1
|
Wang J, Fan XY, Hu Z. Immune correlates of protection as a game changer in tuberculosis vaccine development. NPJ Vaccines 2024; 9:208. [PMID: 39478007 PMCID: PMC11526030 DOI: 10.1038/s41541-024-01004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
The absence of validated correlates of protection (CoPs) hampers the rational design and clinical development of new tuberculosis vaccines. In this review, we provide an overview of the potential CoPs in tuberculosis vaccine research. Major hindrances and potential opportunities are then discussed. Based on recent progress, it is reasonable to anticipate that success in the ongoing efforts to identify CoPs would be a game-changer in tuberculosis vaccine development.
Collapse
Affiliation(s)
- Jing Wang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China.
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
2
|
Klepp LI, Blanco FC, Bigi MM, Vázquez CL, García EA, Sabio y García J, Bigi F. B Cell and Antibody Responses in Bovine Tuberculosis. Antibodies (Basel) 2024; 13:84. [PMID: 39449326 PMCID: PMC11503302 DOI: 10.3390/antib13040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024] Open
Abstract
The development of vaccines and effective diagnostic methods for bovine tuberculosis requires an understanding of the immune response against its causative agent, Mycobacterium bovis. Although this disease is primarily investigated and diagnosed through the assessment of cell-mediated immunity, the role of B cells and antibodies in bovine tuberculosis has been relatively undervalued and understudied. Current evidence indicates that circulating M. bovis-specific antibodies are not effective in controlling the disease. However, local humoral immune responses may contribute to either defence or pathology. Recent studies in animal models and cattle vaccine trials suggest a potential beneficial role of B cells in tuberculosis control. This review discusses the role of B cells and antibodies in bovine tuberculosis and explores antibody-based diagnostics for the disease, including traditional techniques, such as different ELISA, new platforms based on multiple antigens and point-of-care technologies. The high specificity and sensitivity values achieved by numerous antibody-based tests support their use as complementary tests for the diagnosis of bovine tuberculosis, especially for identifying infected animals that may be missed by the official tests.
Collapse
Affiliation(s)
- Laura Inés Klepp
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina; (L.I.K.); (F.C.B.); (C.L.V.); (E.A.G.)
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina
| | - Federico Carlos Blanco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina; (L.I.K.); (F.C.B.); (C.L.V.); (E.A.G.)
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina
| | - María Mercedes Bigi
- INBIOMED, Instituto de Investigaciones Biomédicas, (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), UBA-CONICET, Paraguay 2155, Buenos Aires C1121ABG, Argentina;
| | - Cristina Lourdes Vázquez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina; (L.I.K.); (F.C.B.); (C.L.V.); (E.A.G.)
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina
| | - Elizabeth Andrea García
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina; (L.I.K.); (F.C.B.); (C.L.V.); (E.A.G.)
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina
| | - Julia Sabio y García
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina; (L.I.K.); (F.C.B.); (C.L.V.); (E.A.G.)
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina
| | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina; (L.I.K.); (F.C.B.); (C.L.V.); (E.A.G.)
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Hurlingham 1686, Buenos Aires, Argentina
| |
Collapse
|
3
|
Wang Q, Nag D, Baldwin SL, Coler RN, McNamara RP. Antibodies as key mediators of protection against Mycobacterium tuberculosis. Front Immunol 2024; 15:1430955. [PMID: 39286260 PMCID: PMC11402706 DOI: 10.3389/fimmu.2024.1430955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Tuberculosis (TB) is caused by infection with the bacterial pathogen Mycobacterium tuberculosis (M.tb) in the respiratory tract. There was an estimated 10.6 million people newly diagnosed with TB, and there were approximately 1.3 million deaths caused by TB in 2022. Although the global prevalence of TB has remained high for decades and is an annual leading cause of death attributed to infectious diseases, only one vaccine, Bacillus Calmette-Guérin (BCG), has been approved so far to prevent/attenuate TB disease. Correlates of protection or immunological mechanisms that are needed to control M.tb remain unknown. The protective role of antibodies after BCG vaccination has also remained largely unclear; however, recent studies have provided evidence for their involvement in protection against disease, as biomarkers for the state of infection, and as potential predictors of outcomes. Interestingly, the antibodies generated post-vaccination with BCG are linked to the activation of innate immune cascades, providing further evidence that antibody effector functions are critical for protection against respiratory pathogens such as M.tb. In this review, we aim to provide current knowledge of antibody application in TB diagnosis, prevention, and treatment. Particularly, this review will focus on 1) The role of antibodies in preventing M.tb infections through preventing Mtb adherence to epithelium, antibody-mediated phagocytosis, and antibody-mediated cellular cytotoxicity; 2) The M.tb-directed antibody response generated after vaccination and how humoral profiles with different glycosylation patterns of these antibodies are linked with protection against the disease state; and 3) How antibody-mediated immunity against M.tb can be further explored as early diagnosis biomarkers and different detection methods to combat the global M.tb burden. Broadening the paradigm of differentiated antibody profiling and antibody-based detection during TB disease progression offers new directions for diagnosis, treatment, and preventative strategies. This approach involves linking the aforementioned humoral responses with the disease state, progression, and clearance.
Collapse
Affiliation(s)
- Qixin Wang
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| | - Deepika Nag
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Susan L. Baldwin
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Rhea N. Coler
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Ryan P. McNamara
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| |
Collapse
|
4
|
Chen YQ, Cao SH, Yang XY, Liu Y, Li CY. Potential biomarkers for evaluating the BCG vaccination response based on humoral immunity. Heliyon 2024; 10:e32117. [PMID: 38947452 PMCID: PMC11214448 DOI: 10.1016/j.heliyon.2024.e32117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Background The current prophylactic tuberculosis vaccine Bacille Calmette-Guérin (BCG), was derived in the 1920s, but the humoral immune responses induced by BCG vaccination have not been fully elucidated to date. In this study, our aim was to reveal the profiles of antibody responses induced by BCG vaccination in adults and identify the potential biomarkers for evaluating the BCG vaccination response. Methods Proteome microarrays were performed to reveal the serum profiles of antibody responses induced by BCG vaccination in adults. ELISA was used to validate the potential biomarkers in validation cohort (79 healthy controls and 58 BCG-vaccinated subjects). Then combined panel was established by logistic regression analysis based on OD values of potential biomarkers. Results Multiple antigens elicited stronger serum IgG or IgM antibody responses in BCG vaccinated subjects than healthy subjects at 12 weeks post BCG vaccination; among the antigens, Rv0060, Rv2026c and Rv3379c were further verified using 137 serum samples and presented the moderate performance in assessment of the BCG vaccination response by receiver operating characteristic analysis. Furthermore, a combined panel exhibited an improved AUC of 0.923, and the sensitivity and specificity were 77.59 % and 91.14 %, respectively. In addition, the antibody response against Rv0060, Rv2026c and Rv3379c was related to the clinical background to a certain extent. Conclusions The novel antigens identified in our study could offer better knowledge towards developing a more efficacious vaccine based on humoral immune responses, and they could be potential biomarkers in assessments of BCG vaccination responses.
Collapse
Affiliation(s)
- Yan-Qing Chen
- Department of Sentience and Technology, Beijing Geriatric Hospital, Beijing, China
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Shu-Hui Cao
- Department of Laboratory Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xin-Yu Yang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yi Liu
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Chuan-You Li
- Beijing Center for Disease Prevention and Control, Beijing, China
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Deng L, Wang Q, Liu H, Jiang Y, Xu M, Xiang Y, Yang T, Yang S, Yan D, Li M, Zhao L, Zhao X, Wan K, He G, Mijiti X, Li G. Identification of positively selected genes in Mycobacterium tuberculosis from southern Xinjiang Uygur autonomous region of China. Front Microbiol 2024; 15:1290227. [PMID: 38686109 PMCID: PMC11056549 DOI: 10.3389/fmicb.2024.1290227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Background Tuberculosis (TB), mainly caused by Mycobacterium tuberculosis (Mtb), remains a serious public health problem. Increasing evidence supports that selective evolution is an important force affecting genomic determinants of Mtb phenotypes. It is necessary to further understand the Mtb selective evolution and identify the positively selected genes that probably drive the phenotype of Mtb. Methods This study mainly focused on the positive selection of 807 Mtb strains from Southern Xinjiang of China using whole genome sequencing (WGS). PAML software was used for identifying the genes and sites under positive selection in 807 Mtb strains. Results Lineage 2 (62.70%) strains were the dominant strains in this area, followed by lineage 3 (19.45%) and lineage 4 (17.84%) strains. There were 239 codons in 47 genes under positive selection, and the genes were majorly associated with the functions of transcription, defense mechanisms, and cell wall/membrane/envelope biogenesis. There were 28 codons (43 mutations) in eight genes (gyrA, rpoB, rpoC, katG, pncA, embB, gid, and cut1) under positive selection in multi-drug resistance (MDR) strains but not in drug-susceptible (DS) strains, in which 27 mutations were drug-resistant loci, 9 mutations were non-drug-resistant loci but were in drug-resistant genes, 2 mutations were compensatory mutations, and 5 mutations were in unknown drug-resistant gene of cut1. There was a codon in Rv0336 under positive selection in L3 strains but not in L2 and L4 strains. The epitopes of T and B cells were both hyper-conserved, particularly in the T-cell epitopes. Conclusion This study revealed the ongoing selective evolution of Mtb. We found some special genes and sites under positive selection which may contribute to the advantage of MDR and L3 strains. It is necessary to further study these mutations to understand their impact on phenotypes for providing more useful information to develop new TB interventions.
Collapse
Affiliation(s)
- Lele Deng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Quan Wang
- Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Haican Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Jiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Miao Xu
- Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yu Xiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, University of South China, Hengyang, China
| | - Ting Yang
- Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shuliu Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, University of South China, Hengyang, China
| | - Di Yan
- Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Machao Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lili Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiuqin Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kanglin Wan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guangxue He
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaokaiti Mijiti
- Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Guilian Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
6
|
Zeng L, Ma X, Qu M, Tang M, Li H, Lei C, Ji J, Li H. Immunogenicity and protective efficacy of Ag85A and truncation of PstS1 fusion protein vaccines against tuberculosis. Heliyon 2024; 10:e27034. [PMID: 38463854 PMCID: PMC10920368 DOI: 10.1016/j.heliyon.2024.e27034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Tuberculosis (TB) is an important public health problem, and the One Health approach is essential for controlling zoonotic tuberculosis. Therefore, a rationally designed and more effective TB vaccine is urgently needed. To enhance vaccine efficacy, it is important to design vaccine candidates that stimulate both cellular and humoral immunity against TB. In this study, we fused the secreted protein Ag85A as the T cell antigen with truncated forms of the mycobacterial cell wall protein PstS1 with B cell epitopes to generate vaccine candidates, Ag85A-tnPstS1 (AP1, AP2, and AP3), and tested their immunogenicity and protective efficacy in mice. The three vaccine candidates induced a significant increase in the levels of T cell-related cytokines such as IFN-γ and IL-17, and AP1 and AP2 can induce more balanced Th1/Th2 responses than AP3. Strong humoral immune responses were also observed in which the production of IgG antibodies including its subclasses IgG1, IgG2c, and IgG3 was tremendously stimulated. AP1 and AP2 induced early antibody responses and more IgG3 isotype antibodies than AP3. Importantly, the mice immunised with the subunit vaccine candidates, particularly AP1 and AP2, had lower bacterial burdens than the control mice. Moreover, the serum from immunised mice can enhance phagocytosis and phagosome-lysosome fusion in macrophages, which can help to eradicate intracellular bacteria. These results indicate that the subunit vaccines Ag85A-tnPstS1 can be promising vaccine candidates for tuberculosis prevention.
Collapse
Affiliation(s)
- Lingyuan Zeng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiuling Ma
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Mengjin Qu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Minghui Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Huoming Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chengrui Lei
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jiahong Ji
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Hao Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Mi J, Liu Y, Xue Y, Sun W, Liang Y, Liang J, An H, Wu X. The changes and its significance of peripheral blood NK cells in patients with tuberculous meningitis. Front Microbiol 2024; 15:1344162. [PMID: 38486698 PMCID: PMC10937341 DOI: 10.3389/fmicb.2024.1344162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/01/2024] [Indexed: 03/17/2024] Open
Abstract
Objective Tuberculous meningitis (TBM) is the most severe form of tuberculosis (TB). The purpose of this study was to explore the relationship between the number of natural killer (NK) cells and adaptive immune status, and disease severity in TBM patients. Methods We conducted a retrospective study on 244 TB patients and 146 healthy control subjects in the 8th Medical Center of the PLA General Hospital from March 2018 and August 2023. Results The absolute count of NK cells in the peripheral blood of TBM patients was significantly lower than that in normal controls (NC), latent tuberculosis infection (LTBI), and non-severe TB (NSTB) patients (p < 0.05). The proportion of TBM patients (48.7%) with a lower absolute count of NK cells than the normal reference value was significantly higher than that in NC (5.2%) and LTBI groups (4.0%) (p < 0.05), and slightly higher than that in NSTB group (36.0%) (p > 0.05). The absolute counts of lymphocyte subsets in TBM combined with other active TB group, etiology (+) group, IGRA (-) group, and antibody (+) group were lower than that in simple TBM group, etiology (-) group, IGRA (+) group, and antibody (-) group, respectively. The CD3+ T, NK, and B cells in BMRC-stage III TBM patients were significantly lower than those in stage I and stage II patients (p < 0.05). The counts of CD3+ T, CD4+ T, and B cells in the etiology (+) group were significantly lower than those in the etiology (-) group (p < 0.05). Conclusion The absolute counts of lymphocyte subsets in the peripheral blood of TBM patients were significantly decreased, especially in NK cells. The reduction of these immune cells was closely related to the disease severity and had a certain correlation with cellular and humoral immune responses. This study helps to better understand the immune mechanism of TBM and provides reliable indicators for evaluating the immune status of TBM patients in clinical practice.
Collapse
Affiliation(s)
- Jie Mi
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Yinping Liu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Yong Xue
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Wenna Sun
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Yan Liang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Jianqin Liang
- Department of Tuberculosis, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Huiru An
- Department of Tuberculosis, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Xueqiong Wu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Ishida E, Corrigan DT, Chen T, Liu Y, Kim RS, Song L, Rutledge TM, Magee DM, LaBaer J, Lowary TL, Lin PL, Achkar JM. Mucosal and systemic antigen-specific antibody responses correlate with protection against active tuberculosis in nonhuman primates. EBioMedicine 2024; 99:104897. [PMID: 38096687 PMCID: PMC10758715 DOI: 10.1016/j.ebiom.2023.104897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Increasing evidence supports that antibodies can protect against active tuberculosis (TB) but knowledge of potentially protective antigens, especially in the airways, is limited. The main objective of this study was to identify antigen-specific airway and systemic immunoglobulin isotype responses associated with the outcome of controlled latent Mycobacterium tuberculosis (Mtb) infection (LTBI) versus uncontrolled infection (TB) in nonhuman primates. METHODS In a case-control design, using non-parametric group comparisons with false discovery rate adjustments, we assessed antibodies in 57 cynomolgus macaques which, following low-dose airway Mtb infection, developed either LTBI or TB. We investigated airway and systemic IgG, IgA, and IgM responses in paired bronchoalveolar lavage and plasma samples prior to, two-, and 5-6-months post Mtb infection using an antigen-unbiased approach with Mtb glycan and proteome-wide microarrays. FINDINGS Macaques that developed LTBI (n = 36) had significantly increased airway and plasma IgA reactivities to specific arabinomannan (AM) motifs prior to Mtb infection compared to those that developed TB (n = 21; p < 0.01, q < 0.05). Furthermore, LTBI macaques had higher plasma IgG reactivity to protein MTB32A (Rv0125) early post Mtb infection (p < 0.05) and increasing airway IgG responses to some proteins over time. INTERPRETATION Our results support a protective role of pre-existing mucosal (lung) and systemic IgA to specific Mtb glycan motifs, suggesting that prior exposure to nontuberculous mycobacteria could be protective against TB. They further suggest that IgG to Mtb proteins early post infection could provide an additional protective mechanism. These findings could inform TB vaccine development strategies. FUNDING NIH/NIAID AI117927, AI146329, and AI127173 to JMA.
Collapse
Affiliation(s)
- Elise Ishida
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Devin T Corrigan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tingting Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yanyan Liu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ryung S Kim
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lusheng Song
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Tara M Rutledge
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - D Mitchell Magee
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada; Institute of Biological Chemistry, Academia Sinica, Nangang Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Philana Ling Lin
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jacqueline M Achkar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
9
|
Liu Y, Chen T, Zhu Y, Furey A, Lowary TL, Chan J, Bournazos S, Ravetch JV, Achkar JM. Features and protective efficacy of human mAbs targeting Mycobacterium tuberculosis arabinomannan. JCI Insight 2023; 8:e167960. [PMID: 37733444 PMCID: PMC10619501 DOI: 10.1172/jci.insight.167960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
A better understanding of the epitopes most relevant for antibody-mediated protection against tuberculosis (TB) remains a major knowledge gap. We have shown that human polyclonal IgG against the Mycobacterium tuberculosis (M. tuberculosis) surface glycan arabinomannan (AM) and related lipoarabinomannan (LAM) is protective against TB. To investigate the impact of AM epitope recognition and Fcγ receptor (FcγR) binding on antibody functions against M. tuberculosis, we isolated a high-affinity human monoclonal antibody (mAb; P1AM25) against AM and showed its binding to oligosaccharide (OS) motifs we previously found to be associated with in vitro functions of human polyclonal anti-AM IgG. Human IgG1 P1AM25, but not 2 other high-affinity human IgG1 anti-AM mAbs reactive with different AM OS motifs, enhanced M. tuberculosis phagocytosis by macrophages and reduced intracellular growth in an FcγR-dependent manner. P1AM25 in murine IgG2a, but neither murine IgG1 nor a non-FcγR-binding IgG, given intraperitoneally prior to and after aerosolized M. tuberculosis infection, was protective in C57BL/6 mice. Moreover, we demonstrated the protective efficacy of human IgG1 P1AM25 in passive transfer with M. tuberculosis-infected FcγR-humanized mice. These data enhance our knowledge of the important interplay between both antibody epitope specificity and Fc effector functions in the defense against M. tuberculosis and could inform development of vaccines against TB.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Microbiology and Immunology and
| | - Tingting Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yongqi Zhu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Aisha Furey
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Todd L. Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - John Chan
- Public Health Research Institute at the International Center for Public Health, New Jersey Medical School – Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | | | | | - Jacqueline M. Achkar
- Department of Microbiology and Immunology and
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
10
|
Aiello A, Najafi-Fard S, Goletti D. Initial immune response after exposure to Mycobacterium tuberculosis or to SARS-COV-2: similarities and differences. Front Immunol 2023; 14:1244556. [PMID: 37662901 PMCID: PMC10470049 DOI: 10.3389/fimmu.2023.1244556] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) and Coronavirus disease-2019 (COVID-19), whose etiologic agent is severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), are currently the two deadliest infectious diseases in humans, which together have caused about more than 11 million deaths worldwide in the past 3 years. TB and COVID-19 share several aspects including the droplet- and aerosol-borne transmissibility, the lungs as primary target, some symptoms, and diagnostic tools. However, these two infectious diseases differ in other aspects as their incubation period, immune cells involved, persistence and the immunopathological response. In this review, we highlight the similarities and differences between TB and COVID-19 focusing on the innate and adaptive immune response induced after the exposure to Mtb and SARS-CoV-2 and the pathological pathways linking the two infections. Moreover, we provide a brief overview of the immune response in case of TB-COVID-19 co-infection highlighting the similarities and differences of each individual infection. A comprehensive understanding of the immune response involved in TB and COVID-19 is of utmost importance for the design of effective therapeutic strategies and vaccines for both diseases.
Collapse
Affiliation(s)
| | | | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
11
|
Dewi DNSS, Mertaniasih NM, Soedarsono, Hagino K, Yamazaki T, Ozeki Y, Artama WT, Kobayashi H, Inouchi E, Yoshida Y, Ishikawa S, Shaban AK, Tateishi Y, Nishiyama A, Ato M, Matsumoto S. Antibodies against native proteins of Mycobacterium tuberculosis can detect pulmonary tuberculosis patients. Sci Rep 2023; 13:12685. [PMID: 37542102 PMCID: PMC10403504 DOI: 10.1038/s41598-023-39436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023] Open
Abstract
Accurate point-of-care testing (POCT) is critical for managing tuberculosis (TB). However, current antibody-based diagnosis shows low specificity and sensitivity. To find proper antigen candidates for TB diagnosis by antibodies, we assessed IgGs responsiveness to Mycobacterium tuberculosis proteins in pulmonary TB (PTB) patients. We employed major secreted proteins, such as Rv1860, Ag85C, PstS1, Rv2878c, Ag85B, and Rv1926c that were directly purified from M. tuberculosis. In the first screening, we found that IgG levels were significantly elevated in PTB patients only against Rv1860, PstS1, and Ag85B among tested antigens. However, recombinant PstS1 and Ag85B from Escherichia coli (E. coli) couldn't distinguish PTB patients and healthy controls (HC). Recombinant Rv1860 was not checked due to its little expression. Then, the 59 confirmed PTB patients from Soetomo General Academic Hospital, Surabaya, Indonesia, and 102 HC were tested to Rv1860 and Ag85B only due to the low yield of the PstS1 from M. tuberculosis. The ROC analysis using native Ag85B and Rv1860 showed an acceptable area under curve for diagnosis, which is 0.812 (95% CI 0.734-0.890, p < 0.0001) and 0.821 (95% CI 0.752-0.890, p < 0.0001). This study indicates that taking consideration of native protein structure is key in developing TB's POCT by antibody-based diagnosis.
Collapse
Affiliation(s)
- Desak Nyoman Surya Suameitria Dewi
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan.
- Department of Microbiology, Faculty of Medicine, Universitas Ciputra, CitraLand CBD Boulevard, Made, Kec. Sambikerep, Surabaya, 60219, Indonesia.
| | - Ni Made Mertaniasih
- Department of Medical Microbiology, Faculty of Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo 47, Surabaya, 60131, Indonesia.
- Laboratory of Tuberculosis, Institute of Tropical Disease, Universitas Airlangga, Kampus C Jl. Mulyorejo, Surabaya, 60115, Indonesia.
| | - Soedarsono
- Sub-Pulmonology Department of Internal Medicine, Faculty of Medicine, Hang Tuah University, Komplek Barat RSAL Dr. Ramelan, Jl. Gadung No.1, Jagir, Surabaya, 60111, Indonesia
| | - Kimika Hagino
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Tomoya Yamazaki
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Wayan Tunas Artama
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna 2 Karangmalang, Yogyakarta, 55281, Indonesia
- One Health/Eco-Health Resource Center, Universitas Gadjah Mada, Jl. Teknika Utara, Barek, Sleman, Yogyakarta, 55281, Indonesia
| | - Haruka Kobayashi
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Erina Inouchi
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Yutaka Yoshida
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Satoshi Ishikawa
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
- Fukuyama Zoo, 276‑1, Fukuda, Ashida‑cho, Fukuyama, Hiroshima, 720‑1264, Japan
| | - Amina Kaboso Shaban
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Yoshitaka Tateishi
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Akihito Nishiyama
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho 4-2-1, Higashimurayama-shi, Tokyo, 189-0002, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, School of Medicine, Niigata University, Asahimachi-Dori 1-757, Chuo-ku, Niigata, 951-8510, Japan.
- Department of Medical Microbiology, Faculty of Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo 47, Surabaya, 60131, Indonesia.
| |
Collapse
|
12
|
Chen L, Hua J, He X. Identification of cuproptosis-related molecular subtypes as a biomarker for differentiating active from latent tuberculosis in children. BMC Genomics 2023; 24:368. [PMID: 37393262 DOI: 10.1186/s12864-023-09491-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Cell death plays a crucial role in the progression of active tuberculosis (ATB) from latent infection (LTBI). Cuproptosis, a novel programmed cell death, has been reported to be associated with the pathology of various diseases. We aimed to identify cuproptosis-related molecular subtypes as biomarkers for distinguishing ATB from LTBI in pediatric patients. METHOD The expression profiles of cuproptosis regulators and immune characteristics in pediatric patients with ATB and LTBI were analyzed based on GSE39939 downloaded from the Gene Expression Omnibus. From the 52 ATB samples, we investigated the molecular subtypes based on differentially expressed cuproptosis-related genes (DE-CRGs) via consensus clustering and related immune cell infiltration. Subtype-specific differentially expressed genes (DEGs) were found using the weighted gene co-expression network analysis. The optimum machine model was then determined by comparing the performance of the eXtreme Gradient Boost (XGB), the random forest model (RF), the general linear model (GLM), and the support vector machine model (SVM). Nomogram and test datasets (GSE39940) were used to verify the prediction accuracy. RESULTS Nine DE-CRGs (NFE2L2, NLRP3, FDX1, LIPT1, PDHB, MTF1, GLS, DBT, and DLST) associated with active immune responses were ascertained between ATB and LTBI patients. Two cuproptosis-related molecular subtypes were defined in ATB pediatrics. Single sample gene set enrichment analysis suggested that compared with Subtype 2, Subtype 1 was characterized by decreased lymphocytes and increased inflammatory activation. Gene set variation analysis showed that cluster-specific DEGs in Subtype 1 were closely associated with immune and inflammation responses and energy and amino acids metabolism. The SVM model exhibited the best discriminative performance with a higher area under the curve (AUC = 0.983) and relatively lower root mean square and residual error. A final 5-gene-based (MAN1C1, DKFZP434N035, SIRT4, BPGM, and APBA2) SVM model was created, demonstrating satisfactory performance in the test datasets (AUC = 0.905). The decision curve analysis and nomogram calibration curve also revealed the accuracy of differentiating ATB from LTBI in children. CONCLUSION Our study suggested that cuproptosis might be associated with the immunopathology of Mycobacterium tuberculosis infection in children. Additionally, we built a satisfactory prediction model to assess the cuproptosis subtype risk in ATB, which can be used as a reliable biomarker for the distinguishment between pediatric ATB and LTBI.
Collapse
Affiliation(s)
- Liang Chen
- Department of Infectious Diseases, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, No.86, Chongwen Street, Lishui District, Nanjing City, 211002, China.
| | - Jie Hua
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaopu He
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Pushpamithran G, Skoglund C, Olsson F, Méndez-Aranda M, Schön T, Segelmark M, Stendahl O, Gilman RH, Blomgran R. No impact of helminth coinfection in patients with smear positive tuberculosis on immunoglobulin levels using a novel method measuring Mycobacterium tuberculosis-specific antibodies. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:55. [PMID: 37386541 DOI: 10.1186/s13223-023-00808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/11/2023] [Indexed: 07/01/2023]
Abstract
Helminth/tuberculosis (TB)-coinfection can reduce cell-mediated immunity against Mycobacterium tuberculosis (Mtb) and increase disease severity, although the effects are highly helminth species dependent. Mtb have long been ranked as the number one single infectious agent claiming the most lives. The only licensed vaccine for TB (BCG) offers highly variable protection against TB, and almost no protection against transmission of Mtb. In recent few years the identification of naturally occurring antibodies in humans that are protective during Mtb infection has reignited the interest in adaptive humoral immunity against TB and its possible implementation in novel TB vaccine design. The effects of helminth/TB coinfection on the humoral response against Mtb during active pulmonary TB are however still unclear, and specifically the effect by globally prevalent helminth species such as Ascaris lumbricoides, Strongyloides stercoralis, Ancylostoma duodenale, Trichuris trichiura. Plasma samples from smear positive TB patients were used to measure both total and Mtb-specific antibody responses in a Peruvian endemic setting where these helminths are dominating. Mtb-specific antibodies were detected by a novel approach coating ELISA-plates with a Mtb cell-membrane fraction (CDC1551) that contains a broad range of Mtb surface proteins. Compared to controls without helminths or TB, helminth/TB coinfected patients had high levels of Mtb-specific IgG (including an IgG1 and IgG2 subclass response) and IgM, which were similarly increased in TB patients without helminth infection. These data, indicate that helminth/TB coinfected have a sustained humoral response against Mtb at the level of active TB only. More studies on the species-specific impact of helminths on the adaptive humoral response against Mtb using a larger sample size, and in relation to TB disease severity, are needed.
Collapse
Affiliation(s)
- Giggil Pushpamithran
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University Campus US, Building 420 Floor 12, 581 85, Linköping, SE, Sweden
| | - Camilla Skoglund
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Fanny Olsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University Campus US, Building 420 Floor 12, 581 85, Linköping, SE, Sweden
- Laboratorio de Investigación en Enfermedades Infecciosas, LID, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Melissa Méndez-Aranda
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University Campus US, Building 420 Floor 12, 581 85, Linköping, SE, Sweden
- Laboratorio de Investigación en Enfermedades Infecciosas, LID, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Thomas Schön
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University Campus US, Building 420 Floor 12, 581 85, Linköping, SE, Sweden
- Department of Infectious Diseases, County of Östergötland and Kalmar, Linköping University, Linköping, Sweden
| | - Mårten Segelmark
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Sciences, Lund University and Department of Nephrology, Skane University Hospital, Lund, Sweden
| | - Olle Stendahl
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University Campus US, Building 420 Floor 12, 581 85, Linköping, SE, Sweden
| | - Robert H Gilman
- Laboratorio de Investigación en Enfermedades Infecciosas, LID, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of International Health, Johns Hopkins School of Public Health, Baltimore, Mayland, USA
| | - Robert Blomgran
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University Campus US, Building 420 Floor 12, 581 85, Linköping, SE, Sweden.
| |
Collapse
|
14
|
Ijaz MU, Vaziri F, Wan YJY. Effects of Bacillus Calmette-Guérin on immunometabolism, microbiome and liver diseases ⋆. LIVER RESEARCH 2023; 7:116-123. [PMID: 38223885 PMCID: PMC10786626 DOI: 10.1016/j.livres.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Metabolic diseases have overtaken infectious diseases as the most serious public health issue and economic burden in most countries. Moreover, metabolic diseases increase the risk of having infectious diseases. The treatment of metabolic disease may require a long-term strategy of taking multiple medications, which can be costly and have side effects. Attempts to expand the therapeutic use of vaccination to prevent or treat metabolic diseases have attracted significant interest. A growing body of evidence indicates that Bacillus Calmette-Guérin (BCG) offers protection against non-infectious diseases. The non-specific effects of BCG occur likely due to the induction of trained immunity. In this regard, understanding how BCG influences the development of chronic metabolic health including liver diseases would be important. This review focuses on research on BCG, the constellation of disorders associated with metabolic health issues including liver diseases and diabetes as well as how BCG affects the gut microbiome, immunity, and metabolism.
Collapse
Affiliation(s)
- Muhammad Umair Ijaz
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Farzam Vaziri
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
15
|
Nziza N, Jung W, Mendu M, Chen T, McNamara RP, Fortune SM, Franken KLMC, Ottenhoff THM, Bryson B, Ngonzi J, Bebell LM, Alter G. Maternal HIV infection drives altered placental Mtb-specific antibody transfer. Front Microbiol 2023; 14:1171990. [PMID: 37228375 PMCID: PMC10203169 DOI: 10.3389/fmicb.2023.1171990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Placental transfer of maternal antibodies is essential for neonatal immunity over the first months of life. In the setting of maternal HIV infection, HIV-exposed uninfected (HEU) infants are at higher risk of developing severe infections, including active tuberculosis (TB). Given our emerging appreciation for the potential role of antibodies in the control of Mycobacterium tuberculosis (Mtb), the bacteria that causes TB, here we aimed to determine whether maternal HIV status altered the quality of Mtb-specific placental antibody transfer. Methods Antigen-specific antibody systems serology was performed to comprehensively characterize the Mtb-specific humoral immune response in maternal and umbilical cord blood from HIV infected and uninfected pregnant people in Uganda. Results Significant differences were noted in overall antibody profiles in HIV positive and negative maternal plasma, resulting in heterogeneous transfer of Mtb-specific antibodies. Altered antibody transfer in HIV infected dyads was associated with impaired binding to IgG Fc-receptors, which was directly linked to HIV viral loads and CD4 counts. Conclusions These results highlight the importance of maternal HIV status on antibody transfer, providing clues related to alterations in transferred maternal immunity that may render HEU infants more vulnerable to TB than their HIV-unexposed peers.
Collapse
Affiliation(s)
- Nadege Nziza
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Wonyeong Jung
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Maanasa Mendu
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA, United States
| | - Tina Chen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Sarah M. Fortune
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Kees L. M. C. Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Bryan Bryson
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Joseph Ngonzi
- Department of Obstetrics and Gynecology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Lisa M. Bebell
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Medical Practice Evaluation Center, Massachusetts General Hospital, Boston, MA, United States
- Center for Global Health, Massachusetts General Hospital, Boston, MA, United States
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
16
|
Stewart P, Patel S, Comer A, Muneer S, Nawaz U, Quann V, Bansal M, Venketaraman V. Role of B Cells in Mycobacterium Tuberculosis Infection. Vaccines (Basel) 2023; 11:vaccines11050955. [PMID: 37243059 DOI: 10.3390/vaccines11050955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Historically, research on the immunologic response to Mycobacterium tuberculosis (M. tb) infection has focused on T cells and macrophages, as their role in granuloma formation has been robustly characterized. In contrast, the role of B cells in the pathophysiology of M. tb infection has been relatively overlooked. While T cells are well-known as an essential for granuloma formation and maintenance, B cells play a less understood role in the host response. Over the past decade, scarce research on the topic has attempted to elucidate the varying roles of B cells during mycobacterial infection, which appears to be primarily time dependent. From acute to chronic infection, the role of B cells changes with time as evidenced by cytokine release, immunological regulation, and histological morphology of tuberculous granulomas. The goal of this review is to carefully analyze the role of humoral immunity in M. tb infection to find the discriminatory nature of humoral immunity in tuberculosis (TB). We argue that there is a need for more research on the B-cell response against TB, as a better understanding of the role of B cells in defense against TB could lead to effective vaccines and therapies. By focusing on the B-cell response, we can develop new strategies to enhance immunity against TB and reduce the burden of disease.
Collapse
Affiliation(s)
- Paul Stewart
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Shivani Patel
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Andrew Comer
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Shafi Muneer
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Uzma Nawaz
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Violet Quann
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Mira Bansal
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
17
|
Girma T, Tsegaye A, Desta K, Ayalew S, Tamene W, Zewdie M, Howe R, Mihret A. Phenotypic characterization of Peripheral B cells in Mycobacterium tuberculosis infection and disease in Addis Ababa, Ethiopia. Tuberculosis (Edinb) 2023; 140:102329. [PMID: 36921454 PMCID: PMC10302117 DOI: 10.1016/j.tube.2023.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Mortality and morbidity from tuberculosis (TB) remain one of the most important public health issues. Although cell-mediated immunity is the main immune response against Mycobacterium tuberculosis (MTB), the role of B-cells during MTB infection and disease is unclear. METHODS Peripheral blood mononuclear cells (PBMC) were isolated from treatment naïve Pulmonary TB patients (TB, n = 16), latent TB-infected participants (LTBI, n = 17), and healthy controls (HC, n = 19). PBMCs were stained with various fluorescently labeled antibodies to define B-cell subsets using multicolor flow cytometry. RESULTS Atypical memory B cells (CD19+CD27-CD21-) and circulating marginal zone B-cells (CD19+CD27+CD21+IgM+IgD+CD23-) were significantly higher in active TB when compared to LTBI and HC. CD5+ regulatory B cells (Breg, CD19+CD24hiCD38hiCD5+) and resting B-cells (CD19+CD27+CD21+) in Active TB patients were significantly lower compared to HC and LTBI. Overall, there were no differences in B cell percentages (CD19+), naïve B cells (CD19+CD27-CD21+), Breg (CD19+CD24hiCD38hi), and activated memory B cells (CD19+CD27+CD21-) among the three study groups. CONCLUSIONS These results indicated that multiple subsets of B cells were associated with TB infection and disease. It will be useful to examine these cell populations for their potential use as biomarkers for TB disease and LTBI.
Collapse
Affiliation(s)
- Tigist Girma
- Addis Ababa University (AAU), Department of Medical Laboratory Sciences, Ethiopia; Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia.
| | - Aster Tsegaye
- Addis Ababa University (AAU), Department of Medical Laboratory Sciences, Ethiopia.
| | - Kassu Desta
- Addis Ababa University (AAU), Department of Medical Laboratory Sciences, Ethiopia.
| | - Sosina Ayalew
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia.
| | | | - Martha Zewdie
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia.
| | - Rawleigh Howe
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia.
| | - Adane Mihret
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia.
| |
Collapse
|
18
|
Chen L, Hua J, Dai X, He X. Assessment of ferroptosis-associated gene signatures as potential biomarkers for differentiating latent from active tuberculosis in children. Microb Genom 2023; 9. [PMID: 37163321 DOI: 10.1099/mgen.0.000997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Ferroptotic cell death is a regulated process that is governed by iron-dependent membrane lipid peroxide accumulation that plays a pathogenic role in several disease-related settings. The use of ferroptosis-related genes (FRGs) to distinguish active tuberculosis (ATB) from latent tuberculosis infection (LTBI) among children, however, remains to be analysed. Tuberculosis-related gene expression data and FRG lists were obtained, respectively, from Gene Expression Omnibus (GEO) and FerrDb. Differentially expressed FRGs (DE-FRGs) detected when comparing samples from paediatric ATB and LTBI patients were explored using appropriate bioinformatics techniques, after which enrichment analyses were performed for these genes and hub genes were identified, with these genes then being used to explore potential drug interactions and construct competing endogenous RNA (ceRNA) networks. The GSE39939 dataset yielded 124 DE-FRGs that were primarily related to responses to oxidative, chemical and extracellular stimulus-associated stress. In total, the LASSO and SVM-RFE algorithms enabled the identification of nine hub genes (MAPK14, EGLN2, IDO1, USP11, SCD, CBS, PARP8, PARP16, CDC25A) that exhibited good diagnostic utility. Functional enrichment analyses of these genes suggested that they may govern ATB transition from LTBI through the control of many pathways, including the immune response, DNA repair, transcription, RNA degradation, and glycan and energy metabolism pathways. The CIBERSORT algorithm suggested that these genes were positively correlated with inflammatory and myeloid cell activity while being negatively correlated with the activity of lymphocytes. A total of 50 candidate drugs targeting 6 hub DE-FRGs were also identified, and a ceRNA network was used to explore the complex interplay among these hub genes. The nine hub FRGs defined in this study may serve as valuable biomarkers differentiating between ATB and LTBI in young patients.
Collapse
Affiliation(s)
- Liang Chen
- Department of Infectious Diseases, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, PR China
| | - Jie Hua
- Department of Gastroenterology, Liyang People's Hospital, Liyang Branch Hospital of Jiangsu Province Hospital, Nanjing, PR China
| | - Xiaoting Dai
- Department of Infectious Diseases, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, PR China
| | - Xiaopu He
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
19
|
Wang Y, Sun Q, Zhang Y, Li X, Liang Q, Guo R, Zhang L, Han X, Wang J, Shao L, Xue Y, Yang Y, Li H, Nie L, Shi W, Liu Q, Zhang J, Duan H, Huang H, Luu LDW, Tai J, Yang X, Wang G. Systemic immune dysregulation in severe tuberculosis patients revealed by a single-cell transcriptome atlas. J Infect 2023; 86:421-438. [PMID: 37003521 DOI: 10.1016/j.jinf.2023.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/04/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, is currently the deadliest infectious disease in human that can evolve to severe forms. A comprehensive immune landscape for Mtb infection is critical for achieving TB cure, especially for severe TB patients. We performed single-cell RNA transcriptome and T-cell/B-cell receptor (TCR/BCR) sequencing of 213,358 cells from 27 samples, including 6 healthy donors and 21 active TB patients with varying severity (6 mild, 6 moderate and 9 severe cases). Two published profiles of latent TB infection were integrated for the analysis. We observed an obviously elevated proportion of inflammatory immune cells (e.g., monocytes), as well as a markedly decreased abundance of various lymphocytes (e.g., NK and γδT cells) in severe patients, revealing that lymphopenia might be a prominent feature of severe disease. Further analyses indicated that significant activation of cell apoptosis pathways, including perforin/granzyme-, TNF-, FAS- and XAF1-induced apoptosis, as well as cell migration pathways might confer this reduction. The immune landscape in severe patients was characterized by widespread immune exhaustion in Th1, CD8+T and NK cells as well as high cytotoxic state in CD8+T and NK cells. We also discovered that myeloid cells in severe TB patients may involve in the immune paralysis. Systemic upregulation of S100A12 and TNFSF13B, mainly by monocytes in the peripheral blood, may contribute to the inflammatory cytokine storms in severe patients. Our data offered a rich resource for understanding of TB immunopathogenesis and designing effective therapeutic strategies for TB, especially for severe patients.
Collapse
Affiliation(s)
- Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P.R. China.
| | - Qing Sun
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, 101149, P.R. China
| | - Yun Zhang
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Xuelian Li
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Qingtao Liang
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Ru Guo
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Liqun Zhang
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Xiqin Han
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Jing Wang
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Lingling Shao
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Yu Xue
- Department of Emergency, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Yang Yang
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Hua Li
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Lihui Nie
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Wenhui Shi
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Qiuyue Liu
- Department of Intensive Care Unit, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Jing Zhang
- Department of Emergency, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Hongfei Duan
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, 101149, P.R. China
| | | | - Jun Tai
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing, 100020, P.R. China.
| | - Xinting Yang
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China.
| | - Guirong Wang
- Department of Clinical Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, 101149, P.R. China.
| |
Collapse
|
20
|
Starshinova A, Malkova A, Zinchenko Y, Kudryavtsev I, Serebriakova M, Akisheva T, Lapin S, Mazing A, Kudlay D, Glushkova A, Yablonskiy P, Shoenfeld Y. Identification of autoimmune markers in pulmonary tuberculosis. Front Immunol 2023; 13:1059714. [PMID: 36761174 PMCID: PMC9905676 DOI: 10.3389/fimmu.2022.1059714] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/14/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Pathogenesis of many autoimmune diseases is mainly promoted by poorly regulated and/or wrong targeted immune response to pathogens including M. tuberculosis. Autoimmunity is one of the processes with are characteristics of tuberculosis (Tbc). The aim was to determine the autoimmune clinical and immunological features in patients with pulmonary Tbc. Materials and methods A prospective comparative study was performed in 2017 - 2019 with the inclusion of 46 patients with Tbc. The trigger factors and clinical manifestations, autoantibodies, peripheral blood B cell subsets were stained with fluorochrome-conjugated monoclonal antibodies. 40 healthy volunteers in the control group, were matched for age with no chronic diseases, contacts with TB patients and changes in their laboratory parameters. A statistical analysis was done with GraphPad Prism 6, Statistica 10 (Statsoft) and MedCalc - version 18.2.1 values. Results There were no significant ASIA triggers in Tbc patients and control group. 21.1% of Tbc patients had a high level of a rheumatoid factor and in 47.4% complement system factor C3 was high; anti-MCV was detected in 60.7% of Tbc patients. Relative and absolute frequencies of "naïve" Bm1 cells and eBm5 were significantly decreased and activated pre-germinal-center Bm2' cells were significantly increased in Tbc patients. The CD24++CD38++ B cells were increased in Tbc vs control group (10.25% vs 5.42%), p < 0.001, and 19 cell/1μL (10; 290 vs 11 cell/1μL (6; 20), p = 0.029, respectively). The frequency of CXCR3+CCR4- Tfh1 cells was significantly lower in Tbc vs control one (26.52% vs. 31.00%, p = 0.004), while CXCR3-CCR4+ Tfh2 cells were increased in Tbc (20.31% vs. controls (16.56%, p = 0.030). The absolute numbers of Tfh1 cells were decreased in the Tbc vs. control (24 cell/1μL vs. 37 cell/1μL p = 0.005). Conclusion The results of our study showed that the detection of a rheumatoid factor, the components of complement system and anti-MCV in complex with alterations in B cells and follicular Th cell subsets may indicate a presence of autoimmunity in the pathogenesis of tuberculosis, but they are not specific. The indicators of autoimmune-related provide new opportunities in the Tbc treatment.
Collapse
Affiliation(s)
- Anna Starshinova
- St. Petersburg State University, St. Petersburg, Russia,*Correspondence: Anna Starshinova,
| | - Anna Malkova
- St. Petersburg State University, St. Petersburg, Russia
| | - Yulia Zinchenko
- St. Petersburg State University, St. Petersburg, Russia,St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Igor Kudryavtsev
- Department of Immunology, Institution of Experimental Medicine, St. Petersburg, Russia
| | - Maria Serebriakova
- Department of Immunology, Institution of Experimental Medicine, St. Petersburg, Russia
| | - Tatiana Akisheva
- Department of Immunology, Institution of Experimental Medicine, St. Petersburg, Russia
| | - Sergey Lapin
- St. Petersburg State Medical University, St. Petersburg, Russia
| | | | - Dmitry Kudlay
- Institute of Immunology, Moscow, Russia,Bekhterev Psychoneurological Institute, St. Petersburg, Russia
| | - Anzhela Glushkova
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel
| | - Piotr Yablonskiy
- St. Petersburg State University, St. Petersburg, Russia,St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Yehuda Shoenfeld
- St. Petersburg State University, St. Petersburg, Russia,Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
21
|
Yu J, Fan X, Luan X, Wang R, Cao B, Qian C, Li G, Li M, Zhao X, Liu H, Wan K, Yuan X. A novel multi-component protein vaccine ECP001 containing a protein polypeptide antigen nPstS1 riching in T-cell epitopes showed good immunogenicity and protection in mice. Front Immunol 2023; 14:1138818. [PMID: 37153610 PMCID: PMC10161251 DOI: 10.3389/fimmu.2023.1138818] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/10/2023] [Indexed: 05/09/2023] Open
Abstract
Tuberculosis (TB) is an infectious disease that seriously affects human health. Until now, the only anti-TB vaccine approved for use is the live attenuated Mycobacterium bovis (M. bovis) vaccine - BCG vaccine, but its protective efficacy is relatively low and does not provide satisfactory protection against TB in adults. Therefore, there is an urgent need for more effective vaccines to reduce the global TB epidemic. In this study, ESAT-6, CFP-10, two antigens full-length and the T-cell epitope polypeptide antigen of PstS1, named nPstS1, were selected to form one multi-component protein antigens, named ECP001, which include two types, one is a mixed protein antigen named ECP001m, the other is a fusion expression protein antigen named ECP001f, as candidates for protein subunit vaccines. were prepared by constructing one novel subunit vaccine by mixing or fusing the three proteins and combining them with aluminum hydroxide adjuvant, and the immunogenicity and protective properties of the vaccine was evaluated in mice. The results showed that ECP001 stimulated mice to produce high titre levels of IgG, IgG1 and IgG2a antibodies; meanwhile, high levels of IFN-γ and a broad range of specific cytokines were secreted by mouse splenocytes; in addition, ECP001 inhibited the proliferation of Mycobacterium tuberculosis in vitro with a capacity comparable to that of BCG. It can be concluded that ECP001 is a novel effective multicomponent subunit vaccine candidate with potential as BCG Initial Immunisation-ECP001 Booster Immunisation or therapeutic vaccine for M. tuberculosis infection.
Collapse
Affiliation(s)
- Jinjie Yu
- School of Public Health, University of South China, Hengyang, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xueting Fan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiuli Luan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruihuan Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bin Cao
- School of Public Health, University of South China, Hengyang, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chengyu Qian
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Life Sciences, College of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Guilian Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Machao Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiuqin Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haican Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- *Correspondence: Haican Liu, ; Kanglin Wan, ; Xiuqin Yuan,
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- *Correspondence: Haican Liu, ; Kanglin Wan, ; Xiuqin Yuan,
| | - Xiuqin Yuan
- School of Public Health, University of South China, Hengyang, China
- *Correspondence: Haican Liu, ; Kanglin Wan, ; Xiuqin Yuan,
| |
Collapse
|
22
|
Rais M, Abdelaal H, Reese VA, Ferede D, Larsen SE, Pecor T, Erasmus JH, Archer J, Khandhar AP, Cooper SK, Podell BK, Reed SG, Coler RN, Baldwin SL. Immunogenicity and protection against Mycobacterium avium with a heterologous RNA prime and protein boost vaccine regimen. Tuberculosis (Edinb) 2023; 138:102302. [PMID: 36586154 PMCID: PMC10361416 DOI: 10.1016/j.tube.2022.102302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Prophylactic efficacy of two different delivery platforms for vaccination against Mycobacterium avium (M. avium) were tested in this study; a subunit and an RNA-based vaccine. The vaccine antigen, ID91, includes four mycobacterial antigens: Rv3619, Rv2389, Rv3478, and Rv1886. We have shown that ID91+GLA-SE is effective against a clinical NTM isolate, M. avium 2-151 smt. Here, we extend these results and show that a heterologous prime/boost strategy with a repRNA-ID91 (replicon RNA) followed by protein ID91+GLA-SE boost is superior to the subunit protein vaccine given as a homologous prime/boost regimen. The repRNA-ID91/ID91+GLA-SE heterologous regimen elicited a higher polyfunctional CD4+ TH1 immune response when compared to the homologous protein prime/boost regimen. More significantly, among all the vaccine regimens tested only repRNA-ID91/ID91+GLA-SE induced IFN-γ and TNF-secreting CD8+ T cells. Furthermore, the repRNA-ID91/ID91+GLA-SE vaccine strategy elicited high systemic proinflammatory cytokine responses and induced strong ID91 and an Ag85B-specific humoral antibody response a pre- and post-challenge with M. avium 2-151 smt. Finally, while all prophylactic prime/boost vaccine regimens elicited a degree of protection in beige mice, the heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen provided greater pulmonary protection than the homologous protein prime/boost regimen. These data indicate that a prophylactic heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen augments immunogenicity and confers protection against M. avium.
Collapse
Affiliation(s)
- Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Hazem Abdelaal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Valerie A Reese
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Debora Ferede
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Sasha E Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Tiffany Pecor
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | | | | | | | - Sarah K Cooper
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Brendan K Podell
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | | | - Rhea N Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA; Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Susan L Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA.
| |
Collapse
|
23
|
Cheng P, Jiang F, Wang G, Wang J, Xue Y, Wang L, Gong W. Bioinformatics analysis and consistency verification of a novel tuberculosis vaccine candidate HP13138PB. Front Immunol 2023; 14:1102578. [PMID: 36825009 PMCID: PMC9942524 DOI: 10.3389/fimmu.2023.1102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Background With the increasing incidence of tuberculosis (TB) and the shortcomings of existing TB vaccines to prevent TB in adults, new TB vaccines need to be developed to address the complex TB epidemic. Method The dominant epitopes were screened from antigens to construct a novel epitope vaccine termed HP13138PB. The immune properties, structure, and function of HP13138PB were predicted and analyzed with bioinformatics and immunoinformatics. Then, the immune responses induced by the HP13138PB were confirmed by enzyme-linked immunospot assay (ELISPOT) and Th1/Th2/Th17 multi-cytokine detection kit. Result The HP13138PB vaccine consisted of 13 helper T lymphocytes (HTL) epitopes, 13 cytotoxic T lymphocytes (CTL) epitopes, and 8 B-cell epitopes. It was found that the antigenicity, immunogenicity, and solubility index of the HP13138PB vaccine were 0.87, 2.79, and 0.55, respectively. The secondary structure prediction indicated that the HP13138PB vaccine had 31% of α-helix, 11% of β-strand, and 56% of coil. The tertiary structure analysis suggested that the Z-score and the Favored region of the HP13138PB vaccine were -4.47 88.22%, respectively. Furthermore, the binding energies of the HP13138PB to toll-like receptor 2 (TLR2) was -1224.7 kcal/mol. The immunoinformatics and real-world experiments showed that the HP13138PB vaccine could induce an innate and adaptive immune response characterized by significantly higher levels of cytokines such as interferon-gamma (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin-4 (IL-4), and IL-10. Conclusion The HP13138PB is a potential vaccine candidate to prevent TB, and this study preliminarily evaluated the ability of the HP13138PB to generate an immune response, providing a precursor target for developing TB vaccines.
Collapse
Affiliation(s)
- Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China.,Department of Geriatrics, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Fan Jiang
- The Second Brigade of Cadet, Basic Medical School, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Guiyuan Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China.,Hebei North University, Zhangjiakou, Hebei, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Liang Wang
- Department of Geriatrics, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
24
|
Dutt TS, Karger BR, Fox A, Youssef N, Dadhwal R, Ali MZ, Patterson J, Creissen E, Rampacci E, Cooper SK, Podell BK, Gonzalez-Juarrero M, Obregon-Henao A, Henao-Tamayo M. Mucosal exposure to non-tuberculous mycobacteria elicits B cell-mediated immunity against pulmonary tuberculosis. Cell Rep 2022; 41:111783. [PMID: 36516760 DOI: 10.1016/j.celrep.2022.111783] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/09/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
Bacille Calmette-Guerin (BCG) is the only licensed vaccine against Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB) disease. However, BCG has limited efficacy, necessitating the development of better vaccines. Non-tuberculous mycobacteria (NTMs) are opportunistic pathogens present ubiquitously in the environment. TB endemic countries experience higher exposure to NTMs, but previous studies have not elucidated the relationship between NTM exposure and BCG efficacy against TB. Therefore, we develop a mouse model (BCG + NTM) to simulate human BCG immunization regime and continuous NTM exposure. BCG + NTM mice exhibit superior and prolonged protection against pulmonary TB, with increased B cell influx and anti-Mtb antibodies in serum and airways, compared with BCG alone. Notably, spatial transcriptomics and immunohistochemistry reveal that BCG + NTM mice formed B cell aggregates with features of germinal center development, which correlate with reduced Mtb burden. Our studies suggest a direct relationship between NTM exposure and TB protection, with B cells playing a crucial role.
Collapse
Affiliation(s)
- Taru S Dutt
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA.
| | | | - Amy Fox
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | | | - Rhythm Dadhwal
- College of Business, Colorado State University, Fort Collins, CO, USA
| | - Malik Zohaib Ali
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA; Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Johnathan Patterson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Elizabeth Creissen
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Elisa Rampacci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Sarah K Cooper
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Brendan K Podell
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Mercedes Gonzalez-Juarrero
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Andres Obregon-Henao
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA.
| |
Collapse
|
25
|
Files MA, Kristjansson KM, Rudra JS, Endsley JJ. Nanomaterials-based vaccines to target intracellular bacterial pathogens. Front Microbiol 2022; 13:1040105. [PMID: 36466676 PMCID: PMC9715960 DOI: 10.3389/fmicb.2022.1040105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
Development of novel immunization approaches to combat a growing list of emerging and ancient infectious agents is a global health priority. Intensive efforts over the last several decades have identified alternative approaches to improve upon traditional vaccines that are based on live, attenuated agents, or formulations of inactivated agents with adjuvants. Rapid advances in RNA-based and other delivery systems for immunization have recently revolutionized the potential to protect populations from viral pathogens, such as SARS-CoV-2. Similar efforts to combat bacterial pathogens, especially species with an intracellular niche, have lagged significantly. In the past decade, advances in nanotechnology have yielded a variety of new antigen/adjuvant carrier systems for use in vaccine development against infectious viruses and bacteria. The tunable properties of nanomaterial-based vaccines allow for balancing immunogenicity and safety which is a key hurdle in traditional antigen and adjuvant formulations. In this review, we discuss several novel nanoparticle-based vaccine platforms that show promise for use against intracellular bacteria as demonstrated by the feasibility of construction, enhanced antigen presentation, induction of cell mediated and humoral immune responses, and improved survival outcomes in in vivo models.
Collapse
Affiliation(s)
- Megan A. Files
- Department of Microbiology and Immunology, Galveston, TX, United States
- Institute of Translational Science, University of Texas Medical Branch, Galveston, TX, United States
- Department of Medicine, School of Medicine, Seattle, WA, United States
| | - Kadin M. Kristjansson
- Department of Chemistry, Smith College, Northampton MA, United States
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Jai S. Rudra
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Janice J. Endsley
- Department of Microbiology and Immunology, Galveston, TX, United States
| |
Collapse
|
26
|
Coexpression Network Analysis-Based Identification of Critical Genes Differentiating between Latent and Active Tuberculosis. DISEASE MARKERS 2022; 2022:2090560. [PMID: 36411825 PMCID: PMC9674975 DOI: 10.1155/2022/2090560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022]
Abstract
Methods Three Gene Expression Omnibus (GEO) microarray datasets (GSE19491, GSE98461, and GSE152532) were downloaded, with GSE19491 and GSE98461 then being merged to form a training dataset. Hub genes capable of differentiating between ATB and LTBI were then identified through differential expression analyses and a WGCNA analysis of this training dataset. Receiver operating characteristic (ROC) curves were then used to gauge to the diagnostic accuracy of these hub genes in the test dataset (GSE152532). Gene expression-based immune cell infiltration and the relationship between such infiltration and hub gene expression were further assessed via a single-sample gene set enrichment analysis (ssGSEA). Results In total, 485 differentially expressed genes were analyzed, with the WGCNA approach yielding 8 coexpression models. Of these, the black module was the most closely correlated with ATB. In total, five hub genes (FBXO6, ATF3, GBP1, GBP4, and GBP5) were identified as potential biomarkers associated with LTBI progression to ATB based on a combination of differential expression and LASSO analyses. The area under the ROC curve values for these five genes ranged from 0.8 to 0.9 in the test dataset, and ssGSEA revealed the expression of these genes to be negatively correlated with lymphocyte activity but positively correlated with myeloid and inflammatory cell activity. Conclusion The five hub genes identified in this study may play a novel role in tuberculosis-related immunopathology and offer value as novel biomarkers differentiating LTBI from ATB.
Collapse
|
27
|
Gong W, Liang Y, Mi J, Xue Y, Wang J, Wang L, Zhou Y, Sun S, Wu X. A peptide-based vaccine ACP derived from antigens of Mycobacterium tuberculosis induced Th1 response but failed to enhance the protective efficacy of BCG in mice. Indian J Tuberc 2022; 69:482-495. [PMID: 36460380 DOI: 10.1016/j.ijtb.2021.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/31/2021] [Accepted: 08/10/2021] [Indexed: 06/17/2023]
Abstract
BACKGROUND Tuberculosis (TB) is a global infectious disease, but there is no ideal vaccine against TB except the Bacille Calmette-Guérin (BCG) vaccine. METHODS Herein, 25 candidate peptides were predicted from four antigens of Mycobacterium tuberculosis based on their high-affinity binding capacity for the human leukocyte antigen (HLA) DRB1∗0101. Three T-helper 1 (Th1) immunodominant peptides (Ag85B12-26, CFP2112-26, and PPE18149-163) were identified by ELISPOT assays in the humanized C57BL/6 mice. They resulted in a novel Th1 peptide-based vaccine ACP named by the first letter of the three peptides. In addition, the protective efficacy was evaluated in humanized or wild-type C57BL/6 mice and the humoral and cellular immune responses were confirmed in vitro. RESULTS Compared with the PBS group, the ACP vaccinated mice showed slight decreases in colony-forming units (CFUs) and pathological lesions. However, when using it as a booster, the ACP vaccine did not significantly enhance the protective efficacy of BCG in humanized or wild-type mice. Interestingly, we found that ACP vaccination significantly increased the number of interferon-γ positive (IFN-γ+) T lymphocytes and the levels of IFN-γ cytokines as well as antibodies. Furthermore, the IL-2 level was significantly higher in humanized mice prime-boosted with BCG and ACP. CONCLUSIONS Our results suggested that ACP vaccination could stimulate higher levels of cytokines and antibodies but failed to improve the protective efficacy of BCG in mice, indicating that the secretion level of IFN-γ may not be positively correlated with the protection efficiency of the vaccine. These findings provided important information on the feasibility of a peptide vaccine as a booster for enhancing the protective efficacy of BCG.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Yan Liang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Jie Mi
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Lan Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China.
| |
Collapse
|
28
|
Pulmonary tuberculosis infection and CMV reactivation following daratumumab treatment in a patient with relapsed plasmablastic lymphoma. BLOOD SCIENCE 2022; 4:205-208. [DOI: 10.1097/bs9.0000000000000134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
|
29
|
Baldwin SL, Reese VA, Larsen SE, Pecor T, Brown BP, Granger B, Podell BK, Fox CB, Reed SG, Coler RN. Therapeutic efficacy against Mycobacterium tuberculosis using ID93 and liposomal adjuvant formulations. Front Microbiol 2022; 13:935444. [PMID: 36090093 PMCID: PMC9459154 DOI: 10.3389/fmicb.2022.935444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/22/2022] [Indexed: 12/30/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) has led to approximately 1.3 million deaths globally in 2020 according to the World Health Organization (WHO). More effective treatments are therefore required to prevent the transmission of M.tb. Although Bacille Calmette-Guérin (BCG), a prophylactic vaccine against M.tb, already exists, other vaccines are being developed that could help boost BCG's noted incomplete protection. This includes ID93 + GLA-SE, an adjuvanted protein vaccine which is being tested in Phase 2 clinical trials. The aim of this study was to test new lipid-based adjuvant formulations with ID93 in the context of a therapeutic vaccine, which we hypothesize would act as an adjunct to drug treatment and provide better outcomes, such as survival, than drug treatment alone. The recent success of another adjuvanted recombinant protein vaccine, M72 + AS01E (GlaxoSmithKline Biologicals), which after 3 years provided approximately 50% efficacy against TB pulmonary disease, is paving the way for new and potentially more effective vaccines. We show that based on selected criteria, including survival, T helper 1 cytokine responses, and resident memory T cells in the lung, that a liposomal formulation of GLA with QS-21 (GLA-LSQ) combined with ID93 provided enhanced protection over drug treatment alone.
Collapse
Affiliation(s)
- Susan L. Baldwin
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| | - Valerie A. Reese
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Sasha E. Larsen
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Tiffany Pecor
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Bryan P. Brown
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Brian Granger
- Access to Advanced Health Institute, Seattle, WA, United States
| | - Brendan K. Podell
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Christopher B. Fox
- Access to Advanced Health Institute, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | | | - Rhea N. Coler
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
30
|
Faisal EG, Amirah S, Maulana S, Komariah M, Platini H. Role of Curcumin as a Potential Immunomodulator to Adjunct Tuberculosis Treatment in Indonesia. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
This study aimed to highlight and focus on curcumin’s role in enhancing the body defense mechanism against tuberculosis (TB) infection, using a narrative review. This review was identified by four search engines: PubMed, Science Direct, Research Gate, and Google Scholar. We found that as an immunomodulator, curcumin reduces the production of specific cytokines by inhibiting the transcription factor. In the same mechanism, curcumin also activates the host macrophages, dendritic maturation, and modulation of the antigen-presenting cell process. Curcumin also increases apoptosis as a defence mechanism against TB infection. Curcumin also increases B-cell proliferation and downregulates oxidative stress on B-cells. As results, curcumin is a potential immunomodulator that complements M. TB treatment, especially in Indonesia. It can be stated that curcumin is proven to be a promising strategy in complementing TB prevention also treatment.
Collapse
|
31
|
Nziza N, Cizmeci D, Davies L, Irvine EB, Jung W, Fenderson BA, de Kock M, Hanekom WA, Franken KLMC, Day CL, Ottenhoff THM, Alter G. Defining Discriminatory Antibody Fingerprints in Active and Latent Tuberculosis. Front Immunol 2022; 13:856906. [PMID: 35514994 PMCID: PMC9066635 DOI: 10.3389/fimmu.2022.856906] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/11/2022] [Indexed: 01/10/2023] Open
Abstract
Tuberculosis (TB) is among the leading causes of death worldwide from a single infectious agent, second only to COVID-19 in 2020. TB is caused by infection with Mycobacterium tuberculosis (Mtb), that results either in a latent or active form of disease, the latter associated with Mtb spread. In the absence of an effective vaccine, epidemiologic modeling suggests that aggressive treatment of individuals with active TB (ATB) may curb spread. Yet, clinical discrimination between latent (LTB) and ATB remains a challenge. While antibodies are widely used to diagnose many infections, the utility of antibody-based tests to diagnose ATB has only regained significant traction recently. Specifically, recent interest in the humoral immune response to TB has pointed to potential differences in both targeted antigens and antibody features that can discriminate latent and active TB. Here we aimed to integrate these observations and broadly profile the humoral immune response across individuals with LTB or ATB, with and without HIV co-infection, to define the most discriminatory humoral properties and diagnose TB disease more easily. Using 209 Mtb antigens, striking differences in antigen-recognition were observed across latently and actively infected individuals that was modulated by HIV serostatus. However, ATB and LTB could be discriminated, irrespective of HIV-status, based on a combination of both antibody levels and Fc receptor-binding characteristics targeting both well characterized (like lipoarabinomannan, 38 kDa or antigen 85) but also novel Mtb antigens (including Rv1792, Rv1528, Rv2435C or Rv1508). These data reveal new Mtb-specific immunologic markers that can improve the classification of ATB versus LTB.
Collapse
Affiliation(s)
- Nadege Nziza
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Deniz Cizmeci
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Leela Davies
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, United States
| | - Edward B. Irvine
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Wonyeong Jung
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Brooke A. Fenderson
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Marwou de Kock
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Willem A. Hanekom
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | | | - Cheryl L. Day
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | | | - Galit Alter
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| |
Collapse
|
32
|
Melkie ST, Arias L, Farroni C, Jankovic Makek M, Goletti D, Vilaplana C. The role of antibodies in tuberculosis diagnosis, prophylaxis and therapy: a review from the ESGMYC study group. Eur Respir Rev 2022; 31:31/163/210218. [PMID: 35264411 DOI: 10.1183/16000617.0218-2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/30/2021] [Indexed: 11/05/2022] Open
Abstract
Tuberculosis (TB) is still responsible for the deaths of >1 million people yearly worldwide, and therefore its correct diagnosis is one of the key components of any TB eradication programme. However, current TB diagnostic tests have many limitations, and improved diagnostic accuracy is urgently needed. To improve the diagnostic performance of traditional serology, a combination of different Mycobacterium tuberculosis (MTB) antigens and different antibody isotypes has been suggested, with some showing promising performance for the diagnosis of active TB. Given the incomplete protection conferred by bacille Calmette-Guérin (BCG) vaccination against adult pulmonary TB, efforts to discover novel TB vaccines are ongoing. Efficacy studies from advanced TB vaccines designed to stimulate cell-mediated immunity failed to show protection, suggesting that they may not be sufficient and warranting the need for other types of immunity. The role of antibodies as tools for TB therapy, TB diagnosis and TB vaccine design is discussed. Finally, we propose that the inclusion of antibody-based TB vaccines in current clinical trials may be advisable to improve protection.
Collapse
Affiliation(s)
- Solomon Tibebu Melkie
- Experimental Tuberculosis Unit (UTE), Fundació Institut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain.,UCBL, UnivLyon, Université Claude Bernard Lyon 1 (UCBL1), Villeurbanne, France
| | - Lilibeth Arias
- Experimental Tuberculosis Unit (UTE), Fundació Institut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Chiara Farroni
- Translational Research Unit, National Institute for Infectious Diseases-IRCCS L. Spallanzani, Rome, Italy
| | - Mateja Jankovic Makek
- Dept for Respiratory Diseases, University Clinical Centre Zagreb, University of Zagreb, School of Medicine, Zagreb, Croatia.,ESCMID (European Society on Clinical Microbiology and Infectious Diseases) study group on mycobacterial infections, Basel, Switzerland
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases-IRCCS L. Spallanzani, Rome, Italy.,ESCMID (European Society on Clinical Microbiology and Infectious Diseases) study group on mycobacterial infections, Basel, Switzerland
| | - Cristina Vilaplana
- Experimental Tuberculosis Unit (UTE), Fundació Institut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain .,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,ESCMID (European Society on Clinical Microbiology and Infectious Diseases) study group on mycobacterial infections, Basel, Switzerland
| |
Collapse
|
33
|
Abbas AM, Rashed ME, El-Gebaly E, AbdelAllah NH, Gaber Y. Comparative evaluation of the humoral immune interaction when BCG and conjugated meningococcal vaccines combined or co-administrated in mice. Comp Immunol Microbiol Infect Dis 2022; 84:101778. [DOI: 10.1016/j.cimid.2022.101778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022]
|
34
|
Bitencourt J, Peralta-Álvarez MP, Wilkie M, Jacobs A, Wright D, Salman Almujri S, Li S, Harris SA, Smith SG, Elias SC, White AD, Satti I, Sharpe SS, O’Shea MK, McShane H, Tanner R. Induction of Functional Specific Antibodies, IgG-Secreting Plasmablasts and Memory B Cells Following BCG Vaccination. Front Immunol 2022; 12:798207. [PMID: 35069580 PMCID: PMC8767055 DOI: 10.3389/fimmu.2021.798207] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis (TB) is a major global health problem and the only currently-licensed vaccine, BCG, is inadequate. Many TB vaccine candidates are designed to be given as a boost to BCG; an understanding of the BCG-induced immune response is therefore critical, and the opportunity to relate this to circumstances where BCG does confer protection may direct the design of more efficacious vaccines. While the T cell response to BCG vaccination has been well-characterized, there is a paucity of literature on the humoral response. We demonstrate BCG vaccine-mediated induction of specific antibodies in different human populations and macaque species which represent important preclinical models for TB vaccine development. We observe a strong correlation between antibody titers in serum versus plasma with modestly higher titers in serum. We also report for the first time the rapid and transient induction of antibody-secreting plasmablasts following BCG vaccination, together with a robust and durable memory B cell response in humans. Finally, we demonstrate a functional role for BCG vaccine-induced specific antibodies in opsonizing mycobacteria and enhancing macrophage phagocytosis in vitro, which may contribute to the BCG vaccine-mediated control of mycobacterial growth observed. Taken together, our findings indicate that the humoral immune response in the context of BCG vaccination merits further attention to determine whether TB vaccine candidates could benefit from the induction of humoral as well as cellular immunity.
Collapse
Affiliation(s)
- Julia Bitencourt
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM/Fiocruz), Salvador, Brazil
| | | | - Morven Wilkie
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ashley Jacobs
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Medicine, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Daniel Wright
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Salem Salman Almujri
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Shuailin Li
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephanie A. Harris
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Steven G. Smith
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Division of Biosciences, Brunel University, London, United Kingdom
| | - Sean C. Elias
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew D. White
- United Kingdom Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Iman Satti
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sally S. Sharpe
- United Kingdom Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Matthew K. O’Shea
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Helen McShane
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel Tanner
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Immunological role of cluster of differentiation 56 and cluster of differentiation 19 in patients infected with mycobacterium tuberculosis in Iraq. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Liang J, Fu L, Li M, Chen Y, Wang Y, Lin Y, Zhang H, Xu Y, Qin L, Liu J, Wang W, Hao J, Liu S, Zhang P, Lin L, Alnaggar M, Zhou J, Zhou L, Guo H, Wang Z, Liu L, Deng G, Zhang G, Wu Y, Yin Z. Allogeneic Vγ9Vδ2 T-Cell Therapy Promotes Pulmonary Lesion Repair: An Open-Label, Single-Arm Pilot Study in Patients With Multidrug-Resistant Tuberculosis. Front Immunol 2021; 12:756495. [PMID: 34975844 PMCID: PMC8715986 DOI: 10.3389/fimmu.2021.756495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
The WHO’s “Global tuberculosis report 2020” lists tuberculosis (TB) as one of the leading causes of death globally. Existing anti-TB therapy strategies are far from adequate to meet the End TB Strategy goals set for 2035. Therefore, novel anti-TB therapy protocols are urgently needed. Here, we proposed an allogeneic Vγ9Vδ2 T-cell-based immunotherapy strategy and clinically evaluated its safety and efficacy in patients with multidrug-resistant TB (MDR-TB). Eight patients with MDR-TB were recruited in this open-label, single-arm pilot clinical study. Seven of these patients received allogeneic Vγ9Vδ2 T-cell therapy adjunct with anti-TB drugs in all therapy courses. Cells (1 × 108) were infused per treatment every 2 weeks, with 12 courses of cell therapy conducted for each patient, who were then followed up for 6 months to evaluate the safety and efficacy of cell therapy. The eighth patient initially received four courses of cell infusions, followed by eight courses of cell therapy plus anti-MDR-TB drugs. Clinical examinations, including clinical response, routine blood tests and biochemical indicators, chest CT imaging, immune cell surface markers, body weight, and sputum Mycobacterium tuberculosis testing, were conducted. Our study revealed that allogeneic Vγ9Vδ2 T cells are clinically safe for TB therapy. These cells exhibited clinical efficacy in multiple aspects, including promoting the repair of pulmonary lesions, partially improving host immunity, and alleviating M. tuberculosis load in vivo, regardless of their application in the presence or absence of anti-TB drugs. This pilot study opens a new avenue for anti-TB treatment and exhibits allogeneic Vγ9Vδ2 T cells as promising candidates for developing a novel cell drug for TB immunotherapy.
Collapse
Affiliation(s)
- Juan Liang
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Liang Fu
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Man Li
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Department for gdT Clinical Research and Development, Guangdong GD Kongming Biotech Ltd., Guangzhou, China
| | - Yuyuan Chen
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Yi Wang
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Yi Lin
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Hailin Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Yan Xu
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Linxiu Qin
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Juncai Liu
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Weiyu Wang
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Jianlei Hao
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Shuyan Liu
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Peize Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Li Lin
- Department for gdT Clinical Research and Development, Guangdong GD Kongming Biotech Ltd., Guangzhou, China
| | - Mohammed Alnaggar
- Tongji Chibi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Chibi, China
| | - Jie Zhou
- Department for Tuberculosis Control, Foshan Fourth People’s Hospital, Foshan, China
| | - Lin Zhou
- Department for Tuberculosis Control, Centre for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Huixin Guo
- Department for Tuberculosis Control, Centre for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Zhaoqin Wang
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Lei Liu
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Guofang Deng
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Zhinan Yin, ; Yangzhe Wu, ; Guoliang Zhang, ; Guofang Deng,
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Zhinan Yin, ; Yangzhe Wu, ; Guoliang Zhang, ; Guofang Deng,
| | - Yangzhe Wu
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- *Correspondence: Zhinan Yin, ; Yangzhe Wu, ; Guoliang Zhang, ; Guofang Deng,
| | - Zhinan Yin
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- *Correspondence: Zhinan Yin, ; Yangzhe Wu, ; Guoliang Zhang, ; Guofang Deng,
| |
Collapse
|
37
|
Zare S, Kabiri M, Amini Y, Najafi A, Mohammadpour F, Ayati SH, Nikpoor AR, Tafaghodi M. Immunological Assessment of Chitosan or Trimethyl Chitosan-Coated PLGA Nanospheres Containing Fusion Antigen as the Novel Vaccine Candidates Against Tuberculosis. AAPS PharmSciTech 2021; 23:15. [PMID: 34893923 DOI: 10.1208/s12249-021-02146-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/19/2021] [Indexed: 01/02/2023] Open
Abstract
The crucial challenge in tuberculosis (TB) as a chronic infectious disease is to present a novel vaccine candidate that improves current vaccination and provides efficient protection in individuals. The present study aimed to evaluate the immune efficacy of multi-subunit vaccines containing chitosan (CHT)- or trimethyl chitosan (TMC)-coated PLGA nanospheres to stimulate cell-mediated and mucosal responses against Mycobacterium Tuberculosis (Mtb) in an animal model. The surface-modified PLGA nanoparticles (NPs) containing tri-fusion protein from three Mtb antigens were produced by the double emulsion technique. The subcutaneously or nasally administered PLGA vaccines in the absence or presence of BCG were assessed to compare the levels of mucosal IgA, IgG1, and IgG2a production as well as secretion of IFN-γ, IL-17, IL-4, and TGF-β cytokines. According to the release profile, the tri-fusion encapsulated in modified PLGA NPs demonstrated a biphasic release profile including initial burst release on the first day and sustained release within 18 days. All designed PLGA vaccines induced a shift of Th1/Th2 balance toward Th1-dominant response. Although immunized mice through subcutaneous injection elicited higher cell-mediated responses relative to the nasal vaccination, the intranasally administered groups stimulated robust mucosal IgA immunity. The modified PLGA NPs using TMC cationic polymer were more efficient to elevate Th1 and mucosal responses in comparison with the CHT-coated PLGA nanospheres. Our findings highlighted that the tri-fusion loaded in TMC-PLGA NPs may represent an efficient prophylactic vaccine and can be considered as a novel candidate against TB.
Collapse
|
38
|
Irvine EB, O'Neil A, Darrah PA, Shin S, Choudhary A, Li W, Honnen W, Mehra S, Kaushal D, Gideon HP, Flynn JL, Roederer M, Seder RA, Pinter A, Fortune S, Alter G. Robust IgM responses following intravenous vaccination with Bacille Calmette-Guérin associate with prevention of Mycobacterium tuberculosis infection in macaques. Nat Immunol 2021; 22:1515-1523. [PMID: 34811542 PMCID: PMC8642241 DOI: 10.1038/s41590-021-01066-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/04/2021] [Indexed: 01/31/2023]
Abstract
Development of an effective tuberculosis (TB) vaccine has suffered from an incomplete understanding of the correlates of protection against Mycobacterium tuberculosis (Mtb). Intravenous (i.v.) vaccination with Bacille Calmette-Guérin (BCG) provides nearly complete protection against TB in rhesus macaques, but the antibody response it elicits remains incompletely defined. Here we show that i.v. BCG drives superior antibody responses in the plasma and the lungs of rhesus macaques compared to traditional intradermal BCG administration. While i.v. BCG broadly expands antibody titers and functions, IgM titers in the plasma and lungs of immunized macaques are among the strongest markers of reduced bacterial burden. IgM was also enriched in macaques that received protective vaccination with an attenuated strain of Mtb. Finally, an Mtb-specific IgM monoclonal antibody reduced Mtb survival in vitro. Collectively, these data highlight the potential importance of IgM responses as a marker and mediator of protection against TB.
Collapse
Affiliation(s)
- Edward B Irvine
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Anthony O'Neil
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Patricia A Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Sally Shin
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Alok Choudhary
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Wenjun Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - William Honnen
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Smriti Mehra
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Hannah Priyadarshini Gideon
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Abraham Pinter
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Sarah Fortune
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
39
|
Gong W, Wu X. Differential Diagnosis of Latent Tuberculosis Infection and Active Tuberculosis: A Key to a Successful Tuberculosis Control Strategy. Front Microbiol 2021; 12:745592. [PMID: 34745048 PMCID: PMC8570039 DOI: 10.3389/fmicb.2021.745592] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022] Open
Abstract
As an ancient infectious disease, tuberculosis (TB) is still the leading cause of death from a single infectious agent worldwide. Latent TB infection (LTBI) has been recognized as the largest source of new TB cases and is one of the biggest obstacles to achieving the aim of the End TB Strategy. The latest data indicate that a considerable percentage of the population with LTBI and the lack of differential diagnosis between LTBI and active TB (aTB) may be potential reasons for the high TB morbidity and mortality in countries with high TB burdens. The tuberculin skin test (TST) has been used to diagnose TB for > 100 years, but it fails to distinguish patients with LTBI from those with aTB and people who have received Bacillus Calmette–Guérin vaccination. To overcome the limitations of TST, several new skin tests and interferon-gamma release assays have been developed, such as the Diaskintest, C-Tb skin test, EC-Test, and T-cell spot of the TB assay, QuantiFERON-TB Gold In-Tube, QuantiFERON-TB Gold-Plus, LIAISON QuantiFERON-TB Gold Plus test, and LIOFeron TB/LTBI. However, these methods cannot distinguish LTBI from aTB. To investigate the reasons why all these methods cannot distinguish LTBI from aTB, we have explained the concept and definition of LTBI and expounded on the immunological mechanism of LTBI in this review. In addition, we have outlined the research status, future directions, and challenges of LTBI differential diagnosis, including novel biomarkers derived from Mycobacterium tuberculosis and hosts, new models and algorithms, omics technologies, and microbiota.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
40
|
Boom WH, Schaible UE, Achkar JM. The knowns and unknowns of latent Mycobacterium tuberculosis infection. J Clin Invest 2021; 131:136222. [PMID: 33529162 DOI: 10.1172/jci136222] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Humans have been infected with Mycobacterium tuberculosis (Mtb) for thousands of years. While tuberculosis (TB), one of the deadliest infectious diseases, is caused by uncontrolled Mtb infection, over 90% of presumed infected individuals remain asymptomatic and contain Mtb in a latent TB infection (LTBI) without ever developing disease, and some may clear the infection. A small number of heavily Mtb-exposed individuals appear to resist developing traditional LTBI. Because Mtb has mechanisms for intracellular survival and immune evasion, successful control involves all of the arms of the immune system. Here, we focus on immune responses to Mtb in humans and nonhuman primates and discuss new concepts and outline major knowledge gaps in our understanding of LTBI, ranging from the earliest events of exposure and infection to success or failure of Mtb control.
Collapse
Affiliation(s)
- W Henry Boom
- Department of Medicine.,Department of Pathology, and.,Department of Molecular Biology and Microbiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ulrich E Schaible
- Division of Cellular Microbiology, Research Center Borstel-Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Jacqueline M Achkar
- Department of Medicine and.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
41
|
Foreman HCC, Frank A, Stedman TT. Determination of variable region sequences from hybridoma immunoglobulins that target Mycobacterium tuberculosis virulence factors. PLoS One 2021; 16:e0256079. [PMID: 34415957 PMCID: PMC8378720 DOI: 10.1371/journal.pone.0256079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) infects one-quarter of the world's population. Mtb and HIV coinfections enhance the comorbidity of tuberculosis (TB) and AIDS, accounting for one-third of all AIDS-associated mortalities. Humoral antibody to Mtb correlates with TB susceptibility, and engineering of Mtb antibodies may lead to new diagnostics and therapeutics. The characterization and validation of functional immunoglobulin (Ig) variable chain (IgV) sequences provide a necessary first step towards developing therapeutic antibodies against pathogens. The virulence-associated Mtb antigens SodA (Superoxide Dismutase), KatG (Catalase), PhoS1/PstS1 (regulatory factor), and GroES (heat shock protein) are potential therapeutic targets but lacked IgV sequence characterization. Putative IgV sequences were identified from the mRNA of hybridomas targeting these antigens and isotype-switched into a common immunoglobulin fragment crystallizable region (Fc region) backbone, subclass IgG2aκ. Antibodies were validated by demonstrating recombinant Ig assembly and secretion, followed by the determination of antigen-binding specificity using ELISA and immunoblot assay.
Collapse
Affiliation(s)
- Hui-Chen Chang Foreman
- BEI Resources, ATCC., Manassas, Virginia, United States of America
- * E-mail: (HCCF); (TTS)
| | - Andrew Frank
- BEI Resources, ATCC., Manassas, Virginia, United States of America
| | - Timothy T. Stedman
- BEI Resources, ATCC., Manassas, Virginia, United States of America
- * E-mail: (HCCF); (TTS)
| |
Collapse
|
42
|
Luo Y, Xue Y, Tang G, Cai Y, Yuan X, Lin Q, Song H, Liu W, Mao L, Zhou Y, Chen Z, Zhu Y, Liu W, Wu S, Wang F, Sun Z. Lymphocyte-Related Immunological Indicators for Stratifying Mycobacterium tuberculosis Infection. Front Immunol 2021; 12:658843. [PMID: 34276653 PMCID: PMC8278865 DOI: 10.3389/fimmu.2021.658843] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022] Open
Abstract
Background Easily accessible tools that reliably stratify Mycobacterium tuberculosis (MTB) infection are needed to facilitate the improvement of clinical management. The current study attempts to reveal lymphocyte-related immune characteristics of active tuberculosis (ATB) patients and establish immunodiagnostic model for discriminating ATB from latent tuberculosis infection (LTBI) and healthy controls (HC). Methods A total of 171 subjects consisted of 54 ATB, 57 LTBI, and 60 HC were consecutively recruited at Tongji hospital from January 2019 to January 2021. All participants were tested for lymphocyte subsets, phenotype, and function. Other examination including T-SPOT and microbiological detection for MTB were performed simultaneously. Results Compared with LTBI and HC, ATB patients exhibited significantly lower number and function of lymphocytes including CD4+ T cells, CD8+ T cells and NK cells, and significantly higher T cell activation represented by HLA-DR and proportion of immunosuppressive cells represented by Treg. An immunodiagnostic model based on the combination of NK cell number, HLA-DR+CD3+ T cells, Treg, CD4+ T cell function, and NK cell function was built using logistic regression. Based on receiver operating characteristic curve analysis, the area under the curve (AUC) of the diagnostic model was 0.920 (95% CI, 0.867-0.973) in distinguishing ATB from LTBI, while the cut-off value of 0.676 produced a sensitivity of 81.48% (95% CI, 69.16%-89.62%) and specificity of 91.23% (95% CI, 81.06%-96.20%). Meanwhile, AUC analysis between ATB and HC according to the diagnostic model was 0.911 (95% CI, 0.855-0.967), with a sensitivity of 81.48% (95% CI, 69.16%-89.62%) and a specificity of 90.00% (95% CI, 79.85%-95.34%). Conclusions Our study demonstrated that the immunodiagnostic model established by the combination of lymphocyte-related indicators could facilitate the status differentiation of MTB infection.
Collapse
Affiliation(s)
- Ying Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xue
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoxing Tang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, Key Laboratory of Environmental Health of Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Yuan
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Lin
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huijuan Song
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liyan Mao
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhou
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Zhongju Chen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaowu Zhu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiyong Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiji Wu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyong Sun
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
FasL regulatory B-cells during Mycobacterium tuberculosis infection and TB disease. J Mol Biol 2021; 433:166984. [PMID: 33845087 DOI: 10.1016/j.jmb.2021.166984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/20/2022]
Abstract
Tuberculosis (TB) disease remains a major health crisis. Infection with Mycobacterium tuberculosis (M.tb) cause a range of diseases ranging from latent infection to active TB disease. This active state of the disease is characterised by the formation of granulomas (a physical barrier in the lung), a structure thought to protect the host by controlling the infection through preventing the growth of the bacilli. Subsequently, the surviving bacteria become inactive and in most cases, TB reactivation is prevented by the immune response of the host. B-cells perform numerous immunological functions beyond antibody production to positively regulate the response to pathogenic assault. A subgroup of B-cells with regulatory functions express death-inducing ligands, such as Fas ligand (FasL). Expression and interaction of the Fas receptor-ligand promotes the induction of apoptosis and the induction of T-cell tolerance. Here, we focus on the significance of B-cells by addressing their FasL phenotype and regulatory functions during TB, with reference to disease in humans, non-human primates and mice.
Collapse
|
44
|
Baldwin SL, Reese VA, Larsen SE, Beebe E, Guderian J, Orr MT, Fox CB, Reed SG, Coler RN. Prophylactic efficacy against Mycobacterium tuberculosis using ID93 and lipid-based adjuvant formulations in the mouse model. PLoS One 2021; 16:e0247990. [PMID: 33705411 PMCID: PMC7951850 DOI: 10.1371/journal.pone.0247990] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/17/2021] [Indexed: 11/19/2022] Open
Abstract
An estimated 10 million people developed tuberculosis (TB) disease in 2019 which underscores the need for a vaccine that prevents disease and reduces transmission. The aim of our current studies is to characterize and test a prophylactic tuberculosis vaccine comprised of ID93, a polyprotein fusion antigen, and a liposomal formulation [including a synthetic TLR4 agonist (glucopyranosyl lipid adjuvant, GLA) and QS-21] in a preclinical mouse model of TB disease. Comparisons of the ID93+GLA-LSQ vaccines are also made to the highly characterized ID93+GLA-SE oil-in-water emulsion adjuvant, which are also included these studies. The recent success of vaccine candidate M72 combined with adjuvant AS01E (GlaxoSmithKline Biologicals) in reducing progression to active disease is promising and has renewed excitement for experimental vaccines currently in the TB vaccine pipeline. The AS01E adjuvant contains monophosphoryl lipid A (MPL) and QS-21 (a saponin) in a liposomal formulation. While AS01E has demonstrated potent adjuvant activity as a component of both approved and experimental vaccines, developing alternatives to this adjuvant system will become important to fill the high demand envisioned for future vaccine needs. Furthermore, replacement sources of potent adjuvants will help to supply the demand of a TB vaccine [almost one-quarter of the world's population are estimated to have latent Mycobacterium tuberculosis (Mtb) according to the WHO 2019 global TB report], addressing (a) cost of goods, (b) supply of goods, and (c) improved efficacy of subunit vaccines against Mtb. We show that both ID93+GLA-SE (containing an emulsion adjuvant) and ID93+GLA-LSQ (containing a liposomal adjuvant) induce ID93-specific TH1 cellular immunity including CD4+CD44+ T cells expressing IFNγ, TNF, and IL-2 (using flow cytometry and intracellular cytokine staining) and vaccine-specific IgG2 antibody responses (using an ELISA). In addition, both ID93+GLA-SE and ID93+GLA-LSQ effectively decrease the bacterial load within the lungs of mice infected with Mtb. Formulations based on this liposomal adjuvant formulation may provide an alternative to AS01 adjuvant systems.
Collapse
Affiliation(s)
- Susan L. Baldwin
- Seattle Children’s Research Institute, Seattle, WA, United States of America
- * E-mail:
| | - Valerie A. Reese
- Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Sasha E. Larsen
- Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Elyse Beebe
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Jeff Guderian
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Mark T. Orr
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Christopher B. Fox
- Infectious Disease Research Institute, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Steven G. Reed
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Rhea N. Coler
- Seattle Children’s Research Institute, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
45
|
Rijnink WF, Ottenhoff THM, Joosten SA. B-Cells and Antibodies as Contributors to Effector Immune Responses in Tuberculosis. Front Immunol 2021; 12:640168. [PMID: 33679802 PMCID: PMC7930078 DOI: 10.3389/fimmu.2021.640168] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/29/2021] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is still a major threat to mankind, urgently requiring improved vaccination and therapeutic strategies to reduce TB-disease burden. Most present vaccination strategies mainly aim to induce cell-mediated immunity (CMI), yet a series of independent studies has shown that B-cells and antibodies (Abs) may contribute significantly to reduce the mycobacterial burden. Although early studies using B-cell knock out animals did not support a major role for B-cells, more recent studies have provided new evidence that B-cells and Abs can contribute significantly to host defense against Mtb. B-cells and Abs exist in many different functional subsets, each equipped with unique functional properties. In this review, we will summarize current evidence on the contribution of B-cells and Abs to immunity toward Mtb, their potential utility as biomarkers, and their functional contribution to Mtb control.
Collapse
Affiliation(s)
- Willemijn F Rijnink
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
46
|
Can what have we learnt about BCG vaccination in the last 20 years help us to design a better tuberculosis vaccine? Vaccine 2021; 40:1525-1533. [PMID: 33583672 PMCID: PMC8899334 DOI: 10.1016/j.vaccine.2021.01.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 01/22/2023]
Abstract
The BCG vaccine provides variable protection against tuberculosis. Correlates of protection remain elusive, but IFNγ can measure immunogenicity. BCG vaccination induces innate immune training as well as antigen-specific immunity. Many factors may contribute to the variable responses to BCG vaccination. Prior BCG vaccination or factors modulating its efficacy may affect new TB vaccines. Innate training may also provide non-specific protection against infectious diseases. New TB vaccines should not lose BCG's beneficial non-specific effects.
The BCG vaccine will, in 2021, have been in use for 100 years. Much remains to be understood, including the reasons for its variable efficacy against pulmonary tuberculosis in adults. This review will discuss what has been learnt about the BCG vaccine in the last two decades, and whether this new information can be exploited to improve its efficacy, by enhancing its ability to induce either antigen-specific and/or non-specific effects. Many factors affect both the immunogenicity of BCG and its protective efficacy, highlighting the challenges of working with a live vaccine in man, but new insights may enable us to exploit better what BCG can do.
Collapse
|
47
|
Khaliq A, Ravindran R, Afzal S, Jena PK, Akhtar MW, Ambreen A, Wan YJY, Malik KA, Irfan M, Khan IH. Gut microbiome dysbiosis and correlation with blood biomarkers in active-tuberculosis in endemic setting. PLoS One 2021; 16:e0245534. [PMID: 33481833 PMCID: PMC7822526 DOI: 10.1371/journal.pone.0245534] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/02/2021] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) is the largest infectious disease with 10 million new active-TB patients and1.7 million deaths per year. Active-TB is an inflammatory disease and is increasingly viewed as an imbalance of immune responses to M. tb. infection. The mechanisms of a switch from latent infection to active disease is not well worked out but a shift in the immune responses is thought to be responsible. Increasingly, the role of gut microbiota has been described as a major influencer of the immune system. And because the gut is the largest immune organ, we aimed to analyze the gut microbiome in active-TB patients in a TB-endemic country, Pakistan. The study revealed that Ruminococcacea, Enetrobactericeae, Erysipelotrichaceae, Bifidobacterium, etc. were the major genera associated with active-TB, also associated with chronic inflammatory disease. Plasma antibody profiles against several M. tb. antigens, as specific biomarkers for active-TB, correlated closely with the patient gut microbial profiles. Besides, bcoA gene copy number, indicative of the level of butyrate production by the gut microbiome was five-fold lower in TB patients compared to healthy individuals. These findings suggest that gut health in TB patients is compromised, with implications for disease morbidity (e.g., severe weight loss) as well as immune impairment.
Collapse
Affiliation(s)
- Aasia Khaliq
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Resmi Ravindran
- Department of Pathology and Laboratory Medicine, University of California, Davis, California, United States of America
| | - Samia Afzal
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Prasant Kumar Jena
- Department of Pathology and Laboratory Medicine, University of California, Davis, California, United States of America
| | | | - Atiqa Ambreen
- Department of Microbiology, Gulab Devi Hospital, Lahore, Pakistan
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California, Davis, California, United States of America
| | - Kauser Abdulla Malik
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Muhammad Irfan
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Imran H. Khan
- Department of Pathology and Laboratory Medicine, University of California, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Chen C, Xu H, Peng Y, Luo H, Huang GX, Wu XJ, Dai YC, Luo HL, Zhang JA, Zheng BY, Zhang XN, Chen ZW, Xu JF. Elevation in the counts of IL-35-producing B cells infiltrating into lung tissue in mycobacterial infection is associated with the downregulation of Th1/Th17 and upregulation of Foxp3 +Treg. Sci Rep 2020; 10:13212. [PMID: 32764544 PMCID: PMC7411070 DOI: 10.1038/s41598-020-69984-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/01/2020] [Indexed: 12/19/2022] Open
Abstract
IL-35 is an anti-inflammatory cytokine and is thought to be produced by regulatory T (Treg) cells. A previous study found that IL-35 was upregulated in the serum of patients with active tuberculosis (ATB), and IL-35-producing B cells infiltrated to tuberculous granuloma of patients with ATB. Purified B cells from such patients generated more IL-35 after stimulation by antigens of Mycobacterium tuberculosis and secreted more IL-10. However, the function and the underlying mechanisms of IL-35-producing B cells in TB progression have not been investigated. The present study found that the expression of mRNA of IL-35 subsets Ebi3 and p35 was elevated in mononuclear cells from peripheral blood, spleen, bone marrow, and lung tissue in a mouse model infected with Mycobacterium bovis BCG, as tested by real-time polymerase chain reaction. Accordingly, the flow cytometry analysis showed that the counts of a subset of IL-35+ B cells were elevated in the circulating blood and in the spleen, bone marrow, and lung tissue in BCG-infected mice, whereas anti-TB therapy reduced IL-35-producing B cells. Interestingly, BCG infection could drive the infiltration of IL-35-producing B cells into the lung tissue, and the elevated counts of IL-35-producing B cells positively correlated with the bacterial load in the lungs. Importantly, the injection of exogenous IL-35 stimulated the elevation in the counts of IL-35-producing B cells and was associated with the downregulation of Th1/Th17 and upregulation of Foxp3+Treg.The study showed that a subset of IL-35-producing B cells might take part in the downregulation of immune response in mycobacterial infection.
Collapse
Affiliation(s)
- Chen Chen
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China.,Molecular Diagnostic Center, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Huan Xu
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China
| | - Ying Peng
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China
| | - Hong Luo
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China
| | - Gui-Xian Huang
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China
| | - Xian-Jin Wu
- Department of Clinical Laboratory, Huizhou Municipal Central Hospital, No. 41 North Eling Road, Huizhou, 516001, China
| | - You-Chao Dai
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China
| | - Hou-Long Luo
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China
| | - Jun-Ai Zhang
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China
| | - Bi-Ying Zheng
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China
| | - Xiang-Ning Zhang
- Department of Pathophysiology, Basic Medical School, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China
| | - Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Jun-Fa Xu
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China.
| |
Collapse
|
49
|
Moore DK, Leisching GR, Snyders CI, Gutschmidt A, van Rensburg IC, Loxton AG. Immunoglobulin profile and B-cell frequencies are altered with changes in the cellular microenvironment independent of the stimulation conditions. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:458-467. [PMID: 32639690 PMCID: PMC7416019 DOI: 10.1002/iid3.328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/13/2020] [Accepted: 06/21/2020] [Indexed: 12/19/2022]
Abstract
Introduction B‐cells are essential in the defense against Mycobacterium tuberculosis. Studies on isolated cells may not accurately reflect the responses that occur in vivo due to the presence of other cells. This study elucidated the influence of microenvironment complexity on B‐cell polarization and function in the context of tuberculosis disease. Methods B‐cell function was tested in whole blood, peripheral blood mononuclear cells (PBMCs), and as isolated cells. The different fractions were stimulated and the B‐cell phenotype and immunoglobulin profiles analyzed. Results The immunoglobulin profile and developmental B‐cell frequencies varied for each of the investigated sample types, while in an isolated cellular environment, secretion of immunoglobulin isotypes immunoglobulin A (IgA), IgG2, and IgG3 was hampered. The differences in the immunoglobulin profile highlight the importance of cell‐cell communication for B‐cell activation. Furthermore, a decrease in marginal zone B‐cell frequencies and an increase in T1 B‐cells was observed following cell isolation, indicating impaired B‐cell development in response to in vitro antigenic stimulation in isolation. Conclusion Our results suggest that humoral B‐cell function and development was impaired likely due to a lack of costimulatory signals from other cell types. Thus, B‐cell function should ideally be studied in a PBMC or whole blood fraction.
Collapse
Affiliation(s)
- Dannielle K Moore
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Gina R Leisching
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Candice I Snyders
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Andrea Gutschmidt
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Ilana C van Rensburg
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Andre G Loxton
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
50
|
Bright MR, Curtis N, Messina NL. The role of antibodies in Bacille Calmette Guérin-mediated immune responses and protection against tuberculosis in humans: A systematic review. Tuberculosis (Edinb) 2020; 131:101947. [PMID: 33691988 DOI: 10.1016/j.tube.2020.101947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND The mechanisms underlying Bacille Calmette-Guérin (BCG) vaccine's protective effects against tuberculosis (TB) are incompletely understood but are proposed to involve a predominantly cell-mediated process. However, there is increasing evidence for the involvement of antibodies in the control of Mycobacteria tuberculosis and in the immune response to BCG. METHODS We did a systematic review of studies investigating anti-BCG antibodies in individuals with active or latent TB, and in the response to BCG vaccination. RESULTS Of 1417 articles screened, 70 were relevant, comprising 52 investigating anti-BCG antibodies in TB and 18 investigating the anti-BCG antibody response to BCG-vaccination. Individuals with active TB have higher levels of anti-BCG antibodies compared with individuals with latent TB or healthy individuals. Antibodies to BCG are present after BCG vaccination. There is some evidence for the in utero transfer of maternal anti-BCG antibodies to infants. CONCLUSIONS BCG vaccination induces a humoral response. Antibodies targeted against BCG and its antigens may play a role in protection against active TB.
Collapse
Affiliation(s)
- Matthew R Bright
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia; Murdoch Children's Research Institute, Parkville, Victoria, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Parkville, Victoria, Australia.
| | - Nicole L Messina
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia; Murdoch Children's Research Institute, Parkville, Victoria, Australia.
| |
Collapse
|