1
|
Chen R, Hu J, Zhang Y, Liu Y, Cao L, He F, Wang Q, Chen Y, Zhang S, Tang S, Min B. Sodium aescinate alleviates neuropathic pain through suppressing OGT-mediated O-GlcNAc modification of TLR3 to inactivate MAPK signaling pathway. Brain Res Bull 2024; 217:111077. [PMID: 39265741 DOI: 10.1016/j.brainresbull.2024.111077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024]
Abstract
Neuropathic pain results from damage to nerves or the brain, and is characterized by symptoms such as allodynia, spontaneous pain, and hyperalgesia. The causes of this type of pain are intricate, which can make it difficult to treat. Sodium aescinate (SA), a natural extract from horse chestnut tree seeds, has been shown to act as a neuroprotector by inhibiting microglia activation. This study aims to explore the therapeutic potential of SA for neuropathic pain and the molecular mechanisms regulated by SA treatment. Through in vivo animal models and experiments, we found that SA treatment significantly reduced mechanical allodynia and heat hyperalgesia in neuropathic pain models. Additionally, SA inhibited O-GlcNAc-transferase (OGT)-induced O-GlcNAcylation (O-GlcNAc) modification in neuropathic pain mice. OGT overexpression could impede the therapeutic effects of SA on neuropathic pain. Further investigation revealed that Toll-like receptor 3 (TLR3), stabilized by OGT-induced O-GlcNAc modification, could activate the Mitogen activated protein kinase (MAPK) signaling pathway. Further in vivo experiments demonstrated that TLR3-mediated p38 mitogen-activated protein kinase (p38MAPK) activation is involved in SA-mediated relief of neuropathic pain. In conclusion, this study uncovers a novel molecular pathway deactivated by SA treatment in neuropathic pain.
Collapse
Affiliation(s)
- Rong Chen
- Department of Pain, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Jiantao Hu
- Department of Respiratory Medicine, Bijie City Qixingguan District People's Hospital, Bijie, Guizhou 551700, China
| | - Yang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Liujian Cao
- Department of Anorectal Surgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Fan He
- Department of Oncology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Qin Wang
- Department of Rheumatology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Ying Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Shengwei Zhang
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.
| | - Songjiang Tang
- Department of Anesthesiology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Baojun Min
- Department of Anesthesiology, Qianxi People's Hospital, Bijie, Guizhou 551500, China.
| |
Collapse
|
2
|
Liu YG, Jin SW, Zhang SS, Xia TJ, Liao YH, Pan RL, Yan MZ, Chang Q. Interferon lambda in respiratory viral infection: immunomodulatory functions and antiviral effects in epithelium. Front Immunol 2024; 15:1338096. [PMID: 38495892 PMCID: PMC10940417 DOI: 10.3389/fimmu.2024.1338096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Type III interferon (IFN-λ), a new member of the IFN family, was initially considered to possess antiviral functions similar to those of type I interferon, both of which are induced via the JAK/STAT pathway. Nevertheless, recent findings demonstrated that IFN-λ exerts a nonredundant antiviral function at the mucosal surface, preferentially produced in epithelial cells in contrast to type I interferon, and its function cannot be replaced by type I interferon. This review summarizes recent studies showing that IFN-λ inhibits the spread of viruses from the cell surface to the body. Further studies have found that the role of IFN-λ is not only limited to the abovementioned functions, but it can also can exert direct and/or indirect effects on immune cells in virus-induced inflammation. This review focuses on the antiviral activity of IFN-λ in the mucosal epithelial cells and its action on immune cells and summarizes the pathways by which IFN-λ exerts its action and differentiates it from other interferons in terms of mechanism. Finally, we conclude that IFN-λ is a potent epidermal antiviral factor that enhances the respiratory mucosal immune response and has excellent therapeutic potential in combating respiratory viral infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming-Zhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Xie H, Chen D, Feng Y, Mo F, Liu L, Xing J, Xiao W, Gong Y, Tang S, Tan Z, Liang G, Zhao S, Yin W, Huang J. Evaluation of the TLR3 involvement during Schistosoma japonicum-induced pathology. BMC Immunol 2024; 25:2. [PMID: 38172683 PMCID: PMC10765740 DOI: 10.1186/s12865-023-00586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Despite the functions of TLRs in the parasitic infections have been extensively reported, few studies have addressed the role of TLR3 in the immune response to Schistosoma japonicum infections. The aim of this study was to investigate the properties of TLR3 in the liver of C57BL/6 mice infected by S. japonicum. METHODS The production of TLR3+ cells in CD4+T cells (CD4+CD3+), CD8+T cells (CD8+CD3+), γδT cells (γδTCR+CD3+), NKT cells (NK1.1+CD3+), B cells (CD19+CD3-), NK (NK1.1-CD3+) cells, MDSC (CD11b+Gr1+), macrophages (CD11b+F4/80+), DCs (CD11c+CD11b+) and neutrophils (CD11b+ Ly6g+) were assessed by flow cytometry. Sections of the liver were examined by haematoxylin and eosin staining in order to measure the area of granulomas. Hematological parameters including white blood cell (WBC), red blood cell (RBC), platelet (PLT) and hemoglobin (HGB) were analyzed. The levels of ALT and AST in the serum were measured using biochemical kits. The relative titers of anti-SEA IgG and anti-SEA IgM in the serum were measured by enzyme-linked immunosorbent assay (ELISA). CD25, CD69, CD314 and CD94 molecules were detected by flow cytometry. RESULTS Flow cytometry results showed that the expression of TLR3 increased significantly after S. japonicum infection (P < 0.05). Hepatic myeloid and lymphoid cells could express TLR3, and the percentages of TLR3-expressing MDSC, macrophages and neutrophils were increased after infection. Knocking out TLR3 ameliorated the damage and decreased infiltration of inflammatory cells in infected C57BL/6 mouse livers.,The number of WBC was significantly reduced in TLR3 KO-infected mice compared to WT-infected mice (P < 0.01), but the levels of RBC, platelet and HGB were significantly increased in KO infected mice. Moreover, the relative titers of anti-SEA IgG and anti-SEA IgM in the serum of infected KO mice were statistically decreased compared with the infected WT mice. We also compared the activation-associated molecules expression between S.japonicum-infected WT and TLR3 KO mice. CONCLUSIONS Taken together, our data indicated that TLR3 played potential roles in the context of S. japonicum infection and it may accelerate the progression of S. japonicum-associated liver pathology.
Collapse
Affiliation(s)
- Hongyan Xie
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Dianhui Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yuanfa Feng
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Feng Mo
- Department of Infectious Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lin Liu
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Junmin Xing
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wei Xiao
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yumei Gong
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shanni Tang
- Department of Infectious Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Zhengrong Tan
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guikuan Liang
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shan Zhao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Weiguo Yin
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| | - Jun Huang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China.
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China.
| |
Collapse
|
4
|
Wang P, Liu JB, Wang X, Meng FZ, Xiao QH, Liu L, Zhu J, Hu WH, Ho WZ. Activation of Toll-like receptor 3 inhibits HIV infection of human iPSC-derived microglia. J Med Virol 2023; 95:e29217. [PMID: 37933090 PMCID: PMC10655899 DOI: 10.1002/jmv.29217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023]
Abstract
As a key immune cell in the brain, microglia are essential for protecting the central nervous system (CNS) from viral infections, including HIV. Microglia possess functional Toll-like receptor 3 (TLR3), a key viral sensor for activating interferon (IFN) signaling pathway-mediated antiviral immunity. We, therefore, studied the effect of poly (I:C), a synthetic ligand of TLR3, on the activation of the intracellular innate immunity against HIV in human iPSC-derived microglia (iMg). We found that poly (I:C) treatment of iMg effectively inhibits HIV infection/replication at both mRNA and protein levels. Investigations of the mechanisms revealed that TLR3 activation of iMg by poly (I:C) induced the expression of both type I and type III IFNs. Compared with untreated cells, the poly (I:C)-treated iMg expressed significantly higher levels of IFN-stimulated genes (ISGs) with known anti-HIV activities (ISG15, MxB, Viperin, MxA, and OAS-1). In addition, TLR3 activation elicited the expression of the HIV entry coreceptor CCR5 ligands (CC chemokines) in iMg. Furthermore, the transcriptional profile analysis showed that poly (I:C)-treated cells had the upregulated IFN signaling genes (ISG15, ISG20, IFITM1, IFITM2, IFITM3, IFITM10, APOBEC3A, OAS-2, MxA, and MxB) and the increased CC chemokine signaling genes (CCL1, CCL2, CCL3, CCL4, and CCL15). These observations indicate that TLR3 is a potential therapy target for activating the intracellular innate immunity against HIV infection/replication in human microglial cells. Therefore, further studies with animal models and clinical specimens are necessary to determine the role of TLR3 activation-driven antiviral response in the control and elimination of HIV in infected host cells.
Collapse
Affiliation(s)
- Peng Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
| | - Jin-Biao Liu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
| | - Feng-Zheng Meng
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
| | - Qian-Hao Xiao
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
| | - Lu Liu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
| | - Jian Zhu
- Department of Pathology, Ohio State University Wexner Medical Center, Columbus, OH, USA 43210
| | - Wen-Hui Hu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA 19140
| |
Collapse
|
5
|
Saeb S, Wallet C, Rohr O, Schwartz C, Loustau T. Targeting and eradicating latent CNS reservoirs of HIV-1: original strategies and new models. Biochem Pharmacol 2023:115679. [PMID: 37399950 DOI: 10.1016/j.bcp.2023.115679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Nowadays, combination antiretroviral therapy (cART) is the standard treatment for all people with human immunodeficiency virus (HIV-1). Although cART is effective in treating productive infection, it does not eliminate latent reservoirs of the virus. This leads to lifelong treatment associated with the occurrence of side effects and the development of drug-resistant HIV-1. Suppression of viral latency is therefore the major hurdle to HIV-1 eradication. Multiple mechanisms exist to regulate viral gene expression and drive the transcriptional and post-transcriptional establishment of latency. Epigenetic processes are amongst the most studied mechanisms influencing both productive and latent infection states. The central nervous system (CNS) represents a key anatomical sanctuary for HIV and is the focal point of considerable research efforts. However, limited and difficult access to CNS compartments makes understanding the HIV-1 infection state in latent brain cells such as microglial cells, astrocytes, and perivascular macrophages challenging. This review examines the latest advances on epigenetic transformations involved in CNS viral latency and targeting of brain reservoirs. Evidence from clinical studies as well as in vivo and in vitro models of HIV-1 persistence in the CNS will be discussed, with a special focus on recent 3D in vitro models such as human brain organoids. Finally, the review will address therapeutic considerations for targeting latent CNS reservoirs.
Collapse
Affiliation(s)
- Sepideh Saeb
- Department of Allied Medicine, Qaen Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran; Strasbourg University, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Clémentine Wallet
- Strasbourg University, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Olivier Rohr
- Strasbourg University, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- Strasbourg University, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Thomas Loustau
- Strasbourg University, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France.
| |
Collapse
|
6
|
Bao H, Yan J, Huang J, Deng W, Zhang C, Liu C, Huang A, Zhang Q, Xiong Y, Wang Q, Wu H, Hou L. Activation of endogenous retrovirus triggers microglial immuno-inflammation and contributes to negative emotional behaviors in mice with chronic stress. J Neuroinflammation 2023; 20:37. [PMID: 36793064 PMCID: PMC9933381 DOI: 10.1186/s12974-023-02724-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND The "missing" link of complex and multifaceted interplay among endogenous retroviruses (ERVs) transcription, chronic immuno-inflammation, and the development of psychiatric disorders is still far from being completely clarified. The present study was aimed to investigate the mechanism of protective role of inhibiting ERVs on reversing microglial immuno-inflammation in basolateral amygdala (BLA) in chronic stress-induced negative emotional behaviors in mice. METHODS Male C57BL/6 mice were exposed to chronic unpredictable mild stress (CUMS) for 6 w. Negative emotional behaviors were comprehensively investigated to identify the susceptible mice. Microglial morphology, ERVs transcription, intrinsic nucleic acids sensing response, and immuno-inflammation in BLA were assessed. RESULTS Mice with chronic stress were presented as obviously depressive- and anxiety-like behaviors, and accompanied with significant microglial morphological activation, murine ERVs genes MuERV-L, MusD, and IAP transcription, cGAS-IFI16-STING pathway activation, NF-κB signaling pathway priming, as well as NLRP3 inflammasome activation in BLA. Antiretroviral therapy, pharmacological inhibition of reverse transcriptases, as well as knocking-down the ERVs transcriptional regulation gene p53 significantly inhibited microglial ERVs transcription and immuno-inflammation in BLA, as well as improved the chronic stress-induced negative emotional behaviors. CONCLUSIONS Our results provided an innovative therapeutic approach that targeting ERVs-associated microglial immuno-inflammation may be beneficial to the patients with psychotic disorders.
Collapse
Affiliation(s)
- Han Bao
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Jinqi Yan
- grid.452438.c0000 0004 1760 8119Department of Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 China
| | - Jiancheng Huang
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Wenjuan Deng
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Ce Zhang
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Cong Liu
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Ailing Huang
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Qiao Zhang
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Ying Xiong
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Qiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West of Yanta Rd, Xi'an, 710061, China.
| | - Huanghui Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, School of Medicine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, China. .,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, No.1279, Sanmen Rd, Shanghai, 200434, China.
| | - Lichao Hou
- Department of Anesthesiology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang'an Rd, Xiamen, 361102, China.
| |
Collapse
|
7
|
Kandel SR, Luo X, He JJ. Nef inhibits HIV transcription and gene expression in astrocytes and HIV transmission from astrocytes to CD4 + T cells. J Neurovirol 2022; 28:552-565. [PMID: 36001227 DOI: 10.1007/s13365-022-01091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 01/13/2023]
Abstract
HIV infects astrocytes in a restricted manner but leads to abundant expression of Nef, a major viral factor for HIV replication and disease progression. However, the roles of Nef in HIV gene expression and replication in astrocytes and viral transfer from astrocytes to CD4+ T cells remain largely unclear. In this study, we attempted to address these issues by transfecting human primary astrocytes with HIV molecular clones with intact Nef and without Nef (a nonsense Nef mutant) and comparing gene expression and replication in astrocytes and viral transfer from astrocytes to CD4+ T cells MT4. First, we found that lack of Nef expression led to increased extracellular virus production from astrocytes and intracellular viral protein and RNA expression in astrocytes. Using a HIV LTR-driven luciferase reporter gene assay, we showed that ectopic Nef expression alone inhibited the HIV LTR promoter activity in astrocytes. Consistent with the previously established function of Nef, we showed that the infectivity of HIV derived from astrocytes with Nef expression was significantly higher than that with no Nef expression. Next, we performed the co-culture assay to determine HIV transfer from astrocytes transfected to MT4. We showed that lack of Nef expression led to significant increase in HIV transfer from astrocytes to MT4 using two HIV clones. We also used Nef-null HIV complemented with Nef in trans in the co-culture assay and demonstrated that Nef expression led to significantly decreased HIV transfer from astrocytes to MT4. Taken together, these findings support a negative role of Nef in HIV replication and pathogenesis in astrocytes.
Collapse
Affiliation(s)
- Suresh R Kandel
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA.,Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, 60064, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Xiaoyu Luo
- Gladstone Institute of Virology, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA. .,Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, 60064, USA. .,School of Graduate and Postdoctoral Studies, Rosalind Franklin University, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| |
Collapse
|
8
|
Scanlan A, Zhang Z, Koneru R, Reece M, Gavegnano C, Anderson AM, Tyor W. A Rationale and Approach to the Development of Specific Treatments for HIV Associated Neurocognitive Impairment. Microorganisms 2022; 10:2244. [PMID: 36422314 PMCID: PMC9699382 DOI: 10.3390/microorganisms10112244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 05/22/2024] Open
Abstract
Neurocognitive impairment (NCI) associated with HIV infection of the brain impacts a large proportion of people with HIV (PWH) regardless of antiretroviral therapy (ART). While the number of PWH and severe NCI has dropped considerably with the introduction of ART, the sole use of ART is not sufficient to prevent or arrest NCI in many PWH. As the HIV field continues to investigate cure strategies, adjunctive therapies are greatly needed. HIV imaging, cerebrospinal fluid, and pathological studies point to the presence of continual inflammation, and the presence of HIV RNA, DNA, and proteins in the brain despite ART. Clinical trials exploring potential adjunctive therapeutics for the treatment of HIV NCI over the last few decades have had limited success. Ideally, future research and development of novel compounds need to address both the HIV replication and neuroinflammation associated with HIV infection in the brain. Brain mononuclear phagocytes (MPs) are the primary instigators of inflammation and HIV protein expression; therefore, adjunctive treatments that act on MPs, such as immunomodulating agents, look promising. In this review, we will highlight recent developments of innovative therapies and discuss future approaches for HIV NCI treatment.
Collapse
Affiliation(s)
- Aaron Scanlan
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhan Zhang
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajeth Koneru
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Monica Reece
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Christina Gavegnano
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Albert M. Anderson
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William Tyor
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Lang R, Li H, Luo X, Liu C, Zhang Y, Guo S, Xu J, Bao C, Dong W, Yu Y. Expression and mechanisms of interferon-stimulated genes in viral infection of the central nervous system (CNS) and neurological diseases. Front Immunol 2022; 13:1008072. [PMID: 36325336 PMCID: PMC9618809 DOI: 10.3389/fimmu.2022.1008072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/28/2022] [Indexed: 09/16/2023] Open
Abstract
Interferons (IFNs) bind to cell surface receptors and activate the expression of interferon-stimulated genes (ISGs) through intracellular signaling cascades. ISGs and their expression products have various biological functions, such as antiviral and immunomodulatory effects, and are essential effector molecules for IFN function. ISGs limit the invasion and replication of the virus in a cell-specific and region-specific manner in the central nervous system (CNS). In addition to participating in natural immunity against viral infections, studies have shown that ISGs are essential in the pathogenesis of CNS disorders such as neuroinflammation and neurodegenerative diseases. The aim of this review is to present a macroscopic overview of the characteristics of ISGs that restrict viral neural invasion and the expression of the ISGs underlying viral infection of CNS cells. Furthermore, we elucidate the characteristics of ISGs expression in neurological inflammation, neuropsychiatric disorders such as depression as well as neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Finally, we summarize several ISGs (ISG15, IFIT2, IFITM3) that have been studied more in recent years for their antiviral infection in the CNS and their research progress in neurological diseases.
Collapse
Affiliation(s)
- Rui Lang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huiting Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xiaoqin Luo
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Cencen Liu
- Department of Pathology, People’s Hospital of Zhongjiang County, DeYang, China
| | - Yiwen Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - ShunYu Guo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jingyi Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Changshun Bao
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Neurological diseases and brain function laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yang Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front Immunol 2022. [PMID: 35309296 DOI: 10.3389/fimmu.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host's defense against infectious diseases, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Tianhao Duan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Du
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Helen Y Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
11
|
Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front Immunol 2022; 13:812774. [PMID: 35309296 PMCID: PMC8927970 DOI: 10.3389/fimmu.2022.812774] [Citation(s) in RCA: 269] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Innate immunity is the first defense system against invading pathogens. Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for pathogen recognition and induction of innate immune responses. Since their discovery, TLRs have revolutionized the field of immunology by filling the gap between the initial recognition of pathogens by innate immune cells and the activation of the adaptive immune response. TLRs critically link innate immunity to adaptive immunity by regulating the activation of antigen-presenting cells and key cytokines. Furthermore, recent studies also have shown that TLR signaling can directly regulate the T cell activation, growth, differentiation, development, and function under diverse physiological conditions. This review provides an overview of TLR signaling pathways and their regulators and discusses how TLR signaling, directly and indirectly, regulates cell-mediated immunity. In addition, we also discuss how TLR signaling is critically important in the host's defense against infectious diseases, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Tianhao Duan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Du
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Helen Y. Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
12
|
O'Brien CA, Bennett FC, Bennett ML. Microglia in antiviral immunity of the brain and spinal cord. Semin Immunol 2022; 60:101650. [PMID: 36099864 PMCID: PMC9934594 DOI: 10.1016/j.smim.2022.101650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/17/2022] [Accepted: 08/30/2022] [Indexed: 01/15/2023]
Abstract
Viral infections of the central nervous system (CNS) are a significant cause of neurological impairment and mortality worldwide. As tissue resident macrophages, microglia are critical initial responders to CNS viral infection. Microglia seem to coordinate brain-wide antiviral responses of both brain resident cells and infiltrating immune cells. This review discusses how microglia may promote this antiviral response at a molecular level, from potential mechanisms of virus recognition to downstream cytokine responses and interaction with antiviral T cells. Recent advancements in genetic tools to specifically target microglia in vivo promise to further our understanding about the precise mechanistic role of microglia in CNS infection.
Collapse
Affiliation(s)
- Carleigh A O'Brien
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States.
| | - F Chris Bennett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Mariko L Bennett
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| |
Collapse
|
13
|
Cordeiro PAS, Assone T, Prates G, Tedeschi MRM, Fonseca LAM, Casseb J. The role of IFN-γ production during retroviral infections: an important cytokine involved in chronic inflammation and pathogenesis. Rev Inst Med Trop Sao Paulo 2022; 64:e64. [PMID: 36197425 PMCID: PMC9528752 DOI: 10.1590/s1678-9946202264064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Interferon-gamma (IFN-γ) plays a crucial role in viral infections by preventing viral replication and in the promotion of innate and adaptive immune responses. However, IFN-gamma can exert distinct effects in different persistent viral infections. The long-term overproduction of IFN-γ in retroviral infections, such as the human immunodeficiency virus (HIV), human T-lymphotropic virus type 1 (HTLV-1), and human endogenous retroviruses (HERVs), resulting in inflammation, may cause neuronal damage. This review is provocative about the role of IFN-γ during persistent retroviral infections and its relationship with the causation of some neurological disorders that are important for public health.
Collapse
|
14
|
Rojas M, Luz-Crawford P, Soto-Rifo R, Reyes-Cerpa S, Toro-Ascuy D. The Landscape of IFN/ISG Signaling in HIV-1-Infected Macrophages and Its Possible Role in the HIV-1 Latency. Cells 2021; 10:2378. [PMID: 34572027 PMCID: PMC8467246 DOI: 10.3390/cells10092378] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
A key characteristic of Human immunodeficiency virus type 1 (HIV-1) infection is the generation of latent viral reservoirs, which have been associated with chronic immune activation and sustained inflammation. Macrophages play a protagonist role in this context since they are persistently infected while being a major effector of the innate immune response through the generation of type-I interferons (type I IFN) and IFN-stimulated genes (ISGs). The balance in the IFN signaling and the ISG induction is critical to promote a successful HIV-1 infection. Classically, the IFNs response is fine-tuned by opposing promotive and suppressive signals. In this context, it was described that HIV-1-infected macrophages can also synthesize some antiviral effector ISGs and, positive and negative regulators of the IFN/ISG signaling. Recently, epitranscriptomic regulatory mechanisms were described, being the N6-methylation (m6A) modification on mRNAs one of the most relevant. The epitranscriptomic regulation can affect not only IFN/ISG signaling, but also type I IFN expression, and viral fitness through modifications to HIV-1 RNA. Thus, the establishment of replication-competent latent HIV-1 infected macrophages may be due to non-classical mechanisms of type I IFN that modulate the activation of the IFN/ISG signaling network.
Collapse
Affiliation(s)
- Masyelly Rojas
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile;
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile;
| | - Patricia Luz-Crawford
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile;
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad of Chile, Santiago 8389100, Chile;
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
| | - Daniela Toro-Ascuy
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| |
Collapse
|
15
|
Meng FZ, Liu JB, Wang X, Wang P, Hu WH, Hou W, Ho WZ. TLR7 Activation of Macrophages by Imiquimod Inhibits HIV Infection through Modulation of Viral Entry Cellular Factors. BIOLOGY 2021; 10:661. [PMID: 34356516 PMCID: PMC8301371 DOI: 10.3390/biology10070661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023]
Abstract
The Toll-like receptor (TLR) 7 is a viral sensor for detecting single-stranded ribonucleic acid (ssRNA), the activation of which can induce intracellular innate immunity against viral infections. Imiquimod, a synthetic ligand for TLR7, has been successfully used for the topical treatment of genital/perianal warts in immunocompetent individuals. We studied the effect of imiquimod on the human immunodeficiency virus (HIV) infection of primary human macrophages and demonstrated that the treatment of cells with imiquimod effectively inhibited infection with multiple strains (Bal, YU2, and Jago) of HIV. This anti-HIV activity of imiquimod was the most potent when macrophages were treated prior to infection. Infection of macrophages with pseudotyped HIV NL4-3-ΔEnv-eGFP-Bal showed that imiquimod could block the viral entry. Further mechanistic studies revealed that while imiquimod had little effect on the interferons (IFNs) expression, its treatment of macrophages resulted in the increased production of the CC chemokines (human macrophage inflammatory protein-1 alpha (MIP-1α), MIP-1β, and upon activation regulated normal T cells expressed and secreted (RANTES)), the natural ligands of HIV entry co-receptor CCR5, and decreased the expression of CD4 and CCR5. The addition of the antibodies against the CC chemokines to macrophage cultures could block imiquimod-mediated HIV inhibition. These findings provide experimental evidence to support the notion that TLR7 participates in the intracellular immunity against HIV in macrophages, suggesting the further clinical evaluation of imiquimod for its additional benefit of treating genital/perianal warts in people infected with HIV.
Collapse
Affiliation(s)
- Feng-Zhen Meng
- School of Basic Medical Sciences, Wuhan University, Wuhan 430000, China;
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA; (J.-B.L.); (X.W.); (P.W.); (W.-H.H.)
| | - Jin-Biao Liu
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA; (J.-B.L.); (X.W.); (P.W.); (W.-H.H.)
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA; (J.-B.L.); (X.W.); (P.W.); (W.-H.H.)
| | - Peng Wang
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA; (J.-B.L.); (X.W.); (P.W.); (W.-H.H.)
| | - Wen-Hui Hu
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA; (J.-B.L.); (X.W.); (P.W.); (W.-H.H.)
| | - Wei Hou
- School of Basic Medical Sciences, Wuhan University, Wuhan 430000, China;
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA; (J.-B.L.); (X.W.); (P.W.); (W.-H.H.)
| |
Collapse
|
16
|
Nath A, Johnson TP. Mechanisms of viral persistence in the brain and therapeutic approaches. FEBS J 2021; 289:2145-2161. [PMID: 33844441 DOI: 10.1111/febs.15871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022]
Abstract
There is growing recognition of the diversity of viruses that can infect the cells of the central nervous system (CNS). While the majority of CNS infections are successfully cleared by the immune response, some viral infections persist in the CNS. As opposed to resolved infections, persistent viruses can contribute to ongoing tissue damage and neuroinflammatory processes. In this manuscript, we provide an overview of the current understanding of factors that lead to viral persistence in the CNS including how viruses enter the brain, how these pathogens evade antiviral immune system responses, and how viruses survive and transmit within the CNS. Further, as the CNS may serve as a unique viral reservoir, we examine the ways in which persistent viruses in the CNS are being targeted therapeutically.
Collapse
Affiliation(s)
- Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Tory P Johnson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
17
|
Rai MA, Hammonds J, Pujato M, Mayhew C, Roskin K, Spearman P. Comparative analysis of human microglial models for studies of HIV replication and pathogenesis. Retrovirology 2020; 17:35. [PMID: 33213476 PMCID: PMC7678224 DOI: 10.1186/s12977-020-00544-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Background HIV associated neurocognitive disorders cause significant morbidity and mortality despite the advent of highly active antiretroviral therapy. A deeper understanding of fundamental mechanisms underlying HIV infection and pathogenesis in the central nervous system is warranted. Microglia are resident myeloid cells of the brain that are readily infected by HIV and may constitute a CNS reservoir. We evaluated two microglial model cell lines (C20, HMC3) and two sources of primary cell-derived microglia (monocyte-derived microglia [MMG] and induced pluripotent stem cell-derived microglia [iPSC-MG]) as potential model systems for studying HIV-microglia interactions. Results All four microglial model cells expressed typical myeloid markers with the exception of low or absent CD45 and CD11b expression by C20 and HMC3, and all four expressed the microglia-specific markers P2RY12 and TMEM119. Marked differences were observed upon gene expression profiling, however, indicating that MMG and iPSC-MG cluster closely together with primary human microglial cells, while C20 and HMC3 were similar to each other but very different from primary microglia. Expression of HIV-relevant genes also revealed important differences, with iPSC-MG and MMG expressing relevant genes at levels more closely resembling primary microglia. iPSC-MG and MMG were readily infected with R5-tropic HIV, while C20 and HMC3 lack CD4 and require pseudotyping for infection. Despite many similarities, HIV replication dynamics and HIV-1 particle capture by Siglec-1 differed markedly between the MMG and iPSC-MG. Conclusions MMG and iPSC-MG appear to be viable microglial models that are susceptible to HIV infection and bear more similarities to authentic microglia than two transformed microglia cell lines. The observed differences in HIV replication and particle capture between MMG and iPSC-MG warrant further study.
Collapse
Affiliation(s)
- Mohammad A Rai
- Division of Infectious Diseases, Cincinnati Children's Hospital, 3333 Burnet Avenue, MLC 7017, Cincinnati, OH, 45229, USA.,Division of Infectious Diseases, Department of Medicine, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Jason Hammonds
- Division of Infectious Diseases, Cincinnati Children's Hospital, 3333 Burnet Avenue, MLC 7017, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Mario Pujato
- Division of Biomedical Informatics, Cincinnati Children's Hospital, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Christopher Mayhew
- Pluripotent Stem Cell Core Facility, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Krishna Roskin
- Division of Biomedical Informatics, Cincinnati Children's Hospital, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Paul Spearman
- Division of Infectious Diseases, Cincinnati Children's Hospital, 3333 Burnet Avenue, MLC 7017, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
18
|
Liao K, Niu F, Hu G, Yang L, Dallon B, Villarreal D, Buch S. Morphine-mediated release of miR-138 in astrocyte-derived extracellular vesicles promotes microglial activation. J Extracell Vesicles 2020; 10:e12027. [PMID: 33304479 PMCID: PMC7710131 DOI: 10.1002/jev2.12027] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/20/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
Opioids, such as morphine, are the mainstay for the management of postsurgical pain. Over the last decade there has been a dramatic increase in deaths related to opioid overdose. While opioid abuse has been shown to result in increased neuroinflammation, mechanism(s) underlying this process, remain less understood. In recent years, microRNAs have emerged as key mediators of gene expression regulating both paracrine signaling and cellular crosstalk. MiRNAs constitute the extracellular vesicle (EV) cargo and can shuttle from the donor to the recipient cells. Exposure of human primary astrocytes to morphine resulted in induction and release of miR-138 in the EVs isolated from conditioned media of cultured astrocytes. Released EVs were, in turn, taken up by the microglia, leading to activation of these latter cells. Interestingly, activation of microglia involved binding of the GUUGUGU motif of miR138 to the endosomal toll like receptor (TLR)7, leading, in turn, to cellular activation. These findings were further corroborated in vivo in wildtype mice wherein morphine administration resulted in increased microglial activation in the thalamus. In TLR7-/- mice on the other hand, morphine failed to induce microglial activation. These findings have ramifications for the development of EV-loaded anti-miRNAs as therapeutics for alleviating neuroinflammation in opioids abusers.
Collapse
Affiliation(s)
- Ke Liao
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Fang Niu
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Guoku Hu
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Lu Yang
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Blake Dallon
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Delaney Villarreal
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Shilpa Buch
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
19
|
Galimberti S, Petrini M, Baratè C, Ricci F, Balducci S, Grassi S, Guerrini F, Ciabatti E, Mechelli S, Di Paolo A, Baldini C, Baglietto L, Macera L, Spezia PG, Maggi F. Tyrosine Kinase Inhibitors Play an Antiviral Action in Patients Affected by Chronic Myeloid Leukemia: A Possible Model Supporting Their Use in the Fight Against SARS-CoV-2. Front Oncol 2020; 10:1428. [PMID: 33014780 PMCID: PMC7493657 DOI: 10.3389/fonc.2020.01428] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV-2 is the viral agent responsible for the pandemic that in the first months of 2020 caused about 400,000 deaths. Among compounds proposed to fight the SARS-CoV-2-related disease (COVID-19), tyrosine kinase inhibitors (TKIs), already effective in Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL) and chronic myeloid leukemia (CML), have been proposed on the basis of their antiviral action already demonstrated against SARS-CoV-1. Very few cases of COVID-19 have been reported in Ph+ ALL and in CML Italian cohorts; authors suggested that this low rate of infections might depend on the use of TKIs, but the biological causes of this phenomenon remain unknown. In this study, the CML model was used to test if TKIs would sustain or not the viral replication and if they could damage patient immunity. Firstly, the infection and replication rate of torquetenovirus (TTV), whose load is inversely proportional to the host immunological control, have been measured in CML patients receiving nilotinib. A very low percentage of subjects were infected at baseline, and TTV did not replicate or at least showed a low replication rate during the follow-up, with a mean load comparable to the measured one in healthy subjects. Then, after gene expression profiling experiments, we found that several “antiviral” genes, such as CD28 and IFN gamma, were upregulated, while genes with “proviral” action, such as ARG-1, CEACAM1, and FUT4, were less expressed during treatment with imatinib, thus demonstrating that TKIs are not detrimental from the immunological point of view. To sum up, our data could offer some biological explanations to the low COVID-19 occurrence in Ph+ ALL and CML patients and sustain the use of TKIs in COVID-19, as already proposed by several international ongoing studies.
Collapse
Affiliation(s)
- Sara Galimberti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mario Petrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Federica Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Serena Balducci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Susanna Grassi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Guerrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Ciabatti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Antonello Di Paolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Baldini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Baglietto
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lisa Macera
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Pietro Giorgio Spezia
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Fabrizio Maggi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
20
|
Nguyen H, Gazy N, Venketaraman V. A Role of Intracellular Toll-Like Receptors (3, 7, and 9) in Response to Mycobacterium tuberculosis and Co-Infection with HIV. Int J Mol Sci 2020; 21:E6148. [PMID: 32858917 PMCID: PMC7503332 DOI: 10.3390/ijms21176148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a highly infectious acid-fast bacillus and is known to cause tuberculosis (TB) in humans. It is a leading cause of death from a sole infectious agent, with an estimated 1.5 million deaths yearly worldwide, and up to one third of the world's population has been infected with TB. The virulence and susceptibility of Mtb are further amplified in the presence of Human Immunodeficiency Virus (HIV). Coinfection with Mtb and HIV forms a lethal combination. Previous studies had demonstrated the synergistic effects of Mtb and HIV, with one disease accelerating the disease progression of the other through multiple mechanisms, including the modulation of the immune response to these two pathogens. The response of the endosomal pattern recognition receptors to these two pathogens, specifically toll-like receptors (TLR)-3, -7, and -9, has not been elucidated, with some studies producing mixed results. This article seeks to review the roles of TLR-3, -7, and -9 in response to Mtb infection, as well as Mtb-HIV-coinfection via Toll-interleukin 1 receptor (TIR) domain-containing adaptor inducing INF-β (TRIF)-dependent and myeloid differentiation factor 88 (MyD88)-dependent pathways.
Collapse
Affiliation(s)
- Huy Nguyen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Nicky Gazy
- Beaumont Health System, 5450 Fort St, Trenton, MI 48183, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| |
Collapse
|