1
|
Scriba TJ, Maseeme M, Young C, Taylor L, Leslie AJ. Immunopathology in human tuberculosis. Sci Immunol 2024; 9:eado5951. [PMID: 39671470 DOI: 10.1126/sciimmunol.ado5951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/15/2024] [Indexed: 12/15/2024]
Abstract
Mycobacterium tuberculosis (M.tb) is a bacterial pathogen that has evolved in humans, and its interactions with the host are complex and best studied in humans. Myriad immune pathways are involved in infection control, granuloma formation, and progression to tuberculosis (TB) disease. Inflammatory cells, such as macrophages, neutrophils, conventional and unconventional T cells, B cells, NK cells, and innate lymphoid cells, interact via cytokines, cell-cell communication, and eicosanoid signaling to contain or eliminate infection but can alternatively mediate pathological changes required for pathogen transmission. Clinical manifestations include pulmonary and extrapulmonary TB, as well as post-TB lung disease. Risk factors for TB progression, in turn, largely relate to immune status and, apart from traditional chemotherapy, interventions primarily target immune mechanisms, highlighting the critical role of immunopathology in TB. Maintaining a balance between effector mechanisms to achieve protective immunity and avoid detrimental inflammation is central to the immunopathogenesis of TB. Many research gaps remain and deserve prioritization to improve our understanding of human TB immunopathogenesis.
Collapse
Affiliation(s)
- Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Mahlatse Maseeme
- Africa Health Research Institute, Durban, South Africa
- College of Heath Sciences, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Carly Young
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Laura Taylor
- Forensic Pathology Services, Western Cape Government/University of Cape Town, Cape Town, South Africa
| | - Alasdair J Leslie
- Africa Health Research Institute, Durban, South Africa
- University College London, London, UK
| |
Collapse
|
2
|
D’Elia JA, Weinrauch LA. Role of Divalent Cations in Infections in Host-Pathogen Interaction. Int J Mol Sci 2024; 25:9775. [PMID: 39337264 PMCID: PMC11432163 DOI: 10.3390/ijms25189775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
With increasing numbers of patients worldwide diagnosed with diabetes mellitus, renal disease, and iatrogenic immune deficiencies, an increased understanding of the role of electrolyte interactions in mitigating pathogen virulence is necessary. The levels of divalent cations affect host susceptibility and pathogen survival in persons with relative immune insufficiency. For instance, when host cellular levels of calcium are high compared to magnesium, this relationship contributes to insulin resistance and triples the risk of clinical tuberculosis. The movement of divalent cations within intracellular spaces contributes to the host defense, causing apoptosis or autophagy of the pathogen. The control of divalent cation flow is dependent in part upon the mammalian natural resistance-associated macrophage protein (NRAMP) in the host. Survival of pathogens such as M tuberculosis within the bronchoalveolar macrophage is also dependent upon NRAMP. Pathogens evolve mutations to control the movement of calcium through external and internal channels. The host NRAMP as a metal transporter competes for divalent cations with the pathogen NRAMP in M tuberculosis (whether in latent, dormant, or active phase). This review paper summarizes mechanisms of pathogen offense and patient defense using inflow and efflux through divalent cation channels under the influence of parathyroid hormone vitamin D and calcitonin.
Collapse
Affiliation(s)
| | - Larry A. Weinrauch
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
3
|
Schroeder J, Schlesinger A, Burghaus L, Pape P, Balke M. Think TB! A rare case of influenza and rapid progressive neurotuberculosis coinfection. J Travel Med 2024; 31:taae025. [PMID: 38340321 PMCID: PMC11298047 DOI: 10.1093/jtm/taae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
An Indian migrant presented with increasing neurological symptoms after an acute influenza B infection. We diagnosed progressive neurotuberculosis—a rare and difficult case of tuberculosis and influenza co-infection. It highlights the importance of broad-based diagnostics in people from low- and middle-income countries, taking into account unusual manifestations of tuberculosis.
Collapse
Affiliation(s)
- Jakob Schroeder
- Division of Infectious Diseases, Travel- and Tropical Medicine, Clinic for Internal Medicine, St. Marien Hospital, Kunibertskloster 11-13, D-50668 Cologne, Germany
| | - Andreas Schlesinger
- Division of Infectious Diseases, Travel- and Tropical Medicine, Clinic for Internal Medicine, St. Marien Hospital, Kunibertskloster 11-13, D-50668 Cologne, Germany
| | - Lothar Burghaus
- Clinic for Neurology, Heilig-Geist Hospital, Graseggerstrasse 105, D-50737 Cologne, Germany
| | - Pantea Pape
- Clinic for Neurological Early Rehabilitation, St. Marien Hospital, Kunibertskloster 11-13, D-50668 Cologne, Germany
| | - Maryam Balke
- Clinic for Neurological Early Rehabilitation, St. Marien Hospital, Kunibertskloster 11-13, D-50668 Cologne, Germany
- Department of Rehabilitation Sciences, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, D-58455 Witten, Germany
| |
Collapse
|
4
|
Bernhard M, Leuch C, Kordi M, Gruebner O, Matthes KL, Floris J, Staub K. From pandemic to endemic: Spatial-temporal patterns of influenza-like illness incidence in a Swiss canton, 1918-1924. ECONOMICS AND HUMAN BIOLOGY 2023; 50:101271. [PMID: 37467686 DOI: 10.1016/j.ehb.2023.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
In pandemics, past and present, there is no textbook definition of when a pandemic is over, and how and when exactly a respiratory virus transitions from pandemic to endemic spread. In this paper we have compared the 1918/19 influenza pandemic and the subsequent spread of seasonal flu until 1924. We analysed 14,125 reports of newly stated 32,198 influenza-like illnesses from the Swiss canton of Bern. We analysed the temporal and spatial spread at the level of 497 municipalities, 9 regions, and the entire canton. We calculated incidence rates per 1000 inhabitants of newly registered cases per calendar week. Further, we illustrated the incidences of each municipality for each wave (first wave in summer 1918, second wave in fall/winter 1918/19, the strong later wave in early 1920, as well as the two seasonal waves in 1922 and 1924) on a choropleth map. We performed a spatial hotspot analysis to identify spatial clusters in each wave, using the Gi* statistic. Furthermore, we applied a robust negative binomial regression to estimate the association between selected explanatory variables and incidence on the ecological level. We show that the pandemic transitioned to endemic spread in several waves (including another strong wave in February 1920) with lower incidence and rather local spread until 1924 at least. At the municipality and regional levels, there were different patterns of spread both between pandemic and seasonal waves. In the first pandemic wave in summer 1918 the probability of higher incidence was increased in municipalities with a higher proportion of factories (OR 2.60, 95%CI 1.42-4.96), as well as in municipalities that had access to a railway station (OR 1.50, 95%CI 1.16-1.96). In contrast, the strong fall/winter wave 1918 was very widespread throughout the canton. In general, municipalities at higher altitude showed lower incidence. Our study adds to the sparse literature on incidence in the 1918/19 pandemic and subsequent years. Before Covid-19, the last pandemic that occurred in several waves and then became endemic was the 1918-19 pandemic. Such scenarios from the past can inform pandemic planning and preparedness in future outbreaks.
Collapse
Affiliation(s)
- Marco Bernhard
- Institute of Evolutionary Medicine, University of Zurich, Switzerland
| | - Corina Leuch
- Department of Geography, University of Zurich, Switzerland
| | - Maryam Kordi
- Institute of Evolutionary Medicine, University of Zurich, Switzerland
| | - Oliver Gruebner
- Department of Geography, University of Zurich, Switzerland; Epidemiology, Biostatistics, and Prevention Institute, University of Zurich, Switzerland
| | | | - Joël Floris
- Institute of Evolutionary Medicine, University of Zurich, Switzerland; Department of History, University of Zurich, Switzerland
| | - Kaspar Staub
- Institute of Evolutionary Medicine, University of Zurich, Switzerland.
| |
Collapse
|
5
|
Chiok KR, Dhar N, Banerjee A. Mycobacterium tuberculosis and SARS-CoV-2 co-infections: The knowns and unknowns. iScience 2023; 26:106629. [PMID: 37091987 PMCID: PMC10082467 DOI: 10.1016/j.isci.2023.106629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Health impacts of Mycobacterium tuberculosis (Mtb) and SARS-CoV-2 co-infections are not fully understood. Both pathogens modulate host responses and induce immunopathology with extensive lung damage. With a quarter of the world's population harboring latent TB, exploring the relationship between SARS-CoV-2 infection and its effect on the transition of Mtb from latent to active form is paramount to control this pathogen. The effects of active Mtb infection on establishment and severity of COVID-19 are also unknown, despite the ability of TB to orchestrate profound long-lasting immunopathologies in the lungs. Absence of mechanistic studies and co-infection models hinder the development of effective interventions to reduce the health impacts of SARS-CoV-2 and Mtb co-infection. Here, we highlight dysregulated immune responses induced by SARS-CoV-2 and Mtb, their potential interplay, and implications for co-infection in the lungs. As both pathogens master immunomodulation, we discuss relevant converging and diverging immune-related pathways underlying SARS-CoV-2 and Mtb co-infections.
Collapse
Affiliation(s)
- Kim R Chiok
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Neeraj Dhar
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Respiratory Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Respiratory Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
6
|
Mouse Models for Mycobacterium tuberculosis Pathogenesis: Show and Do Not Tell. Pathogens 2022; 12:pathogens12010049. [PMID: 36678397 PMCID: PMC9865329 DOI: 10.3390/pathogens12010049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
Science has been taking profit from animal models since the first translational experiments back in ancient Greece. From there, and across all history, several remarkable findings have been obtained using animal models. One of the most popular models, especially for research in infectious diseases, is the mouse. Regarding research in tuberculosis, the mouse has provided useful information about host and bacterial traits related to susceptibility to the infection. The effect of aging, sexual dimorphisms, the route of infection, genetic differences between mice lineages and unbalanced immunity scenarios upon Mycobacterium tuberculosis infection and tuberculosis development has helped, helps and will help biomedical researchers in the design of new tools for diagnosis, treatment and prevention of tuberculosis, despite various discrepancies and the lack of deep study in some areas of these traits.
Collapse
|
7
|
van Doren TP. Biocultural perspectives of infectious diseases and demographic evolution: Tuberculosis and its comorbidities through history. Evol Anthropol 2022; 32:100-117. [PMID: 36436141 DOI: 10.1002/evan.21970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/09/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022]
Abstract
Anthropologists recognize the importance of conceptualizing health in the context of the mutually evolving nature of biology and culture through the biocultural approach, but biocultural anthropological perspectives of infectious diseases and their impacts on humans (and vice versa) through time are relatively underrepresented. Tuberculosis (TB) has been a constant companion of humans for thousands of years and has heavily influenced population health in almost every phase of cultural and demographic evolution. TB in human populations has been dramatically influenced by behavior, demographic and epidemiological shifts, and other comorbidities through history. This paper critically discusses TB and some of its major comorbidities through history within a biocultural framework to show how transitions in human demography and culture affected the disease-scape of TB. In doing so, I address the potential synthesis of biocultural and epidemiological transition theory to better comprehend the mutual evolution of infectious diseases and humans.
Collapse
|
8
|
Paz LC, Saavedra CAPB, Braga JU, Kimura H, Evangelista MDSN. [Analysis of the seasonality of tuberculosis in Brazilian capitals and the Federal District from 2001 to 2019]. CAD SAUDE PUBLICA 2022; 38:e00291321. [PMID: 35894370 DOI: 10.1590/0102-311xpt291321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/29/2022] [Indexed: 11/21/2022] Open
Abstract
The literature has few studies on the seasonality of tuberculosis (TB) in the southern hemisphere, entailing the fill of this knowledge gap. This study aims to analyze whether TB incidence in Brazilian capitals and the Federal District is seasonal. This is an ecological study of a time series (2001-2019) of TB cases, conducted with 26 capitals and the Federal District. The Ministry of Health database, with 516,524 TB cases, was used. Capitals and the Federal District were divided into five groups based on social indicators, disease burden, and the Koppen climate classification. The seasonal variation of TB notifications and group amplitude were evaluated. We found TB seasonality in Brazil with a 1% significance in all capital groups (Stability assumption and Krusall-Wallis tests, p < 0.01). In the combined seasonality test, capital groups A, D, and E showed seasonality, whereas groups B and C, its probability. Our findings showed that health service supply and/or demand - rather than climate - may be the most relevant underlying factor in TB seasonality. It is challenging to raise the other seasonal factors underlying TB seasonality in tropical regions in the Southern Hemisphere.
Collapse
Affiliation(s)
- Leidijany Costa Paz
- Centro Especializado em Doenças Infecciosas, Secretaria de Estado da Saúde do Distrito Federal, Brasília, Brasil.,Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brasil
| | | | - José Ueleres Braga
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil.,Instituto de Medicina Social, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Herbert Kimura
- Faculdade de Economia, Administração, Contabilidade e Gestão de Políticas Públicas, Universidade de Brasília, Brasília, Brasil
| | | |
Collapse
|
9
|
Leonso AA, Brown K, Prol R, Rawat S, Khunger A, Bromberg R. A Rare Case of Latent Tuberculosis Reactivation Secondary to a COVID-19 Infection. Infect Dis Rep 2022; 14:446-452. [PMID: 35735758 PMCID: PMC9222568 DOI: 10.3390/idr14030048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) and tuberculosis (TB) are currently the two leading causes of death among infectious diseases. As we progress towards a “new normal”, more information is required regarding post-COVID-19 syndromes. We present a case of latent tuberculosis reactivation 3 months after a successful inpatient treatment of COVID-19. A 74-year-old female from the Philippines presented with a new left mid-lung infiltrate with worsening shortness of breath and lethargy for one week prior to admission. The clinical course of the patient deteriorated despite broad-spectrum antibiotics, diuretics, and high-dose steroid therapy requiring intubation and mechanical ventilation. Her sputum culture yielded the microbiological diagnosis of TB. Anti-tubercular medications were started and the patient had a favorable clinical outcome. Our case demonstrates that immunosuppression secondary to COVID-19 and its treatments may promote the development of an active TB infection from a latent infection. It is important to be aware of this potential increase in risk during and after a COVID-19 treatment. This is especially important in high-risk populations to ensure an early diagnosis and prompt management as well as to reduce transmission.
Collapse
Affiliation(s)
- Ana-Alicia Leonso
- Department of Graduate Medical Education, Memorial Hospital West, Pembroke Pines, FL 33028, USA; (R.P.); (S.R.); (A.K.)
- Correspondence: (A.-A.L.); (K.B.)
| | - Kyle Brown
- Department of Pharmacy, Memorial Hospital West, Pembroke Pines, FL 33028, USA
- Correspondence: (A.-A.L.); (K.B.)
| | - Raquel Prol
- Department of Graduate Medical Education, Memorial Hospital West, Pembroke Pines, FL 33028, USA; (R.P.); (S.R.); (A.K.)
| | - Saumya Rawat
- Department of Graduate Medical Education, Memorial Hospital West, Pembroke Pines, FL 33028, USA; (R.P.); (S.R.); (A.K.)
| | - Arjun Khunger
- Department of Graduate Medical Education, Memorial Hospital West, Pembroke Pines, FL 33028, USA; (R.P.); (S.R.); (A.K.)
| | - Romina Bromberg
- Department of Infectious Diseases, Memorial Hospital West, Pembroke Pines, FL 33028, USA;
| |
Collapse
|
10
|
Dheda K, Perumal T, Moultrie H, Perumal R, Esmail A, Scott AJ, Udwadia Z, Chang KC, Peter J, Pooran A, von Delft A, von Delft D, Martinson N, Loveday M, Charalambous S, Kachingwe E, Jassat W, Cohen C, Tempia S, Fennelly K, Pai M. The intersecting pandemics of tuberculosis and COVID-19: population-level and patient-level impact, clinical presentation, and corrective interventions. THE LANCET. RESPIRATORY MEDICINE 2022; 10:603-622. [PMID: 35338841 PMCID: PMC8942481 DOI: 10.1016/s2213-2600(22)00092-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/17/2022] [Accepted: 03/03/2022] [Indexed: 01/19/2023]
Abstract
The global tuberculosis burden remains substantial, with more than 10 million people newly ill per year. Nevertheless, tuberculosis incidence has slowly declined over the past decade, and mortality has decreased by almost a third in tandem. This positive trend was abruptly reversed by the COVID-19 pandemic, which in many parts of the world has resulted in a substantial reduction in tuberculosis testing and case notifications, with an associated increase in mortality, taking global tuberculosis control back by roughly 10 years. Here, we consider points of intersection between the tuberculosis and COVID-19 pandemics, identifying wide-ranging approaches that could be taken to reverse the devastating effects of COVID-19 on tuberculosis control. We review the impact of COVID-19 at the population level on tuberculosis case detection, morbidity and mortality, and the patient-level impact, including susceptibility to disease, clinical presentation, diagnosis, management, and prognosis. We propose strategies to reverse or mitigate the deleterious effects of COVID-19 and restore tuberculosis services. Finally, we highlight research priorities and major challenges and controversies that need to be addressed to restore and advance the global response to tuberculosis.
Collapse
Affiliation(s)
- Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa; South African Medical Research Council (SAMRC) Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa; Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Tahlia Perumal
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa; South African Medical Research Council (SAMRC) Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Harry Moultrie
- Centre for TB, National Institute for Communicable Diseases, Division of the National Health Laboratory Services, Johannesburg, South Africa; School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rubeshan Perumal
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa; SAMRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Aliasgar Esmail
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa; South African Medical Research Council (SAMRC) Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Alex J Scott
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa; South African Medical Research Council (SAMRC) Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Zarir Udwadia
- Department of Pulmonology, P D Hinduja Hospital and Medical Research Centre, Mumbai, India
| | - Kwok Chiu Chang
- Tuberculosis and Chest Service, Department of Health, Hong Kong Special Administrative Region, China
| | - Jonathan Peter
- Allergy and Immunology unit, Division of Allergy and Clinical Immunology, University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa
| | - Anil Pooran
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa; South African Medical Research Council (SAMRC) Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Arne von Delft
- School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa; TB Proof, Cape Town, South Africa
| | | | - Neil Martinson
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Johns Hopkins University Center for TB Research, Baltimore, MD, USA
| | - Marian Loveday
- HIV Prevention Research Unit, South African Medical Research Council, Durban, South Africa
| | - Salome Charalambous
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; The Aurum Institute, Johannesburg, South Africa
| | - Elizabeth Kachingwe
- Centre for TB, National Institute for Communicable Diseases, Division of the National Health Laboratory Services, Johannesburg, South Africa
| | - Waasila Jassat
- Division of Public Health Surveillance and Response, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Cheryl Cohen
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Stefano Tempia
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Kevin Fennelly
- Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Madhukar Pai
- McGill International TB Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Hayes D, Shukla RK, Cheng Y, Gecili E, Merling MR, Szczesniak RD, Ziady AG, Woods JC, Hall-Stoodley L, Liyanage NP, Robinson RT. Tissue-localized immune responses in people with cystic fibrosis and respiratory nontuberculous mycobacteria infection. JCI Insight 2022; 7:157865. [PMID: 35536650 DOI: 10.1172/jci.insight.157865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) are an increasingly common cause of respiratory infection in people with cystic fibrosis (PwCF). Relative to those with no history of NTM infection (CF-NTMNEG), PwCF and a history of NTM infection (CF-NTMPOS) are more likely to develop severe lung disease and experience complications over the course of treatment. In other mycobacterial infections (e.g. tuberculosis), an overexuberant immune response causes pathology and compromises organ function; however, since the immune profiles of CF-NTMPOS and CF-NTMNEG airways are largely unexplored, it is unknown which if any immune responses distinguish these cohorts or concentrate in damaged tissues. Here we evaluated lung lobe-specific immune profiles of three cohorts (CF-NTMPOS, CF-NTMNEG, and non-CF adults) and found that CF-NTMPOS airways are distinguished by a hyper-inflammatory cytokine profile. Importantly, the CF-NTMPOS airway immune profile was dominated by B cells, classical macrophages and the cytokines which support their accumulation. These and other immunological differences between cohorts, including the near absence of NK cells and complement pathway members, were enriched in the most damaged lung lobes. The implications of these findings for our understanding of lung disease in PwCF are discussed, as are how they may inform the development of host-directed therapies to improve NTM disease treatment.
Collapse
Affiliation(s)
- Don Hayes
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States of America
| | - Rajni Kant Shukla
- Department of Microbial Infection and Immunity, The Ohio State University, columbus, United States of America
| | - Yizi Cheng
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States of America
| | - Emrah Gecili
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States of America
| | - Marlena R Merling
- Department of Microbial Infection and Immunity, The Ohio State University, columbus, United States of America
| | - Rhonda D Szczesniak
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States of America
| | - Assem G Ziady
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States of America
| | - Jason C Woods
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States of America
| | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, columbus, United States of America
| | - Namal Pm Liyanage
- Department of Microbial Infection and Immunity, The Ohio State University, columbus, United States of America
| | - Richard T Robinson
- Department of Microbial Infection and Immunity, The Ohio State University, columbus, United States of America
| |
Collapse
|
12
|
Luke E, Swafford K, Shirazi G, Venketaraman V. TB and COVID-19: An Exploration of the Characteristics and Resulting Complications of Co-infection. Front Biosci (Schol Ed) 2022; 14:6. [PMID: 35320917 PMCID: PMC9005765 DOI: 10.31083/j.fbs1401006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) and Coronavirus Disease-19 (COVID-19) infection are two respiratory diseases that are of particular concern epidemiologically. Tuberculosis is one of the oldest diseases recorded in the history of mankind dating back thousands of years. It is estimated that approximately one quarter of the world’s population is infected with latent Mycobacterium tuberculosis (LTBI). This contrasts with COVID-19, which emerged in late 2019. Data continues to accumulate and become available on this pathogen, but the long-term side effect of fibrotic damage in COVID-19 patients evokes parallels between this novel coronavirus and its ancient bacterial affiliate. This similarity as well as several others may incite inquiries on whether coinfection of individuals with latent TB and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lead to excessive fibrosis in the lungs and thus the emergence of an active TB infection. While it is well understood how TB leads to structural and immunological lung complications including granuloma formation, fibrosis, and T cell exhaustion, less is known about the disease course when coinfection with SARS-CoV-2 is present. Past and present research demonstrate that IL-10, TNF-α, IFN class I-III, TGF-β, IL-35, and Regulatory T cells (T-regs) are all important contributors of the characteristics of host response to mycobacterium tuberculosis. It has also been noted with current research that IL-10, TNF-α, IFN class I, II, and III, TGF-β, ACE-2, and T-regs are also important contributors to the host response to the SARS-CoV-2 virus in different ways than they are to the TB pathogen. Both pathogens may lead to an unbalanced inflammatory immune response, and together a shared dysregulation of immune response suggests an increased risk of severity and progression of both diseases. We have reviewed 72 different manuscripts between the years 1992 and 2021. The manuscripts pertaining to the SARS-COV-2 virus specifically are from the years 2020 and 2021. Our literature review aims to explore the biomolecular effects of these contributors to pathogenicity of both diseases along with current publications on TB/COVID-19 coinfection, focusing on the pathogenicity of SARS-CoV-2 infection with both latent and active TB, as well as the challenges in treating TB during the COVID-19 pandemic. The compiled material will then aid the latticework foundation of knowledge for future research leading to a hopeful improved system of therapeutic strategies for coinfection.
Collapse
Affiliation(s)
- Erica Luke
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Kimberly Swafford
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Gabriella Shirazi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| |
Collapse
|
13
|
Chetty VV, Chetty M. Potential benefit of vitamin D supplementation in people with respiratory illnesses, during the COVID-19 pandemic. Clin Transl Sci 2021; 14:2111-2116. [PMID: 34057814 PMCID: PMC8239894 DOI: 10.1111/cts.13044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 11/30/2022] Open
Abstract
This review describes the evidence for the potential benefit of vitamin D supplementation in people with respiratory diseases who may have a higher susceptibility to coronavirus disease 2019 (COVID-19) infection and its consequences. Clinical evidence indicates that vitamin D may reduce the risk of both upper and lower respiratory tract infections and offers benefit particularly in people with vitamin D deficiency. Some evidence exists for a higher incidence of active tuberculosis (TB) in patients who are deficient in vitamin D. An association between low levels of 25(OH)D (the active form of vitamin D) and COVID-19 severity of illness and mortality has also been reported. In addition, low 25(OH)D levels are associated with poor outcomes in acute respiratory distress syndrome (ARDS). The cytokine storm experienced in severe COVID-19 infections results from excessive release of pro-inflammatory cytokines. Due to its immunomodulatory effects, adequate vitamin D levels may cause a decrease in the pro-inflammatory cytokines and an increase in the anti-inflammatory cytokines during COVID-19 infections. Vitamin D deficiency was found in 82.2% of hospitalized COVID-19 cases and 47.2% of population-based controls (p < 0.0001). The available evidence warrants an evaluation of vitamin D supplementation in susceptible populations with respiratory diseases, such as TB, and particularly in those who are deficient in vitamin D. This may mitigate against serious complications of COVID-19 infections or reduce the impact of ARDS in those who have been infected.
Collapse
Affiliation(s)
| | - Manoranjenni Chetty
- Discipline of Pharmaceutical SciencesCollege of Health SciencesUniversity of KwaZulu NatalDurbanSouth Africa
| |
Collapse
|
14
|
Mulenga H, Musvosvi M, Mendelsohn SC, Penn-Nicholson A, Kimbung Mbandi S, Gartland AF, Tameris M, Mabwe S, Africa H, Bilek N, Kafaar F, Khader SA, Carstens B, Hadley K, Hikuam C, Erasmus M, Jaxa L, Raphela R, Nombida O, Kaskar M, Nicol MP, Mbhele S, Van Heerden J, Innes C, Brumskine W, Hiemstra A, Malherbe ST, Hassan-Moosa R, Walzl G, Naidoo K, Churchyard G, Hatherill M, Scriba TJ. Longitudinal Dynamics of a Blood Transcriptomic Signature of Tuberculosis. Am J Respir Crit Care Med 2021; 204:1463-1472. [PMID: 34520313 PMCID: PMC8865716 DOI: 10.1164/rccm.202103-0548oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Rationale Performance of blood transcriptomic tuberculosis (TB) signatures in longitudinal studies and effects of TB-preventive therapy and coinfection with HIV or respiratory organisms on transcriptomic signatures has not been systematically studied. Objectives We evaluated longitudinal kinetics of an 11-gene blood transcriptomic TB signature, RISK11, and effects of TB-preventive therapy (TPT) and respiratory organisms on RISK11 signature score, in HIV-uninfected and HIV-infected individuals. Methods RISK11 was measured in a longitudinal study of RISK11-guided TPT in HIV-uninfected adults, a cross-sectional respiratory organisms cohort, or a longitudinal study in people living with HIV (PLHIV). HIV-uninfected RISK11+ participants were randomized to TPT or no TPT; RISK11− participants received no TPT. PLHIV received standard-of-care antiretroviral therapy and TPT. In the cross-sectional respiratory organisms cohort, viruses and bacteria in nasopharyngeal and oropharyngeal swabs were quantified by real-time quantitative PCR. Measurements and Main Results RISK11+ status was transient in most of the 128 HIV-negative participants with longitudinal samples; more than 70% of RISK11+ participants reverted to RISK11− by 3 months, irrespective of TPT. By comparison, reversion from a RISK11+ state was less common in 645 PLHIV (42.1%). Non-HIV viral and nontuberculous bacterial organisms were detected in 7.2% and 38.9% of the 1,000 respiratory organisms cohort participants, respectively, and among those investigated for TB, 3.8% had prevalent disease. Median RISK11 scores (%) were higher in participants with viral organisms alone (46.7%), viral and bacterial organisms (42.8%), or prevalent TB (85.7%) than those with bacterial organisms other than TB (13.4%) or no organisms (14.2%). RISK11 could not discriminate between prevalent TB and viral organisms. Conclusions Positive RISK11 signature status is often transient, possibly due to intercurrent viral infection, highlighting potentially important challenges for implementation of these biomarkers as new tools for TB control.
Collapse
Affiliation(s)
- Humphrey Mulenga
- University of Cape Town Faculty of Health Sciences, 63726, Pathology, Observatory, South Africa
| | - Munyaradzi Musvosvi
- University of Cape Town, Institute of Infectious Diseases and Molecular Medicine, Observatory, South Africa
| | - Simon C Mendelsohn
- University of Cape Town, 37716, South African Tuberculosis Vaccine Initiative, Cape Town, South Africa
| | - Adam Penn-Nicholson
- University of Cape Town Faculty of Health Sciences, 63726, South Africa Tuberculosis Vaccines Initiative (SATVI), Cape Town, South Africa
| | - Stanley Kimbung Mbandi
- University of Cape Town Faculty of Health Sciences, 63726, South Africa Tuberculosis Vaccines Initiative (SATVI), Cape Town, South Africa
| | - Andrew-Fiore Gartland
- Fred Hutchinson Cancer Research Center, 7286, Vaccine and Infectious Disease Division, Seattle, Washington, United States
| | | | - Simbarashe Mabwe
- University of Cape Town Faculty of Health Sciences, 63726, South African Tuberculosis Vaccine Initiative, Observatory, Cape Town, South Africa
| | - Hadn Africa
- University of Cape Town, South African Tuberculosis Vaccine Initiative, Cape Town, South Africa
| | - Nicole Bilek
- University of Cape Town Faculty of Health Sciences, 63726, South African Tuberculosis Vaccine Initiative, Observatory, Cape Town, South Africa
| | - Fazlin Kafaar
- University of Cape Town Faculty of Health Sciences, 63726, South Africa Tuberculosis Vaccines Initiative (SATVI), Cape Town, South Africa
| | | | - Balie Carstens
- University of Cape Town Faculty of Health Sciences, 63726, South Africa Tuberculosis Vaccines Initiative (SATVI), Cape Town, South Africa
| | - Katie Hadley
- University of Cape Town Faculty of Health Sciences, 63726, South Africa Tuberculosis Vaccines Initiative (SATVI), Cape Town, South Africa
| | - Chris Hikuam
- University of Cape Town Faculty of Health Sciences, 63726, South Africa Tuberculosis Vaccines Initiative (SATVI), Cape Town, South Africa
| | - Mzwandile Erasmus
- University of Cape Town Faculty of Health Sciences, 63726, South African Tuberculosis Vaccine Initiative, Observatory, Cape Town, South Africa
| | - Lungisa Jaxa
- University of Cape Town Faculty of Health Sciences, 63726, South Africa Tuberculosis Vaccines Initiative (SATVI), Cape Town, South Africa
| | - Rodney Raphela
- University of Cape Town Faculty of Health Sciences, 63726, South Africa Tuberculosis Vaccines Initiative (SATVI), Cape Town, South Africa
| | - Onke Nombida
- University of Cape Town Faculty of Health Sciences, 63726, South Africa Tuberculosis Vaccines Initiative (SATVI), Cape Town, South Africa
| | - Masooda Kaskar
- University of Cape Town Faculty of Health Sciences, 63726, South Africa Tuberculosis Vaccines Initiative (SATVI), Cape Town, South Africa
| | - Mark P Nicol
- University of Capetown, Pediatrics & Child Health, Cape Town, South Africa
| | - Slindile Mbhele
- University of Capetown, Pediatrics & Child Health, Cape Town, South Africa
| | - Judi Van Heerden
- University of Capetown, Pediatrics & Child Health, Cape Town, South Africa
| | - Craig Innes
- The Aurum Institute for Health Research, 72030, Parktown, South Africa
| | - William Brumskine
- The Aurum Institute for Health Research, 72030, Parktown, South Africa
| | - Andriëtte Hiemstra
- 7DST/NRF Centre of Excellence for Biomedical TB Research and SAMRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch, South Africa
| | | | | | | | | | | | | | - Thomas J Scriba
- University of Cape Town, Institute of Infectious Diseases and Molecular Medicine, Observatory, South Africa;
| | | |
Collapse
|
15
|
van Doren TP, Sattenspiel L. The 1918 influenza pandemic did not accelerate tuberculosis mortality decline in early-20th century Newfoundland: Investigating historical and social explanations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:179-191. [PMID: 34009662 DOI: 10.1002/ajpa.24332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/26/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The selective mortality hypothesis of tuberculosis after the 1918 influenza pandemic, laid out by Noymer and colleagues, suggests that acute exposure or pre-existing infection with tuberculosis (TB) increased the probability of pneumonia and influenza (P&I) mortality during the 1918 influenza pandemic, leading to a hastened decline of TB mortality in post-pandemic years. This study describes cultural determinants of the post-pandemic TB mortality patterns in Newfoundland and evaluates whether there is support for this observation. MATERIALS AND METHODS Death records and historical documents from the Provincial Archives of Newfoundland and Labrador were used to calculate age-standardized island-wide and sex-based TB mortality, as well as region-level TB mortality, for 1900-1939. The Joinpoint Regression Program (version 4.8.0.1) was used to estimate statistically significant changes in mortality rates. RESULTS Island-wide, females had consistently higher TB mortality for the duration of the study period and a significant shift to lower TB mortality beginning in 1928. There was no similar predicted significant decline for males. On the regional level, no models predicted a significant decline after the 1918 influenza pandemic, except for the West, where significant decline was predicted in the late-1930s. DISCUSSION Although there was no significant decline in TB mortality observed immediately post-pandemic, as has been shown for other Western nations, the female post-pandemic pattern suggests a decline much later. The general lack of significant decrease in TB mortality rate is likely due to Newfoundland's poor nutrition and lack of centralized healthcare rather than a biological interaction between P&I and TB.
Collapse
Affiliation(s)
- Taylor P van Doren
- Department of Anthropology, University of Missouri, Columbia, Missouri, USA
| | - Lisa Sattenspiel
- Department of Anthropology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
16
|
Naveed M, Naeem M, ur Rahman M, Gul Hilal M, Kakakhel M, Ali G, Hassan A. Review of potential risk groups for coronavirus disease 2019 (COVID-19). New Microbes New Infect 2021; 41:100849. [PMID: 33614041 PMCID: PMC7879740 DOI: 10.1016/j.nmni.2021.100849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/17/2021] [Accepted: 02/01/2021] [Indexed: 01/08/2023] Open
Abstract
The current pandemic of coronavirus disease 19 (COVID-19) is a global issue caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Studies have revealed that this virus results in poorer consequences and a higher rate of mortality in older adults and those with comorbidities such as cardiovascular disease, hypertension, diabetes and prolonged respiratory illness. In this review, we discuss in detail the potential groups at risk of COVID-19 and outline future recommendations to mitigate community transmission of COVID-19. The rate of COVID-19 was high in healthcare workers, smokers, older adults, travellers and pregnant women. Furthermore, patients with severe medical complications such as heart disease, hypertension, respiratory illness, diabetes mellitus and cancer are at higher risk of disease severity and mortality. Therefore, special effort and devotion are needed to diminish the threat of SARS-CoV-2 infection. Proper vaccination, use of sanitizers for handwashing and complete lockdown are recommended to mitigate the chain of COVID-19 transmission.
Collapse
Affiliation(s)
- M. Naveed
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou, 730000, China
| | - M. Naeem
- Department of Microbiology, University of Swabi, Khyber PakhtunKhwa, Pakistan
| | - M. ur Rahman
- College of Life Sciences, Northwest University, Xian, Shaanxi Province, 710069, China
| | - M. Gul Hilal
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - M.A. Kakakhel
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - G. Ali
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - A. Hassan
- Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
17
|
Pathak L, Gayan S, Pal B, Talukdar J, Bhuyan S, Sandhya S, Yeger H, Baishya D, Das B. Coronavirus Activates an Altruistic Stem Cell-Mediated Defense Mechanism that Reactivates Dormant Tuberculosis: Implications in Coronavirus Disease 2019 Pandemic. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1255-1268. [PMID: 33887214 PMCID: PMC8054533 DOI: 10.1016/j.ajpath.2021.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 01/08/2023]
Abstract
We postulate that similar to bacteria, adult stem cells may also exhibit an altruistic defense mechanism to protect their niche against external threat. Herein, we report mesenchymal stem cell (MSC)–based altruistic defense against a mouse model of coronavirus, murine hepatitis virus-1 (MHV-1) infection of lung. MHV-1 infection led to reprogramming of CD271+ MSCs in the lung to an enhanced stemness phenotype that exhibits altruistic behavior, as per previous work in human embryonic stem cells. The reprogrammed MSCs exhibited transient expansion for 2 weeks, followed by apoptosis and expression of stemness genes. The conditioned media of the reprogrammed MSCs exhibited direct antiviral activity in an in vitro model of MHV-1–induced toxicity to type II alveolar epithelial cells by increasing their survival/proliferation and decreasing viral load. Thus, the reprogrammed MSCs can be identified as altruistic stem cells (ASCs), which exert a unique altruistic defense against MHV-1. In a mouse model of MSC-mediated Mycobacterium tuberculosis (MTB) dormancy, MHV-1 infection in the lung exhibited 20-fold lower viral loads than the MTB-free control mice on the third week of viral infection, and exhibited six-fold increase of ASCs, thereby enhancing the altruistic defense. Notably, these ASCs exhibited intracellular replication of MTB, and their extracellular release. Animals showed tuberculosis reactivation, suggesting that dormant MTB may exploit ASCs for disease reactivation.
Collapse
Affiliation(s)
- Lekhika Pathak
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Sukanya Gayan
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Bidisha Pal
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India; Department of Stem Cell and Infection, Thoreau Lab for Global Health, University of Massachusetts, Lowell, Massachusetts
| | - Joyeeta Talukdar
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Seema Bhuyan
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Sorra Sandhya
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India
| | - Herman Yeger
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Debabrat Baishya
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India; Department of Bioengineering and Technology, Gauhati University, Guwahati, India
| | - Bikul Das
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, India; Department of Stem Cell and Infection, Thoreau Lab for Global Health, University of Massachusetts, Lowell, Massachusetts.
| |
Collapse
|
18
|
Gutiérrez-González LH, Juárez E, Carranza C, Carreto-Binaghi LE, Alejandre A, Cabello-Gutiérrrez C, Gonzalez Y. Immunological Aspects of Diagnosis and Management of Childhood Tuberculosis. Infect Drug Resist 2021; 14:929-946. [PMID: 33727834 PMCID: PMC7955028 DOI: 10.2147/idr.s295798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
The diagnosis of tuberculosis (TB) in children is difficult because of the low sensitivity and specificity of traditional microbiology techniques in this age group. Whereas in adults the culture of Mycobacterium tuberculosis (M. tuberculosis), the gold standard test, detects 80% of positive cases, it only detects around 30-40% of cases in children. The new methods based on the immune response to M. tuberculosis infection could be affected by many factors. It is necessary to evaluate the medical record, clinical features, presence of drug-resistant M. tuberculosis strains, comorbidities, and BCG vaccination history for the diagnosis in children. There is no ideal biomarker for all TB cases in children. A new strategy based on personalized diagnosis could be used to evaluate specific molecules produced by the host immune response and make therapeutic decisions in each child, thereby changing standard immunological signatures to personalized signatures in TB. In this way, immune diagnosis, prognosis, and the use of potential immunomodulators as adjunct TB treatments will meet personalized treatment.
Collapse
Affiliation(s)
| | - Esmeralda Juárez
- Microbiology Department, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Claudia Carranza
- Microbiology Department, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Laura E Carreto-Binaghi
- Microbiology Department, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Alejandro Alejandre
- Pediatric Clinic, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Carlos Cabello-Gutiérrrez
- Virology and Mycology Department, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Yolanda Gonzalez
- Microbiology Department, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
19
|
Musso M, Di Gennaro F, Gualano G, Mosti S, Cerva C, Fard SN, Libertone R, Di Bari V, Cristofaro M, Tonnarini R, Castilletti C, Goletti D, Palmieri F. Concurrent cavitary pulmonary tuberculosis and COVID-19 pneumonia with in vitro immune cell anergy. Infection 2021; 49:1061-1064. [PMID: 33454928 PMCID: PMC7811686 DOI: 10.1007/s15010-021-01576-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/02/2021] [Indexed: 12/31/2022]
Abstract
Tuberculosis (TB) is top infectious disease killer caused by a single organism responsible for 1.5 million deaths in 2018. Both COVID-19 and the pandemic response are risking to affect control measures for TB and continuity of essential services for people affected by this infection in western countries and even more in developing countries. Knowledge about concomitant pulmonary TB and COVID-19 is extremely limited. The double burden of these two diseases can have devastating effects. Here, we describe from both the clinical and the immunological point of view a case of a patient with in vitro immune cell anergy affected by bilateral cavitary pulmonary TB and subsequent COVID-19-associated pneumonia with a worst outcome. COVID-19 can be a precipitating factor in TB respiratory failure and, during ongoing SARS-COV-2 pandemic, clinicians must be aware of this possible co-infection in differential diagnosis of patients with active TB and new or worsening chest imaging.
Collapse
Affiliation(s)
- Maria Musso
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy.
| | - Francesco Di Gennaro
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy
| | - Gina Gualano
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy
| | - Silvia Mosti
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy
| | - Carlotta Cerva
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy
| | - Saeid Najafi Fard
- Translational Research Unit, National Institute for Infectious Diseases "L. Spallanzani", IRCCS, Rome, Italy
| | - Raffaella Libertone
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy
| | - Virginia Di Bari
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy
| | - Massimo Cristofaro
- Diagnostic Imaging Unit, National Institute of Infectious Diseases "L. Spallanzani", IRCCS, Rome, Italy
| | - Roberto Tonnarini
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy
| | - Concetta Castilletti
- Laboratory of Virology, National Institute of Infectious Diseases "L. Spallanzani", IRCCS, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases "L. Spallanzani", IRCCS, Rome, Italy
| | - Fabrizio Palmieri
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy
| |
Collapse
|
20
|
Lagare A, Rajatonirina S, Testa J, Mamadou S. The epidemiology of seasonal influenza after the 2009 influenza pandemic in Africa: a systematic review. Afr Health Sci 2020; 20:1514-1536. [PMID: 34394213 PMCID: PMC8351825 DOI: 10.4314/ahs.v20i4.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Influenza infection is a serious public health problem that causes an estimated 3 to 5 million cases and 250,000 deaths worldwide every year. The epidemiology of influenza is well-documented in high- and middle-income countries, however minimal effort had been made to understand the epidemiology, burden and seasonality of influenza in Africa. This study aims to assess the state of knowledge of seasonal influenza epidemiology in Africa and identify potential data gaps for policy formulation following the 2009 pandemic. Method We reviewed articles from Africa published into four databases namely: MEDLINE (PubMed), Google Scholar, Cochrane Library and Scientific Research Publishing from 2010 to 2019. Results We screened titles and abstracts of 2070 studies of which 311 were selected for full content evaluation and 199 studies were considered. Selected articles varied substantially on the basis of the topics they addressed covering the field of influenza surveillance (n=80); influenza risk factors and co-morbidities (n=15); influenza burden (n=37); influenza vaccination (n=40); influenza and other respiratory pathogens (n=22) and influenza diagnosis (n=5). Conclusion Significant progress has been made since the last pandemic in understanding the influenza epidemiology in Africa. However, efforts still remain for most countries to have sufficient data to allow countries to prioritize strategies for influenza prevention and control.
Collapse
Affiliation(s)
- Adamou Lagare
- Centre de Recherche Médicale et Sanitaire (CERMES), Niamey, Niger
| | | | - Jean Testa
- Centre de Recherche Médicale et Sanitaire (CERMES), Niamey, Niger
| | | |
Collapse
|
21
|
Influenza A Virus Inhibits RSV Infection via a Two-Wave Expression of IFIT Proteins. Viruses 2020; 12:v12101171. [PMID: 33081322 PMCID: PMC7589235 DOI: 10.3390/v12101171] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Influenza viruses and respiratory syncytial virus (RSV) are respiratory viruses that primarily circulate worldwide during the autumn and winter seasons. Seasonal surveillance has shown that RSV infection generally precedes influenza. However, in the last four winter seasons (2016–2020) an overlap of the morbidity peaks of both viruses was observed in Israel, and was paralleled by significantly lower RSV infection rates. To investigate whether the influenza A virus inhibits RSV, human cervical carcinoma (HEp2) cells or mice were co-infected with influenza A and RSV. Influenza A inhibited RSV growth, both in vitro and in vivo. Mass spectrometry analysis of mouse lungs infected with influenza A identified a two-wave pattern of protein expression upregulation, which included members of the interferon-induced protein with the tetratricopeptide (IFITs) family. Interestingly, in the second wave, influenza A viruses were no longer detectable in mouse lungs. In addition, knockdown and overexpression of IFITs in HEp2 cells affected RSV multiplicity. In conclusion, influenza A infection inhibits RSV infectivity via upregulation of IFIT proteins in a two-wave modality. Understanding the immune system involvement in the interaction between influenza A and RSV viruses will contribute to the development of future treatment strategies against these viruses.
Collapse
|
22
|
Tuberculosis and COVID-19: Lessons from the Past Viral Outbreaks and Possible Future Outcomes. Can Respir J 2020; 2020:1401053. [PMID: 32934758 PMCID: PMC7479474 DOI: 10.1155/2020/1401053] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/29/2020] [Accepted: 08/28/2020] [Indexed: 01/08/2023] Open
Abstract
Background The threat of contagious infectious diseases is constantly evolving as demographic explosion, travel globalization, and changes in human lifestyle increase the risk of spreading pathogens, leading to accelerated changes in disease landscape. Of particular interest is the aftermath of superimposing viral epidemics (especially SARS-CoV-2) over long-standing diseases, such as tuberculosis (TB), which remains a significant disease for public health worldwide and especially in emerging economies. Methods and Results The PubMed electronic database was systematically searched for relevant articles linking TB, influenza, and SARS-CoV viruses and subsequently assessed eligibility according to inclusion criteria. Using a data mining approach, we also queried the COVID-19 Open Research Dataset (CORD-19). We aimed to answer the following questions: What can be learned from other coronavirus outbreaks (focusing on TB patients)? Is coinfection (TB and SARS-CoV-2) more severe? Is there a vaccine for SARS-CoV-2? How does the TB vaccine affect COVID-19? How does one diagnosis affect the other? Discussions. Few essential elements about TB and SARS-CoV coinfections were discussed. First, lessons from past outbreaks (other coronaviruses) and influenza pandemic/seasonal outbreaks have taught the importance of infection control to avoid the severe impact on TB patients. Second, although challenging due to data scarcity, investigating the pathological pathways linking TB and SARS-CoV-2 leads to the idea that their coexistence might yield a more severe clinical evolution. Finally, we addressed the issues of vaccination and diagnostic reliability in the context of coinfection. Conclusions Because viral respiratory infections and TB impede the host's immune responses, it can be assumed that their lethal synergism may contribute to more severe clinical evolution. Despite the rapidly growing number of cases, the data needed to predict the impact of the COVID-19 pandemic on patients with latent TB and TB sequelae still lies ahead. The trial is registered with NCT04327206, NCT01829490, and NCT04121494.
Collapse
|
23
|
Husain AA, Monaghan TM, Kashyap RS. Impact of COVID-19 pandemic on tuberculosis care in India. Clin Microbiol Infect 2020; 27:293-294. [PMID: 32822881 PMCID: PMC7434422 DOI: 10.1016/j.cmi.2020.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Aliabbas A Husain
- Research Centre, Dr G. M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur (Maharashtra), India
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Rajpal Singh Kashyap
- Research Centre, Dr G. M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur (Maharashtra), India.
| |
Collapse
|
24
|
Marimuthu Y, Nagappa B, Sharma N, Basu S, Chopra KK. COVID-19 and tuberculosis: A mathematical model based forecasting in Delhi, India. Indian J Tuberc 2020; 67:177-181. [PMID: 32553309 PMCID: PMC7214306 DOI: 10.1016/j.ijtb.2020.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND There is emerging evidence that patients with Latent Tuberculosis Infection(LTBI) and Tuberculosis(TB) disease have an increased risk of the SARS-CoV-2 infection and predisposition towards developing severe COVID-19 pneumonia. In this study we attempted to estimate the number of TB patients infected with SARS-CoV-2 and have severe disease during the COVID-19 epidemic in Delhi, India. METHODS Susceptible-Exposed-Infectious-Recovered (SEIR) model was used to estimate the number of COVID-19 cases in Delhi. Assuming the prevalence of TB in Delhi to be 0.55%, 53% of SARS-CoV2 infected TB cases to present with severe disease we estimated the number of SARS-CoV2 infected TB cases and the number of severe patients. The modelling used estimated R0 for two scenarios, without any intervention and with public health interventions. RESULTS We observed that the peak of SARS-CoV-2-TB co-infected patients would occur on the 94th day in absence of public health interventions and on 138th day in presence of interventions. There could be 20,880 SARS-CoV-2 infected TB cases on peak day of epidemic when interventions are implemented and 27,968 cases in the absence of intervention. Among them, there could be 14,823 patients with severe disease when no interventions are implemented and 11,066 patients with severe disease in the presence of intervention. CONCLUSION The importance of primary prevention measures needs to be emphasized especially in TB patients. The TB treatment centres and hospitals needs to be prepared for early diagnosis and management of severe COVID-19 in TB patients.
Collapse
Affiliation(s)
- Yamini Marimuthu
- Department of Community Medicine, Maulana Azad Medical College, New Delhi, 110002, India.
| | - Bharathnag Nagappa
- Department of Epidemiology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Nandini Sharma
- Department of Community Medicine, Maulana Azad Medical College, New Delhi, 110002, India
| | - Saurav Basu
- Department of Community Medicine, Maulana Azad Medical College, New Delhi, 110002, India
| | | |
Collapse
|
25
|
Wang Y, Xu C, Ren J, Wu W, Zhao X, Chao L, Liang W, Yao S. Secular Seasonality and Trend Forecasting of Tuberculosis Incidence Rate in China Using the Advanced Error-Trend-Seasonal Framework. Infect Drug Resist 2020; 13:733-747. [PMID: 32184635 PMCID: PMC7062399 DOI: 10.2147/idr.s238225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/25/2020] [Indexed: 12/27/2022] Open
Abstract
Objective Tuberculosis (TB) is a major public health problem in China, and contriving a long-term forecast is a useful aid for better launching prevention initiatives. Regrettably, such a forecasting method with robust and accurate performance is still lacking. Here, we aim to investigate its potential of the error-trend-seasonal (ETS) framework through a series of comparative experiments to analyze and forecast its secular epidemic seasonality and trends of TB incidence in China. Methods We collected the TB incidence data from January 1997 to August 2019, and then partitioning the data into eight different training and testing subsamples. Thereafter, we constructed the ETS and seasonal autoregressive integrated moving average (SARIMA) models based on the training subsamples, and multiple performance indices including the mean absolute deviation, mean absolute percentage error, root-mean-squared error, and mean error rate were adopted to assess their simulation and projection effects. Results In the light of the above performance measures, the ETS models provided a pronounced improvement for the long-term seasonality and trend forecasting in TB incidence rate over the SARIMA models, be it in various training or testing subsets apart from the 48-step ahead forecasting. The descriptive results to the data revealed that TB incidence showed notable seasonal characteristics with predominant peaks of spring and early summer and began to be plunging at on average 3.722% per year since 2008. However, this rate reduced to 2.613% per year since 2015 and furthermore such a trend would be predicted to continue in years ahead. Conclusion The ETS framework has the ability to conduct long-term forecasting for TB incidence, which may be beneficial for the long-term planning of the TB prevention and control. Additionally, considering the predicted dropping rate of TB morbidity, more particular strategies should be formulated to dramatically accelerate progress towards the goals of the End TB Strategy.
Collapse
Affiliation(s)
- Yongbin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Chunjie Xu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, People's Republic of China
| | - Jingchao Ren
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Weidong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Xiangmei Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Ling Chao
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Wenjuan Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Sanqiao Yao
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| |
Collapse
|
26
|
Walaza S, Cohen C, Tempia S, Moyes J, Nguweneza A, Madhi SA, McMorrow M, Cohen AL. Influenza and tuberculosis co-infection: A systematic review. Influenza Other Respir Viruses 2019; 14:77-91. [PMID: 31568678 PMCID: PMC6928059 DOI: 10.1111/irv.12670] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
Introduction There are limited data on risk of severe disease or outcomes in patients with influenza and pulmonary tuberculosis (PTB) co‐infection compared to those with single infection. Methods We conducted a systematic review of published literature on the interaction of influenza viruses and PTB. Studies were eligible for inclusion if they presented data on prevalence, disease association, presentation or severity of laboratory‐confirmed influenza among clinically diagnosed or laboratory‐confirmed PTB cases. We searched eight databases from inception until December 2018. Summary characteristics of each study were extracted, and a narrative summary was presented. Cohort or case‐control studies were assessed for potential bias using the Newcastle‐Ottawa scale. Results We assessed 5154 abstracts, reviewed 146 manuscripts and included 19 studies fulfilling selection criteria (13 human and six animal). Of seven studies reporting on the possible effect of the underlying PTB disease in patients with influenza, three of four analytical studies reported no association with disease severity of influenza infection in those with PTB, whilst one study reported PTB as a risk factor for influenza‐associated hospitalization. An association between influenza infection and PTB disease was found in three of five analytical studies; whereas the two other studies reported a high frequency of PTB disease progression and complications among patients with seasonal influenza co‐infection. Conclusion Human analytical studies of an association between co‐infection and severe influenza‐ or PTB‐associated disease or increased prevalence of influenza co‐infection in individuals' hospitalized for PTB were not conclusive. Data are limited from large, high‐quality, analytical epidemiological studies with laboratory‐confirmed endpoints.
Collapse
Affiliation(s)
- Sibongile Walaza
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl Cohen
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stefano Tempia
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.,Influenza Program, Centers for Disease Control and Prevention, Pretoria, South Africa
| | - Jocelyn Moyes
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Athermon Nguweneza
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Shabir A Madhi
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa
| | - Meredith McMorrow
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.,Influenza Program, Centers for Disease Control and Prevention, Pretoria, South Africa.,U.S. Public Health Service, Rockville, MD, USA
| | - Adam L Cohen
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.,Influenza Program, Centers for Disease Control and Prevention, Pretoria, South Africa.,Global Immunization Monitoring and Surveillance, Expanded Programme on Immunization Department of Immunization, Vaccines and Biologicals World Health Organization, Geneva, Switzerland
| |
Collapse
|