ali Teimoori
- Department of Virology, Faculty of MedicineHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
39
|
Tie CH, Fernandes L, Conde L, Robbez-Masson L, Sumner RP, Peacock T, Rodriguez-Plata MT, Mickute G, Gifford R, Towers GJ, Herrero J, Rowe HM. KAP1 regulates endogenous retroviruses in adult human cells and contributes to innate immune control. EMBO Rep 2018; 19:e45000. [PMID: 30061100 PMCID: PMC6172469 DOI: 10.15252/embr.201745000] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 06/21/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
Endogenous retroviruses (ERVs) have accumulated in vertebrate genomes and contribute to the complexity of gene regulation. KAP1 represses ERVs during development by its recruitment to their repetitive sequences through KRAB zinc-finger proteins (KZNFs), but little is known about the regulation of ERVs in adult tissues. We observed that KAP1 repression of HERVK14C was conserved in differentiated human cells and performed KAP1 knockout to obtain an overview of KAP1 function. Our results show that KAP1 represses ERVs (including HERV-T and HERV-S) and ZNF genes, both of which overlap with KAP1 binding sites and H3K9me3 in multiple cell types. Furthermore, this pathway is functionally conserved in adult human peripheral blood mononuclear cells. Cytosine methylation that acts on KAP1 regulated loci is necessary to prevent an interferon response, and KAP1-depletion leads to activation of some interferon-stimulated genes. Finally, loss of KAP1 leads to a decrease in H3K9me3 enrichment at ERVs and ZNF genes and an RNA-sensing response mediated through MAVS signaling. These data indicate that the KAP1-KZNF pathway contributes to genome stability and innate immune control in adult human cells.
Collapse
Affiliation(s)
- Christopher Hc Tie
- Division of Infection and Immunity, University College London, London, UK
| | - Liane Fernandes
- Division of Infection and Immunity, University College London, London, UK
| | - Lucia Conde
- Bill Lyons Informatics Centre, UCL Cancer Institute, London, UK
| | | | - Rebecca P Sumner
- Division of Infection and Immunity, University College London, London, UK
| | - Tom Peacock
- Division of Infection and Immunity, University College London, London, UK
| | | | - Greta Mickute
- Division of Infection and Immunity, University College London, London, UK
| | - Robert Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London, UK
| | - Javier Herrero
- Bill Lyons Informatics Centre, UCL Cancer Institute, London, UK
| | - Helen M Rowe
- Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
40
|
Nice TJ, Robinson BA, Van Winkle JA. The Role of Interferon in Persistent Viral Infection: Insights from Murine Norovirus. Trends Microbiol 2018; 26:510-524. [PMID: 29157967 PMCID: PMC5957778 DOI: 10.1016/j.tim.2017.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 12/21/2022]
Abstract
Persistent viral infections result from evasion or avoidance of sterilizing immunity, extend the timeframe of virus transmission, and can trigger disease. Prior studies in mouse models of persistent infection have suggested that ineffective adaptive immune responses are necessary for persistent viral infection. However, recent work in the murine norovirus (MNV) model of persistent infection demonstrates that innate immunity can control both early and persistent viral replication independently of adaptive immune effector functions. Interferons (IFNs) are central to the innate control of persistent MNV, apart from a role in modulating adaptive immunity. Furthermore, subtypes of IFN play distinct tissue-specific roles in innate control of persistent MNV infection. Type I IFN (IFN-α/β) controls systemic replication, and type III IFN (IFN-λ) controls MNV persistence in the intestinal epithelium. In this article, we review recent findings in the MNV model, highlighting the role of IFNs and innate immunity in clearing persistent viral infection, and discussing the broader implications of these findings for control of persistent human infections.
Collapse
Affiliation(s)
- Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA.
| | - Bridget A Robinson
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Jacob A Van Winkle
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
41
|
MERS-CoV: Understanding the Latest Human Coronavirus Threat. Viruses 2018; 10:v10020093. [PMID: 29495250 PMCID: PMC5850400 DOI: 10.3390/v10020093] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/28/2018] [Accepted: 02/02/2018] [Indexed: 12/19/2022] Open
Abstract
Human coronaviruses cause both upper and lower respiratory tract infections in humans. In 2012, a sixth human coronavirus (hCoV) was isolated from a patient presenting with severe respiratory illness. The 60-year-old man died as a result of renal and respiratory failure after admission to a hospital in Jeddah, Saudi Arabia. The aetiological agent was eventually identified as a coronavirus and designated Middle East respiratory syndrome coronavirus (MERS-CoV). MERS-CoV has now been reported in more than 27 countries across the Middle East, Europe, North Africa and Asia. As of July 2017, 2040 MERS-CoV laboratory confirmed cases, resulting in 712 deaths, were reported globally, with a majority of these cases from the Arabian Peninsula. This review summarises the current understanding of MERS-CoV, with special reference to the (i) genome structure; (ii) clinical features; (iii) diagnosis of infection; and (iv) treatment and vaccine development.
Collapse
|
42
|
Structural Insights in Multifunctional Papillomavirus Oncoproteins. Viruses 2018; 10:v10010037. [PMID: 29342959 PMCID: PMC5795450 DOI: 10.3390/v10010037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 02/08/2023] Open
Abstract
Since their discovery in the mid-eighties, the main papillomavirus oncoproteins E6 and E7 have been recalcitrant to high-resolution structure analysis. However, in the last decade a wealth of three-dimensional information has been gained on both proteins whether free or complexed to host target proteins. Here, we first summarize the diverse activities of these small multifunctional oncoproteins. Next, we review the available structural data and the new insights they provide about the evolution of E6 and E7, their multiple interactions and their functional variability across human papillomavirus (HPV) species.
Collapse
|
43
|
Marsili G, Perrotti E, Remoli AL, Acchioni C, Sgarbanti M, Battistini A. IFN Regulatory Factors and Antiviral Innate Immunity: How Viruses Can Get Better. J Interferon Cytokine Res 2018; 36:414-32. [PMID: 27379864 DOI: 10.1089/jir.2016.0002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The interferon regulatory factor (IRF) family consists of transcriptional regulators that exert multifaceted and versatile functions in multiple biological processes. Their crucial role as central mediators in the establishment and execution of host immunity in response to pathogen-derived signals downstream pattern recognition receptors (PRRs) makes IRFs a hallmark of the host antiviral response. They function as hub molecules at the crossroad of different signaling pathways for the induction of interferon (IFN) and inflammatory cytokines, as well as of antiviral and immunomodulatory genes even in an IFN-independent manner. By regulating the development and activity of immune cells, IRFs also function as a bridge between innate and adaptive responses. As such, IRFs represent attractive and compulsive targets in viral strategies to subvert antiviral signaling. In this study, we discuss current knowledge on the wide array of strategies put in place by pathogenic viruses to evade, subvert, and/or hijack these essential components of host antiviral immunity.
Collapse
Affiliation(s)
- Giulia Marsili
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità , Rome, Italy
| | - Edvige Perrotti
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità , Rome, Italy
| | - Anna Lisa Remoli
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità , Rome, Italy
| | - Chiara Acchioni
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità , Rome, Italy
| | - Marco Sgarbanti
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità , Rome, Italy
| | - Angela Battistini
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità , Rome, Italy
| |
Collapse
|
44
|
Cedillo-Barrón L, García-Cordero J, Shrivastava G, Carrillo-Halfon S, León-Juárez M, Bustos Arriaga J, León Valenzuela P, Gutiérrez Castañeda B. The Role of Flaviviral Proteins in the Induction of Innate Immunity. Subcell Biochem 2018; 88:407-442. [PMID: 29900506 DOI: 10.1007/978-981-10-8456-0_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Flaviviruses are positive, single-stranded, enveloped cytoplasmic sense RNA viruses that cause a variety of important diseases worldwide. Among them, Zika virus, West Nile virus, Japanese encephalitis virus, and Dengue virus have the potential to cause severe disease. Extensive studies have been performed to elucidate the structure and replication strategies of flaviviruses, and current studies are aiming to unravel the complex molecular interactions between the virus and host during the very early stages of infection. The outcomes of viral infection and rapid establishment of the antiviral state, depends on viral detection by pathogen recognition receptors and rapid initiation of signalling cascades to induce an effective innate immune response. Extracellular and intracellular pathogen recognition receptors play a crucial role in detecting flavivirus infection and inducing a robust antiviral response. One of the main hallmarks of flaviviral nonstructural proteins is their multiple strategies to antagonise the interferon system. In this chapter, we summarize the molecular characteristics of flaviviral proteins and discuss how viral proteins target different components of the interferon signalling pathway by blocking phosphorylation, enhancing degradation, and downregulating the expression of major components of the Janus kinase/signal transducer and activator of transcription pathway. We also discuss how the interactions of viral proteins with host proteins facilitate viral pathogenesis. Due to the lack of antivirals or prophylactic treatments for many flaviviral infections, it is necessary to fully elucidate how these viruses disrupt cellular processes to influence pathogenesis and disease outcomes.
Collapse
Affiliation(s)
- L Cedillo-Barrón
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico.
| | - J García-Cordero
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - G Shrivastava
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - S Carrillo-Halfon
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - M León-Juárez
- Department of Immunobiochemistry, National Institute of Perinatology, México City, Mexico
| | - J Bustos Arriaga
- Unidad de Biomedicina. Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autonoma de México, Edo. de México, Mexico
| | - Pc León Valenzuela
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - B Gutiérrez Castañeda
- Immunology Department UMF Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autonoma de México, Edo. de México, Mexico
| |
Collapse
|
45
|
Ignatieva EV, Igoshin AV, Yudin NS. A database of human genes and a gene network involved in response to tick-borne encephalitis virus infection. BMC Evol Biol 2017; 17:259. [PMID: 29297316 PMCID: PMC5751789 DOI: 10.1186/s12862-017-1107-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Tick-borne encephalitis is caused by the neurotropic, positive-sense RNA virus, tick-borne encephalitis virus (TBEV). TBEV infection can lead to a variety of clinical manifestations ranging from slight fever to severe neurological illness. Very little is known about genetic factors predisposing to severe forms of disease caused by TBEV. The aims of the study were to compile a catalog of human genes involved in response to TBEV infection and to rank genes from the catalog based on the number of neighbors in the network of pairwise interactions involving these genes and TBEV RNA or proteins. RESULTS Based on manual review and curation of scientific publications a catalog comprising 140 human genes involved in response to TBEV infection was developed. To provide access to data on all genes, the TBEVhostDB web resource ( http://icg.nsc.ru/TBEVHostDB/ ) was created. We reconstructed a network formed by pairwise interactions between TBEV virion itself, viral RNA and viral proteins and 140 genes/proteins from TBEVHostDB. Genes were ranked according to the number of interactions in the network. Two genes/proteins (CCR5 and IFNAR1) that had maximal number of interactions were revealed. It was found that the subnetworks formed by CCR5 and IFNAR1 and their neighbors were a fragments of two key pathways functioning during the course of tick-borne encephalitis: (1) the attenuation of interferon-I signaling pathway by the TBEV NS5 protein that targeted peptidase D; (2) proinflammation and tissue damage pathway triggered by chemokine receptor CCR5 interacting with CD4, CCL3, CCL4, CCL2. Among nine genes associated with severe forms of TBEV infection, three genes/proteins (CCR5, IL10, ARID1B) were found to have protein-protein interactions within the network, and two genes/proteins (IFNL3 and the IL10, that was just mentioned) were up- or down-regulated in response to TBEV infection. Based on this finding, potential mechanisms for participation of CCR5, IL10, ARID1B, and IFNL3 in the host response to TBEV infection were suggested. CONCLUSIONS A database comprising 140 human genes involved in response to TBEV infection was compiled and the TBEVHostDB web resource, providing access to all genes was created. This is the first effort of integrating and unifying data on genetic factors that may predispose to severe forms of diseases caused by TBEV. The TBEVHostDB could potentially be used for assessment of risk factors for severe forms of tick-borne encephalitis and for the design of personalized pharmacological strategies for the treatment of TBEV infection.
Collapse
Affiliation(s)
- Elena V Ignatieva
- Laboratory of Evolutionary Bioinformatics and Theoretical Genetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Center for Brain Neurobiology and Neurogenetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Alexander V Igoshin
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nikolay S Yudin
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
46
|
DUSP1 regulates apoptosis and cell migration, but not the JIP1-protected cytokine response, during Respiratory Syncytial Virus and Sendai Virus infection. Sci Rep 2017; 7:17388. [PMID: 29234123 PMCID: PMC5727028 DOI: 10.1038/s41598-017-17689-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022] Open
Abstract
The host antiviral response involves the induction of interferons and proinflammatory cytokines, but also the activation of cell death pathways, including apoptosis, to limit viral replication and spreading. This host defense is strictly regulated to eliminate the infection while limiting tissue damage that is associated with virus pathogenesis. Post-translational modifications, most notably phosphorylation, are key regulators of the antiviral defense implying an important role of protein phosphatases. Here, we investigated the role of the dual-specificity phosphatase 1 (DUSP1) in the host defense against human respiratory syncytial virus (RSV), a pathogenic virus of the Pneumoviridae family, and Sendai virus (SeV), a model virus being developed as a vector for anti-RSV vaccine. We found that DUSP1 is upregulated before being subjected to proteasomal degradation. DUSP1 does not inhibit the antiviral response, but negatively regulates virus-induced JNK/p38 MAPK phosphorylation. Interaction with the JNK-interacting protein 1 scaffold protein prevents dephosphorylation of JNK by DUSP1, likely explaining that AP-1 activation and downstream cytokine production are protected from DUSP1 inhibition. Importantly, DUSP1 promotes SeV-induced apoptosis and suppresses cell migration in RSV-infected cells. Collectively, our data unveils a previously unrecognized selective role of DUSP1 in the regulation of tissue damage and repair during infections by RSV and SeV.
Collapse
|
47
|
The regulatory role of protein phosphorylation in human gammaherpesvirus associated cancers. Virol Sin 2017; 32:357-368. [PMID: 29116588 PMCID: PMC6704201 DOI: 10.1007/s12250-017-4081-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
Activation of specific sets of protein kinases by intracellular signal molecules
has become more and more apparent in the past decade. Phosphorylation, one of key
posttranslational modification events, is activated by kinase or regulatory protein
and is vital for controlling many physiological functions of eukaryotic cells such
as cell proliferation, differentiation, malignant transformation, and signal
transduction mediated by external stimuli. Moreovers, the reversible modification of
phosphorylation and dephosphorylation can result in different features of the target
substrate molecules including DNA binding, protein-protein interaction, subcellular
location and enzymatic activity, and is often hijacked by viral infection.
Epstein-Barr virus (EBV) and Kaposi’s sarcomaassociated herpesvirus (KSHV), two
human oncogenic gamma-herpesviruses, are shown to tightly associate with many
malignancies. In this review, we summarize the recent progresses on understanding of
molecular properties and regulatory modes of cellular and viral proteins
phosphorylation influenced by these two tumor viruses, and highlight the potential
therapeutic targets and strategies against their related cancers. ![]()
Collapse
|
48
|
Xu X, Chai K, Chen Y, Lin Y, Zhang S, Li X, Qiao W, Tan J. Interferon activates promoter of Nmi gene via interferon regulator factor-1. Mol Cell Biochem 2017; 441:165-171. [PMID: 28913576 DOI: 10.1007/s11010-017-3182-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/01/2017] [Indexed: 11/28/2022]
Abstract
N-Myc interactor (Nmi) is reported to participate in many activities, such as signaling transduction, transcription regulation, and antiviral responses. As Nmi may play important roles in interferon (IFN)-induced responses, we investigated the mechanism how Nmi protein is regulated. We identified and cloned the promoter of Nmi gene. Sequence analysis and luciferase assays shown that an IFN-stimulated response element (ISRE) and a GC box in the promoter were essential for the basal transcription activity of Nmi gene. We also found that interferon regulatory factor 1 (IRF-1) could activate transcription of Nmi by binding to the ISRE in the promoter. Knockdown of IRF-1 decreases IFN-induced Nmi transcription. These results revealed that IRF-1 is involved in the IFN-inducible expression of Nmi.
Collapse
Affiliation(s)
- Xiao Xu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Keli Chai
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuhang Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yongquan Lin
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Suzhen Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Li
- Biological Experiment Center, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
49
|
Kaur R, Casey J, Pichichero M. Differences in innate immune response gene regulation in the middle ear of children who are otitis prone and in those not otitis prone. Am J Rhinol Allergy 2017; 30:218-223. [PMID: 28124644 DOI: 10.2500/ajra.2016.30.4393] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Acute otitis media (AOM) causes an inflammatory response in the middle ear. We assessed differences in innate immune responses involved in bacterial defense at onset of AOM in children who were stringently defined as otitis prone (sOP) and children not otitis prone (NOP). STUDY DESIGN Innate immune genes analysis from middle ear fluid (MEF) samples of children. METHODS Genes of toll-like receptors (TLR), nod-like and retinoic acid-inducible gene-I-like receptors, downstream effectors important for inflammation and apoptosis, including cytokines and chemokines, were studied from MEF samples by using a real-time polymerase chain reaction array. Protein levels of differentially regulated genes were measured by Luminex. RESULTS Gene expression in MEF among children who were sOP was significantly different in upregulation of interleukin 8, secretory leukocyte peptidase inhibitor, and chemokine (C-C motif) ligand 3, and in downregulation of interferon regulatory factor 7 and its related signaling molecules interferon alpha, Toll-like receptor adaptor molecule 2, chemokine (C-C motif) ligand 5, and mitogen-activated protein kinase 8 compared with children who were NOP. Differences in innate gene regulation were similar when AOM was caused by Streptococcus pneumoniae or nontypeable Haemophilus influenzae. CONCLUSION Innate-immune response genes are differentially regulated in children who were sOP compared with children with NOP.
Collapse
Affiliation(s)
- Ravinder Kaur
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, New York, USA
| | | | | |
Collapse
|
50
|
Tylee DS, Hess JL, Quinn TP, Barve R, Huang H, Zhang-James Y, Chang J, Stamova BS, Sharp FR, Hertz-Picciotto I, Faraone SV, Kong SW, Glatt SJ. Blood transcriptomic comparison of individuals with and without autism spectrum disorder: A combined-samples mega-analysis. Am J Med Genet B Neuropsychiatr Genet 2017; 174:181-201. [PMID: 27862943 PMCID: PMC5499528 DOI: 10.1002/ajmg.b.32511] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/21/2016] [Indexed: 12/25/2022]
Abstract
Blood-based microarray studies comparing individuals affected with autism spectrum disorder (ASD) and typically developing individuals help characterize differences in circulating immune cell functions and offer potential biomarker signal. We sought to combine the subject-level data from previously published studies by mega-analysis to increase the statistical power. We identified studies that compared ex vivo blood or lymphocytes from ASD-affected individuals and unrelated comparison subjects using Affymetrix or Illumina array platforms. Raw microarray data and clinical meta-data were obtained from seven studies, totaling 626 affected and 447 comparison subjects. Microarray data were processed using uniform methods. Covariate-controlled mixed-effect linear models were used to identify gene transcripts and co-expression network modules that were significantly associated with diagnostic status. Permutation-based gene-set analysis was used to identify functionally related sets of genes that were over- and under-expressed among ASD samples. Our results were consistent with diminished interferon-, EGF-, PDGF-, PI3K-AKT-mTOR-, and RAS-MAPK-signaling cascades, and increased ribosomal translation and NK-cell related activity in ASD. We explored evidence for sex-differences in the ASD-related transcriptomic signature. We also demonstrated that machine-learning classifiers using blood transcriptome data perform with moderate accuracy when data are combined across studies. Comparing our results with those from blood-based studies of protein biomarkers (e.g., cytokines and trophic factors), we propose that ASD may feature decoupling between certain circulating signaling proteins (higher in ASD samples) and the transcriptional cascades which they typically elicit within circulating immune cells (lower in ASD samples). These findings provide insight into ASD-related transcriptional differences in circulating immune cells. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel S. Tylee
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab); Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; SUNY Upstate Medical University; Syracuse, NY, U.S.A
| | - Jonathan L. Hess
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab); Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; SUNY Upstate Medical University; Syracuse, NY, U.S.A
| | - Thomas P. Quinn
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab); Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; SUNY Upstate Medical University; Syracuse, NY, U.S.A
| | - Rahul Barve
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab); Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; SUNY Upstate Medical University; Syracuse, NY, U.S.A
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Yanli Zhang-James
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab); Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; SUNY Upstate Medical University; Syracuse, NY, U.S.A
| | - Jeffrey Chang
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, U.S.A
| | - Boryana S. Stamova
- Department of Neurology, UC Davis School of Medicine, Sacramento, CA, USA
| | - Frank R. Sharp
- Department of Neurology, UC Davis School of Medicine, Sacramento, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and UC Davis MIND Institute, School of Medicine, Davis, CA
| | - Stephen V. Faraone
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab); Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; SUNY Upstate Medical University; Syracuse, NY, U.S.A,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School, Boston, MA, U.S.A
| | - Stephen J. Glatt
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab); Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; SUNY Upstate Medical University; Syracuse, NY, U.S.A,To whom correspondence should be addressed: SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, Phone: (315) 464-7742,
| |
Collapse
|