1
|
Gent V, Lu YJ, Lukhele S, Dhar N, Dangor Z, Hosken N, Malley R, Madhi SA, Kwatra G. Surface protein distribution in Group B Streptococcus isolates from South Africa and identifying vaccine targets through in silico analysis. Sci Rep 2024; 14:22665. [PMID: 39349584 PMCID: PMC11442663 DOI: 10.1038/s41598-024-73175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Group B Streptococcus (GBS) is a major cause of pneumonia, sepsis, and meningitis in infants younger than 3 months of age. Furthermore, GBS infection in pregnant women is associated with stillbirths and pre-term delivery. It also causes disease in immunocompromised adults and the elderly, but the highest incidence of the disease occurs in neonates and young infants. At this time, there are no licensed vaccines against GBS. Complete GBS genome sequencing has helped identify genetically conserved and immunogenic proteins, which could serve as vaccine immunogens. In this study, in silico reverse vaccinology method were used to evaluate the prevalence and conservation of GBS proteins in invasive and colonizing isolates from South African infants and women, respectively. Furthermore, this study aimed to predict potential GBS vaccine targets by evaluating metrics such as antigenicity, physico-chemical properties, subcellular localization, secondary and tertiary structures, and epitope prediction and conservation. A total of 648 invasive and 603 colonizing GBS isolate sequences were screened against a panel of 89 candidate GBS proteins. Ten of the 89 proteins were highly genetically conserved in invasive and colonizing GBS isolates, nine of which were computationally inferred proteins (gbs2106, SAN_1577, SAN_0356, SAN_1808, SAN_1685, SAN_0413, SAN_0990, SAN_1040, SAN_0226) and one was the surface Immunogenic Protein (SIP). Additionally, the nine proteins were predicted to be more antigenic than the SIP protein (antigenicity score of > 0.6498), highlighting their potential as GBS vaccine antigen targets.
Collapse
Affiliation(s)
- Vicky Gent
- South African Medical Research Council: Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ying-Jie Lu
- Division of Infectious Diseases, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sindiswa Lukhele
- South African Medical Research Council: Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nisha Dhar
- South African Medical Research Council: Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ziyaad Dangor
- South African Medical Research Council: Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nancy Hosken
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Richard Malley
- Division of Infectious Diseases, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shabir A Madhi
- South African Medical Research Council: Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gaurav Kwatra
- South African Medical Research Council: Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Department of Clinical Microbiology, Christian Medical College, Vellore, India.
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Mizukoshi F, Kimura H, Sugimoto S, Kimura R, Nagasawa N, Hayashi Y, Hashimoto K, Hosoya M, Shirato K, Ryo A. Molecular Evolutionary Analyses of the Fusion Genes in Human Parainfluenza Virus Type 4. Microorganisms 2024; 12:1633. [PMID: 39203475 PMCID: PMC11356533 DOI: 10.3390/microorganisms12081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
The human parainfluenza virus type 4 (HPIV4) can be classified into two distinct subtypes, 4a and 4b. The full lengths of the fusion gene (F gene) of 48 HPIV4 strains collected during the period of 1966-2022 were analyzed. Based on these gene sequences, the time-scaled evolutionary tree was constructed using Bayesian Markov chain Monte Carlo methods. A phylogenetic tree showed that the first division of the two subtypes occurred around 1823, and the most recent common ancestors of each type, 4a and 4b, existed until about 1940 and 1939, respectively. Although the mean genetic distances of all strains were relatively wide, the distances in each subtype were not wide, indicating that this gene was conserved in each subtype. The evolutionary rates of the genes were relatively low (4.41 × 10-4 substitutions/site/year). Moreover, conformational B-cell epitopes were predicted in the apex of the trimer fusion protein. These results suggest that HPIV4 subtypes diverged 200 years ago and the progenies further diverged and evolved.
Collapse
Affiliation(s)
- Fuminori Mizukoshi
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama-shi 208-0011, Tokyo, Japan; (S.S.); (K.S.); (A.R.)
| | - Hirokazu Kimura
- Department of Health Science, Graduate School of Health Sciences, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (N.N.); (Y.H.)
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa-shi 377-0008, Gunma, Japan
- Department of Clinical Engineering, Faculty of Medical Technology, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan
| | - Satoko Sugimoto
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama-shi 208-0011, Tokyo, Japan; (S.S.); (K.S.); (A.R.)
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Musashimurayama-shi 208-0011, Tokyo, Japan
| | - Ryusuke Kimura
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi-shi 371-8511, Gunma, Japan;
| | - Norika Nagasawa
- Department of Health Science, Graduate School of Health Sciences, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (N.N.); (Y.H.)
| | - Yuriko Hayashi
- Department of Health Science, Graduate School of Health Sciences, Gunma Paz University, Takasaki-shi 370-0006, Gunma, Japan; (N.N.); (Y.H.)
| | - Koichi Hashimoto
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima-shi 960-1295, Fukushima, Japan;
| | - Mitsuaki Hosoya
- Department of Perinatology and Pediatrics for Regional Medical Support, Fukushima Medical University, Fukushima-shi 960-1295, Fukushima, Japan;
| | - Kazuya Shirato
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama-shi 208-0011, Tokyo, Japan; (S.S.); (K.S.); (A.R.)
| | - Akihide Ryo
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama-shi 208-0011, Tokyo, Japan; (S.S.); (K.S.); (A.R.)
| |
Collapse
|
3
|
Das NC, Gorai S, Gupta PSS, Panda SK, Rana MK, Mukherjee S. Immune targeting of filarial glutaredoxin through a multi-epitope peptide-based vaccine: A reverse vaccinology approach. Int Immunopharmacol 2024; 133:112120. [PMID: 38657497 DOI: 10.1016/j.intimp.2024.112120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Despite the efforts of global programme to eliminate lymphatic filariasis (GPELF), the threat of lymphatic filariasis (LF) still looms over humanity in terms of long-term disabilities, and morbidities across the globe. In light of this situation, investigators have chosen to focus on the development of immunotherapeutics targeting the physiologically important filarial-specific proteins. Glutaredoxin (16.43 kDa) plays a pivotal role in filarial redox biology, serving as a vital contributor. In the context of the intra-host survival of filarial parasites, this antioxidant helps in mitigating the oxidative stress imposed by the host immune system. Given its significant contribution, the development of a vaccine targeting glutaredoxin holds promise as a new avenue for achieving a filaria-free world. Herein, multi-epitope-based vaccine was designed using advanced immunoinformatics approach. Initially, 4B-cell epitopes and 6 T-cell epitopes (4 MHC I and 2 MHC II) were identified from the 146 amino acid long sequence of glutaredoxin of the human filarid, Wuchereria bancrofti. Subsequent clustering of these epitopes with linker peptides finalized the vaccine structure. To boost TLR-mediated innate immunity, TLR-specific adjuvants were incorporated into the designed vaccine. After that, experimental analyses confirm the designed vaccine, Vac4 as anefficient ligand of human TLR5 to elicit protective innate immunity against filarial glutaredoxin. Immune simulation further demonstrated abundant levels of IgG and IgM as crucial contributors in triggering vaccine-induced adaptive responses in the recipients. Hence, to facilitate the validation of immunogenicity of the designed vaccine, Vac4 was cloned in silico in pET28a(+) expression vector for recombinant production. Taken together, our findings suggest that vaccine-mediated targeting of filarial glutaredoxin could be a future option for intervening LF on a global scale.
Collapse
Affiliation(s)
- Nabarun Chandra Das
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713 340, West Bengal, India
| | - Sampa Gorai
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713 340, West Bengal, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences & Bioengineering, D. Y. Patil International University, Akurdi, Pune 411044, India
| | - Saroj Kumar Panda
- Department of Chemistry, Indian Institute of Science Education and Research, Berhampur, India
| | - Malay Kumar Rana
- Department of Chemistry, Indian Institute of Science Education and Research, Berhampur, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713 340, West Bengal, India.
| |
Collapse
|
4
|
Yan Z, Pan R, Zhang J, Sun J, Ma X, Dong N, Yao X, Wei J, Liu K, Qiu Y, Sealey K, Nichols H, Jarvis MA, Upton M, Li X, Ma Z, Liu J, Li B. Immunogenicity and Protective Capacity of Sugar ABC Transporter Substrate-Binding Protein against Streptococcus suis Serotype 2, 7 and 9 Infection in Mice. Vaccines (Basel) 2024; 12:544. [PMID: 38793795 PMCID: PMC11126002 DOI: 10.3390/vaccines12050544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Background:Streptococcus suis (S. suis) is a Gram-positive bacterium that causes substantial disease in pigs. S. suis is also an emerging zoonoses in humans, primarily in Asia, through the consumption of undercooked pork and the handling of infected pig meat as well as carcasses. The complexity of S. suis epidemiology, characterized by the presence of multiple bacterial serotypes and strains with diverse sequence types, identifies a critical need for a universal vaccine with the ability to confer cross-protective immunity. Highly conserved immunogenic proteins are generally considered good candidate antigens for subunit universal vaccines. Methods: In this study, the cross-protection of the sugar ABC transporter substrate-binding protein (S-ABC), a surface-associated immunogenic protein of S. suis, was examined in mice for evaluation as a universal vaccine candidate. Results: S-ABC was shown to be highly conserved, with 97% amino acid sequence identity across 31 S. suis strains deposited in GenBank. Recombinantly expressed S-ABC (rS-ABC) was recognized via rabbit sera specific to S. suis serotype 2. The immunization of mice with rS-ABC induced antigen-specific antibody responses, as well as IFN-γ and IL-4, in multiple organs, including the lungs. rS-ABC immunization conferred high (87.5% and 100%) protection against challenges with S. suis serotypes 2 and 9, demonstrating high cross-protection against these serotypes. Protection, albeit lower (50%), was also observed in mice challenged with S. suis serotype 7. Conclusions: These data identify S-ABC as a promising antigenic target within a universal subunit vaccine against S. suis.
Collapse
Affiliation(s)
- Zujie Yan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Ruyi Pan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Xiaochun Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Nihua Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Xiaohui Yao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Katie Sealey
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK;
| | | | - Michael A. Jarvis
- The Vaccine Group Ltd., Plymouth PL6 8BU, UK; (H.N.)
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK; (M.U.); (X.L.)
| | - Mathew Upton
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK; (M.U.); (X.L.)
| | - Xiangdong Li
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK; (M.U.); (X.L.)
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (Z.Y.); (R.P.); (J.Z.); (X.M.); (N.D.); (X.Y.); (J.W.); (K.L.); (Y.Q.); (Z.M.)
| |
Collapse
|
5
|
Arega AM, Dhal AK, Pattanaik KP, Nayak S, Mahapatra RK. An Immunoinformatics-Based Study of Mycobacterium tuberculosis Region of Difference-2 Uncharacterized Protein (Rv1987) as a Potential Subunit Vaccine Candidate for Preliminary Ex Vivo Analysis. Appl Biochem Biotechnol 2024; 196:2367-2395. [PMID: 37498378 DOI: 10.1007/s12010-023-04658-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/28/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is the pathogen that causes tuberculosis and develops resistance to many of the existing drugs. The sole licensed TB vaccine, BCG, is unable to provide a comprehensive defense. So, it is crucial to maintain the immunological response to eliminate tuberculosis. Our previous in silico study reported five uncharacterized proteins as potential vaccine antigens. In this article, we considered the uncharacterized Mtb H37Rv regions of difference (RD-2) Rv1987 protein as a promising vaccine candidate. The vaccine quality of the protein was analyzed using reverse vaccinology and immunoinformatics-based quality-checking parameters followed by an ex vivo preliminary investigation. In silico analysis of Rv1987 protein predicted it as surface localized, secretory, single helix, antigenic, non-allergenic, and non-homologous to the host protein. Immunoinformatics analysis of Rv1987 by CD4 + and CD8 + T-cells via MHC-I and MHC-II binding affinity and presence of B-cell epitope predicted its immunogenicity. The docked complex analysis of the 3D model structure of the protein with immune cell receptor TLR-4 revealed the protein's capability for potential interaction. Furthermore, the target protein-encoded gene Rv1987 was cloned, over-expressed, purified, and analyzed by mass spectrometry (MS) to report the target peptides. The qRT-PCR gene expression analysis shows that it is capable of activating macrophages and significantly increasing the production of a number of key cytokines (TNF-α, IL-1β, and IL-10). Our in-silico analysis and ex vivo preliminary investigations revealed the immunogenic potential of the target protein. These findings suggest that the Rv1987 be undertaken as a potent subunit vaccine antigen and that further animal model immuno-modulation studies would boost the novel TB vaccine discovery and/or BCG vaccine supplement pipeline.
Collapse
Affiliation(s)
- Aregitu Mekuriaw Arega
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha, India
- National Veterinary Institute, Debre Zeit, Ethiopia
| | - Ajit Kumar Dhal
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha, India
| | | | - Sasmita Nayak
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha, India
| | | |
Collapse
|
6
|
Liang S, Zhang S, Bao Y, Zhang Y, Liu X, Yao H, Liu G. Combined Immunoinformatics to Design and Evaluate a Multi-Epitope Vaccine Candidate against Streptococcus suis Infection. Vaccines (Basel) 2024; 12:137. [PMID: 38400121 PMCID: PMC10892848 DOI: 10.3390/vaccines12020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Streptococcus suis (S. suis) is a zoonotic pathogen with multiple serotypes, and thus, multivalent vaccines generating cross-protection against S. suis infections are urgently needed to improve animal welfare and reduce antibiotic abuse. In this study, we established a systematic and comprehensive epitope prediction pipeline based on immunoinformatics. Ten candidate epitopes were ultimately selected for building the multi-epitope vaccine (MVSS) against S. suis infections. The ten epitopes of MVSS were all derived from highly conserved, immunogenic, and virulence-associated surface proteins in S. suis. In silico analyses revealed that MVSS was structurally stable and affixed with immune receptors, indicating that it would likely trigger strong immunological reactions in the host. Furthermore, mice models demonstrated that MVSS elicited high titer antibodies and diminished damages in S. suis serotype 2 and Chz infection, significantly reduced sequelae, induced cytokine transcription, and decreased organ bacterial burdens after triple vaccination. Meanwhile, anti-rMVSS serum inhibited five important S. suis serotypes in vitro, exerted beneficial protective effects against S. suis infections and significantly reduced histopathological damage in mice. Given the above, it is possible to develop MVSS as a universal subunit vaccine against multiple serotypes of S. suis infections.
Collapse
Affiliation(s)
- Song Liang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shidan Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinli Bao
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province University, College of Life Science, Longyan University, Longyan 364012, China
| | - Yumin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyi Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangjin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China
| |
Collapse
|
7
|
Grąźlewska W, Holec-Gąsior L, Sołowińska K, Chmielewski T, Fiecek B, Contreras M. Epitope Mapping of BmpA and BBK32 Borrelia burgdorferi Sensu Stricto Antigens for the Design of Chimeric Proteins with Potential Diagnostic Value. ACS Infect Dis 2023; 9:2160-2172. [PMID: 37803965 PMCID: PMC10722512 DOI: 10.1021/acsinfecdis.3c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Indexed: 10/08/2023]
Abstract
Lyme disease is a tick-borne zoonosis caused by Gram-negative bacteria belonging to the Borrelia burgdorferi sensu lato (s.l.) group. In this study, IgM- and IgG-specific linear epitopes of two B. burgdorferi sensu stricto (s.s.) antigens BmpA and BBK32 were mapped using a polypeptide array. Subsequently, two chimeric proteins BmpA-BBK32-M and BmpA-BBK32-G were designed to validate the construction of chimeras using the identified epitopes for the detection of IgM and IgG, respectively, by ELISA. IgG-ELISA based on the BmpA-BBK32-G antigen showed 71% sensitivity and 95% specificity, whereas a slightly lower diagnostic utility was obtained for IgM-ELISA based on BmpA-BBK32-M, where the sensitivity was also 71% but the specificity decreased to 89%. The reactivity of chimeric proteins with nondedicated antibodies was much lower. These results suggest that the identified epitopes may be useful in the design of new forms of antigens to increase the effectiveness of Lyme disease serodiagnosis. It has also been proven that appropriate selection of epitopes enables the construction of chimeric proteins exhibiting reactivity with a specific antibody isotype.
Collapse
Affiliation(s)
- Weronika Grąźlewska
- Department
of Molecular Biotechnology and Microbiology, Faculty of Chemistry, University of Gdańsk Technology, 80-233 Gdańsk, Poland
- SaBio,
Instituto de Investigación en Recursos Cinegéticos IREC−CSIC-UCLM-JCCM, 13005 Ciudad Real, Spain
| | - Lucyna Holec-Gąsior
- Department
of Molecular Biotechnology and Microbiology, Faculty of Chemistry, University of Gdańsk Technology, 80-233 Gdańsk, Poland
| | - Karolina Sołowińska
- Department
of Molecular Biotechnology and Microbiology, Faculty of Chemistry, University of Gdańsk Technology, 80-233 Gdańsk, Poland
| | - Tomasz Chmielewski
- Department
of Parasitology and Diseases Transmitted by Vectors, National Institute of Public Health NIH - National Research Institute, 00-791 Warsaw, Poland
| | - Beata Fiecek
- Department
of Parasitology and Diseases Transmitted by Vectors, National Institute of Public Health NIH - National Research Institute, 00-791 Warsaw, Poland
| | - Marinela Contreras
- SaBio,
Instituto de Investigación en Recursos Cinegéticos IREC−CSIC-UCLM-JCCM, 13005 Ciudad Real, Spain
| |
Collapse
|
8
|
Kumar N, Bajiya N, Patiyal S, Raghava GPS. Multi-perspectives and challenges in identifying B-cell epitopes. Protein Sci 2023; 32:e4785. [PMID: 37733481 PMCID: PMC10578127 DOI: 10.1002/pro.4785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
The identification of B-cell epitopes (BCEs) in antigens is a crucial step in developing recombinant vaccines or immunotherapies for various diseases. Over the past four decades, numerous in silico methods have been developed for predicting BCEs. However, existing reviews have only covered specific aspects, such as the progress in predicting conformational or linear BCEs. Therefore, in this paper, we have undertaken a systematic approach to provide a comprehensive review covering all aspects associated with the identification of BCEs. First, we have covered the experimental techniques developed over the years for identifying linear and conformational epitopes, including the limitations and challenges associated with these techniques. Second, we have briefly described the historical perspectives and resources that maintain experimentally validated information on BCEs. Third, we have extensively reviewed the computational methods developed for predicting conformational BCEs from the structure of the antigen, as well as the methods for predicting conformational epitopes from the sequence. Fourth, we have systematically reviewed the in silico methods developed in the last four decades for predicting linear or continuous BCEs. Finally, we have discussed the overall challenge of identifying continuous or conformational BCEs. In this review, we only listed major computational resources; a complete list with the URL is available from the BCinfo website (https://webs.iiitd.edu.in/raghava/bcinfo/).
Collapse
Affiliation(s)
- Nishant Kumar
- Department of Computational BiologyIndraprastha Institute of Information TechnologyNew DelhiIndia
| | - Nisha Bajiya
- Department of Computational BiologyIndraprastha Institute of Information TechnologyNew DelhiIndia
| | - Sumeet Patiyal
- Department of Computational BiologyIndraprastha Institute of Information TechnologyNew DelhiIndia
| | - Gajendra P. S. Raghava
- Department of Computational BiologyIndraprastha Institute of Information TechnologyNew DelhiIndia
| |
Collapse
|
9
|
Takahashi T, Akagawa M, Kimura R, Sada M, Shirai T, Okayama K, Hayashi Y, Kondo M, Takeda M, Ryo A, Kimura H. Molecular evolutionary analyses of the fusion protein gene in human respirovirus 1. Virus Res 2023; 333:199142. [PMID: 37270034 PMCID: PMC10352714 DOI: 10.1016/j.virusres.2023.199142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Few evolutionary studies of the human respiratory virus (HRV) have been conducted, but most of them have focused on HRV3. In this study, the full-length fusion (F) genes in HRV1 strains collected from various countries were subjected to time-scaled phylogenetic, genome population size, and selective pressure analyses. Antigenicity analysis was performed on the F protein. The time-scaled phylogenetic tree using the Bayesian Markov Chain Monte Carlo method estimated that the common ancestor of the HRV1 F gene diverged in 1957 and eventually formed three lineages. Phylodynamic analyses showed that the genome population size of the F gene has doubled over approximately 80 years. Phylogenetic distances between the strains were short (< 0.02). No positive selection sites were detected for the F protein, whereas many negative selection sites were identified. Almost all conformational epitopes of the F protein, except one in each monomer, did not correspond to the neutralising antibody (NT-Ab) binding sites. These results suggest that the HRV1 F gene has constantly evolved over many years, infecting humans, while the gene may be relatively conserved. Mismatches between computationally predicted epitopes and NT-Ab binding sites may be partially responsible for HRV1 reinfection and other viruses such as HRV3 and respiratory syncytial virus.
Collapse
Affiliation(s)
- Tomoko Takahashi
- Iwate Prefectural Research Institute for Environmental Science and Public Health, Morioka-shi, Iwate 020-0857, Japan
| | - Mao Akagawa
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki-shi, Gunma 370-0006, Japan
| | - Ryusuke Kimura
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa-shi, Gunma 377-0008, Japan; Department of Bacteriology, Gunma University Graduate School of Medicine, Maebashi-shi, Gunma 371-8514, Japan
| | - Mitsuru Sada
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki-shi, Gunma 370-0006, Japan; Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa-shi, Gunma 377-0008, Japan
| | - Tatsuya Shirai
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa-shi, Gunma 377-0008, Japan
| | - Kaori Okayama
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki-shi, Gunma 370-0006, Japan
| | - Yuriko Hayashi
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki-shi, Gunma 370-0006, Japan
| | - Mayumi Kondo
- Department of Clinical Engineering, Faculty of Medical Technology, Gunma Paz University, Takasaki-shi, Gunma 370-0006, Japan
| | - Makoto Takeda
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama-shi, Kanagawa 236-0004, Japan
| | - Hirokazu Kimura
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki-shi, Gunma 370-0006, Japan; Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa-shi, Gunma 377-0008, Japan.
| |
Collapse
|
10
|
Jethva PN, Gross ML. Hydrogen Deuterium Exchange and other Mass Spectrometry-based Approaches for Epitope Mapping. FRONTIERS IN ANALYTICAL SCIENCE 2023; 3:1118749. [PMID: 37746528 PMCID: PMC10512744 DOI: 10.3389/frans.2023.1118749] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Antigen-antibody interactions are a fundamental subset of protein-protein interactions responsible for the "survival of the fittest". Determining the interacting interface of the antigen, called an epitope, and that on the antibody, called a paratope, is crucial to antibody development. Because each antigen presents multiple epitopes (unique footprints), sophisticated approaches are required to determine the target region for a given antibody. Although X-ray crystallography, Cryo-EM, and nuclear magnetic resonance can provide atomic details of an epitope, they are often laborious, poor in throughput, and insensitive. Mass spectrometry-based approaches offer rapid turnaround, intermediate structural resolution, and virtually no size limit for the antigen, making them a vital approach for epitope mapping. In this review, we describe in detail the principles of hydrogen deuterium exchange mass spectrometry in application to epitope mapping. We also show that a combination of MS-based approaches can assist or complement epitope mapping and push the limit of structural resolution to the residue level. We describe in detail the MS methods used in epitope mapping, provide our perspective about the approaches, and focus on elucidating the role that HDX-MS is playing now and in the future by organizing a discussion centered around several improvements in prototype instrument/applications used for epitope mapping. At the end, we provide a tabular summary of the current literature on HDX-MS-based epitope mapping.
Collapse
Affiliation(s)
- Prashant N. Jethva
- Department of Chemistry, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St Louis, MO 63130, USA
| |
Collapse
|
11
|
Yan Z, Yao X, Pan R, Zhang J, Ma X, Dong N, Wei J, Liu K, Qiu Y, Sealey K, Nichols H, Jarvis MA, Upton M, Li X, Ma Z, Liu J, Li B. Subunit Vaccine Targeting Phosphate ABC Transporter ATP-Binding Protein, PstB, Provides Cross-Protection against Streptococcus suis Serotype 2, 7, and 9 in Mice. Vet Sci 2023; 10:vetsci10010048. [PMID: 36669049 PMCID: PMC9953333 DOI: 10.3390/vetsci10010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Streptococcus suis is a significant pathogen in pigs and a newly emerging zoonotic agent in humans. The presence of multiple serotypes and strains with diversified sequence types in pig herds highlights the need for the identification of broadly cross-reactive universal vaccine antigen targets, capable of providing cross-protection against S. suis infection. Subunit vaccines based on the conserved proteins shared between different S. suis serotypes are potential candidates for such a universally protective vaccine. In the present study, phosphate ABC transporter ATP-binding protein PstB (PstB), an immunogenic protein of the S. suis bacterium, was expressed and purified, and then subjected to cross-protection evaluation in mice. The PstB protein showed nearly 100% amino acid similarity across a panel of 31 S. suis isolates representing different serotypes, which were collected from different countries. A recombinant PstB (rPstB) protein (S. suis serotype 2) was recognized by rabbit sera specific to this serotype, and induced high levels of IFN-γ and IL-4 in mice immunized with the recombinant protein. These cytokines are considered important for protection against S. suis infection. Immunization of mice with rPstB resulted in an 87.5% protection against challenge with S. suis serotype 2 and 9 strains, suggesting a high level of cross-protection for S. suis serotypes 2 and 9. A lower protection rate (62.5%) was observed in mice challenged with the S. suis serotype 7 strain. These data demonstrate that PstB is a promising target antigen for development as a component of a universal subunit vaccine against multiple S. suis serotypes.
Collapse
Affiliation(s)
- Zujie Yan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Xiaohui Yao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Ruyi Pan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Xiaochun Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Nihua Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Katie Sealey
- School of Biomedical Sciences, University of Plymouth, Plymouth, Devon PL4 8AA, UK
| | - Hester Nichols
- The Vaccine Group Ltd., Plymouth, Derriford Research Facility, Devon PL6 8BX, UK
| | - Michael A. Jarvis
- School of Biomedical Sciences, University of Plymouth, Plymouth, Devon PL4 8AA, UK
- The Vaccine Group Ltd., Plymouth, Derriford Research Facility, Devon PL6 8BX, UK
| | - Mathew Upton
- School of Biomedical Sciences, University of Plymouth, Plymouth, Devon PL4 8AA, UK
| | - Xiangdong Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
- Correspondence: (J.L.); (B.L.)
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
- Correspondence: (J.L.); (B.L.)
| |
Collapse
|
12
|
Qi Y, Zheng P, Huang G. DeepLBCEPred: A Bi-LSTM and multi-scale CNN-based deep learning method for predicting linear B-cell epitopes. Front Microbiol 2023; 14:1117027. [PMID: 36910218 PMCID: PMC9992402 DOI: 10.3389/fmicb.2023.1117027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/17/2023] [Indexed: 02/24/2023] Open
Abstract
The epitope is the site where antigens and antibodies interact and is vital to understanding the immune system. Experimental identification of linear B-cell epitopes (BCEs) is expensive, is labor-consuming, and has a low throughput. Although a few computational methods have been proposed to address this challenge, there is still a long way to go for practical applications. We proposed a deep learning method called DeepLBCEPred for predicting linear BCEs, which consists of bi-directional long short-term memory (Bi-LSTM), feed-forward attention, and multi-scale convolutional neural networks (CNNs). We extensively tested the performance of DeepLBCEPred through cross-validation and independent tests on training and two testing datasets. The empirical results showed that the DeepLBCEPred obtained state-of-the-art performance. We also investigated the contribution of different deep learning elements to recognize linear BCEs. In addition, we have developed a user-friendly web application for linear BCEs prediction, which is freely available for all scientific researchers at: http://www.biolscience.cn/DeepLBCEPred/.
Collapse
Affiliation(s)
- Yue Qi
- School of Information Engineering, Shaoyang University, Shaoyang, Hunan, China
| | - Peijie Zheng
- School of Information Engineering, Shaoyang University, Shaoyang, Hunan, China
| | - Guohua Huang
- School of Information Engineering, Shaoyang University, Shaoyang, Hunan, China
| |
Collapse
|
13
|
Guo J, Yue X, Chang J, Zhang Z, Li J, Liu X. First identification of Nocardia seriolae GapA adhesion function and its three B-cell epitopes with cell-binding activity. JOURNAL OF FISH DISEASES 2022; 45:1845-1855. [PMID: 36048577 DOI: 10.1111/jfd.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Fish nocardiosis mainly caused by Nocardia seriolae (N. seriolae) is a serious threat to aquaculture. Bacterial adhesion to host cells mediated by adhesin is an initial step of pathogenesis. But it is not clear whether glyceraldehyde-3-phosphate dehydrogenase (GapA) is an adhesin of N. seriolae. Here, recombinant GapA protein (rGapA) was prokaryotic expressed, and its role in the bacterial adhesion to Ctenopharyngodon idella kidney cells was investigated by indirect immunofluorescence, protein-binding assay and adhesion inhibition assay. The results showed that an obvious green fluorescence was observed on the surface of the cells co-incubated with rGapA protein; the cytomembrane proteins of the cells pretreated with rGapA could react with anti-rGapA antibody; and the antibody significantly inhibited the adhesion ability of the bacteria. Subsequently, B-cell linear epitopes of GapA protein were identified by using a immunoinformatics approach combined with peptide ELISA and Western blot for the first time. It was found that four predicted epitopes (Ep58-69 , Ep139-150 , Ep186-197 , Ep318-329 ) could all react with anti-rGapA antibody and obviously inhibit the immunoreactivity between rGapA and anti-rGapA antibody, and they were confirmed as indeed B-cell linear epitopes of the protein. Furthermore, flow cytometry analysis found the percentage of positive cells co-incubated with FITC-labelled epitope peptides (Ep139-150 , Ep186-197 , Ep318-329 ) was significantly higher than those in the FITC-labelled Ep58-69 , unrelated control peptide and cell control. Collectively, GapA is an adhesin of N. seriolae, and epitope peptides (Ep139-150 , Ep186-197 , Ep318-329 ) possess cell-binding activity, which are potential candidates for developing a multiple epitopes-based adhesin vaccine against fish nocardiosis.
Collapse
Affiliation(s)
- Jiajing Guo
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Xiaozhen Yue
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Jiaojiao Chang
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Zhenyuan Zhang
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Jinnian Li
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Xuelan Liu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| |
Collapse
|
14
|
A Quantum Vaccinomics Approach for the Design and Production of MSP4 Chimeric Antigen for the Control of Anaplasma phagocytophilum Infections. Vaccines (Basel) 2022; 10:vaccines10121995. [PMID: 36560405 PMCID: PMC9784196 DOI: 10.3390/vaccines10121995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Anaplasma phagocytophilum Major surface protein 4 (MSP4) plays a role during infection and multiplication in host neutrophils and tick vector cells. Recently, vaccination trials with the A. phagocytophilum antigen MSP4 in sheep showed only partial protection against pathogen infection. However, in rabbits immunized with MSP4, this recombinant antigen was protective. Differences between rabbit and sheep antibody responses are probably associated with the recognition of non-protective epitopes by IgG of immunized lambs. To address this question, we applied quantum vaccinomics to identify and characterize MSP4 protective epitopes by a microarray epitope mapping using sera from vaccinated rabbits and sheep. The identified candidate protective epitopes or immunological quantum were used for the design and production of a chimeric protective antigen. Inhibition assays of A. phagocytophilum infection in human HL60 and Ixodes scapularis tick ISE6 cells evidenced protection by IgG from sheep and rabbits immunized with the chimeric antigen. These results supported that the design of new chimeric candidate protective antigens using quantum vaccinomics to improve the protective capacity of antigens in multiple hosts.
Collapse
|
15
|
The Correlation between Subolesin-Reactive Epitopes and Vaccine Efficacy. Vaccines (Basel) 2022; 10:vaccines10081327. [PMID: 36016215 PMCID: PMC9414912 DOI: 10.3390/vaccines10081327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Vaccination is an environmentally-friendly alternative for tick control. The tick antigen Subolesin (SUB) has shown protection in vaccines for the control of multiple tick species in cattle. Additionally, recent approaches in quantum vaccinomics have predicted SUB-protective epitopes and the peptide sequences involved in protein−protein interactions in this tick antigen. Therefore, the identification of B-cell−reactive epitopes by epitope mapping using a SUB peptide array could be essential as a novel strategy for vaccine development. Subolesin can be used as a model to evaluate the effectiveness of these approaches for the identification of protective epitopes related to vaccine protection and efficacy. In this study, the mapping of B-cell linear epitopes of SUB from three different tick species common in Uganda (Rhipicephalus appendiculatus, R. decoloratus, and Amblyomma variegatum) was conducted using serum samples from two cattle breeds immunized with SUB-based vaccines. The results showed that in cattle immunized with SUB from R. appendiculatus (SUBra) all the reactive peptides (Z-score > 2) recognized by IgG were also significant (Z-ratio > 1.96) when compared to the control group. Additionally, some of the reactive peptides recognized by IgG from the control group were also recognized in SUB cocktail−immunized groups. As a significant result, cattle groups that showed the highest vaccine efficacy were Bos indicus immunized with a SUB cocktail (92%), and crossbred cattle were immunized with SUBra (90%) against R. appendiculatus ticks; the IgG from these groups recognized overlapping epitopes from the peptide SPTGLSPGLSPVRDQPLFTFRQVGLICERMMKERESQIRDEYDHVLSAKLAEQYDTFVKFTYDQKRFEGATPSYLS (Z-ratio > 1.96), which partially corresponded to a Q38 peptide and the SUB protein interaction domain. These identified epitopes could be related to the protection and efficacy of the SUB-based vaccines, and new chimeras containing these protective epitopes could be designed using this new approach.
Collapse
|
16
|
Sun H, Liu J, Xiao P, Zhou Y, Li H, Shen M, Sun K, Wang X, Zhou M, Song D. Epitope mapping of antibodies in C-reactive protein assay kits by hydrogen-deuterium exchange mass spectrometry explains differential results across kits. Anal Bioanal Chem 2022; 414:3875-3884. [PMID: 35389096 DOI: 10.1007/s00216-022-04029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 01/08/2023]
Abstract
C-Reactive protein (CRP) is an important marker for in vitro diagnosis (IVD) of inflammation. However, CRP immunoturbidimetric kits from different manufacturers exhibit inconsistency in evaluation, making clinical diagnosis challenging. The use of immunological methods in diagnosis means that the differences in epitopes across kits may directly lead to inconsistent results. Therefore, to provide consistent results, it is essential to perform epitope mapping of different kits. The composition of antibodies in a single kit is typically complex, with a combination of polyclonal antibodies or monoclonal antibodies. Here, we show an epitope screening strategy for complex antibodies in a kit based on hydrogen-deuterium exchange mass spectrometry (HDX-MS). We applied this workflow to successfully map the epitopes for three kits from three different manufacturers and compared their quantitative results. We obtained different quantitative results using kits from different manufacturers upon epitope mapping, confirming the correlation between the quantitative results and the epitopes. Thus, we have established a workflow based on HDX-MS to screen epitopes in IVD kits. This work helps determine the quantitative accuracy of a kit based on structural information, can guide the design and production of IVD reagents, and further improves the accuracy of IVD.
Collapse
Affiliation(s)
- Haofeng Sun
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, China.,School of Chemical and Engineering, Nanjing University of Science and Technology, Jiangsu, 210094, China
| | - Jianyi Liu
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, China
| | - Peng Xiao
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, China
| | - Yi Zhou
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, China.,School of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hongmei Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, China
| | - Min Shen
- Reference Laboratory, Medical System Biotechnology Co., Ltd., Ningbo, 315104, China
| | - Keqi Sun
- Reference System Department, Maccura Biotechnology Co., Ltd., Chengdu, 611713, China
| | - Xiaojian Wang
- Reference Laboratory, Beijing Strong Biotechnologies, Inc., Beijing, 101400, Huairou, China
| | - Min Zhou
- School of Chemical and Engineering, Nanjing University of Science and Technology, Jiangsu, 210094, China.
| | - Dewei Song
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, China.
| |
Collapse
|
17
|
Abstract
COVID-19 caused by SARS-CoV-2, an RNA coronavirus has impacted the health and economy of all the countries. The virus has wide host adaptability and causes severe diseases in humans and animals. The major structural proteins of SARS-CoV-2 include spike (S), envelop (E), membrane (M), and nucleocapsid (N). The current vaccines are based on the S protein. The emergence of variants of SARS-CoV-2 has renewed interest in the use of additional structural proteins for the development of diagnostics and vaccines. Knowledge of B cell epitopes and MHC-I binding regions of the structural proteins of SARS-CoV-2 is essential in the development of effective diagnostics and therapies. This chapter provides information on the epitopes of the structural proteins of SARS-CoV-2.
Collapse
Affiliation(s)
- Sunil Thomas
- Lankenau Institute for Medical Research, Wynnewood, PA, USA.
| |
Collapse
|
18
|
Saito M, Tsukagoshi H, Sada M, Sunagawa S, Shirai T, Okayama K, Sugai T, Tsugawa T, Hayashi Y, Ryo A, Takeda M, Kawashima H, Saruki N, Kimura H. Detailed Evolutionary Analyses of the F Gene in the Respiratory Syncytial Virus Subgroup A. Viruses 2021; 13:v13122525. [PMID: 34960794 PMCID: PMC8706373 DOI: 10.3390/v13122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022] Open
Abstract
We performed evolution, phylodynamics, and reinfection-related antigenicity analyses of respiratory syncytial virus subgroup A (RSV-A) fusion (F) gene in globally collected strains (1465 strains) using authentic bioinformatics methods. The time-scaled evolutionary tree using the Bayesian Markov chain Monte Carlo method estimated that a common ancestor of the RSV-A, RSV-B, and bovine-RSV diverged at around 450 years ago, and RSV-A and RSV-B diverged around 250 years ago. Finally, the RSV-A F gene formed eight genotypes (GA1-GA7 and NA1) over the last 80 years. Phylodynamics of RSV-A F gene, including all genotype strains, increased twice in the 1990s and 2010s, while patterns of each RSV-A genotype were different. Phylogenetic distance analysis suggested that the genetic distances of the strains were relatively short (less than 0.05). No positive selection sites were estimated, while many negative selection sites were found. Moreover, the F protein 3D structure mapping and conformational epitope analysis implied that the conformational epitopes did not correspond to the neutralizing antibody binding sites of the F protein. These results suggested that the RSV-A F gene is relatively conserved, and mismatches between conformational epitopes and neutralizing antibody binding sites of the F protein are responsible for the virus reinfection.
Collapse
Affiliation(s)
- Mariko Saito
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Maebashi-shi 371-0052, Japan; (M.S.); (H.T.); (N.S.)
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Maebashi-shi 371-0052, Japan; (M.S.); (H.T.); (N.S.)
| | - Mitsuru Sada
- Department of Health Science, Gunma Paz University Graduate School, Takasaki-shi 370-0006, Japan; (M.S.); (S.S.); (K.O.); (Y.H.)
| | - Soyoka Sunagawa
- Department of Health Science, Gunma Paz University Graduate School, Takasaki-shi 370-0006, Japan; (M.S.); (S.S.); (K.O.); (Y.H.)
| | - Tatsuya Shirai
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka-shi 181-8611, Japan;
| | - Kaori Okayama
- Department of Health Science, Gunma Paz University Graduate School, Takasaki-shi 370-0006, Japan; (M.S.); (S.S.); (K.O.); (Y.H.)
| | - Toshiyuki Sugai
- Division of Nursing Science, Hiroshima University, Hiroshima-shi 734-8551, Japan;
| | - Takeshi Tsugawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo-shi 060-8543, Japan;
| | - Yuriko Hayashi
- Department of Health Science, Gunma Paz University Graduate School, Takasaki-shi 370-0006, Japan; (M.S.); (S.S.); (K.O.); (Y.H.)
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama-shi 236-0004, Japan;
| | - Makoto Takeda
- Department of Virology, National Institute of Infectious Diseases, Musashimurayama-shi 208-0011, Japan;
| | - Hisashi Kawashima
- Department of Pediatrics, Tokyo Medical University, Shinjuku-ku 160-0023, Japan;
| | - Nobuhiro Saruki
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Maebashi-shi 371-0052, Japan; (M.S.); (H.T.); (N.S.)
| | - Hirokazu Kimura
- Department of Health Science, Gunma Paz University Graduate School, Takasaki-shi 370-0006, Japan; (M.S.); (S.S.); (K.O.); (Y.H.)
- Correspondence: ; Tel.: +81-27-388-0336
| |
Collapse
|
19
|
Pinheiro-Junior EL, Boldrini-França J, Takeda AAS, Costa TR, Peigneur S, Cardoso IA, Oliveira ISD, Sampaio SV, de Mattos Fontes MR, Tytgat J, Arantes EC. Towards toxin PEGylation: The example of rCollinein-1, a snake venom thrombin-like enzyme, as a PEGylated biopharmaceutical prototype. Int J Biol Macromol 2021; 190:564-573. [PMID: 34506860 DOI: 10.1016/j.ijbiomac.2021.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022]
Abstract
PEGylation was firstly described around 50 years ago and has been used for more than 30 years as a strategy to improve the drugability of biopharmaceuticals. However, it remains poorly employed in toxinology, even though it may be a promising strategy to empower these compounds in therapeutics. This work reports the PEGylation of rCollinein-1, a recombinant snake venom serine protease (SVSP), able to degrade fibrinogen and inhibit the hEAG1 potassium channel. We compared the functional, structural, and immunogenic properties of the non-PEGylated (rCollinein-1) and PEGylated (PEG-rCollinein-1) forms. PEG-rCollinein-1 shares similar kinetic parameters with rCollinein-1, maintaining its capability of degrading fibrinogen, but with reduced activity on hEAG1 channel. CD analysis revealed the maintenance of protein conformation after PEGylation, and thermal shift assays demonstrated similar thermostability. Both forms of the enzyme showed to be non-toxic to peripheral blood mononuclear cells (PBMC). In silico epitope prediction indicated three putative immunogenic peptides. However, immune response on mice showed PEG-rCollinein-1 was devoid of immunogenicity. PEGylation directed rCollinein-1 activity towards hemostasis control, broadening its possibilities to be employed as a defibrinogenant agent.
Collapse
Affiliation(s)
- Ernesto Lopes Pinheiro-Junior
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil; Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49 - PO box 922, 3000 Leuven, Belgium
| | - Johara Boldrini-França
- University of Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista II, 29102-920 Vila Velha, ES, Brazil
| | | | - Tássia Rafaella Costa
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49 - PO box 922, 3000 Leuven, Belgium
| | - Iara Aimê Cardoso
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil
| | - Isadora Sousa de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil
| | - Suely Vilela Sampaio
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil
| | | | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49 - PO box 922, 3000 Leuven, Belgium
| | - Eliane Candiani Arantes
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
20
|
A Novel Strain-Specific Neutralizing Epitope on Glycoprotein H of Human Cytomegalovirus. J Virol 2021; 95:e0065721. [PMID: 34160252 DOI: 10.1128/jvi.00657-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that causes severe clinical disease in immunosuppressed patients and congenitally infected newborn infants. Viral envelope glycoproteins represent attractive targets for vaccination or passive immunotherapy. To extend the knowledge of mechanisms of virus neutralization, monoclonal antibodies (MAbs) were generated following immunization of mice with HCMV virions. Hybridoma supernatants were screened for in vitro neutralization activity, yielding three potent MAbs, 6E3, 3C11, and 2B10. MAbs 6E3 and 3C11 blocked infection of all viral strains that were tested, while MAb 2B10 neutralized only 50% of the HCMV strains analyzed. Characterization of the MAbs using indirect immunofluorescence analyses demonstrated their reactivity with recombinantly derived gH. While MAbs 6E3 and 3C11 reacted with gH when expressed alone, 2B10 detected gH only when it was coexpressed with gB and gL. Recognition of gH by 3C11 was dependent on the expression of the entire ectodomain of gH, whereas 6E3 required residues 1 to 629 of gH. The strain-specific determinant for neutralization by Mab 2B10 was identified as a single Met→Ile amino acid polymorphism within gH, located within the central part of the protein. The polymorphism is evenly distributed among described HCMV strains. The 2B10 epitope thus represents a novel strain-specific antibody target site on gH of HCMV. The dependence of the reactivity of 2B10 on the simultaneous presence of gB/gH/gL will be of value in the structural definition of this tripartite complex. The 2B10 epitope may also represent a valuable tool for diagnostics to monitor infections/reinfections with different HCMV strains during pregnancy or after transplantation. IMPORTANCE HCMV infections are life threatening to people with compromised or immature immune systems. Understanding the antiviral antibody repertoire induced during HCMV infection is a necessary prerequisite to define protective antibody responses. Here, we report three novel anti-gH MAbs that potently neutralized HCMV infectivity. One of these MAbs (2B10) targets a novel strain-specific conformational epitope on gH that only becomes accessible upon coexpression of the minimal fusion machinery gB/gH/gL. Strain specificity is dependent on a single amino acid polymorphism within gH. Our data highlight the importance of strain-specific neutralizing antibody responses against HCMV. The 2B10 epitope may also represent a valuable tool for diagnostics to monitor infections/reinfections with different HCMV strains during pregnancy or after transplantation. In addition, the dependence of the reactivity of 2B10 on the simultaneous presence of gB/gH/gL will be of value in the structural definition of this tripartite complex.
Collapse
|
21
|
Sun H, Ma L, Wang L, Xiao P, Li H, Zhou M, Song D. Research advances in hydrogen-deuterium exchange mass spectrometry for protein epitope mapping. Anal Bioanal Chem 2021; 413:2345-2359. [PMID: 33404742 DOI: 10.1007/s00216-020-03091-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/01/2022]
Abstract
With the development of biomedical technology, epitope mapping of proteins has become critical for developing and evaluating new protein drugs. The application of hydrogen-deuterium exchange for protein epitope mapping holds great potential. Although several reviews addressed the hydrogen-deuterium exchange, to date, only a few systematic reviews have focused on epitope mapping using this technology. Here, we introduce the basic principles, development history, and review research progress in hydrogen-deuterium exchange epitope mapping technology and discuss its advantages. We summarize the main hurdles in applying hydrogen-deuterium exchange epitope mapping technology, combined with relevant examples to provide specific solutions. We describe the epitope mapping of virus assemblies, disease-associated proteins, and polyclonal antibodies as examples of pattern introduction. Finally, we discuss the outlook of hydrogen-deuterium exchange epitope mapping technology. This review will help researchers studying protein epitopes to gain a more comprehensive understanding of this technology.
Collapse
Affiliation(s)
- Haofeng Sun
- National Institute of Metrology, Beijing, 100029, China
- College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lingyun Ma
- National Institute of Metrology, Beijing, 100029, China
| | - Leyu Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peng Xiao
- National Institute of Metrology, Beijing, 100029, China
| | - Hongmei Li
- National Institute of Metrology, Beijing, 100029, China
| | - Min Zhou
- School of Chemical and Engineering, Nanjing University of Science and Technology, Jiangsu, 210094, China.
| | - Dewei Song
- National Institute of Metrology, Beijing, 100029, China.
| |
Collapse
|
22
|
Jagadeb M, Pattanaik KP, Rath SN, Sonawane A. Identification and evaluation of immunogenic MHC-I and MHC-II binding peptides from Mycobacterium tuberculosis. Comput Biol Med 2020; 130:104203. [PMID: 33450502 DOI: 10.1016/j.compbiomed.2020.104203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/18/2022]
Abstract
Due to several limitations of the only available BCG vaccine, to generate adequate protective immune responses, it is important to develop potent and cost-effective vaccines against tuberculosis (TB). In this study, we have used an immune-informatics approach to identify potential peptide based vaccine targets against TB. The proteome of Mycobacterium tuberculosis (Mtb), the causative agent of TB, was analyzed for secretory or surface localized antigenic proteins as potential vaccine candidates. The T- and B-cell epitopes as well as MHC molecule binding efficiency were identified and mapped in the modelled structures of the selected proteins. Based on antigenicity score and molecular dynamic simulation (MD) studies two peptides namely Pep-9 and Pep-15 were analyzed, modelled and docked with MHC-I and MHC-II structures. Both peptides exhibited no cytotoxicity and were able to induce proinflammatory cytokine secretion in stimulated macrophages. The molecular docking, MD and in-vitro studies of the predicted B and T-cell epitopes of Pep-9 and Pep-15 peptides with the modelled MHC structures exhibited strong binding affinity and antigenic properties, suggesting that the complex is stable, and that these peptides can be considered as a potential candidates for the development of vaccine against TB.
Collapse
Affiliation(s)
- Manaswini Jagadeb
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India.
| | | | - Surya Narayan Rath
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India.
| | - Avinash Sonawane
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India; Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore (IIT Indore), Simrol, Madhya Pradesh, India.
| |
Collapse
|
23
|
Masking terminal neo-epitopes of linear peptides through glycosylation favours immune responses towards core epitopes producing parental protein bound antibodies. Sci Rep 2020; 10:18497. [PMID: 33116268 PMCID: PMC7595224 DOI: 10.1038/s41598-020-75754-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/20/2020] [Indexed: 01/20/2023] Open
Abstract
Glycosylation of hydrophobic peptides at one terminus effectively increases their water-solubility, and conjugation through the opposing end to a carrier protein, renders them more immunogenic. Moreover, the glycosylation minimizes antibody responses to potentially deleterious, non-productive terminal neo-epitope regions of the peptides, and consequently shifts peptide immunogenicity towards the core amino acid residues. As proof of concept, glycopeptide-protein conjugates related to influenza hemagglutinin (HA), neuraminidase (NA), and the dimerization loop region of human epidermal growth factor receptor 2 (Her2), demonstrated a favorable production of core peptide specific antibodies as determined by ELISA studies. Furthermore, glycosylated Her2 peptide conjugate antisera were also shown to recognize full length Her2 protein by ELISA and at the cell surface through flow cytometry analysis. In contrast, unmasked peptide conjugates generated significant antibody populations that were specific to the terminal neo-epitope of the peptide immunogen that are notably absent in parental proteins. Antibodies generated in this manner to peptides in the dimerization loop of Her2 are also functional as demonstrated by the growth inhibition of Her2 expressing SKBR3 carcinoma cells. This method provides a technique to tailor-make epitope-specific antibodies that may facilitate vaccine, therapeutic and diagnostic antibody development.
Collapse
|
24
|
Sabatino D. Medicinal Chemistry and Methodological Advances in the Development of Peptide-Based Vaccines. J Med Chem 2020; 63:14184-14196. [PMID: 32990437 DOI: 10.1021/acs.jmedchem.0c00848] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The evolution of rapidly proliferating infectious and tumorigenic diseases has resulted in an urgent need to develop new and improved intervention strategies. Among the many therapeutic strategies at our disposal, our immune system remains the gold-standard in disease prevention, diagnosis, and treatment. Vaccines have played an important role in eradicating or mitigating the spread of infectious diseases by bolstering our immunity. Despite their utility, the design and development of new, more effective vaccines remains a public health necessity. Peptide-based vaccines have been developed for a wide range of established and emerging infectious and tumorigenic diseases. New innovations in epitope design and selection, synthesis, and formulation as well as screening techniques against immunological targets have led to more effective peptide vaccines. Current and future work is geared toward the translation of peptide vaccines from preclinical to clinical utility.
Collapse
Affiliation(s)
- David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey 07079, United States
| |
Collapse
|
25
|
Sousa SA, Seixas AM, Mandal M, Rodríguez-Ortega MJ, Leitão JH. Characterization of the Burkholderia cenocepacia J2315 Surface-Exposed Immunoproteome. Vaccines (Basel) 2020; 8:vaccines8030509. [PMID: 32899969 PMCID: PMC7565204 DOI: 10.3390/vaccines8030509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 11/16/2022] Open
Abstract
Infections by the Burkholderia cepacia complex (Bcc) remain seriously life threatening to cystic fibrosis (CF) patients, and no effective eradication is available. A vaccine to protect patients against Bcc infections is a highly attractive therapeutic option, but none is available. A strategy combining the bioinformatics identification of putative surface-exposed proteins with an experimental approach encompassing the “shaving” of surface-exposed proteins with trypsin followed by peptide identification by liquid chromatography and mass spectrometry is here reported. The methodology allowed the bioinformatics identification of 263 potentially surface-exposed proteins, 16 of them also experimentally identified by the “shaving” approach. Of the proteins identified, 143 have a high probability of containing B-cell epitopes that are surface-exposed. The immunogenicity of three of these proteins was demonstrated using serum samples from Bcc-infected CF patients and Western blotting, validating the usefulness of this methodology in identifying potentially immunogenic surface-exposed proteins that might be used for the development of Bcc-protective vaccines.
Collapse
Affiliation(s)
- Sílvia A. Sousa
- iBB–Institute for Bioengineering and Biosciences, 1049-001 Lisbon, Portugal; (A.M.M.S.); (M.M.)
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-2184-19986 (S.A.S.); +351-2184-17688 (J.H.L.)
| | - António M.M. Seixas
- iBB–Institute for Bioengineering and Biosciences, 1049-001 Lisbon, Portugal; (A.M.M.S.); (M.M.)
| | - Manoj Mandal
- iBB–Institute for Bioengineering and Biosciences, 1049-001 Lisbon, Portugal; (A.M.M.S.); (M.M.)
| | | | - Jorge H. Leitão
- iBB–Institute for Bioengineering and Biosciences, 1049-001 Lisbon, Portugal; (A.M.M.S.); (M.M.)
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-2184-19986 (S.A.S.); +351-2184-17688 (J.H.L.)
| |
Collapse
|
26
|
Jamal F, Singh MK, Hansa J, Pushpanjali, Ahmad G, Dikhit MR, Umar MS, Bimal S, Das P, Mujeeb AA, Singh SK, Zubair S, Owais M. Leishmania-Specific Promiscuous Membrane Protein Tubulin Folding Cofactor D Divulges Th 1/Th 2 Polarization in the Host via ERK -1/2 and p38 MAPK Signaling Cascade. Front Immunol 2020; 11:817. [PMID: 32582140 PMCID: PMC7280453 DOI: 10.3389/fimmu.2020.00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/09/2020] [Indexed: 11/24/2022] Open
Abstract
Visceral leishmaniasis (VL)-related mortality and morbidity imposes a great deal of health concern across the globe. The existing anti-leishmanial drug regimen generally fails to eliminate newly emerging resistant isolates of this dreadful parasite. In such circumstances, the development of a prophylactic strategy to impart protection against the disease is likely to take center stage. In order to develop a promising prophylactic vaccine, it is desirable to identify an adequately potential vaccine candidate. In silico analysis of Leishmania tubulin folding cofactor D protein predicted its potential to activate both B- and T-cell repertoires. Furthermore, the ELISA employing anti-peptide27 (a segment of tubulin folding cofactor D) antibody revealed its proficiency in VL diagnosis and treatment monitoring. The peptide27 and its cocktail with another Leishmania peptide (peptide23) prompted the up-regulation of pro-inflammatory cytokines, such as IFN-γ, TNF-α, IL-2, IL-17, etc., and the down-regulation of immune-regulatory cytokines, such as IL-10, in the immunized BALB/c mice. Coherent to the consequence of peptide-specific humoral immune response, peptide cocktail-based immunization ensued in the predominant amplification of pathogen-specific IgG2a over the IgG1 isotype, up-regulated proliferation of T lymphocytes, and enhanced production of nitric oxide, reactive oxygen species, etc. We also established that the peptide cocktail modulated host MAPK signaling to favor the amplification of Th1-dominated immune response in the host. The peptide cocktail mediated the activation of the host immune armory, which was eventually translated into a significant decline in parasitic load in the visceral organs of experimental animals challenged with Leishmania donovani.
Collapse
Affiliation(s)
- Fauzia Jamal
- Interdesciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Manish K Singh
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Jagadish Hansa
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Pushpanjali
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Ghufran Ahmad
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Manas Ranjan Dikhit
- Department of Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Mohd Saad Umar
- Interdesciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Sanjiva Bimal
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Anzar Abdul Mujeeb
- Interdesciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Shubhankar K Singh
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Swaleha Zubair
- Department of Computer Science, Aligarh Muslim University, Aligarh, India
| | - Mohammad Owais
- Interdesciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
27
|
Saylor K, Gillam F, Lohneis T, Zhang C. Designs of Antigen Structure and Composition for Improved Protein-Based Vaccine Efficacy. Front Immunol 2020; 11:283. [PMID: 32153587 PMCID: PMC7050619 DOI: 10.3389/fimmu.2020.00283] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
Today, vaccinologists have come to understand that the hallmark of any protective immune response is the antigen. However, it is not the whole antigen that dictates the immune response, but rather the various parts comprising the whole that are capable of influencing immunogenicity. Protein-based antigens hold particular importance within this structural approach to understanding immunity because, though different molecules can serve as antigens, only proteins are capable of inducing both cellular and humoral immunity. This fact, coupled with the versatility and customizability of proteins when considering vaccine design applications, makes protein-based vaccines (PBVs) one of today's most promising technologies for artificially inducing immunity. In this review, we follow the development of PBV technologies through time and discuss the antigen-specific receptors that are most critical to any immune response: pattern recognition receptors, B cell receptors, and T cell receptors. Knowledge of these receptors and their ligands has become exceptionally valuable in the field of vaccinology, where today it is possible to make drastic modifications to PBV structure, from primary to quaternary, in order to promote recognition of target epitopes, potentiate vaccine immunogenicity, and prevent antigen-associated complications. Additionally, these modifications have made it possible to control immune responses by modulating stability and targeting PBV to key immune cells. Consequently, careful consideration should be given to protein structure when designing PBVs in the future in order to potentiate PBV efficacy.
Collapse
Affiliation(s)
- Kyle Saylor
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Frank Gillam
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
- Locus Biosciences, Morrisville, NC, United States
| | - Taylor Lohneis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
- BioPharmaceutical Technology Department, GlaxoSmithKline, Rockville, MD, United States
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
28
|
Raoufi E, Hemmati M, Eftekhari S, Khaksaran K, Mahmodi Z, Farajollahi MM, Mohsenzadegan M. Epitope Prediction by Novel Immunoinformatics Approach: A State-of-the-art Review. Int J Pept Res Ther 2019; 26:1155-1163. [PMID: 32435171 PMCID: PMC7224030 DOI: 10.1007/s10989-019-09918-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2019] [Indexed: 12/21/2022]
Abstract
Immunoinformatics is a science that helps to create significant immunological information using bioinformatics softwares and applications. One of the most important applications of immunoinformatics is the prediction of a variety of specific epitopes for B cell recognition and T cell through MHC class I and II molecules. This method reduces costs and time compared to laboratory tests. In this state-of-the-art review, we review about 50 papers to find the latest and most used immunoinformatic tools as well as their applications for predicting the viral, bacterial and tumoral structural and linear epitopes of B and T cells. In the clinic, the main application of prediction of epitopes is for designing peptide-based vaccines. Peptide-based vaccines are a considerably potential alternative to low-cost vaccines that may reduce the risks related to the production of common vaccines.
Collapse
Affiliation(s)
- Ehsan Raoufi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Hemmati
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samane Eftekhari
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kamal Khaksaran
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mahmodi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad M. Farajollahi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Monireh Mohsenzadegan
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Hemmat Highway, Tehran, Iran
| |
Collapse
|
29
|
Martínez L, Milanič M, Malaina I, Álvarez C, Pérez MB, M. de la Fuente I. Weighted lambda superstrings applied to vaccine design. PLoS One 2019; 14:e0211714. [PMID: 30735507 PMCID: PMC6368308 DOI: 10.1371/journal.pone.0211714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/19/2019] [Indexed: 11/23/2022] Open
Abstract
We generalize the notion of λ-superstrings, presented in a previous paper, to the notion of weighted λ-superstrings. This generalization entails an important improvement in the applications to vaccine designs, as it allows epitopes to be weighted by their immunogenicities. Motivated by these potential applications of constructing short weighted λ-superstrings to vaccine design, we approach this problem in two ways. First, we formalize the problem as a combinatorial optimization problem (in fact, as two polynomially equivalent problems) and develop an integer programming (IP) formulation for solving it optimally. Second, we describe a model that also takes into account good pairwise alignments of the obtained superstring with the input strings, and present a genetic algorithm that solves the problem approximately. We apply both algorithms to a set of 169 strings corresponding to the Nef protein taken from patiens infected with HIV-1. In the IP-based algorithm, we take the epitopes and the estimation of the immunogenicities from databases of experimental epitopes. In the genetic algorithm we take as candidate epitopes all 9-mers present in the 169 strings and estimate their immunogenicities using a public bioinformatics tool. Finally, we used several bioinformatic tools to evaluate the properties of the candidates generated by our method, which indicated that we can score high immunogenic λ-superstrings that at the same time present similar conformations to the Nef virus proteins.
Collapse
Affiliation(s)
- Luis Martínez
- Department of Mathematics, University of the Basque Country UPV/EHU, Bilbao, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Basque Center for Applied Mathematics BCAM, Bilbao, Spain
- * E-mail:
| | - Martin Milanič
- University of Primorska, UP IAM and UP FAMNIT, Koper, Slovenia
| | - Iker Malaina
- Department of Mathematics, University of the Basque Country UPV/EHU, Bilbao, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Carmen Álvarez
- IDIVAL Valdecilla Biomedical Research Institute, Santander, Spain
| | - Martín-Blas Pérez
- Department of Mathematics, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Ildefonso M. de la Fuente
- Department of Mathematics, University of the Basque Country UPV/EHU, Bilbao, Spain
- Department of Nutrition, CEBAS-CSIC Institute, Murcia, Spain
| |
Collapse
|
30
|
Raeven RHM, van Riet E, Meiring HD, Metz B, Kersten GFA. Systems vaccinology and big data in the vaccine development chain. Immunology 2018; 156:33-46. [PMID: 30317555 PMCID: PMC6283655 DOI: 10.1111/imm.13012] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023] Open
Abstract
Systems vaccinology has proven a fascinating development in the last decade. Where traditionally vaccine development has been dominated by trial and error, systems vaccinology is a tool that provides novel and comprehensive understanding if properly used. Data sets retrieved from systems‐based studies endorse rational design and effective development of safe and efficacious vaccines. In this review we first describe different omics‐techniques that form the pillars of systems vaccinology. In the second part, the application of systems vaccinology in the different stages of vaccine development is described. Overall, this review shows that systems vaccinology has become an important tool anywhere in the vaccine development chain.
Collapse
Affiliation(s)
- René H M Raeven
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Elly van Riet
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Hugo D Meiring
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Bernard Metz
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Gideon F A Kersten
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands.,Leiden Academic Center for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, The Netherlands
| |
Collapse
|
31
|
B cells and antibody production in melanoma. Mamm Genome 2018; 29:790-805. [DOI: 10.1007/s00335-018-9778-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/24/2018] [Indexed: 01/12/2023]
|
32
|
Sharma M, Dash P, Sahoo PK, Dixit A. Th2-biased immune response and agglutinating antibodies generation by a chimeric protein comprising OmpC epitope (323–336) of Aeromonas hydrophila and LTB. Immunol Res 2017; 66:187-199. [DOI: 10.1007/s12026-017-8953-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Yefremova Y, Opuni KFM, Danquah BD, Thiesen HJ, Glocker MO. Intact Transition Epitope Mapping (ITEM). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1612-1622. [PMID: 28616748 DOI: 10.1007/s13361-017-1654-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 06/07/2023]
Abstract
Intact transition epitope mapping (ITEM) enables rapid and accurate determination of protein antigen-derived epitopes by either epitope extraction or epitope excision. Upon formation of the antigen peptide-containing immune complex in solution, the entire mixture is electrosprayed to translate all constituents as protonated ions into the gas phase. There, ions from antibody-peptide complexes are separated from unbound peptide ions according to their masses, charges, and shapes either by ion mobility drift or by quadrupole ion filtering. Subsequently, immune complexes are dissociated by collision induced fragmentation and the ion signals of the "complex-released peptides," which in effect are the epitope peptides, are recorded in the time-of-flight analyzer of the mass spectrometer. Mixing of an antibody solution with a solution in which antigens or antigen-derived peptides are dissolved is, together with antigen proteolysis, the only required in-solution handling step. Simplicity of sample handling and speed of analysis together with very low sample consumption makes ITEM faster and easier to perform than other experimental epitope mapping methods. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yelena Yefremova
- Proteome Center Rostock, University Medicine Rostock, Schillingallee 69, 18057, Rostock, Germany
| | - Kwabena F M Opuni
- Proteome Center Rostock, University Medicine Rostock, Schillingallee 69, 18057, Rostock, Germany
| | - Bright D Danquah
- Proteome Center Rostock, University Medicine Rostock, Schillingallee 69, 18057, Rostock, Germany
| | - Hans-Juergen Thiesen
- Institute of Immunology, University Medicine Rostock, Schillingallee 70, 18057, Rostock, Germany
| | - Michael O Glocker
- Proteome Center Rostock, University Medicine Rostock, Schillingallee 69, 18057, Rostock, Germany.
| |
Collapse
|
34
|
Hung LC, Yang CY, Cheng IC. Peptides mimicking viral proteins of porcine circovirus type 2 were profiled by the spectrum of mouse anti-PCV2 antibodies. BMC Immunol 2017; 18:25. [PMID: 28506209 PMCID: PMC5433044 DOI: 10.1186/s12865-017-0211-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/09/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Porcine circovirus 2 (PCV2) is a small, non-enveloped DNA virus causing swine lymphocyte depletion and severe impact on the swine industry. The aim of this study was to evaluate the antigenicity and immunogenicity of specific peptides, and seeking the potential candidate of PCV2 peptide-based vaccine. It's initiating from peptides reacting with PCV2-infected pig sera and peptide-immunized mouse sera. RESULTS The data showed that the sera from PCV2-infected pigs could react with the N-terminal (C1), middle region (C2), and C-terminal peptide (C3) of PCV2 capsid protein (CP), ORF3 protein (N1), ORF6 protein (N2) and ORF9 protein (N3). This study demonstrated that anti-PCV2 mouse antisera could be generated by specific synthetic peptides (C3 and N2) and recognized PCV2 viral protein. We found that the tertiary or linear form C-terminal sequence (C3) of PCV2 capsid peptide only appeared a local distribution in the nucleus of PCV2-infected PK cells, virus-like particles of PCV2 major appeared a local distribution in the cytoplasm, and ORF 6 protein of PCV2 were shown unusually in cytoplasm. Furthermore, most residues of the C1 and the C3 were presented on the surface of PCV2 CP, in the view of 3-D structure of the CP. Our data demonstrated that PCV2-infected pigs had higher OD405 value of anti-C3 IgG on Day 1, Month 3 and Month 6 than in Month 1. These pigs had higher anti-C3 IgM level in Month 3 and Month 6 than on Day 1 (P < 0.01). CONCLUSIONS We demonstrated that the key peptide (C3) mimic the C-terminal of PCV2 capsid protein which were capable of inducing antibodies. The specific antibody against the C3 were confirmed as the serological marker in PCV2-infected pigs.
Collapse
Affiliation(s)
- Ling-Chu Hung
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, No.376, Zhongzheng Rd., Danshui Dist., New Taipei, 25158, Taiwan. .,Livestock Research Institute, Council of Agriculture, Executive Yuan, No.112, Muchang, Xinhua Dist., Tainan, 71246, Taiwan. .,School of Veterinary Medicine, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
| | - Cheng-Yao Yang
- Agricultural Technology Research Institute, No.52, Kedong 2nd Rd., Zhunan Township, Miaoli, 35053, Taiwan
| | - Ivan-Chen Cheng
- School of Veterinary Medicine, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
35
|
Kimura H, Nagasawa K, Kimura R, Tsukagoshi H, Matsushima Y, Fujita K, Hirano E, Ishiwada N, Misaki T, Oishi K, Kuroda M, Ryo A. Molecular evolution of the fusion protein (F) gene in human respiratory syncytial virus subgroup B. INFECTION GENETICS AND EVOLUTION 2017; 52:1-9. [PMID: 28414106 DOI: 10.1016/j.meegid.2017.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 11/19/2022]
Abstract
In this study, we examined the molecular evolution of the fusion protein (F) gene in human respiratory syncytial virus subgroup B (HRSV-B). First, we performed time-scale evolution analyses using the Bayesian Markov chain Monte Carlo (MCMC) method. Next, we performed genetic distance, linear B-cell epitope prediction, N-glycosylation, positive/negative selection site, and Bayesian skyline plot analyses. We also constructed a structural model of the F protein and mapped the amino acid substitutions and the predicted B-cell epitopes. The MCMC-constructed phylogenetic tree indicated that the HRSV F gene diverged from the bovine respiratory syncytial virus gene approximately 580years ago and had a relatively low evolutionary rate (7.14×10-4substitutions/site/year). Furthermore, a common ancestor of HRSV-A and -B diverged approximately 290years ago, while HRSV-B diverged into three clusters for approximately 60years. The genetic similarity of the present strains was very high. Although a maximum of 11 amino acid substitutions were observed in the structural model of the F protein, only one strain possessed an amino acid substitution located within the palivizumab epitope. Four epitopes were predicted, although these did not correspond to the neutralization sites of the F protein including the palivizumab epitope. In addition, five N-glycosylation sites of the present HRSV-B strains were inferred. No positive selection sites were identified; however, many sites were found to be under negative selection. The effective population size of the gene has remained almost constant. On the basis of these results, it can be concluded that the HRSV-B F gene is highly conserved, as is the F protein of HRSV-A. Moreover, our prediction of B-cell epitopes does not show that the palivizumab reaction site may be recognized as an epitope during naturally occurring infections.
Collapse
Affiliation(s)
- Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan; Department of Microbiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanagawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan.
| | - Koo Nagasawa
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Ryusuke Kimura
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 37-1 Nakaoruimachi, Takasaki-shi, Gunma 370-0033, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki-machi, Maebashi-shi, Gunma 371-0052, Japan
| | - Yuki Matsushima
- Kawasaki City Institute for Public Health, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Kiyotaka Fujita
- School of Medical Technology, Faculty of Health Science, Gumma Paz College, 1-7-1 Tonyamachi, Takasaki-shi, Gunma 370-0006, Japan
| | - Eiko Hirano
- Fukui Prefectural Institute of Public Health and Environmental Science, 39-4 Harame-cho, Fukui-shi, Fukui 910-8851, Japan
| | - Naruhiko Ishiwada
- Division of Infection Control and Prevention, Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8677, Japan
| | - Takako Misaki
- Kawasaki City Institute for Public Health, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Kazunori Oishi
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanagawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan
| |
Collapse
|
36
|
He J, Huang F, Chen H, Chen Q, Zhang J, Li J, Chen D, Chen J. Recombinant Mip-PilE-FlaA dominant epitopes vaccine candidate against Legionella pneumophila. Immunol Lett 2017; 186:33-40. [PMID: 28366526 DOI: 10.1016/j.imlet.2017.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 11/25/2022]
Abstract
Legionella pneumophila is the main causative agent of Legionnaires' disease, which is a severe multi-system disease with pneumonia as the primary manifestation. We designed a recombinant Mip-PilE-FlaA dominant epitopes vaccine against Legionella pneumophila to prevent the disease and evaluated its immunogenicity and protective immunity. The protein structures of Mip, PilE and FlaA were analyzed using a computer, and the gene sequences of the dominant epitopes of the three proteins were selected to construct and optimize the vaccine. The optimized mip, pilE, flaA and recombinant mip-pilE-flaA gene sequences were cloned, expressed and purified. The purified proteins were used as dominant epitopes vaccines to immunize BALB/c mice and determine the protective immunity and immunogenicity of these purified proteins. The identification confirmed that the recombinant mip-pilE-flaA was successfully cloned and expressed. ELISA revealed that the Mip-PilE-FlaA group produced the highest IgG response, and this protein may considerably improve the production of some cytokines in BALB/c mice. Histopathology analyses of lungs from mice immunized with Mip-PilE-FlaA revealed a certain protective effect. Our work demonstrated that the recombinant dominant epitopes of Mip-PilE-FlaA exhibited strong immunogenicity and immune protection, and this protein may be an efficient epitopes vaccine candidate against Legionella pneumophila.
Collapse
Affiliation(s)
- Jinlei He
- Department of Parasitology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Fan Huang
- First Department of Hepatobiliary Surgery, Qinghai University Affiliated Hospital, Medical College of Qinghai University, Xining, China
| | - Han Chen
- Department of Parasitology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Qiwei Chen
- Department of Parasitology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Junrong Zhang
- Department of Parasitology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jiao Li
- Department of Parasitology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Dali Chen
- Department of Parasitology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jianping Chen
- Department of Parasitology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
37
|
Saeed AFUH, Wang R, Ling S, Wang S. Antibody Engineering for Pursuing a Healthier Future. Front Microbiol 2017; 8:495. [PMID: 28400756 PMCID: PMC5368232 DOI: 10.3389/fmicb.2017.00495] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022] Open
Abstract
Since the development of antibody-production techniques, a number of immunoglobulins have been developed on a large scale using conventional methods. Hybridoma technology opened a new horizon in the production of antibodies against target antigens of infectious pathogens, malignant diseases including autoimmune disorders, and numerous potent toxins. However, these clinical humanized or chimeric murine antibodies have several limitations and complexities. Therefore, to overcome these difficulties, recent advances in genetic engineering techniques and phage display technique have allowed the production of highly specific recombinant antibodies. These engineered antibodies have been constructed in the hunt for novel therapeutic drugs equipped with enhanced immunoprotective abilities, such as engaging immune effector functions, effective development of fusion proteins, efficient tumor and tissue penetration, and high-affinity antibodies directed against conserved targets. Advanced antibody engineering techniques have extensive applications in the fields of immunology, biotechnology, diagnostics, and therapeutic medicines. However, there is limited knowledge regarding dynamic antibody development approaches. Therefore, this review extends beyond our understanding of conventional polyclonal and monoclonal antibodies. Furthermore, recent advances in antibody engineering techniques together with antibody fragments, display technologies, immunomodulation, and broad applications of antibodies are discussed to enhance innovative antibody production in pursuit of a healthier future for humans.
Collapse
Affiliation(s)
- Abdullah F U H Saeed
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Rongzhi Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Sumei Ling
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| |
Collapse
|
38
|
Neisseria meningitidis factor H-binding protein bound to monoclonal antibody JAR5: implications for antibody synergy. Biochem J 2016; 473:4699-4713. [PMID: 27784765 PMCID: PMC6398935 DOI: 10.1042/bcj20160806] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 11/17/2022]
Abstract
Factor H-binding protein (fHbp) is an important antigen of Neisseria meningitidis that is capable of eliciting a robust protective immune response in humans. Previous studies on the interactions of fHbp with antibodies revealed that some anti-fHbp monoclonal antibodies that are unable to trigger complement-mediated bacterial killing in vitro are highly co-operative and become bactericidal if used in combination. Several factors have been shown to influence such co-operativity, including IgG subclass and antigen density. To investigate the structural basis of the anti-fHbp antibody synergy, we determined the crystal structure of the complex between fHbp and the Fab (fragment antigen-binding) fragment of JAR5, a specific anti-fHbp murine monoclonal antibody known to be highly co-operative with other monoclonal antibodies. We show that JAR5 is highly synergic with monoclonal antibody (mAb) 12C1, whose structure in complex with fHbp has been previously solved. Structural analyses of the epitopes recognized by JAR5 and 12C1, and computational modeling of full-length IgG mAbs of JAR5 and 12C1 bound to the same fHbp molecule, provide insights into the spatial orientation of Fc (fragment crystallizable) regions and into the possible implications for the susceptibility of meningococci to complement-mediated killing.
Collapse
|
39
|
Pasman Y, Soliman C, Ramsland PA, Kaushik AK. Exceptionally long CDR3H of bovine scFv antigenized with BoHV-1 B-epitope generates specific immune response against the targeted epitope. Mol Immunol 2016; 77:113-25. [PMID: 27497190 DOI: 10.1016/j.molimm.2016.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/13/2016] [Accepted: 07/20/2016] [Indexed: 11/18/2022]
Abstract
We discovered that some bovine antibodies are amongst the largest known to exist due to the presence of an exceptionally long CDR3H (≥49 amino acids) with multiple cysteines that provide a unique knob and stalk structure to the antigen binding site. The large CDR3H size, unlike mouse and human, provides a suitable platform for antigenization with large configurational B-epitopes. Here we report the identification of a B-epitope on the gC envelope protein of bovine herpes virus type-1 (BoHV-1) recognized by a bovine IgG1 antibody. The identified 156 amino acid long gC fragment (gC156) was expressed as a recombinant protein. Subsequently, a functional scFv fragment with a 61 amino-acid long CDR3H (scFv1H12) was expressed such that gC156 was grafted into the CDR3H, replacing the "knob" region (gC156scFv1H12 or Ag-scFv). Importantly, the Ag-scFv could be recognized by a neutralizing antibody fragment (scFv3-18L), which suggests that the engraftment of gC156 into the CDR3H of 1H12 maintained the native conformation of the BoHV-1 B-epitope. A 3D model of gC156 was generated using fold-recognition approaches and this was grafted onto the CDR3H stalk of the 1H12 Fab crystal structure to predict the 3D structure of the Ag-scFv. The grafted antigen in Ag-scFv is predicted to have a compact conformation with the ability to protrude into the solvent. Upon immunization of bovine calves, the antigenized scFv (gC156scFv1H12) induced a higher antibody response as compared to free recombinant gC156. These observations suggest that antigenization of bovine scFv with an exceptionally long CDR3H provides a novel approach to developing the next generation of vaccines against infectious agents that require induction of protective humoral immunity.
Collapse
Affiliation(s)
- Yfke Pasman
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Caroline Soliman
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Paul A Ramsland
- School of Science, RMIT University, Bundoora, VIC 3083, Australia; Centre for Biomedical Research, Burnet Institute, Melbourne, VIC 3004, Australia; Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia; Department of Surgery Austin Health, University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Azad K Kaushik
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
40
|
He J, Zhang J, He Y, Huang F, Li J, Chen Q, Chen D, Chen J. Construction of recombinant Mip-FlaA dominant epitope vaccine against Legionella pneumophila and evaluation of the immunogenicity and protective immunity. Immunol Res 2015; 64:272-9. [DOI: 10.1007/s12026-015-8746-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Díaz-Martín V, Manzano-Román R, Oleaga A, Pérez-Sánchez R. New salivary anti-haemostatics containing protective epitopes from Ornithodoros moubata ticks: Assessment of their individual and combined vaccine efficacy. Vet Parasitol 2015; 212:336-49. [PMID: 26293586 DOI: 10.1016/j.vetpar.2015.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 12/28/2022]
Abstract
Ornithodoros moubata is the main vector of the pathogens causing African swine fever and human relapsing fever in Africa. The development of an efficient vaccine against this tick would facilitate its control and the prevention of the diseases it transmits to a considerable extent. Previous efforts to identify vaccine target candidates led us to the discovery of novel salivary proteins that probably act as anti-haemostatics at the host-tick interface, including a secreted phospholipase A2 (PLA2), a 7DB-like protein (7DB-like), a riboprotein 60S L10 (RP-60S), an apyrase (APY), and a new platelet aggregation inhibitor peptide, designated mougrin (MOU). In this work, the corresponding recombinant proteins were expressed in Escherichia coli and their individual vaccine efficacy was tested in rabbit vaccination trials. All of them, except the less immunogenic RP-60S, induced strong humoral responses that reduced tick feeding and survival, providing vaccine efficacies of 44.2%, 43.2% and 27.2%, 19.9% and 17.3% for PLA2, APY, MOU, RP-60S and 7DB-like, respectively. In the case of the more protective recombinant antigens (PLA2, APY and MOU), the immunodominant protective linear B-cell epitopes were identified and their combined vaccine efficacy was tested in a second vaccine trial using different adjuvants. In comparison with the best efficacy of individual antigens, the multicomponent vaccine increased vaccine efficacy by 13.6%, indicating additive protective effects rather than a synergistic effect. Tick saliva inoculated during natural tick-host contacts had a boosting effect on vaccinated animals, increasing specific antibody levels and protection.
Collapse
Affiliation(s)
- Verónica Díaz-Martín
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Raúl Manzano-Román
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Ana Oleaga
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Ricardo Pérez-Sánchez
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| |
Collapse
|
42
|
Ambati A, Valentini D, Montomoli E, Lapini G, Biuso F, Wenschuh H, Magalhaes I, Maeurer M. H1N1 viral proteome peptide microarray predicts individuals at risk for H1N1 infection and segregates infection versus Pandemrix(®) vaccination. Immunology 2015; 145:357-66. [PMID: 25639813 PMCID: PMC4479535 DOI: 10.1111/imm.12448] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/02/2015] [Accepted: 01/26/2015] [Indexed: 12/30/2022] Open
Abstract
A high content peptide microarray containing the entire influenza A virus [A/California/08/2009(H1N1)] proteome and haemagglutinin proteins from 12 other influenza A subtypes, including the haemagglutinin from the [A/South Carolina/1/1918(H1N1)] strain, was used to gauge serum IgG epitope signatures before and after Pandemrix® vaccination or H1N1 infection in a Swedish cohort during the pandemic influenza season 2009. A very narrow pattern of pandemic flu-specific IgG epitope recognition was observed in the serum from individuals who later contracted H1N1 infection. Moreover, the pandemic influenza infection generated IgG reactivity to two adjacent epitopes of the neuraminidase protein. The differential serum IgG recognition was focused on haemagglutinin 1 (H1) and restricted to classical antigenic sites (Cb) in both the vaccinated controls and individuals with flu infections. We further identified a novel epitope VEPGDKITFEATGNL on the Ca antigenic site (251–265) of the pandemic flu haemagglutinin, which was exclusively recognized in serum from individuals with previous vaccinations and never in serum from individuals with H1N1 infection (confirmed by RNA PCR analysis from nasal swabs). This epitope was mapped to the receptor-binding domain of the influenza haemagglutinin and could serve as a correlate of immune protection in the context of pandemic flu. The study shows that unbiased epitope mapping using peptide microarray technology leads to the identification of biologically and clinically relevant target structures. Most significantly an H1N1 infection induced a different footprint of IgG epitope recognition patterns compared with the pandemic H1N1 vaccine.
Collapse
Affiliation(s)
- Aditya Ambati
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden
| | - Davide Valentini
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Guilia Lapini
- VisMederi srl, Enterprise in Life Science, Siena, Italy
| | | | | | - Isabelle Magalhaes
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden
| | - Markus Maeurer
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
43
|
Wiegers AK, Sticht H, Winkler TH, Britt WJ, Mach M. Identification of a neutralizing epitope within antigenic domain 5 of glycoprotein B of human cytomegalovirus. J Virol 2015; 89:361-72. [PMID: 25320309 PMCID: PMC4301166 DOI: 10.1128/jvi.02393-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/07/2014] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) is an important, ubiquitous pathogen that causes severe clinical disease in immunocompromised individuals, such as organ transplant recipients and infants infected in utero. The envelope glycoprotein B (gB) of HCMV is a major antigen for the induction of virus-neutralizing antibodies. We have begun to define target structures within gB that are recognized by virus-neutralizing antibodies. Antigenic domain 5 (AD-5) of gB has been identified as an important target for neutralizing antibodies in studies using human monoclonal antibodies (MAbs). Anti-AD-5 MAbs share a target site on gB, despite originating from different, healthy, HCMV-infected donors. Mutational analysis of AD-5 identified tyrosine 280 in combination with other surface-exposed residues (the YNND epitope) as critical for antibody binding. The YNND epitope is strictly conserved among different HCMV strains. Recombinant viruses carrying YNND mutations in AD-5 were resistant to virus-neutralizing MAbs. Competition enzyme-linked immunosorbent assays (ELISAs) with human HCMV-convalescent-phase sera from unselected donors confirmed the conserved antibody response for the YNND epitope in HCMV-infected individuals and, because a significant fraction of the gB AD-5 response was directed against the YNND epitope, further argued that this epitope is a major target of anti-AD-5 antibody responses. In addition, affinity-purified polyclonal anti-AD-5 antibodies prepared from individual sera showed reactivity to AD-5 and neutralization activity toward gB mutant viruses that were similar to those of AD-5-specific MAbs. Taken together, our data indicate that the YNND epitope represents an important target for anti-gB antibody responses as well as for anti-AD-5 virus-neutralizing antibodies. IMPORTANCE HCMV is a major global health concern, and a vaccine to prevent HCMV disease is a widely recognized medical need. Glycoprotein B of HCMV is an important target for neutralizing antibodies and hence an interesting molecule for intervention strategies, e.g., vaccination. Mapping the target structures of neutralizing antibodies induced by naturally occurring HCMV infection can aid in defining the properties required for a protective capacity of vaccine antigens. The data presented here extend our knowledge of neutralizing epitopes within gB to include AD-5. Collectively, our data will contribute to optimal vaccine design and development of antibody-based therapies.
Collapse
Affiliation(s)
- Anna-Katharina Wiegers
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Institut für Biochemie, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas H Winkler
- Nikolaus-Fiebiger-Zentrum für Molekulare Medizin, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - William J Britt
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael Mach
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
44
|
Abstract
ABSTRACT
With the advent of high-throughput sequencing, and the increased availability of experimental structures of antibodies and antibody-antigen complexes, comes the improvement of computational approaches to predict the structure and design the function of antibodies and antibody-antigen complexes. While antibodies pose formidable challenges for protein structure prediction and design due to their large size and highly flexible loops in the complementarity-determining regions, they also offer exciting opportunities: the central importance of antibodies for human health results in a wealth of structural and sequence information that—as a knowledge base—can drive the modeling algorithms by limiting the conformational and sequence search space to likely regions of success. Further, efficient experimental platforms exist to test predicted antibody structure or designed antibody function, thereby leading to an iterative feedback loop between computation and experiment. We briefly review the history of computer-aided prediction of structure and design of function in the antibody field before we focus on recent methodological developments and the most exciting application examples.
Collapse
|
45
|
Shembekar N, Mallajosyula VVA, Chaudhary P, Upadhyay V, Varadarajan R, Gupta SK. Humanized antibody neutralizing 2009 pandemic H1N1 virus. Biotechnol J 2014; 9:1594-603. [DOI: 10.1002/biot.201400083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/02/2014] [Accepted: 07/02/2014] [Indexed: 11/06/2022]
|
46
|
Lu Z, Rynkiewicz MJ, Madico G, Li S, Yang CY, Perkins HM, Sompuram SR, Kodela V, Liu T, Morris T, Wang D, Roche MI, Seaton BA, Sharon J. B-cell epitopes in GroEL of Francisella tularensis. PLoS One 2014; 9:e99847. [PMID: 24968190 PMCID: PMC4072690 DOI: 10.1371/journal.pone.0099847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/16/2014] [Indexed: 01/01/2023] Open
Abstract
The chaperonin protein GroEL, also known as heat shock protein 60 (Hsp60), is a prominent antigen in the human and mouse antibody response to the facultative intracellular bacterium Francisella tularensis (Ft), the causative agent of tularemia. In addition to its presumed cytoplasmic location, FtGroEL has been reported to be a potential component of the bacterial surface and to be released from the bacteria. In the current study, 13 IgG2a and one IgG3 mouse monoclonal antibodies (mAbs) specific for FtGroEL were classified into eleven unique groups based on shared VH-VL germline genes, and seven crossblocking profiles revealing at least three non-overlapping epitope areas in competition ELISA. In a mouse model of respiratory tularemia with the highly pathogenic Ft type A strain SchuS4, the Ab64 and N200 IgG2a mAbs, which block each other’s binding to and are sensitive to the same two point mutations in FtGroEL, reduced bacterial burden indicating that they target protective GroEL B-cell epitopes. The Ab64 and N200 epitopes, as well as those of three other mAbs with different crossblocking profiles, Ab53, N3, and N30, were mapped by hydrogen/deuterium exchange–mass spectrometry (DXMS) and visualized on a homology model of FtGroEL. This model was further supported by its experimentally-validated computational docking to the X-ray crystal structures of Ab64 and Ab53 Fabs. The structural analysis and DXMS profiles of the Ab64 and N200 mAbs suggest that their protective effects may be due to induction or stabilization of a conformational change in FtGroEL.
Collapse
Affiliation(s)
- Zhaohua Lu
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Michael J. Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Guillermo Madico
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sheng Li
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California, United States of America
| | - Chiou-Ying Yang
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Hillary M. Perkins
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Seshi R. Sompuram
- Medical Discovery Partners, LLC, Boston, Massachusetts, United States of America
| | - Vani Kodela
- Medical Discovery Partners, LLC, Boston, Massachusetts, United States of America
| | - Tong Liu
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California, United States of America
| | - Timothy Morris
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California, United States of America
| | - Daphne Wang
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California, United States of America
| | - Marly I. Roche
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Barbara A. Seaton
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jacqueline Sharon
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|