1
|
Muro R, Nitta T, Nitta S, Tsukasaki M, Asano T, Nakano K, Okamura T, Nakashima T, Okamoto K, Takayanagi H. Transcript splicing optimizes the thymic self-antigen repertoire to suppress autoimmunity. J Clin Invest 2024; 134:e179612. [PMID: 39403924 PMCID: PMC11473167 DOI: 10.1172/jci179612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/15/2024] [Indexed: 10/19/2024] Open
Abstract
Immunological self-tolerance is established in the thymus by the expression of virtually all self-antigens, including tissue-restricted antigens (TRAs) and cell-type-restricted antigens (CRAs). Despite a wealth of knowledge about the transcriptional regulation of TRA genes, posttranscriptional regulation remains poorly understood. Here, we show that protein arginine methylation plays an essential role in central immune tolerance by maximizing the self-antigen repertoire in medullary thymic epithelial cells (mTECs). Protein arginine methyltransferase-5 (Prmt5) was required for pre-mRNA splicing of certain key genes in tolerance induction, including Aire as well as various genes encoding TRAs. Mice lacking Prmt5 specifically in thymic epithelial cells exhibited an altered thymic T cell selection, leading to the breakdown of immune tolerance accompanied by both autoimmune responses and enhanced antitumor immunity. Thus, arginine methylation and transcript splicing are essential for establishing immune tolerance and may serve as a therapeutic target in autoimmune diseases as well as cancer immunotherapy.
Collapse
Affiliation(s)
- Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Sachiko Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masayuki Tsukasaki
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuo Asano
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomoki Nakashima
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Immune Environment Dynamics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Marakhonov A, Serebryakova E, Mukhina A, Vechkasova A, Prokhorov N, Efimova I, Balinova N, Lobenskaya A, Vasilyeva T, Zabnenkova V, Ryzhkova O, Rodina Y, Pershin D, Soloveva N, Fomenko A, Saydaeva D, Ibisheva A, Irbaieva T, Koroteev A, Zinchenko R, Voronin S, Shcherbina A, Kutsev S. A Rare Case of TP63-Associated Lymphopenia Revealed by Newborn Screening Using TREC. Int J Mol Sci 2024; 25:10844. [PMID: 39409174 PMCID: PMC11482481 DOI: 10.3390/ijms251910844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The expanded newborn screening (NBS) program in the Russian Federation was initiated in 2023, among which severe combined immunodeficiency (SCID) is screened using TREC/KREC assays. Here, we report a rare case of a TP63-associated disease identified through this NBS program. Dried blood spots from newborns were initially screened for TREC/KREC levels, and those with values below the cut-off underwent confirmatory testing and further genetic analysis, including whole-exome sequencing (WES). A male newborn was identified with significantly reduced TREC values, indicative of T cell lymphopenia. Genetic analysis revealed a heterozygous NM_003722.5:c.1027C>T variant in TP63, leading to the p.(Arg343Trp) substitution within the DNA binding domain. This mutation has been previously associated with Ectrodactyly-Ectodermal Dysplasia-Cleft lip/palate syndrome (EEC) syndrome and shown to reduce the transactivation activity of TP63 in a dominant-negative manner. This case represents one of the few instances of immune system involvement in a patient with a TP63 mutation, highlighting the need for further investigation into the immunological aspects of TP63-associated disorders. Our findings suggest that comprehensive immunological evaluation should be considered for patients with TP63 mutations to better understand and manage potential immune dysfunctions.
Collapse
Affiliation(s)
- Andrey Marakhonov
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Elena Serebryakova
- Saint-Petersburg State Medical Diagnostic Center (Medical Genetic Center), 194044 Saint-Petersburg, Russia; (E.S.); (A.V.); (A.L.); (A.K.)
| | - Anna Mukhina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia; (A.M.); (Y.R.); (D.P.); (A.S.)
| | - Anastasia Vechkasova
- Saint-Petersburg State Medical Diagnostic Center (Medical Genetic Center), 194044 Saint-Petersburg, Russia; (E.S.); (A.V.); (A.L.); (A.K.)
| | - Nikolai Prokhorov
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA;
| | - Irina Efimova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Natalia Balinova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Anastasia Lobenskaya
- Saint-Petersburg State Medical Diagnostic Center (Medical Genetic Center), 194044 Saint-Petersburg, Russia; (E.S.); (A.V.); (A.L.); (A.K.)
| | - Tatyana Vasilyeva
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Victoria Zabnenkova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Oxana Ryzhkova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Yulia Rodina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia; (A.M.); (Y.R.); (D.P.); (A.S.)
| | - Dmitry Pershin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia; (A.M.); (Y.R.); (D.P.); (A.S.)
| | - Nadezhda Soloveva
- Department of Neonatal and Infantile Pathology, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia; (N.S.); (A.F.)
| | - Anna Fomenko
- Department of Neonatal and Infantile Pathology, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia; (N.S.); (A.F.)
| | - Djamila Saydaeva
- State Budgetary Institution “Maternity Hospital” of the Ministry of Healthcare of the Chechen Republic, 364017 Grozny, Russia; (D.S.); (A.I.)
| | - Aset Ibisheva
- State Budgetary Institution “Maternity Hospital” of the Ministry of Healthcare of the Chechen Republic, 364017 Grozny, Russia; (D.S.); (A.I.)
| | - Taisiya Irbaieva
- Department of Maternity and Childhood, Ministry of Healthcare of the Chechen Republic, 364061 Grozny, Russia;
| | - Alexander Koroteev
- Saint-Petersburg State Medical Diagnostic Center (Medical Genetic Center), 194044 Saint-Petersburg, Russia; (E.S.); (A.V.); (A.L.); (A.K.)
| | - Rena Zinchenko
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Sergey Voronin
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Anna Shcherbina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia; (A.M.); (Y.R.); (D.P.); (A.S.)
| | - Sergey Kutsev
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| |
Collapse
|
3
|
Vicosa Bauermann F, Falkenberg S, Rudd JM, Peter CM, Merchioratto I, Ritchey JW, Gilliam J, Taylor J, Ma H, Maggioli MF. Immune Responses to Influenza D Virus in Calves Previously Infected with Bovine Viral Diarrhea Virus 2. Viruses 2023; 15:2442. [PMID: 38140683 PMCID: PMC10747992 DOI: 10.3390/v15122442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) induces immunosuppression and thymus depletion in calves. This study explores the impact of prior BVDV-2 exposure on the subsequent immune response to influenza D virus (IDV). Twenty 3-week-old calves were divided into four groups. Calves in G1 and G3 were mock-treated on day 0, while calves in G2 and G4 received BVDV. Calves in G1 (mock) and G2 (BVDV) were necropsied on day 13 post-infection. IDV was inoculated on day 21 in G3 calves (mock + IDV) and G4 (BVDV + IDV) and necropsy was conducted on day 42. Pre-exposed BVDV calves exhibited prolonged and increased IDV shedding in nasal secretions. An approximate 50% reduction in the thymus was observed in acutely infected BVDV calves (G2) compared to controls (G1). On day 42, thymus depletion was observed in two calves in G4, while three had normal weight. BVDV-2-exposed calves had impaired CD8 T cell proliferation after IDV recall stimulation, and the α/β T cell impairment was particularly evident in those with persistent thymic atrophy. Conversely, no difference in antibody levels against IDV was noted. BVDV-induced thymus depletion varied from transient to persistent. Persistent thymus atrophy was correlated with weaker T cell proliferation, suggesting correlation between persistent thymus atrophy and impaired T cell immune response to subsequent infections.
Collapse
Affiliation(s)
- Fernando Vicosa Bauermann
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
| | - Shollie Falkenberg
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Animal Research Services, National Animal Disease Center, United States Department of Agriculture, Ames, IA 50010, USA
| | - Jennifer M. Rudd
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
| | - Cristina Mendes Peter
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
- Center for Medical Bioinformatics, Escola Paulista de Medicina, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04039-032, Brazil
| | - Ingryd Merchioratto
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Jerry W. Ritchey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
| | - John Gilliam
- Veterinary Clinical Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jared Taylor
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
| | - Hao Ma
- Animal Research Services, National Animal Disease Center, United States Department of Agriculture, Ames, IA 50010, USA
| | - Mayara Fernanda Maggioli
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
| |
Collapse
|
4
|
Nicolì V, Coppedè F. Epigenetics of Thymic Epithelial Tumors. Cancers (Basel) 2023; 15:360. [PMID: 36672310 PMCID: PMC9856807 DOI: 10.3390/cancers15020360] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023] Open
Abstract
Thymic epithelial tumors (TETs) arise from the epithelial cells of the thymus and consist in the 1% of all adult malignancies, despite the fact that they are the most common lesions of the anterior mediastinum. TETs can be divided mainly into thymomas, thymic carcinomas, and the rarest ad aggressive neuroendocrine forms. Despite the surgical resection is quite resolving, the diagnosis of TETs is complicated by the absence of symptoms and the clinical presentation aggravated by several paraneoplastic disorders, including myasthenia gravis. Thus, the heterogeneity of TETs prompts the search for molecular biomarkers that could be helpful for tumor characterization and clinical outcomes prediction. With these aims, several researchers investigated the epigenetic profiles of TETs. In this manuscript, we narratively review the works investigating the deregulation of epigenetic mechanisms in TETs, highlighting the need for further studies combining genetic, epigenetic, and expression data to better characterize the different molecular subtypes and identify, for each of them, the most relevant epigenetic biomarkers of clinical utility.
Collapse
Affiliation(s)
- Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
5
|
Depoërs L, Dumont-Lagacé M, Trinh VQH, Houques C, Côté C, Larouche JD, Brochu S, Perreault C. Klf4 protects thymus integrity during late pregnancy. Front Immunol 2023; 14:1016378. [PMID: 37180153 PMCID: PMC10174329 DOI: 10.3389/fimmu.2023.1016378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Pregnancy causes abrupt thymic atrophy. This atrophy is characterized by a severe decrease in the number of all thymocyte subsets and qualitative (but not quantitative) changes in thymic epithelial cells (TECs). Pregnancy-related thymic involution is triggered by progesterone-induced functional changes affecting mainly cortical TECs (cTECs). Remarkably, this severe involution is rapidly corrected following parturition. We postulated that understanding the mechanisms of pregnancy-related thymic changes could provide novel insights into signaling pathways regulating TEC function. When we analyzed genes whose expression in TECs was modified during late pregnancy, we found a strong enrichment in genes bearing KLF4 transcription factor binding motifs. We, therefore, engineered a Psmb11-iCre : Klf4lox/lox mouse model to study the impact of TEC-specific Klf4 deletion in steady-state conditions and during late pregnancy. Under steady-state conditions, Klf4 deletion had a minimal effect on TEC subsets and did not affect thymic architecture. However, pregnancy-induced thymic involution was much more pronounced in pregnant females lacking Klf4 expression in TECs. These mice displayed a substantial ablation of TECs with a more pronounced loss of thymocytes. Transcriptomic and phenotypic analyses of Klf4 -/- TECs revealed that Klf4 maintains cTEC numbers by supporting cell survival and preventing epithelial-to-mesenchymal plasticity during late pregnancy. We conclude that Klf4 is essential for preserving TEC's integrity and mitigating thymic involution during late pregnancy.
Collapse
Affiliation(s)
- Lucyle Depoërs
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Maude Dumont-Lagacé
- ExCellThera, Inc., Montréal, QC, Canada
- Piercing Star Technologies, Rabat, Morocco
| | - Vincent Quoc-Huy Trinh
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Pathology and Cellular Biology, Institute for Research in Immunology and Cancer, and Centre de recherche du Centre hospitalier de l’Université de Montréal, Université de Montréal, Montréal, QC, Canada
| | - Chloé Houques
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier, France
| | - Caroline Côté
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jean-David Larouche
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Sylvie Brochu
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Sylvie Brochu, ; Claude Perreault,
| | - Claude Perreault
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Sylvie Brochu, ; Claude Perreault,
| |
Collapse
|
6
|
Postoak JL, Song W, Yang G, Guo X, Xiao S, Saffold CE, Zhang J, Joyce S, Manley NR, Wu L, Van Kaer L. Thymic epithelial cells require lipid kinase Vps34 for CD4 but not CD8 T cell selection. J Exp Med 2022; 219:e20212554. [PMID: 35997680 PMCID: PMC9402993 DOI: 10.1084/jem.20212554] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/22/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022] Open
Abstract
The generation of a functional, self-tolerant T cell receptor (TCR) repertoire depends on interactions between developing thymocytes and antigen-presenting thymic epithelial cells (TECs). Cortical TECs (cTECs) rely on unique antigen-processing machinery to generate self-peptides specialized for T cell positive selection. In our current study, we focus on the lipid kinase Vps34, which has been implicated in autophagy and endocytic vesicle trafficking. We show that loss of Vps34 in TECs causes profound defects in the positive selection of the CD4 T cell lineage but not the CD8 T cell lineage. Utilizing TCR sequencing, we show that T cell selection in conditional mutants causes altered repertoire properties including reduced clonal sharing. cTECs from mutant mice display an increased abundance of invariant chain intermediates bound to surface MHC class II molecules, indicating altered antigen processing. Collectively, these studies identify lipid kinase Vps34 as an important contributor to the repertoire of selecting ligands processed and presented by TECs to developing CD4 T cells.
Collapse
Affiliation(s)
- J. Luke Postoak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Wenqiang Song
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Guan Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Xingyi Guo
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN
| | - Shiyun Xiao
- Department of Genetics, University of Georgia, Athens, GA
| | - Cherie E. Saffold
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
| | | | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
7
|
Scott-Browne J, Shih HY. Stability and change in epigenetic regulation of immune cells. Immunol Rev 2022; 305:5-8. [PMID: 35034371 DOI: 10.1111/imr.13060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- James Scott-Browne
- National Jewish Health, Department of Immunology and Genomic Medicine, USA.,Department of Immunology and Microbiology, University of Colorado, USA
| | - Han-Yu Shih
- Neuro-Immune Regulome Unit, National Eye Institute, National Institutes of Health, Bethesda, USA
| |
Collapse
|