1
|
Lei Q, Fu H, Yao Z, Zhou Z, Wang Y, Lin X, Yuan Y, Ouyang Q, Xu X, Cao J, Gan M, Fan X. Early introduction of IL-10 weakens BCG revaccination's protection by suppressing CD4 +Th1 cell responses. J Transl Med 2024; 22:1103. [PMID: 39633471 PMCID: PMC11616166 DOI: 10.1186/s12967-024-05683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/04/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The Bacillus Calmette-Guérin (BCG) vaccine, currently the sole authorized vaccine against tuberculosis (TB), demonstrates limited effectiveness in safeguarding adolescents and adults from active TB, even when administered as a booster with either BCG itself or heterologous vaccine candidates. To effectively control the persistent epidemic of adult TB, it is imperative to investigate the mechanisms responsible for the suboptimal efficacy of the BCG prime-boosting strategy against primary Mycobacterium tuberculosis (M.tb) infection. METHODS C57BL/6J mice were immunized with the BCG vaccine either once or twice, followed by analysis of lung tissue to assess changes in cytokine levels. Additionally, varying intervals between vaccinations and detection times were examined to study IL-10 expression across different organs. IL-10-expressing cells in the lungs, spleen, and lymph nodes were analyzed through FACS and intracellular cytokine staining (ICS). BCG-revaccinated IL-10-/- mutant mice were compared with wild-type mice to evaluate antigen-specific IgG antibody and T cell responses. Protection against M.tb aerosol challenge was evaluated in BCG-revaccinated mice, either untreated or treated with anti-IL-10R monoclonal antibody. RESULTS IL-10 was significantly upregulated in the lungs of BCG-revaccinated mice shortly after the booster immunization. IL-10 expression peaked in the lungs 3-6 weeks post-revaccination and was also detected in lymph nodes and spleen as early as 2 weeks following the booster dose, regardless of the intervals between the prime and booster vaccinations. The primary sources of IL-10 in these tissues were identified as macrophages and dendritic cells. Blocking IL-10 signaling in BCG-revaccinated mice-either by using IL-10-/- mutant mice or administering anti-IL-10R monoclonal antibody increased levels of antigen-specific IFN-γ+ or IL-2+ CD4+ T cells, enhanced central and effector memory CD4+ T cell responses, and provided better protection against aerosol infection with 300 CFUs of M.tb. CONCLUSION Our findings are crucial for formulating effective immunization strategies related to the BCG vaccine and for developing efficacious adult TB vaccines.
Collapse
Affiliation(s)
- Qing Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Zongjie Yao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Zijie Zhou
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
- Departement of Infectious Disease, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Yueqing Wang
- Department of Laboratory Medicine, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaosong Lin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Yuan
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Ouyang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyue Xu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Jinge Cao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Mengze Gan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Xionglin Fan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Yonezaki S, Shimizu MS, Ota T, Ozasa S, Akabame S, Ide S, Kosai K, Yanagihara K, Ariyoshi K, Furumoto A. Multiple arterial aneurysms in a patient with spondylitis following intravesical Bacillus Calmette-Guérin administration for bladder cancer: A case report. J Infect Chemother 2024:S1341-321X(24)00296-4. [PMID: 39515420 DOI: 10.1016/j.jiac.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Mycobacterium bovis is one of the species belonging to the Mycobacterium tuberculosis complex; its attenuated form-Bacillus Calmette-Guérin (BCG)-is used as a live vaccine against tuberculosis. Besides its use as a vaccine, BCG is widely used for treating bladder cancer. However, complications related to its use can lead to disseminated infection with M. bovis, known as BCGosis. BCGosis has multiple manifestations, and its culture requires a long time and complex polymerase chain reaction (PCR), posing challenges to its diagnosis. Herein, we report a case of a 74-year-old man with bladder cancer in whom multiple new arterial aneurysms developed during spondylitis treatment following intravesical BCG administration. The patient presented with syncope and left neck swelling. His medical history included transurethral bladder tumor resection and intravesical BCG therapy for bladder cancer. Sixteen months before he visited our institution, he developed spondylitis (L5/S1), an epidural abscess (L5/S1), and an abscess on the right thigh. Biopsy cultures and PCR confirmed M. tuberculosis complex, leading to antituberculosis drug therapy. Upon admission, multiple aneurysms were identified, and drug therapy was continued. However, new multiple aneurysms developed with the rupture of the right femoral aneurysm, leading to surgical interventions and arterial biopsy. The biopsy showed no signs of mycobacterial infection. Other aneurysm etiologies were ruled out and M. bovis was confirmed by PCR in the specimen from the initial intervertebral disc biopsy; thus, a diagnosis of BCGosis was made. This case highlights the importance of a thorough follow-up to detect new complications, even during treatment.
Collapse
Affiliation(s)
- Shun Yonezaki
- Infectious Diseases Experts Training Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, Japan
| | - Masumi Suzuki Shimizu
- Department of Infectious Diseases, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, Japan
| | - Tomomi Ota
- Department of Infectious Diseases, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, Japan
| | - Soichiro Ozasa
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, Japan
| | - Shogo Akabame
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, Japan
| | - Shotaro Ide
- Infectious Diseases Experts Training Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, Japan
| | - Kosuke Kosai
- Department of Laboratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, Japan
| | - Koya Ariyoshi
- Department of Infectious Diseases, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, Japan; Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Akitsugu Furumoto
- Infectious Diseases Experts Training Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, Japan.
| |
Collapse
|
3
|
Felgueres MJ, Esteso G, Aguiló N, Valés-Gómez M. Selective expansion of anti-tumor innate lymphocytes in long-term cultures after a single BCG pulse. Methods Cell Biol 2024; 190:203-221. [PMID: 39515880 DOI: 10.1016/bs.mcb.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Natural Killer (NK) cells are cytotoxic lymphocytes involved in the recognition of pathogen-infected and cancer cells. NK cells are very attractive as cell therapy tools because they are neither restricted by donor compatibility nor do they cause toxicity. Although their anti-tumor role has been long known, for development of NK-based therapies it is important to select the appropriate subpopulation. Similarly, non-MHC restricted T cells, in particular γδ T cells, have also been proposed as novel weapons against cancer. Here, we describe a new approach for production and characterization of anti-tumor innate lymphocyte cultures, containing mainly NK and γδ T cells, based on stimulation of peripheral blood mononuclear cells (PBMC) with BCG (Bacillus Calmette-Guérin), the tuberculosis vaccine, which is also successfully used to treat non-muscle invasive bladder cancer. Anti-tumor innate lymphocytes specifically proliferate from BCG-primed PBMC and can be cultured for weeks in low doses of IL12, IL15 and IL21. These cells kill a wide range of tumors and remain functional for weeks, with minimal manipulation. The phenotypic analysis of these cultures by multi-parametric flow cytometry is explained. Functional assays, including lymphocyte degranulation, cytokine production and radioactive isotope-free specific lysis experiments are also described.
Collapse
Affiliation(s)
- María-José Felgueres
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Gloria Esteso
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Nacho Aguiló
- Department of Microbiology, Pediatrics, Radiology and Public Health of the University of Zaragoza, IIS Aragon, CIBER de Enfermedades Respiratorias, Zaragoza, Spain
| | - Mar Valés-Gómez
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
4
|
Ji L, Fu Y, Xiong S. Chimeric antigen carried by extracellular vesicles induces stronger protective immunity against Mycobacterium tuberculosis infection. Immunobiology 2024; 229:152834. [PMID: 38968836 DOI: 10.1016/j.imbio.2024.152834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/08/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Although Bacillus Calmette-Guerin (BCG) has been used in human for centuries, tuberculosis (TB) remains one of the deadliest infectious diseases.There have been remarkable successes in the field of TB vaccine research over the past decade, but the search for a better vaccine candidate is still a challenge. Extracellular vesicles (EVs) possess a multitude of properties that make them attractive candidates for the development of novel, cell-free, non-replicative, and safe vaccine system. These properties include their small size, inherent immunogenicity, ability to be taken up by immune cells, self-adjuvant capability and the comprehensive distribution of concentrated antigens. In this study, we designed a newly chimeric antigen TB vaccine (CA) with three Mycobacterium tuberculosis (M. tb) antigens that identified from extracellular vesicle derived from M. tb-infected macrophage. We confirmed that the CA stimulated a more pronounced immune response and enhanced T-cell activation, thereby providing superior protection against Mycobacterium tuberculosis infection in comparison to the bivalent antigens. Importantly, the EVs carrying CA (EVs-CA) provided enhanced protection against M. tb infection compared to unencapsulated CA antigen. Moreover, we established an EV-carried CA system (EVs-CA) and released from a transformed cell line using endogenous loading of antigen method. This method displayed the CA could efficiently package into EVs and increased concentration of this antigen. The chimeric antigen carried by EVs induced higher levels of cytokines production and specific cytotoxic T lymphocytes, resulted in enhancing antibody response and improving protective efficacy. Our findings suggested that the potential of EVs as delivery system to carry the M. tb-specific chimeric antigen for controlling Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Lin Ji
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, PR China
| | - Yuxuan Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, PR China.
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, PR China; The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
5
|
Bæk O, Schaltz-Buchholzer F, Campbell A, Amenyogbe N, Campbell J, Aaby P, Benn CS, Kollmann TR. The mark of success: The role of vaccine-induced skin scar formation for BCG and smallpox vaccine-associated clinical benefits. Semin Immunopathol 2024; 46:13. [PMID: 39186134 PMCID: PMC11347488 DOI: 10.1007/s00281-024-01022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
Skin scar formation following Bacille Calmette-Guérin (BCG) or smallpox (Vaccinia) vaccination is an established marker of successful vaccination and 'vaccine take'. Potent pathogen-specific (tuberculosis; smallpox) and pathogen-agnostic (protection from diseases unrelated to the intentionally targeted pathogen) effects of BCG and smallpox vaccines hold significant translational potential. Yet despite their use for centuries, how scar formation occurs and how local skin-based events relate to systemic effects that allow these two vaccines to deliver powerful health promoting effects has not yet been determined. We review here what is known about the events occurring in the skin and place this knowledge in the context of the overall impact of these two vaccines on human health with a particular focus on maternal-child health.
Collapse
Affiliation(s)
- Ole Bæk
- University of Copenhagen, Copenhagen, Denmark
| | | | | | - Nelly Amenyogbe
- Telethon Kids Institute, Perth, Australia
- Dalhousie University, 5980 University Ave #5850, 4th floor Goldbloom Pavilion, Halifax, NS, B3K 6R8, Canada
- Bandim Health Project, Bissau, Guinea-Bissau
| | | | - Peter Aaby
- Bandim Health Project, Bissau, Guinea-Bissau
| | - Christine Stabell Benn
- University of Southern Denmark, Copenhagen, Denmark
- Bandim Health Project, Bissau, Guinea-Bissau
| | - Tobias R Kollmann
- Telethon Kids Institute, Perth, Australia.
- Dalhousie University, 5980 University Ave #5850, 4th floor Goldbloom Pavilion, Halifax, NS, B3K 6R8, Canada.
- Bandim Health Project, Bissau, Guinea-Bissau.
| |
Collapse
|
6
|
Qin L, Zhang G, Wu Y, Yang Y, Zou Z. Intratumor injection of BCG Ag85A high-affinity peptides enhanced anti-tumor efficacy in PPD-positive melanoma. Cancer Immunol Immunother 2024; 73:103. [PMID: 38630135 PMCID: PMC11024071 DOI: 10.1007/s00262-024-03693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
As one of the scheduled immunization vaccines worldwide, virtually all individuals have been vaccinated with BCG vaccine. In order to verify the hypothesis that delivering BCG high-affinity peptides to tumor areas could activate the existing BCG memory T cells to attack tumor, we firstly predicted the HLA-A*0201 high-affinity peptides of BCG Ag85A protein (KLIANNTRV, GLPVEYLQV), and then, A375 melanoma cells and HLA-A*0201 PBMCs (from PPD-positive adults) were added to co-incubated with the predicted peptides in vitro. We found that the predicted BCG high-affinity peptides could be directly loaded onto the surface of tumor cells, enhancing the tumor-killing efficacy of PBMCs from PPD-positive volunteer. Then, we constructed PPD-positive mice model bearing B16F10 subcutaneous tumors and found that intratumor injection of BCG Ag85A high-affinity peptides (SGGANSPAL, YHPQQFVYAGAMSGLLD) enhanced the anti-tumor efficacy in PPD-positive melanoma mice. Along with the better anti-tumor efficacy, the expression of PDL1 on tumor cell surface was also increased, and stronger antitumor effects occurred when further combined with anti-PD1 antibody. For microenvironment analysis, the proportion of effector memory T cells was increased and the better treatment efficacy may be attributed to the elevated effector memory CD4 + T cells within the tumor. In conclusion, using the existing immune response of BCG vaccine by delivering high-affinity peptides of BCG to tumor area is a safe and promising therapy for cancer.
Collapse
Affiliation(s)
- Lanqun Qin
- Department of the Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Guiying Zhang
- Department of the Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yirong Wu
- Department of the Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yueling Yang
- Department of the Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengyun Zou
- Department of the Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, China.
- Department of the Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
- Department of the Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
7
|
Cotugno S, Guido G, Manco Cesari G, Ictho J, Lochoro P, Amone J, Segala FV, De Vita E, Lattanzio R, Okori S, De Iaco G, Girma A, Sura A, Hessebo ET, Balsemin F, Putoto G, Ronga L, Manenti F, Facci E, Saracino A, Di Gennaro F. Cardiac Tuberculosis: A Case Series from Ethiopia, Italy, and Uganda and a Literature Review. Am J Trop Med Hyg 2024; 110:795-804. [PMID: 38412542 PMCID: PMC10993843 DOI: 10.4269/ajtmh.23-0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/19/2023] [Indexed: 02/29/2024] Open
Abstract
Extrapulmonary tuberculosis (TB) is estimated to account for up to 20% of active cases of TB disease, but its prevalence is difficult to ascertain because of the difficulty of diagnosis. Involvement of the heart is uncommon, with constrictive pericarditis being the most common cardiac manifestation. Diagnostic research for cardiac disease is frequently lacking, resulting in a high mortality rate. In addition to direct cardiac involvement, instances of cardiac events during antitubercular therapy are described. This case series describes five cases of TB affecting the heart (cardiac TB) from Italy and high-burden, low-income countries (Ethiopia and Uganda), including a case of Loeffler syndrome manifesting as myocarditis in a patient receiving antitubercular therapy. Our study emphasizes how cardiac TB, rare but important in high-burden areas, is a leading cause of pericardial effusion or pericarditis. Timely diagnosis and a comprehensive approach, including imaging and microbiological tools, are crucial. Implementing high-sensitivity methods and investigating alternative samples, such as detection of tuberculosis lipoarabinomannan or use of the GeneXpert assay with stool, is recommended in TB control programs.
Collapse
Affiliation(s)
- Sergio Cotugno
- Department of Precision and Regenerative Medicine and Ionian Area, Clinic of Infectious Diseases, University of Bari, Bari, Italy
| | - Giacomo Guido
- Department of Precision and Regenerative Medicine and Ionian Area, Clinic of Infectious Diseases, University of Bari, Bari, Italy
| | - Giorgia Manco Cesari
- Department of Precision and Regenerative Medicine and Ionian Area, Clinic of Infectious Diseases, University of Bari, Bari, Italy
| | | | | | - James Amone
- St. John’s XXIII Hospital Aber, Jaber, Uganda
| | - Francesco Vladimiro Segala
- Department of Precision and Regenerative Medicine and Ionian Area, Clinic of Infectious Diseases, University of Bari, Bari, Italy
| | - Elda De Vita
- Department of Precision and Regenerative Medicine and Ionian Area, Clinic of Infectious Diseases, University of Bari, Bari, Italy
| | - Rossana Lattanzio
- Department of Precision and Regenerative Medicine and Ionian Area, Clinic of Infectious Diseases, University of Bari, Bari, Italy
| | | | - Giuseppina De Iaco
- Department of Precision and Regenerative Medicine and Ionian Area, Clinic of Infectious Diseases, University of Bari, Bari, Italy
| | - Adisu Girma
- Doctors with Africa CUAMM, Wolisso, Ethiopia
| | - Abata Sura
- Doctors with Africa CUAMM, Wolisso, Ethiopia
| | | | | | - Giovanni Putoto
- Operational Research Unit, Doctors with Africa CUAMM, Padua, Italy
| | - Luigi Ronga
- Microbiology and Virology Unit, University of Bari, University Hospital Policlinico, Bari, Italy
| | | | - Enzo Facci
- Doctors with Africa CUAMM, Wolisso, Ethiopia
| | - Annalisa Saracino
- Department of Precision and Regenerative Medicine and Ionian Area, Clinic of Infectious Diseases, University of Bari, Bari, Italy
| | - Francesco Di Gennaro
- Department of Precision and Regenerative Medicine and Ionian Area, Clinic of Infectious Diseases, University of Bari, Bari, Italy
| |
Collapse
|
8
|
Luan X, Fan X, Li G, Li M, Li N, Yan Y, Zhao X, Liu H, Wan K. Exploring the immunogenicity of Rv2201-519: A T-cell epitope-based antigen derived from Mycobacterium tuberculosis AsnB with implications for tuberculosis infection detection and vaccine development. Int Immunopharmacol 2024; 129:111542. [PMID: 38342063 DOI: 10.1016/j.intimp.2024.111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/13/2024]
Abstract
Research dedicated to diagnostic reagents and vaccine development for tuberculosis (TB) is challenging due to the paucity of immunodominant antigens that can predict disease risk and exhibit protective potential. Therefore, it is crucial to identify T-cell epitope-based Mycobacterium tuberculosis (MTB) antigens characterized by specific and prominent recognition by the immune system. In this study, we constructed a T-cell epitope-rich tripeptide-splicing fragment (nucleotide positions 131-194, 334-377, and 579-643) of Rv2201 (also known as the 72 kDa AsnB)from the MTB genome, ultimately yielding the recombinant protein Rv2201-519 in Escherichia coli BL21 (DE3). Subsequently, we gauged the recombinant protein's ability to detect tuberculosis infection through ELISpot and assessed its immunostimulatory effect on mouse models using flow cytometry and ELISA. Our results indicated that Rv2201-519 possessed promising sensitivity; however, the sensitivity was lower than that of a commercial diagnostic kit containing ESAT-6, CFP-10, and Rv3615c (80.56 % vs. 94.44 %). The Rv2201-519 group exhibited a propensity for a CD4+ Th1 cell immune response in inoculated BALB/c mice that manifested as higher levels of antigen-specific IgG production (IgG2a/IgG1 > 1). In comparison to Ag85B, Rv2201-519 induced a more robust Th1-type cellular immune response as evidenced by a notable rise in the ratio of IFN-γ/IL-4 and IL-12 cytokine production and increased CD4+ T cell activation with a higher percentage of CD4+IFN-γ+ T cells. Rv2201-519 also induced a higher level of IL-6 compared with Ag85B, a higher percentage of CD8+ T cells specific for Rv2201-519, and a lower percentage of CD8+IL-4+ T cells. Collectively, the current evidence suggests that Rv2201-519 could potentially serve as an immunodominant protein for tuberculosis infection screening, laying the groundwork for further evaluation in recombinant Bacillus Calmette-Guérin (BCG) and subunit vaccines against MTB challenges in future studies.
Collapse
Affiliation(s)
- Xiuli Luan
- Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing 101100, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xueting Fan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Guilian Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Mchao Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Na Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuhan Yan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiuqin Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Haican Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Kanglin Wan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
9
|
Jiang F, Han Y, Liu Y, Xue Y, Cheng P, Xiao L, Gong W. A comprehensive approach to developing a multi-epitope vaccine against Mycobacterium tuberculosis: from in silico design to in vitro immunization evaluation. Front Immunol 2023; 14:1280299. [PMID: 38022558 PMCID: PMC10652892 DOI: 10.3389/fimmu.2023.1280299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The Bacillus Calmette-Guérin (BCG) vaccine, currently used against tuberculosis (TB), exhibits inconsistent efficacy, highlighting the need for more potent TB vaccines. Materials and methods In this study, we employed reverse vaccinology techniques to develop a promising multi-epitope vaccine (MEV) candidate, called PP13138R, for TB prevention. PP13138R comprises 34 epitopes, including B-cell, cytotoxic T lymphocyte, and helper T lymphocyte epitopes. Using bioinformatics and immunoinformatics tools, we assessed the physicochemical properties, structural features, and immunological characteristics of PP13138R. Results The vaccine candidate demonstrated excellent antigenicity, immunogenicity, and solubility without any signs of toxicity or sensitization. In silico analyses revealed that PP13138R interacts strongly with Toll-like receptor 2 and 4, stimulating innate and adaptive immune cells to produce abundant antigen-specific antibodies and cytokines. In vitro experiments further supported the efficacy of PP13138R by significantly increasing the population of IFN-γ+ T lymphocytes and the production of IFN-γ, TNF-α, IL-6, and IL-10 cytokines in active tuberculosis patients, latent tuberculosis infection individuals, and healthy controls, revealing the immunological characteristics and compare the immune responses elicited by the PP13138R vaccine across different stages of Mycobacterium tuberculosis infection. Conclusion These findings highlight the potential of PP13138R as a promising MEV candidate, characterized by favorable antigenicity, immunogenicity, and solubility, without any toxicity or sensitization.
Collapse
Affiliation(s)
- Fan Jiang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Respiratory Research Institute, Senior Department of Pulmonary & Critical Care Medicine, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Section of Health, No. 94804 Unit of the Chinese People’s Liberation Army, Shanghai, China
- Resident standardization training cadet corps, Air Force Hospital of Eastern Theater, Nanjing, China
| | - Yong Han
- Respiratory Research Institute, Senior Department of Pulmonary & Critical Care Medicine, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yinping Liu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yong Xue
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Peng Cheng
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Li Xiao
- Respiratory Research Institute, Senior Department of Pulmonary & Critical Care Medicine, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Barclay AM, Ninaber DK, van Veen S, Hiemstra PS, Ottenhoff THM, van der Does AM, Joosten SA. Airway epithelial cells mount an early response to mycobacterial infection. Front Cell Infect Microbiol 2023; 13:1253037. [PMID: 37822359 PMCID: PMC10562574 DOI: 10.3389/fcimb.2023.1253037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/31/2023] [Indexed: 10/13/2023] Open
Abstract
Lung epithelial cells represent the first line of host defence against foreign inhaled components, including respiratory pathogens. Their responses to these exposures may direct subsequent immune activation to these pathogens. The epithelial response to mycobacterial infections is not well characterized and may provide clues to why some mycobacterial infections are cleared, while others are persistent and pathogenic. We have utilized an air-liquid interface model of human primary bronchial epithelial cells (ALI-PBEC) to investigate the epithelial response to infection with a variety of mycobacteria: Mycobacterium tuberculosis (Mtb), M. bovis (BCG), M. avium, and M. smegmatis. Airway epithelial cells were found to be infected by all four species, albeit at low frequencies. The proportion of infected epithelial cells was lowest for Mtb and highest for M. avium. Differential gene expression analysis revealed a common epithelial host response to mycobacteria, including upregulation of BIRC3, S100A8 and DEFB4, and downregulation of BPIFB1 at 48 h post infection. Apical secretions contained predominantly pro-inflammatory cytokines, while basal secretions contained tissue growth factors and chemokines. Finally, we show that neutrophils were attracted to both apical and basal secretions of infected ALI-PBEC. Neutrophils were attracted in high numbers to apical secretions from PBEC infected with all mycobacteria, with the exception of secretions from M. avium-infected ALI-PBEC. Taken together, our results show that airway epithelial cells are differentially infected by mycobacteria, and react rapidly by upregulation of antimicrobials, and increased secretion of inflammatory cytokines and chemokines which directly attract neutrophils. Thus, the airway epithelium may be an important immunological component in controlling and regulating mycobacterial infections.
Collapse
Affiliation(s)
- Amy M. Barclay
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Dennis K. Ninaber
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Suzanne van Veen
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Anne M. van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
11
|
Pacheco GA, Andrade CA, Gálvez NM, Vázquez Y, Rodríguez-Guilarte L, Abarca K, González PA, Bueno SM, Kalergis AM. Characterization of the humoral and cellular immunity induced by a recombinant BCG vaccine for the respiratory syncytial virus in healthy adults. Front Immunol 2023; 14:1215893. [PMID: 37533867 PMCID: PMC10390696 DOI: 10.3389/fimmu.2023.1215893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction The human respiratory syncytial virus (hRSV) is responsible for most respiratory tract infections in infants. Even though currently there are no approved hRSV vaccines for newborns or infants, several candidates are being developed. rBCG-N-hRSV is a vaccine candidate previously shown to be safe in a phase I clinical trial in adults (clinicaltrials.gov identifier #NCT03213405). Here, secondary immunogenicity analyses were performed on these samples. Methods PBMCs isolated from immunized volunteers were stimulated with hRSV or mycobacterial antigens to evaluate cytokines and cytotoxic T cell-derived molecules and the expansion of memory T cell subsets. Complement C1q binding and IgG subclass composition of serum antibodies were assessed. Results Compared to levels detected prior to vaccination, perforin-, granzyme B-, and IFN-γ-producing PBMCs responding to stimulus increased after immunization, along with their effector memory response. N-hRSV- and mycobacterial-specific antibodies from rBCG-N-hRSV-immunized subjects bound C1q. Conclusion Immunization with rBCG-N-hRSV induces cellular and humoral immune responses, supporting that rBCG-N-hRSV is immunogenic and safe in healthy individuals. Clinical trial registration https://classic.clinicaltrials.gov/ct2/show/, identifier NCT03213405.
Collapse
Affiliation(s)
- Gaspar A. Pacheco
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A. Andrade
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M.S. Gálvez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yaneisi Vázquez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodríguez-Guilarte
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katia Abarca
- Millennium Institute on Immunology and Immunotherapy, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Enfermedades Infecciosas e Inmunología Pediá trica, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
12
|
Lai R, Gong DN, Williams T, Ogunsola AF, Cavallo K, Lindestam Arlehamn CS, Acolatse S, Beamer GL, Ferris MT, Sassetti CM, Lauffenburger DA, Behar SM. Host genetic background is a barrier to broadly effective vaccine-mediated protection against tuberculosis. J Clin Invest 2023; 133:e167762. [PMID: 37200108 PMCID: PMC10313364 DOI: 10.1172/jci167762] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
Heterogeneity in human immune responses is difficult to model in standard laboratory mice. To understand how host variation affects Bacillus Calmette Guerin-induced (BCG-induced) immunity against Mycobacterium tuberculosis, we studied 24 unique collaborative cross (CC) mouse strains, which differ primarily in the genes and alleles they inherit from founder strains. The CC strains were vaccinated with or without BCG and challenged with aerosolized M. tuberculosis. Since BCG protects only half of the CC strains tested, we concluded that host genetics has a major influence on BCG-induced immunity against M. tuberculosis infection, making it an important barrier to vaccine-mediated protection. Importantly, BCG efficacy is dissociable from inherent susceptibility to tuberculosis (TB). T cell immunity was extensively characterized to identify components associated with protection that were stimulated by BCG and recalled after M. tuberculosis infection. Although considerable diversity is observed, BCG has little impact on the composition of T cells in the lung after infection. Instead, variability is largely shaped by host genetics. BCG-elicited protection against TB correlated with changes in immune function. Thus, CC mice can be used to define correlates of protection and to identify vaccine strategies that protect a larger fraction of genetically diverse individuals instead of optimizing protection for a single genotype.
Collapse
Affiliation(s)
- Rocky Lai
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Diana N. Gong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Travis Williams
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Abiola F. Ogunsola
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kelly Cavallo
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Sarah Acolatse
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Douglas A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
13
|
Li F, Ma Y, Li X, Zhang D, Han J, Tan D, Mi Y, Yang X, Wang J, Zhu B. Severe persistent mycobacteria antigen stimulation causes lymphopenia through impairing hematopoiesis. Front Cell Infect Microbiol 2023; 13:1079774. [PMID: 36743311 PMCID: PMC9889370 DOI: 10.3389/fcimb.2023.1079774] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Miliary tubersculosis (TB), an acute systemic blood disseminated tuberculosis mainly caused by Mycobacterium tuberculosis (M. tuberculosis), can cause signs of lymphopenia in clinical patients. To investigate whether/how persistent mycobacteria antigen stimulation impairs hematopoiesis and the therapeutic effect of interleukin-7 (IL-7), a mouse model of Mycobacterium Bovis Bacillus Calmette-Guérin (BCG) intravenous infection with/without an additional stimulation with M. tuberculosis multi-antigen cocktail containing ESAT6-CFP10 (EC) and Mtb10.4-HspX (MH) was established. Consistent with what happened in miliary TB, high dose of BCG intravenous infection with/without additional antigen stimulation caused lymphopenia in peripheral blood. In which, the levels of cytokines IFN-γ and TNF-α in serum increased, and consequently the expression levels of transcription factors Batf2 and IRF8 involved in myeloid differentiation were up-regulated, while the expression levels of transcription factors GATA2 and NOTCH1 involved in lymphoid commitment were down-regulated, and the proliferating activity of bone marrow (BM) lineage- c-Kit+ (LK) cells decreased. Furthermore, recombinant Adeno-Associated Virus 2-mediated IL-7 (rAAV2-IL-7) treatment could significantly promote the elevation of BM lymphoid progenitors. It suggests that persistent mycobacteria antigen stimulation impaired lymphopoiesis of BM hematopoiesis, which could be restored by complement of IL-7.
Collapse
Affiliation(s)
- Fei Li
- Gansu Provincial Key Laboratory of Evidence-Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yanlin Ma
- Gansu Provincial Key Laboratory of Evidence-Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaoping Li
- Inpatient Ward 1, Lanzhou Pulmonary Hospital, Lanzhou, China
| | - Dan Zhang
- Gansu Provincial Key Laboratory of Evidence-Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jiangyuan Han
- Gansu Provincial Key Laboratory of Evidence-Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Daquan Tan
- Gansu Provincial Key Laboratory of Evidence-Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Youjun Mi
- Gansu Provincial Key Laboratory of Evidence-Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China,Institute of Pathophysiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaojuan Yang
- Gansu Provincial Key Laboratory of Evidence-Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China,Department of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Juan Wang
- Gansu Provincial Key Laboratory of Evidence-Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence-Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China,*Correspondence: Bingdong Zhu,
| |
Collapse
|
14
|
Ng TW, Porcelli SA. Designing Anti-Viral Vaccines that Harness Intrastructural Help from Prior BCG Vaccination. JOURNAL OF CELLULAR IMMUNOLOGY 2023; 5:97-102. [PMID: 37946751 PMCID: PMC10635577 DOI: 10.33696/immunology.5.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Vaccines are among the most effective tools for combatting the impact and spread of infectious diseases. However, the effectiveness of a vaccine can be diminished by vaccine inequality, particularly during severe outbreaks of infectious diseases in resource-poor areas. As seen in many developing countries that lack adequate healthcare infrastructure and economic resources, the acquisition and distribution of potentially life-saving vaccines may be limited, leading to prolonged suffering and increased deaths. To improve vaccine equity, vaccine design must take into consideration the logistics needed to implement a successful vaccination drive, particularly among the most vulnerable populations. In the manuscript titled "Exploiting Pre-Existing CD4+ T Cell Help from Bacille Calmette-Guérin Vaccination to Improve Antiviral Antibody Responses" published in the Journal of Immunology, the authors designed a recombinant subunit vaccine against the Ebola virus (EBOV) glycoprotein that can harness the pre-existing T helper cells from prior BCG vaccination. As a recombinant subunit vaccine adjuvanted with alum, this approach has many features that make it well suited for the design of vaccines for developing nations, such as relative ease of production, scalability, and distribution. In addition, the high prevalence of BCG immunization and natural immunity to mycobacteria in many regions of the world endow such vaccines with features that should increase potency and efficacy among populations residing in such regions. As a result of using the helper activity of pre-existing BCG-specific Th cells to drive antibody responses, a lower vaccine dose is needed, which is a major advantage for vaccine manufacture. Furthermore, the BCG-specific Th cells also stimulate immunoglobulin class switching to IgG isotypes that have strong affinities for activating Fc-gamma receptors (FcγRs). Taken together, we propose that the design of subunit vaccines with intrastructural help from BCG-specific Th cells can improve protection against viral infection and represents a vaccine design that can be generally adapted to other emerging viral pathogens for the control and prevention of infection in many developing countries.
Collapse
Affiliation(s)
- Tony W. Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY10461, USA
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
15
|
Nadolinskaia NI, Kotliarova MS, Goncharenko AV. Fighting Tuberculosis: In Search of a BCG Replacement. Microorganisms 2022; 11:microorganisms11010051. [PMID: 36677343 PMCID: PMC9863999 DOI: 10.3390/microorganisms11010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis is one of the most threatening infectious diseases and represents an important and significant reason for mortality in high-burden regions. The only licensed vaccine, BCG, is hardly capable of establishing long-term tuberculosis protection and is highly variable in its effectiveness. Even after 100 years of BCG use and research, we still cannot unequivocally answer the question of which immune correlates of protection are crucial to prevent Mycobacterium tuberculosis (Mtb) infection or the progression of the disease. The development of a new vaccine against tuberculosis arises a nontrivial scientific challenge caused by several specific features of the intracellular lifestyle of Mtb and the ability of the pathogen to manipulate host immunity. The purpose of this review is to discuss promising strategies and the possibilities of creating a new vaccine that could replace BCG and provide greater protection. The considered approaches include supplementing mycobacterial strains with immunodominant antigens and genetic engineering aimed at altering the interaction between the bacterium and the host cell, such as the exit from the phagosome. Improved new vaccine strains based on BCG and Mtb undergoing clinical evaluation are also overviewed.
Collapse
|
16
|
Esteso G, Felgueres MJ, García-Jiménez ÁF, Reyburn-Valés C, Benguría A, Vázquez E, Reyburn HT, Aguiló N, Martín C, Puentes E, Murillo I, Rodríguez E, Valés-Gómez M. BCG-activation of leukocytes is sufficient for the generation of donor-independent innate anti-tumor NK and γδ T-cells that can be further expanded in vitro. Oncoimmunology 2022; 12:2160094. [PMID: 36567803 PMCID: PMC9788708 DOI: 10.1080/2162402x.2022.2160094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacillus Calmette-Guérin (BCG), the nonpathogenic Mycobacterium bovis strain used as tuberculosis vaccine, has been successfully used as treatment for non-muscle invasive bladder cancer for decades, and suggested to potentiate cellular and humoral immune responses. However, the exact mechanism of action is not fully understood. We previously described that BCG mainly activated anti-tumor cytotoxic NK cells with upregulation of CD56 and a CD16+ phenotype. Now, we show that stimulation of human peripheral blood mononuclear cells with iBCG, a preparation based on BCG-Moreau, expands oligoclonal γδ T-cells, with a cytotoxic phenotype, together with anti-tumor CD56high CD16+ NK cells. We have used scRNA-seq, flow cytometry, and functional assays to characterize these BCG-activated γδ T-cells in detail. They had a high IFNγ secretion signature with expression of CD27+ and formed conjugates with bladder cancer cells. BCG-activated γδ T-cells proliferated strongly in response to minimal doses of cytokines and had anti-tumor functions, although not fully based on degranulation. BCG was sufficient to stimulate proliferation of γδ T-cells when cultured with other PBMC; however, BCG alone did not stimulate expansion of purified γδ T-cells. The characterization of these non-donor restricted lymphocyte populations, which can be expanded in vitro, could provide a new approach to prepare cell-based immunotherapy tools.
Collapse
Affiliation(s)
- Gloria Esteso
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - María José Felgueres
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Álvaro F. García-Jiménez
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Christina Reyburn-Valés
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Alberto Benguría
- Servicio de Genómica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Enrique Vázquez
- Servicio de Genómica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Hugh T. Reyburn
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Nacho Aguiló
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon; Zaragoza, Spain and CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III; Madrid, Spain
| | - Carlos Martín
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon; Zaragoza, Spain and CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III; Madrid, Spain,Servicio de Microbiología, Hospital Universitario Miguel Servet, IIS Aragon; Zaragoza, Spain
| | - Eugenia Puentes
- Clinical Research Department y Research & Development Department, Biofabri, Grupo Zendal, O’Porriño, Pontevedra, Spain
| | - Ingrid Murillo
- Clinical Research Department y Research & Development Department, Biofabri, Grupo Zendal, O’Porriño, Pontevedra, Spain
| | - Esteban Rodríguez
- Clinical Research Department y Research & Development Department, Biofabri, Grupo Zendal, O’Porriño, Pontevedra, Spain
| | - Mar Valés-Gómez
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain,CONTACT Mar Valés-Gómez Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| |
Collapse
|
17
|
Tchakounte Youngui B, Tchounga BK, Graham SM, Bonnet M. Tuberculosis Infection in Children and Adolescents. Pathogens 2022; 11:pathogens11121512. [PMID: 36558846 PMCID: PMC9784659 DOI: 10.3390/pathogens11121512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The burden of tuberculosis (TB) in children and adolescents remains very significant. Several million children and adolescents are infected with TB each year worldwide following exposure to an infectious TB case and the risk of progression from TB infection to tuberculosis disease is higher in this group compared to adults. This review describes the risk factors for TB infection in children and adolescents. Following TB exposure, the risk of TB infection is determined by a combination of index case characteristics, contact features, and environmental determinants. We also present the recently recommended approaches to diagnose and treat TB infection as well as novel tests for infection. The tests for TB infection have limitations and diagnosis still relies on an indirect immunological assessment of cellular immune response to Mycobacterium tuberculosis antigens using immunodiagnostic testing. It is recommended that TB exposed children and adolescents and those living with HIV receive TB preventive treatment (TPT) to reduce the risk of progression to TB disease. Several TPT regimens of similar effectiveness and safety are now available and recommended by the World Health Organisation.
Collapse
Affiliation(s)
- Boris Tchakounte Youngui
- TransVIHMI, Institut de Recherche pour le Développement (IRD), Institut National de la Santé et de la Recherche Médicale (INSERM), University of Montpellier, 34090 Montpellier, France
- Department of Public Health Evaluation and Research, Elizabeth Glaser Paediatric AIDS Foundation, Yaoundé 99322, Cameroon
- Correspondence:
| | - Boris Kevin Tchounga
- Department of Public Health Evaluation and Research, Elizabeth Glaser Paediatric AIDS Foundation, Yaoundé 99322, Cameroon
| | - Stephen M. Graham
- Department of Paediatrics and Murdoch Children’s Research Institute, Royal Children’s Hospital, University of Melbourne, Melbourne 3052, Australia
| | - Maryline Bonnet
- TransVIHMI, Institut de Recherche pour le Développement (IRD), Institut National de la Santé et de la Recherche Médicale (INSERM), University of Montpellier, 34090 Montpellier, France
| |
Collapse
|
18
|
Mir MA, Mir B, Kumawat M, Alkhanani M, Jan U. Manipulation and exploitation of host immune system by pathogenic Mycobacterium tuberculosis for its advantage. Future Microbiol 2022; 17:1171-1198. [PMID: 35924958 DOI: 10.2217/fmb-2022-0026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can become a long-term infection by evading the host immune response. Coevolution of Mtb with humans has resulted in its ability to hijack the host's immune systems in a variety of ways. So far, every Mtb defense strategy is essentially dependent on a subtle balance that, if shifted, can promote Mtb proliferation in the host, resulting in disease progression. In this review, the authors summarize many important and previously unknown mechanisms by which Mtb evades the host immune response. Besides recently found strategies by which Mtb manipulates the host molecular regulatory machinery of innate and adaptive immunity, including the intranuclear regulatory machinery, costimulatory molecules, the ubiquitin system and cellular intrinsic immune components will be discussed. A holistic understanding of these immune-evasion mechanisms is of foremost importance for the prevention, diagnosis and treatment of tuberculosis and will lead to new insights into tuberculosis pathogenesis and the development of more effective vaccines and treatment regimens.
Collapse
Affiliation(s)
- Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Bilkees Mir
- Department of Biochemistry & Biochemical Engineering, SHUATS, Allahabad, UP, India
| | - Manoj Kumawat
- Department of Microbiology, Indian Council of Medical Research (ICMR)-NIREH, Bhopal, MP, India
| | - Mustfa Alkhanani
- Biology Department, College of Sciences, University of Hafr Al Batin, P. O. Box 1803, Hafar Al Batin, Saudi Arabia
| | - Ulfat Jan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| |
Collapse
|
19
|
Luo XB, Li LT, Xi JC, Liu HT, Liu Z, Yu L, Tang PF. Negative pressure promotes macrophage M1 polarization after Mycobacterium tuberculosis infection via the lncRNA XIST/microRNA-125b-5p/A20/NF-κB axis. Ann N Y Acad Sci 2022; 1514:116-131. [PMID: 35579934 DOI: 10.1111/nyas.14781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Experiments have demonstrated the regulation of long noncoding RNA (lncRNA) in tuberculosis (TB), and negative pressure treatment has been associated with the alleviation of TB. Here, we investigated the interaction of negative pressure and the lncRNA X-inactive specific transcript (XIST) in modulating Mycobacterium tuberculosis (MTB) infection. Initially, we established an in vitro cell model of MTB infection and an in vivo mouse model of MTB infection, followed by treatment with negative pressure. Then, we examined the expression of XIST, followed by analysis of the downstream miRNA of XIST. XIST was overexpressed or underexpressed through cell transfection to examine its effects on macrophage polarization via the miR-125b-5p/A2 axis. The MTB models were characterized by upregulated XIST and downregulated miR-125b-5p. XIST bound to miR-125b-5p, leading to its downregulation, and thus causing higher MTB survival in an ESAT-6-dependent manner. Additionally, negative pressure treatment decreased MTB-driven XIST expression through downregulation of A20 (an NF-κB repressor) via miR-125b-5 expression, promoting the M1 polarization program in macrophages through activation of the NF-κB pathway. In summary, negative pressure treatment after MTB infection can promote the polarization of macrophages to the proinflammatory M1 phenotype by regulating the XIST/miR-125b-5p/A20/NF-κB axis.
Collapse
Affiliation(s)
- Xiao-Bo Luo
- Department of Orthopedics, The 8th Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of Orthopedics, The 4th Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Li-Tao Li
- Department of Orthopedics, The 8th Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of Orthopedics, The 4th Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Jian-Cheng Xi
- Department of Orthopedics, The 8th Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of Orthopedics, The 4th Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Hong-Tao Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhen Liu
- Department of Orthopedics, The 8th Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of Orthopedics, The 4th Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Long Yu
- Department of Orthopedics, The 8th Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of Orthopedics, The 4th Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Pei-Fu Tang
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
Hamijoyo L, Sahiratmadja E, Ghassani NG, Darmawan G, Susandi E, van Crevel R, Hill PC, Alisjahbana B. Tuberculosis among Patients with Systemic Lupus Erythematosus in Indonesia: a Cohort study. Open Forum Infect Dis 2022; 9:ofac201. [PMID: 35794932 PMCID: PMC9251660 DOI: 10.1093/ofid/ofac201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/10/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background
Previous studies have identified systemic lupus erythematosus (SLE) as a risk factor for tuberculosis (TB), but data from TB endemic countries are still relatively scarce. We examined TB in a large cohort of SLE patients in Indonesia.
Methods
All patients registered in a lupus registry of the top-referral hospital for West-Java between 2008 and 2020 were included. Data on SLE characteristics and treatment were retrieved from the registry, and data on TB diagnosis, localization and outcome were extracted from medical records. Cox-proportional hazard model was used to examine risk factors for development of TB.
Results
Among 1278 SLE patients followed over a total of 4804 patient years, 131 patients experienced 138 episodes of TB, a median 2 years (IQR 0.6–5.4) after diagnosis of SLE. A total of 113 patients (81.9%) had pulmonary and 61 (44.2%) had extra-pulmonary involvement, with disseminated disease in 26 of 138 episodes (18.8%), and 13 of 131 patients (9.9%) died from TB. The estimated TB incidence was 2,873 cases per 100,000 person years. In multivariate cox regression analysis, development of TB was associated with household TB contact (HR 7.20; 95%CI 4.05-12.80), pulse methylprednisolone therapy (HR 1.64; 95%CI 1.01-2.67) and age ≤ 25 years old at SLE diagnosis (HR 1.54; 95%CI 1.00-2.35).
Conclusion
There is a high burden of TB in SLE patients in this TB endemic setting, underlining the need for evaluation or implementation of TB preventive strategies.
Collapse
Affiliation(s)
- Laniyati Hamijoyo
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran / Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
- Study Center of Immunology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Edhyana Sahiratmadja
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
| | - Nadia G. Ghassani
- Study Center of Immunology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Guntur Darmawan
- Department of Internal Medicine, Faculty of Medicine, Krida Wacana Christian University, Jakarta, Indonesia
| | - Evan Susandi
- Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Philip C. Hill
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | - Bachti Alisjahbana
- Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
- Division of Tropical Diseases, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran / Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| |
Collapse
|
21
|
Sivakumaran D, Jenum S, Ritz C, Vaz M, Doherty TM, Grewal HMS. Improving Assignments for Therapeutic and Prophylactic Treatment Within TB Households. A Potential for Immuno-Diagnosis? Front Immunol 2022; 13:801616. [PMID: 35401549 PMCID: PMC8993507 DOI: 10.3389/fimmu.2022.801616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/21/2022] [Indexed: 11/22/2022] Open
Abstract
Delays in diagnosis and treatment of pulmonary tuberculosis (TB) can lead to more severe disease and increased transmission. Contact investigation among household contacts (HHCs) of TB patients is crucial to ensure optimal outcomes. In the context of a prospective cohort study in Palamaner, Southern India, this study attempted to assess the potential of 27 different soluble immune markers to accurately assign HHCs for appropriate treatment. A multiplex bead assay was applied on QuantiFERON (QFT)-nil supernatants collected from 89 HHCs grouped by longitudinal QFT status; M. tuberculosis (Mtb) infected (QFT positive at baseline and follow-up, n = 30), recent QFT converters (QFT-negative at baseline, n = 27) and converted to QFT-positivity within 6 months of exposure (at follow-up, n = 24) and QFT consistent negatives (n = 32). The 29 TB index cases represented Active TB. Active TB cases and HHCs with Mtb infection produced significantly different levels of both pro-inflammatory (IFNγ, IL17, IL8, IP10, MIP-1α, MIP1β, and VEGF) and anti-inflammatory (IL9 and IL1RA) cytokines. We identified a 4-protein signature (bFGF, IFNγ, IL9, and IP10) that correctly classified HHCs with Mtb infection vs. Active TB with a specificity of 92.6%, suggesting that this 4-protein signature has the potential to assign HHCs for either full-length TB treatment or preventive TB treatment. We further identified a 4-protein signature (bFGF, GCSF, IFNγ, and IL1RA) that differentiated HHCs with Mtb infection from QFT consistent negatives with a specificity of 62.5%, but not satisfactory to safely assign HHCs to no preventive TB treatment. QFT conversion, reflecting new Mtb infection, induced an elevated median concentration in nearly two-thirds (19/27) of the analyzed soluble markers compared to the levels measured at baseline. Validation in other studies is warranted in order to establish the potential of the immune biosignatures for optimized TB case detection and assignment to therapeutic and preventive treatment of Mtb infected individuals.
Collapse
Affiliation(s)
- Dhanasekaran Sivakumaran
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Synne Jenum
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- *Correspondence: Harleen M. S. Grewal, ; Synne Jenum,
| | - Christian Ritz
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Mario Vaz
- Department of Physiology, St. John’s Medical College, Bangalore, India
- Division of Health and Humanities, St. John’s Research Institute, Bangalore, India
| | | | - Harleen M. S. Grewal
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, University of Bergen, Bergen, Norway
- *Correspondence: Harleen M. S. Grewal, ; Synne Jenum,
| |
Collapse
|
22
|
Mao L, Xu L, Wang X, Xing Y, Wang J, Zhang Y, Yuan W, Du J, Shi Z, Ma J, Zhang J, Zhang X, Wang X. Enhanced immunogenicity of the tuberculosis subunit Rv0572c vaccine delivered in DMT liposome adjuvant as a BCG-booster. Tuberculosis (Edinb) 2022; 134:102186. [PMID: 35245739 PMCID: PMC8881818 DOI: 10.1016/j.tube.2022.102186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022]
Abstract
COVID-19 has affected the progress made in the prevention and treatment of tuberculosis (TB); hence, the mortality of tuberculosis has risen. Different strategies-based novel TB vaccine candidates have been developed. This study identifies strategies to overcome the limitations of Bacille Calmette-Guérin (BCG) in preventing latent infection and reactivation of TB. The latency antigen Rv0572c was selected based on the mechanism of interaction between Mycobacterium tuberculosis and its host. The rRv0572c protein was used to stimulate whole blood samples derived from patients with clinically diagnosed active TB (ATBs) or latent TB infections (LTBIs) and healthy control (HCs) donors, confirming that this protein can be recognized by T cells in patients with TB, especially LTBIs. C57BL/6 mice were used to investigate the immunogenicity of the rRv0572c protein emulsified in the liposome adjuvant dimethyldioctadecylammonium [DDA], monophosphoryl lipid A [MPLA], trehalose-6, 6′-dibehenate [TDB] (DMT). The results demonstrated that rRv0572c/DMT could boost BCG-primed mice to induce antigen-specific CD4+ T cell production and generate functional T cells dominated by antigen-specific CD8+ T cells. The rRv0572c/DMT vaccine could also trigger limited Th2 humoral immune responses. These findings suggest that rRv0572c/DMT is a potential subunit vaccine candidate that can be used as a booster vaccine for BCG.
Collapse
Affiliation(s)
- Lirong Mao
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Lifa Xu
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Xiaochun Wang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Yingru Xing
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China; Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, 230000, China
| | - Jian Wang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yanpeng Zhang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Wei Yuan
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Jianpeng Du
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Zilun Shi
- Department of Clinical Laboratory, Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan, 232001, China
| | - Jilei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Jingyan Zhang
- Department of Clinical Laboratory, Affiliated Heping Hospital, Changzhi Medical College, Changzhi, 046000, China
| | - Xiaohan Zhang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Xinping Wang
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| |
Collapse
|
23
|
Netea MG, Domínguez-Andrés J, van de Veerdonk FL, van Crevel R, Pulendran B, van der Meer JWM. Natural resistance against infections: focus on COVID-19. Trends Immunol 2022; 43:106-116. [PMID: 34924297 PMCID: PMC8648669 DOI: 10.1016/j.it.2021.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/27/2022]
Abstract
Not all individuals exposed to a pathogen develop illness: some are naturally resistant whereas others develop an asymptomatic infection. Epidemiological studies suggest that there is similar variability in susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. We propose that natural resistance is part of the disease history in some individuals exposed to this new coronavirus. Epidemiological arguments for natural resistance to SARS-CoV-2 are the lower seropositivity of children compared to adults, studies on closed environments of ships with outbreaks, and prevalence studies in some developing countries. Potential mechanisms of natural resistance include host genetic variants, viral interference, cross-protective natural antibodies, T cell immunity, and highly effective innate immune responses. Better understanding of natural resistance can help to advance preventive and therapeutic measures against infections for improved preparedness against potential future pandemics.
Collapse
Affiliation(s)
- Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bali Pulendran
- Institute for Immunology, Transplantation and Infectious Diseases, Department of Pathology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jos W M van der Meer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Revaccination with Bacille Calmette-Guérin (BCG) is associated with an increased risk of abscess and lymphadenopathy. NPJ Vaccines 2022; 7:6. [PMID: 35031617 PMCID: PMC8760267 DOI: 10.1038/s41541-021-00421-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/02/2021] [Indexed: 01/03/2023] Open
Abstract
The reported frequency and types of adverse events following initial vaccination and revaccination with Bacille Calmette-Guérin (BCG) varies worldwide. Using active surveillance in a randomised controlled trial of BCG vaccination (the BRACE trial), we determined the incidence and risk factors for the development of BCG injection site abscess and regional lymphadenopathy. Injection site abscess occurred in 3% of 1387 BCG-vaccinated participants; the majority (34/41, 83%) resolved without treatment. The rate was higher in BCG-revaccinated participants (OR 3.6, 95% CI 1.7-7.5), in whom abscess onset was also earlier (median 16 vs. 27 days, p = 0.008). No participant with an abscess had a positive interferon-gamma release assay. Regional lymphadenopathy occurred in 48/1387 (3%) of BCG-vaccinated participants, with a higher rate in revaccinated participants (OR 2.1, 95% CI 1.1-3.9). BCG-associated lymphadenopathy, but not injection site abscess, was influenced by age and sex. A previous positive tuberculin skin test was not associated with local reactions. The increased risk of injection site abscess or lymphadenopathy following BCG revaccination is relevant to BCG vaccination policy in an era when BCG is increasingly being considered for novel applications.
Collapse
|
25
|
Setiabudiawan TP, Reurink RK, Hill PC, Netea MG, van Crevel R, Koeken VACM. Protection against tuberculosis by Bacillus Calmette-Guérin (BCG) vaccination: A historical perspective. MED 2022; 3:6-24. [PMID: 35590145 DOI: 10.1016/j.medj.2021.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/23/2023]
Abstract
Bacillus Calmette-Guérin (BCG) was developed exactly 100 years ago, and it is still the only licensed tuberculosis (TB) vaccine and the most frequently administered of all vaccines worldwide. Despite universal vaccination policies in TB-endemic settings, the burden of TB remains high. Although BCG protects against Mycobacterium tuberculosis infection and TB disease, the level of protection varies greatly between age groups and settings. In this review, we present a historical perspective and describe the evidence for BCG's ability to protect against TB as well as the factors that influence protection. We also present the immunological mechanisms through which BCG vaccination induces protection, focusing on T cell, B cell, and innate immunity. Finally, we discuss several possibilities to boost BCG's efficacy, including alternative vaccination routes, BCG revaccination, and use of recombinant BCG vaccines, and describe the knowledge gaps that exist with respect to BCG's protection against TB.
Collapse
Affiliation(s)
- Todia P Setiabudiawan
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Gelderland 6525 GA, the Netherlands
| | - Remi K Reurink
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Gelderland 6525 GA, the Netherlands
| | - Philip C Hill
- Centre for International Health, University of Otago, Dunedin, North Dunedin 9016, New Zealand
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Gelderland 6525 GA, the Netherlands; Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Județul Dolj 200349, Romania
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Gelderland 6525 GA, the Netherlands; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Valerie A C M Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Gelderland 6525 GA, the Netherlands; Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover 30625, Germany; TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover 30625, Germany.
| |
Collapse
|
26
|
Gnimavo R, Besnard A, Degnonvi H, Pipoli Da Fonseca J, Kempf M, Johnson CR, Boccarossa A, Brou YT, Marsollier L, Marion E. Molecular and epidemiological characterization of recurrent Mycobacterium ulcerans infections in Benin. PLoS Negl Trop Dis 2021; 15:e0010053. [PMID: 34962930 PMCID: PMC8746791 DOI: 10.1371/journal.pntd.0010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/10/2022] [Accepted: 12/04/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Buruli ulcer is a neglected tropical disease caused by Mycobacterium ulcerans, an environmental mycobacterium. Although transmission of M. ulcerans remains poorly understood, the main identified risk factor for acquiring Buruli ulcer is living in proximity of potentially contaminated water sources. Knowledge about the clinical features of Buruli ulcer and its physiopathology is increasing, but little is known about recurrence due to reinfection. METHODOLOGY/PRINCIPAL FINDINGS We describe two patients with Buruli ulcer recurrence due to reinfection with M. ulcerans, as demonstrated by comparisons of DNA from the strains isolated at the time of the first diagnosis and at recurrence. Based on the spatial distribution of M. ulcerans genotypes in this region and a detailed study of the behavior of these two patients with respect to sources of water as well as water bodies and streams, we formulated hypotheses concerning the sites at which they may have been contaminated. CONCLUSIONS/SIGNIFICANCE Second episodes of Buruli ulcer may occur through reinfection, relapse or a paradoxical reaction. We formally demonstrated that the recurrence in these two patients was due to reinfection. Based on the sites at which the patients reported engaging in activities relating to water, we were able to identify possible sites of contamination. Our findings indicate that the non-random distribution of M. ulcerans genotypes in this region may provide useful information about activities at risk.
Collapse
Affiliation(s)
- Ronald Gnimavo
- Centre de Diagnostic et de Traitement de l’ulcère de Buruli, Fondation Raoul Follereau, Pobè, Bénin
| | | | - Horace Degnonvi
- Univ Angers, Inserm, INCIT, Angers, France
- Centre Inter Facultaire de Formation et de Recherche en Environnement pour le Développement Durable (CIFRED), Université d’Abomey Calavi (UAC), Cotonou, Benin
| | | | - Marie Kempf
- Univ Angers, Inserm, CHU Angers, INCIT, Angers, France
| | - Christian Roch Johnson
- Centre Inter Facultaire de Formation et de Recherche en Environnement pour le Développement Durable (CIFRED), Université d’Abomey Calavi (UAC), Cotonou, Benin
| | - Alexandra Boccarossa
- Univ Angers, Inserm, INCIT, Angers, France
- CNRS, UMR ESO, Université d’Angers, Angers, France
| | - Yao Télesphore Brou
- UMR 228 ESPACE-DEV (IRD, UAG, UM, UR), Station SEAS-OI, Saint Pierre, Ile de la Réunion, France
| | | | | |
Collapse
|
27
|
Chen S, Quan DH, Wang XT, Sandford S, Kirman JR, Britton WJ, Rehm BHA. Particulate Mycobacterial Vaccines Induce Protective Immunity against Tuberculosis in Mice. NANOMATERIALS 2021; 11:nano11082060. [PMID: 34443891 PMCID: PMC8402087 DOI: 10.3390/nano11082060] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022]
Abstract
Currently available vaccines fail to provide consistent protection against tuberculosis (TB). New, improved vaccines are urgently needed for controlling the disease. The mycobacterial antigen fusions H4 (Ag85B-TB10.4) and H28 (Ag85B-TB10.4-Rv2660c) have been shown to be very immunogenic and have been considered as potential candidates for TB vaccine development. However, soluble protein vaccines are often poorly immunogenic, but augmented immune responses can be induced when selected antigens are delivered in particulate form. This study investigated whether the mycobacterial antigen fusions H4 and H28 can induce protective immunity when assembled into particulate vaccines (polyester nanoparticle-H4, polyester nanoparticle-H28, H4 nanoparticles and H28 nanoparticles). The particulate mycobacterial vaccines were assembled inside an engineered endotoxin-free production strain of Escherichia coli at high yield. Vaccine nanoparticles were purified and induced long-lasting antigen-specific T cell responses and protective immunity in mice challenged by aerosol with virulent Mycobacterium tuberculosis. A significant reduction of M. tuberculosis CFU, up to 0.7-log10 protection, occurred in the lungs of mice immunized with particulate vaccines in comparison to placebo-vaccinated mice (p < 0.0001). Polyester nanoparticles displaying the mycobacterial antigen fusion H4 induced a similar level of protective immunity in the lung when compared to M. bovis bacillus Calmette-Guérin (BCG), the currently approved TB vaccine. The safe and immunogenic polyester nanoparticle-H4 vaccine is a promising subunit vaccine candidate, as it can be cost-effectively manufactured and efficiently induces protection against TB.
Collapse
Affiliation(s)
- Shuxiong Chen
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia;
| | - Diana H. Quan
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia; (D.H.Q.); (X.T.W.); (W.J.B.)
| | - Xiaonan T. Wang
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia; (D.H.Q.); (X.T.W.); (W.J.B.)
| | - Sarah Sandford
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Joanna R. Kirman
- Microbiology & Immunology Department, University of Otago, Dunedin 9016, New Zealand;
| | - Warwick J. Britton
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia; (D.H.Q.); (X.T.W.); (W.J.B.)
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia;
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia
- Correspondence: ; Tel.: +61-(0)7-3735-4233
| |
Collapse
|
28
|
Kumar NP, Padmapriyadarsini C, Rajamanickam A, Bhavani PK, Nancy A, Jeyadeepa B, Selvaraj N, Ashokan D, Renji RM, Venkataramani V, Tripathy S, Babu S. BCG vaccination induces enhanced frequencies of dendritic cells and altered plasma levels of type I and type III interferons in elderly individuals. Int J Infect Dis 2021; 110:98-104. [PMID: 34302964 PMCID: PMC8295056 DOI: 10.1016/j.ijid.2021.07.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE BCG can improve the response to vaccines directed against viral infections, and also, BCG vaccination reduces all-cause mortality, most likely by protecting against unrelated infections. However, the effect of BCG vaccination on dendritic cell (DC) subsets is not well characterized. METHODS We investigated the impact of BCG vaccination on the frequencies of DC subsets and type I and III interferons (IFNs) using whole blood and plasma samples in a group of elderly individuals (age 60-80 years) at one-month post-vaccination as part of our clinical study to examine the effect of BCG on COVID-19. RESULTS Our results demonstrate that BCG vaccination induced enhanced frequencies of plasmacytoid DC (pDC) and myeloid DC (mDC). BCG vaccination also induced diminished plasma levels of type I IFNs, IFNα and IFNβ but increased levels of type III IFNs, IL-28A and IL-29. CONCLUSIONS Thus, BCG vaccination was associated with enhanced DC subsets and IL-28A/IL-29 in elderly individuals, suggesting its ability to induce non-specific innate immune responses.
Collapse
Affiliation(s)
| | | | - Anuradha Rajamanickam
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | | | - Arul Nancy
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | | | - Nandhini Selvaraj
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - Dinesh Ashokan
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Rachel Mariam Renji
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - Vijayalakshmi Venkataramani
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - Srikanth Tripathy
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Subash Babu
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India.
| |
Collapse
|
29
|
Schorey JS, Cheng Y, McManus WR. Bacteria- and host-derived extracellular vesicles - two sides of the same coin? J Cell Sci 2021; 134:268991. [PMID: 34081134 DOI: 10.1242/jcs.256628] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Intracellular bacterial pathogens spend portions of their life cycle both inside and outside host cells. While in these two distinct environments, they release or shed bacterial components, including virulence factors that promote their survival and replication. Some of these components are released through extracellular vesicles, which are either derived from the bacteria themselves or from the host cells. Bacteria- and host-derived vesicles have been studied almost exclusively in isolation from each other, with little discussion of the other type of secreted vesicles, despite the fact that both are generated during an in vivo infection and both are likely play a role in bacterial pathogenesis and host immunity. In this Review, we aim to bridge this gap and discuss what we know of bacterial membrane vesicles in their generation and composition. We will compare and contrast this with the composition of host-derived vesicles with regard to bacterial components. We will also compare host cell responses to the different vesicles, with a focus on how these vesicles modulate the immune response, using Mycobacterium, Listeria and Salmonella as specific examples for these comparisons.
Collapse
Affiliation(s)
- Jeffrey S Schorey
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yong Cheng
- Department of Biochemistry and Molecular Biology, Noble Research Center, Oklahoma State University, Stillwater, OK 74078, USA
| | - William R McManus
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
30
|
Foster M, Hill PC, Setiabudiawan TP, Koeken VACM, Alisjahbana B, van Crevel R. BCG-induced protection against Mycobacterium tuberculosis infection: Evidence, mechanisms, and implications for next-generation vaccines. Immunol Rev 2021; 301:122-144. [PMID: 33709421 PMCID: PMC8252066 DOI: 10.1111/imr.12965] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/20/2022]
Abstract
The tuberculosis (TB) vaccine Bacillus Calmette-Guérin (BCG) was introduced 100 years ago, but as it provides insufficient protection against TB disease, especially in adults, new vaccines are being developed and evaluated. The discovery that BCG protects humans from becoming infected with Mycobacterium tuberculosis (Mtb) and not just from progressing to TB disease provides justification for considering Mtb infection as an endpoint in vaccine trials. Such trials would require fewer participants than those with disease as an endpoint. In this review, we first define Mtb infection and disease phenotypes that can be used for mechanistic studies and/or endpoints for vaccine trials. Secondly, we review the evidence for BCG-induced protection against Mtb infection from observational and BCG re-vaccination studies, and discuss limitations and variation of this protection. Thirdly, we review possible underlying mechanisms for BCG efficacy against Mtb infection, including alternative T cell responses, antibody-mediated protection, and innate immune mechanisms, with a specific focus on BCG-induced trained immunity, which involves epigenetic and metabolic reprogramming of innate immune cells. Finally, we discuss the implications for further studies of BCG efficacy against Mtb infection, including for mechanistic research, and their relevance to the design and evaluation of new TB vaccines.
Collapse
Affiliation(s)
- Mitchell Foster
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Philip C. Hill
- Centre for International HealthUniversity of OtagoDunedinNew Zealand
| | - Todia Pediatama Setiabudiawan
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
| | - Valerie A. C. M. Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
- Department of Computational Biology for Individualised Infection MedicineCentre for Individualised Infection Medicine (CiiM) & TWINCOREJoint Ventures between The Helmholtz‐Centre for Infection Research (HZI) and The Hannover Medical School (MHH)HannoverGermany
| | - Bachti Alisjahbana
- Tuberculosis Working GroupFaculty of MedicineUniversitas PadjadjaranBandungIndonesia
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|