1
|
Niu X, Bao W, Luo Z, Du P, Zhou H, Liu H, Wang B, Zhang H, Wang B, Guo B, Ma H, Lu T, Zhang Y, Mu J, Ma S, Liu J, Zhang M. The association among individual gray matter volume of frontal-limbic circuitry, fatigue susceptibility, and comorbid neuropsychiatric symptoms following COVID-19. Neuroimage 2025; 306:121011. [PMID: 39798827 DOI: 10.1016/j.neuroimage.2025.121011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/06/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Fatigue is often accompanied by comorbid sleep disturbance and psychiatric distress following the COVID-19 infection. However, identifying individuals at risk for developing post-COVID fatigue remains challenging. This study aimed to identify the neurobiological markers underlying fatigue susceptibility and further investigate their effect on COVID-19-related neuropsychiatric symptoms. METHODS Individuals following a mild SARS-CoV-2 infection (COV+) underwent neuropsychiatric measurements (n = 335) and MRI scans (n = 271) within 1 month (baseline), and 191 (70.5 %) of the individuals were followed up 3 months after infection. Sixty-seven healthy controls (COV-) completed the same recruitment protocol. RESULTS Whole-brain voxel-wise analysis showed that gray matter volume (GMV) during the acute phase did not differ between the COV+ and COV- groups. GMV in the right dorsolateral prefrontal cortex (DLPFC) and left dorsal anterior cingulate cortex (dACC) were associated with fatigue severity only in the COV+ group at baseline, which were assigned to the frontal system and limbic system, respectively. Furthermore, fatigue mediated the associations between volume differences in fatigue susceptibility and COVID-related sleep, post-traumatic stress disorder, anxiety and depression. Crucially, the initial GMV in the right DLPFC can predict fatigue symptoms 3 months after infection. CONCLUSIONS We provide novel evidence on the neuroanatomical basis of fatigue vulnerability and emphasize that acute fatigue is an important link between early GMV in the frontal-limbic regions and comorbid neuropsychiatric symptoms at baseline and 3 months after infection. Our findings highlight the role of the frontal-limbic system in predisposing individuals to develop post-COVID fatigue.
Collapse
Affiliation(s)
- Xuan Niu
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Wenrui Bao
- School of Future Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zhaoyao Luo
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Pang Du
- Department of Medical Imaging, Xi'an QinHuang Hospital, Xi'an, Shaanxi Province, China
| | - Heping Zhou
- Medical Imaging Centre, Ankang Central Hospital, Ankang, Shaanxi Province, China
| | - Haiyang Liu
- Department of Medical Imaging, Shangluo Central Hospital, Shangluo, Shaanxi Province, China
| | - Baoqi Wang
- Department of Medical Imaging, Yanan Traditional Chinese Medicine Hospital, Yan'an, Shaanxi Province, China
| | - Huawen Zhang
- Department of Medical Imaging, No.215 Hospital of Shaanxi Nuclear Geology, Xianyang, China
| | - Bo Wang
- Department of Medical Imaging, Hanzhong Central Hospital, Hanzhong, Shaanxi Province, China
| | - Baoqin Guo
- Department of Medical Imaging, Xi'an Jiaotong University First Hospital Yulin, Yulin, Shaanxi Province, China
| | - Hui Ma
- Department of Medical Imaging, Baoji High-tech Hospital, Baoji, Shaanxi Province, China
| | - Tao Lu
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yuchen Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Junya Mu
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Shaohui Ma
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jixin Liu
- School of Life Science and Technology, Xidian University, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xi'an, Shaanxi, China.
| | - Ming Zhang
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
2
|
Bremner JD, Russo SJ, Gallagher R, Simon NM. Acute and long-term effects of COVID-19 on brain and mental health: A narrative review. Brain Behav Immun 2025; 123:928-945. [PMID: 39500417 DOI: 10.1016/j.bbi.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/16/2024] [Accepted: 11/02/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND COVID infection has been associated with long term sequalae (Long COVID) which include neurological and behavioral effects in thousands of patients, but the etiology and scope of symptoms is not well understood. This paper reviews long term sequelae of COVID on brain and mental health in patients with the Long COVID syndrome. METHODS This was a literature review which queried databases for Pubmed, Psychinfo, and Medline for the following topics for January 1, 2020-July 15, 2023: Long COVID, PASC, brain, brain imaging, neurological, neurobiology, mental health, anxiety, depression. RESULTS Tens of thousands of patients have developed Long COVID, with the most common neurobehavioral symptoms anosmia (loss of smell) and fatigue. Anxiety and mood disorders are elevated and seen in about 25% of Long COVID patients. Neuropsychological testing studies show a correlation between symptom severity and cognitive dysfunction, while brain imaging studies show global decreases in gray matter and alterations in olfactory and other brain areas. CONCLUSIONS Studies to date show an increase in neurobehavioral disturbances in patients with Long COVID. Future research is needed to determine mechanisms.
Collapse
Affiliation(s)
- J Douglas Bremner
- Departments of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta Georgia, and the Atlanta VA Medical Center, Decatur, GA, USA; Nash Family Department Neuroscience and Brain-Body Research Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Department of Child and Adolescent Psychiatry, New York University (NYU) Langone Health, New York, NY, USA.
| | - Scott J Russo
- Nash Family Department Neuroscience and Brain-Body Research Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Richard Gallagher
- Department of Child and Adolescent Psychiatry, New York University (NYU) Langone Health, New York, NY, USA; Department of Psychiatry, New York University (NYU) Langone Health, New York, NY, USA
| | - Naomi M Simon
- Department of Psychiatry, New York University (NYU) Langone Health, New York, NY, USA
| |
Collapse
|
3
|
Sauer MC, Barlow PB, Comellas AP, Garg A. Anxiety and depression symptoms among patients with long COVID: a retrospective cohort study. Eur Arch Psychiatry Clin Neurosci 2024; 274:1879-1886. [PMID: 38231397 DOI: 10.1007/s00406-023-01740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
Patients suffering from post-acute sequelae of COVID-19 (PASC) have a higher prevalence of anxiety and depression than the general population. The long-term trajectory of these sequelae is still unfolding. To assess the burden of anxiety and depression among patients presenting to the University of Iowa Hospitals and Clinics (UIHC) post-COVID-19 clinic, we analyzed how patient factors influenced Generalized Anxiety Disorder-7 (GAD-7) and Patient Health Questionnaire-9 (PHQ-9) scores. In this retrospective cohort study, the GAD-7 and PHQ-9 questionnaire scores of patients presenting to the UIHC post-COVID clinic between March 2021-February 2022 (N = 455) were compared to the scores of a sample of patients presenting to the general internal medicine (GIM) clinic during the same period (N = 94). Our analysis showed that patients with an absent history of depression on their electronic medical record (EMR) problem list scored significantly higher on the GAD-7 (mean difference -1.62, 95% CI -3.12 to -0.12, p = 0.034) and PHQ-9 (mean difference -4.45, 95% CI -5.53 to -3.37, p < 0.001) questionnaires compared to their similar counterparts in the GIM clinic. On the other hand, patients with an absent history of anxiety on their EMR problem list scored significantly higher on the GAD-7 (mean difference -2.90, 95% CI -4.0 to -1.80, p < 0.001) but not on the PHQ-9 questionnaire (p = 0.196). Overall, patients with PASC may have experienced a heavier burden of newly manifest anxiety and depression symptoms compared to patients seen in the GIM clinic. This suggests that the mental health impacts of PASC may be more pronounced in patients with no prior history of anxiety or depression.
Collapse
Affiliation(s)
- Michael C Sauer
- Department of Internal Medicine, University of Iowa Division of General Internal Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA.
| | - Patrick B Barlow
- Department of Internal Medicine, University of Iowa Division of General Internal Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA, USA
| | - Alejandro P Comellas
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA, USA
- Division of Pulmonary and Critical Care, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Alpana Garg
- Department of Internal Medicine, University of Iowa Division of General Internal Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| |
Collapse
|
4
|
Cao C, Fu G, Xu R, Li N. Coupling of Alzheimer's Disease Genetic Risk Factors with Viral Susceptibility and Inflammation. Aging Dis 2024; 15:2028-2050. [PMID: 37962454 PMCID: PMC11346407 DOI: 10.14336/ad.2023.1017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by persistent cognitive decline. Amyloid plaque deposition and neurofibrillary tangles are the main pathological features of AD brain, though mechanisms leading to the formation of lesions remain to be understood. Genetic efforts through genome-wide association studies (GWAS) have identified dozens of risk genes influencing the pathogenesis and progression of AD, some of which have been revealed in close association with increased viral susceptibilities and abnormal inflammatory responses in AD patients. In the present study, we try to present a list of AD candidate genes that have been shown to affect viral infection and inflammatory responses. Understanding of how AD susceptibility genes interact with the viral life cycle and potential inflammatory pathways would provide possible therapeutic targets for both AD and infectious diseases.
Collapse
Affiliation(s)
| | | | - Ruodan Xu
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ning Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
5
|
Lawrence DA, Jadhav A, Mondal TK, Carson K, Lee WT, Hogan AH, Herbst KW, Michelow IC, Brimacombe M, Salazar JC. Inflammatory and Autoimmune Aspects of Multisystem Inflammatory Syndrome in Children (MIS-C): A Prospective Cohort Study. Viruses 2024; 16:950. [PMID: 38932242 PMCID: PMC11209514 DOI: 10.3390/v16060950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Multisystem Inflammatory Syndrome in Children (MIS-C) is a potentially life-threatening complication of COVID-19. The pathophysiological mechanisms leading to severe disease are poorly understood. This study leveraged clinical samples from a well-characterized cohort of children hospitalized with COVID-19 or MIS-C to compare immune-mediated biomarkers. Our objective was to identify selected immune molecules that could explain, in part, why certain SARS-CoV-2-infected children developed MIS-C. We hypothesized that type-2 helper T cell-mediated inflammation can elicit autoantibodies, which may account for some of the differences observed between the moderate-severe COVID-19 (COVID+) and MIS-C cohort. We enumerated blood leukocytes and measured levels of selected serum cytokines, chemokines, antibodies to COVID-19 antigens, and autoantibodies in children presenting to an academic medical center in Connecticut, United States. The neutrophil/lymphocyte and eosinophil/lymphocyte ratios were significantly higher in those in the MIS-C versus COVID+ cohort. IgM and IgA, but not IgG antibodies to SARS-CoV-2 receptor binding domain were significantly higher in the MIS-C cohort than the COVID+ cohort. The serum levels of certain type-2 cytokines (interleukin (IL)-4, IL-5, IL-6, IL-8, IL-10, IL-13, and IL-33) were significantly higher in children with MIS-C compared to the COVID+ and SARS-CoV-2-negative cohorts. IgG autoantibodies to brain antigens and pentraxin were higher in children with MIS-C compared to SARS-CoV-19-negative controls, and children with MIS-C had higher levels of IgG anti-contactin-associated protein-like 2 (caspr2) compared to the COVID+ and SARS-CoV-19-negative controls. We speculate that autoimmune responses in certain COVID-19 patients may induce pathophysiological changes that lead to MIS-C. The triggers of autoimmunity and factors accounting for type-2 inflammation require further investigation.
Collapse
Affiliation(s)
- David A. Lawrence
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; (A.J.); (T.K.M.); (K.C.); (W.T.L.)
- School of Public Health, University at Albany, Rensselaer, NY 12144, USA
| | - Aishwarya Jadhav
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; (A.J.); (T.K.M.); (K.C.); (W.T.L.)
| | - Tapan K. Mondal
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; (A.J.); (T.K.M.); (K.C.); (W.T.L.)
| | - Kyle Carson
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; (A.J.); (T.K.M.); (K.C.); (W.T.L.)
| | - William T. Lee
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; (A.J.); (T.K.M.); (K.C.); (W.T.L.)
- School of Public Health, University at Albany, Rensselaer, NY 12144, USA
| | - Alexander H. Hogan
- Division of Hospital Medicine, Connecticut Children’s, Hartford, CT 06106, USA;
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (I.C.M.); (M.B.); (J.C.S.)
| | - Katherine W. Herbst
- Division of Pediatric Infectious Diseases and Immunology, Connecticut Children’s, Hartford, CT 06106, USA;
- Department of Research, Connecticut Children’s Research Institute, Hartford, CT 06106, USA
| | - Ian C. Michelow
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (I.C.M.); (M.B.); (J.C.S.)
- Division of Pediatric Infectious Diseases and Immunology, Connecticut Children’s, Hartford, CT 06106, USA;
| | - Michael Brimacombe
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (I.C.M.); (M.B.); (J.C.S.)
- Department of Research, Connecticut Children’s Research Institute, Hartford, CT 06106, USA
| | - Juan C. Salazar
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (I.C.M.); (M.B.); (J.C.S.)
- Division of Pediatric Infectious Diseases and Immunology, Connecticut Children’s, Hartford, CT 06106, USA;
| | | |
Collapse
|
6
|
Theoharides TC, Twahir A, Kempuraj D. Mast cells in the autonomic nervous system and potential role in disorders with dysautonomia and neuroinflammation. Ann Allergy Asthma Immunol 2024; 132:440-454. [PMID: 37951572 DOI: 10.1016/j.anai.2023.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/16/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Mast cells (MC) are ubiquitous in the body, and they are critical for not only in allergic diseases but also in immunity and inflammation, including having potential involvement in the pathophysiology of dysautonomias and neuroinflammatory disorders. MC are located perivascularly close to nerve endings and sites such as the carotid bodies, heart, hypothalamus, the pineal gland, and the adrenal gland that would allow them not only to regulate but also to be affected by the autonomic nervous system (ANS). MC are stimulated not only by allergens but also many other triggers including some from the ANS that can affect MC release of neurosensitizing, proinflammatory, and vasoactive mediators. Hence, MC may be able to regulate homeostatic functions that seem to be dysfunctional in many conditions, such as postural orthostatic tachycardia syndrome, autism spectrum disorder, myalgic encephalomyelitis/chronic fatigue syndrome, and Long-COVID syndrome. The evidence indicates that there is a possible association between these conditions and diseases associated with MC activation. There is no effective treatment for any form of these conditions other than minimizing symptoms. Given the many ways MC could be activated and the numerous mediators released, it would be important to develop ways to inhibit stimulation of MC and the release of ANS-relevant mediators.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida; Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts.
| | - Assma Twahir
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida
| |
Collapse
|
7
|
Greene C, Connolly R, Brennan D, Laffan A, O'Keeffe E, Zaporojan L, O'Callaghan J, Thomson B, Connolly E, Argue R, Meaney JFM, Martin-Loeches I, Long A, Cheallaigh CN, Conlon N, Doherty CP, Campbell M. Blood-brain barrier disruption and sustained systemic inflammation in individuals with long COVID-associated cognitive impairment. Nat Neurosci 2024; 27:421-432. [PMID: 38388736 PMCID: PMC10917679 DOI: 10.1038/s41593-024-01576-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
Vascular disruption has been implicated in coronavirus disease 2019 (COVID-19) pathogenesis and may predispose to the neurological sequelae associated with long COVID, yet it is unclear how blood-brain barrier (BBB) function is affected in these conditions. Here we show that BBB disruption is evident during acute infection and in patients with long COVID with cognitive impairment, commonly referred to as brain fog. Using dynamic contrast-enhanced magnetic resonance imaging, we show BBB disruption in patients with long COVID-associated brain fog. Transcriptomic analysis of peripheral blood mononuclear cells revealed dysregulation of the coagulation system and a dampened adaptive immune response in individuals with brain fog. Accordingly, peripheral blood mononuclear cells showed increased adhesion to human brain endothelial cells in vitro, while exposure of brain endothelial cells to serum from patients with long COVID induced expression of inflammatory markers. Together, our data suggest that sustained systemic inflammation and persistent localized BBB dysfunction is a key feature of long COVID-associated brain fog.
Collapse
Affiliation(s)
- Chris Greene
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Ruairi Connolly
- Department of Neurology, Health Care Centre, St James's Hospital, Dublin, Ireland
| | - Declan Brennan
- Department of Neurology, Health Care Centre, St James's Hospital, Dublin, Ireland
| | - Aoife Laffan
- Department of Neurology, Health Care Centre, St James's Hospital, Dublin, Ireland
| | - Eoin O'Keeffe
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Lilia Zaporojan
- Department of Neurology, Health Care Centre, St James's Hospital, Dublin, Ireland
| | | | - Bennett Thomson
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Emma Connolly
- The Irish Longitudinal Study on Ageing, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ruth Argue
- Clinical Research Facility, St James's Hospital, Dublin, Ireland
| | - James F M Meaney
- Thomas Mitchell Centre for Advanced Medical Imaging (CAMI), St. James's Hospital & Trinity College Dublin, Dublin, Ireland
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization, Trinity Centre for Health Sciences, St James's University Hospital, Dublin, Ireland
| | - Aideen Long
- Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Cliona Ni Cheallaigh
- Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin, Ireland
- Department of Immunology, St James's Hospital, Dublin, Ireland
| | - Niall Conlon
- Department of Immunology, St James's Hospital, Dublin, Ireland
- St James's Hospital, Tallaght University Hospital, Trinity College Dublin Allied Researchers (STTAR) Bioresource, Trinity College Dublin, Dublin, Ireland
| | - Colin P Doherty
- Department of Neurology, Health Care Centre, St James's Hospital, Dublin, Ireland.
- Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
8
|
Maliha ST, Fatemi R, Araf Y. COVID-19 and the brain: understanding the pathogenesis and consequences of neurological damage. Mol Biol Rep 2024; 51:318. [PMID: 38386201 DOI: 10.1007/s11033-024-09279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
SARS-CoV-2 has been known remarkably since December 2019 as a strain of pathogenic coronavirus. Starting from the earlier stages of the COVID-19 pandemic until now, we have witnessed many cases of neurological damage caused by SARS-CoV-2. There are many studies and research conducted on COVID-19-positive-patients that have found brain-related abnormalities with clear neurological symptoms, ranging from simple headaches to life-threatening strokes. For treating neurological damage, knowing the actual pathway or mechanism of causing brain damage via SARS-CoV-2 is very important. For this reason, we have tried to explain the possible pathways of brain damage due to SARS-CoV-2 with mechanisms and illustrations. The SARS-CoV-2 virus enters the human body by binding to specific ACE2 receptors in the targeted cells, which are present in the glial cells and CNS neurons of the human brain. It is found that direct and indirect infections with SARS-CoV-2 in the brain result in endothelial cell death, which alters the BBB tight junctions. These probable alterations can be the reason for the excessive transmission and pathogenicity of SARS-CoV-2 in the human brain. In this precise review, we have tried to demonstrate the neurological symptoms in the case of COVID-19-positive-patients and the possible mechanisms of neurological damage, along with the treatment options for brain-related abnormalities. Knowing the transmission mechanism of SARS-CoV-2 in the human brain can assist us in generating novel treatments associated with neuroinflammation in other brain diseases.
Collapse
Affiliation(s)
- Sumaiya Tasnim Maliha
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka, Bangladesh
| | - Rabeya Fatemi
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - Yusha Araf
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, Bangladesh.
| |
Collapse
|
9
|
Feng BW, Rong PJ. Acupoint stimulation for long COVID: A promising intervention:. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2023:S1003-5257(23)00038-7. [PMID: 37363407 PMCID: PMC10232723 DOI: 10.1016/j.wjam.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
"Long COVID" is a sustained symptom following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). According to recent statistics, at least 65 million people have long COVID, which poses a long-term threat to human health. The pathogenic mechanisms of coronavirus disease 2019 (COVID-19) are complex and affect multiple organs and systems. Common symptoms include palpitations, breathing difficulties, attention and memory deficits, fatigue, anxiety, and depression. It is difficult to achieve satisfactory treatment effect with a single intervention. Currently, treatment strategies for long COVID are still in the exploratory stage, and there is an urgent need to find appropriate and effective methods for long COVID treatment. Traditional Chinese medicine is effective in treating the various phases of COVID-19. Previous studies have shown that acupoint stimulation therapy is effective in improving palpitations, dyspnea, cognitive impairment, anxiety, depression, and other symptoms in patients. According to previous studies, acupoint stimulation may improve various symptoms related to long COVID. This paper discusses the potential application value of acupoint stimulation in the treatment of long COVID-related symptoms, based on the common sequelae of various systems involved in long COVID, and the effect of acupoint stimulation in the treatment of similar symptoms and diseases in recent years.
Collapse
Affiliation(s)
- Bo-Wen Feng
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China (,100700,)
| | - Pei-Jing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China (,100700,)
| |
Collapse
|
10
|
Rothstein TL. Cortical Grey matter volume depletion links to neurological sequelae in post COVID-19 "long haulers". BMC Neurol 2023; 23:22. [PMID: 36647063 PMCID: PMC9843113 DOI: 10.1186/s12883-023-03049-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE COVID-19 (SARS-CoV-2) has been associated with neurological sequelae even in those patients with mild respiratory symptoms. Patients experiencing cognitive symptoms such as "brain fog" and other neurologic sequelae for 8 or more weeks define "long haulers". There is limited information regarding damage to grey matter (GM) structures occurring in COVID-19 "long haulers". Advanced imaging techniques can quantify brain volume depletions related to COVID-19 infection which is important as conventional Brain MRI often fails to identify disease correlates. 3-dimensional voxel-based morphometry (3D VBM) analyzes, segments and quantifies key brain volumes allowing comparisons between COVID-19 "long haulers" and normative data drawn from healthy controls, with values based on percentages of intracranial volume. METHODS This is a retrospective single center study which analyzed 24 consecutive COVID-19 infected patients with long term neurologic symptoms. Each patient underwent Brain MRI with 3D VBM at median time of 85 days following laboratory confirmation. All patients had relatively mild respiratory symptoms not requiring oxygen supplementation, hospitalization, or assisted ventilation. 3D VBM was obtained for whole brain and forebrain parenchyma, cortical grey matter (CGM), hippocampus, and thalamus. RESULTS The results demonstrate a statistically significant depletion of CGM volume in 24 COVID-19 infected patients. Reduced CGM volume likely influences their long term neurological sequelae and may impair post COVID-19 patient's quality of life and productivity. CONCLUSION This study contributes to understanding effects of COVID-19 infection on patient's neurocognitive and neurological function, with potential for producing serious long term personal and economic consequences, and ongoing challenges to public health systems.
Collapse
Affiliation(s)
- Ted L. Rothstein
- grid.253615.60000 0004 1936 9510Department of Neurology, George Washington University, Washington, DC USA
| |
Collapse
|
11
|
Torelli G, Severino R, Caggiano C, Torelli M, de Martino L, Russo G. Hydrocephalus As Possible Prodromal Manifestation of COVID-19: A Report of Two Cases. Cureus 2023; 15:e34371. [PMID: 36874689 PMCID: PMC9975901 DOI: 10.7759/cureus.34371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2023] [Indexed: 02/03/2023] Open
Abstract
Although the etiopathology of normal pressure hydrocephalus (NPH) is still not completely defined, several studies in recent years have highlighted the role of neuro-inflammation mediators in its development. During COVID-19, the infected host develops a multifaceted inflammatory syndrome, that may lead to an uncontrolled immune system response also localized in the host nervous system. In fact, the target of the viral Spike protein, the angiotensin-converting enzyme 2 (ACE2) receptors, is widely expressed in different areas of CNS such as the olfactory epithelium, and the choroid plexus. As for idiopathic NPH, the massive release of inflammatory mediators may result in altered CSF dynamics and consequent sudden clinical decompensation. We report the cases of two patients with a known iNPH condition, in which neurological symptoms suddenly worsened, requiring hospitalization, without any evident precipitating cause. Both patients tested positive for the COVID-19 virus shortly after the neurological impairment, which had occurred, therefore, during the incubation period of the infection. On the basis of our experience we advise, in cases of NPH patients with sudden neurological worsening, to perform a molecular COVID-19 swab at the moment of clinical impairment. We, therefore, recommend considering SARS-CoV-2 infection in the differential diagnosis of a sudden and otherwise unexplainable impairment of hydrocephalic patients. Furthermore, we believe clinicians should invite NPH patients to adopt adequate preventive measures to protect them from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Giovanni Torelli
- Neurosurgery, Azienda Ospedaliera Universitaria (AOU) San Giovanni e Ruggi d'Aragona, Salerno, ITA
| | - Rocco Severino
- Neurosurgery, Azienda Ospedaliera Universitaria (AOU) San Giovanni e Ruggi d'Aragona, Salerno, ITA
| | - Chiara Caggiano
- Neurosurgery, Azienda Ospedaliera di Rilievo Nazionale Antonio Cardarelli, Naples, ITA
| | | | - Luca de Martino
- Neurosurgery, Azienda Ospedaliera Universitaria (AOU) San Giovanni e Ruggi d'Aragona, Salerno, ITA
| | - Giuseppe Russo
- Neurosurgery, Azienda Ospedaliera Universitaria (AOU) San Giovanni e Ruggi d'Aragona, Salerno, ITA
| |
Collapse
|
12
|
Lukens JR, Williams JL. An introduction to neuroimmunology. Immunol Rev 2022; 311:5-8. [PMID: 36039857 PMCID: PMC9489657 DOI: 10.1111/imr.13133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John R. Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Jessica L. Williams
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| |
Collapse
|