1
|
Coperchini F, Greco A, Teliti M, Denegri M, Croce L, Calì B, Gallo M, Arpa G, Chytiris S, Magri F, Rotondi M. In vitro study of the UV-filter homosalate effects on rat and human thyroid cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125063. [PMID: 39366447 DOI: 10.1016/j.envpol.2024.125063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Homosalate is a UV-B filter, commonly used in sunscreens and personal-care products. Homosalate was shown to exert estrogenic and anti-androgenic effects in animal models, while few data are available on the effects of Homosalate on thyroid cells. The aim of this study was to evaluate if Homosalate exposure could exert adverse effect on thyroid cells in vitro. FRTL-5 and NHT were treated with increasing concentration of Homosalate for 24-48-72 h. Cell viability was assessed by WST-1. Cell proliferation was evaluated by cristal violet. Micronucleus staining was performed to assess genotoxicity. mRNA levels of thyroid-related genes (TSHR, TPO, TG, NIS, and PAX8) were evaluated by RT-PCR. Changes in ROS production by FRTL-5 and NHT were assessed with H2DCFDA. Homosalate significantly reduced cell viability after 72 h in FRTL-5 starting from the concentration 250 μM, while in NHT, Homosalate exposure significantly reduced cell viability after 48 and 72 h only at highest concentration (2000 μM). Cell proliferation was not modified by Homosalate at any concentration and time-point. Homosalate significantly up-regulated mRNA expression levels of TPO and Tg genes in FRTL-5, while a significant increase only in Tg mRNA expression was observed in NHT. No changes in ROS production was found in both cell types. The present study suggest that the effects of Homosalate exposure may differ according to the type of cell tested. The in vitro exposure of thyroid cells to Homosalate produces: i) cytotoxicity at high concentrations or after long time of incubation, ii) genotoxicity only in rat thyroid cells at the highest concentration, iii) upregulation of Tg mRNA in both thyroid cell types and of TPO mRNA in rat thyroid cells, iv) no changes in cell proliferation or oxidative stress. Further studies on the effects of Homosalate on thyroid cells should be encouraged.
Collapse
Affiliation(s)
- Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Alessia Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Marsida Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy
| | - Marco Denegri
- Unit of Molecular Cardiology, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy
| | - Benedetto Calì
- Istituti Clinici Scientifici Maugeri IRCCS, Department of General and Minimally Invasive Surgery, Pavia (PV), 27100, Italy
| | - Maria Gallo
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Giovanni Arpa
- Unit of Anatomic Pathology, ICS Maugeri-IRCCS SpA SB, Pavia, Italy
| | - Spyridon Chytiris
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy
| | - Flavia Magri
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy.
| |
Collapse
|
2
|
Silva EL, Mínguez-Alarcón L, Coull B, Hart JE, James-Todd T, Calafat AM, Ford JB, Hauser R, Mahalingaiah S. Urinary benzophenone-3 concentrations and ovarian reserve in a cohort of subfertile women. Fertil Steril 2024; 122:494-503. [PMID: 38697237 PMCID: PMC11374476 DOI: 10.1016/j.fertnstert.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024]
Abstract
OBJECTIVE To evaluate the association between the urinary benzophenone-3 concentrations and measures of ovarian reserve (OR) among women in the Environment and Reproductive Health study seeking fertility treatment at Massachusetts General Hospital (MGH) in Boston, Massachusetts. DESIGN Prospective cohort study. SETTING MGH infertility clinic in Boston, Massachusetts. PATIENT(S) Women in the Environment and Reproductive Health cohort seeking fertility treatment. INTERVENTION(S) Women contributed spot urine samples prior to assessment of OR outcomes that were analyzed for benzophenone-3 concentrations. MAIN OUTCOME MEASURE(S) Antral follicle count (AFC) and day 3 follicle-stimulating hormone (FSH) levels were evaluated as part of standard infertility workups during unstimulated menstrual cycles. Quasi-Poisson and linear regression models were used to evaluate the association of the specific gravity-adjusted urinary benzophenone-3 concentrations with AFC and FSH, with adjustment for age and physical activity. In the secondary analyses, models were stratified by age. RESULT(S) This study included 142 women (mean age ± standard deviation, 36.1 ± 4.6 years; range, 22-45 years) enrolled between 2009 and 2017 with both urinary benzophenone-3 and AFC measurements and 57 women with benzophenone-3 and FSH measurements. Most women were White (78%) and highly educated (49% with a graduate degree). Women contributed a mean of 2.7 urine samples (range, 1-10), with 37% contributing ≥2 samples. Benzophenone-3 was detected in 98% of samples. The geometric mean specific gravity-corrected urinary benzophenone-3 concentration was 85.9 μg/L (geometric standard deviation, 6.2). There were no associations of benzophenone-3 with AFC and day 3 FSH in the full cohort. In stratified models, a 1-unit increase in the log geometric mean benzophenone-3 concentration was associated with a 0.91 (95% confidence interval, 0.86-0.97) times lower AFC among women aged ≤35 years and an increase in the FSH concentration of 0.73 (95% confidence interval, 0.12-1.34) IU/L among women aged >35 years. CONCLUSION(S) In the main models, urinary benzophenone-3 was not associated with OR. However, younger patients may be vulnerable to the potential effects of benzophenone-3 on AFC. Further research is warranted.
Collapse
Affiliation(s)
- Emily L Silva
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Brent Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jaime E Hart
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Shruthi Mahalingaiah
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
3
|
Qusa M, Qosa H, Volpe DA. Evaluation of In Vitro Metabolism- and Transporter-Based Drug Interactions with Sunscreen Active Ingredients. Pharm Res 2024; 41:1613-1620. [PMID: 39044045 DOI: 10.1007/s11095-024-03746-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE The aim of this study was to examine the ability of sunscreen active ingredients to inhibit in vitro drug metabolism via cytochrome P450 (CYP) enzymes and drug uptake transporters. METHODS Metabolism assays with human liver microsomes were conducted for CYP2C9, CYP2D6 and CYP3A4 using probe substrates warfarin, bufuralol and midazolam, respectively. Uptake transporter assays with transfected cell lines were conducted for OAT3, OCT2 and OATP1B1 with probe substrates estrone-3-sulfate, metformin and rosuvastatin, respectively. Six sunscreen active ingredients, avobenzone, enzacamene, oxybenzone, octinoxate, trolamine, and homosalate, were evaluated up to their aqueous solubility limits in the assays. RESULTS None of the sunscreen active ingredients inhibited CYP2D6 or CYP3A4 activities in the microsomes at concentration ranges up to tenfold higher than their known clinical total plasma levels. Only enzacamene, oxybenzone and trolamine were found to be inhibitory to CYP2C9 activity with IC50 values of 14.76, 22.46 and 154.7 µM, respectively. Avobenzone, enzacamene, homosalate and octinoxate were not inhibitory to the uptake transporters at the evaluated concentrations. Oxybenzone was inhibitory to OAT3 and OCT2 with IC50 values of 39.93 and 42.77 µM, respectively. Trolamine also inhibited uptake in OAT3 and OCT2 transfected cells with IC50 values of 448.1 and 1376 μM, respectively. CONCLUSIONS Although enzacamene, oxybenzone and trolamine inhibited CYP2C9 and the renal transporters OAT3 and OCT2 in vitro, their IC50 values exceeded total plasma levels found in clinical studies. Therefore, it is unlikely that these sunscreen active ingredients in sunscreen products will inhibit the metabolism or transport of co-administered drugs in consumers.
Collapse
Affiliation(s)
- Mohammed Qusa
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, 20993-0002, USA
| | - Hisham Qosa
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, 20993-0002, USA
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Donna A Volpe
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, 20993-0002, USA.
| |
Collapse
|
4
|
Lorigo M, Quintaneiro C, Breitenfeld L, Cairrao E. Exposure to UV-B filter octylmethoxycinnamate and human health effects: Focus on endocrine disruptor actions. CHEMOSPHERE 2024; 358:142218. [PMID: 38704047 DOI: 10.1016/j.chemosphere.2024.142218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Human skin is the first line of photoprotection against UV radiation. However, despite having its defence mechanisms, the photoprotection that the skin exerts is not enough. To protect human skin, the inclusion of UV filters in the cosmetic industry has grown significantly as a photoprotection strategy. Octylmethoxycinnamate, also designated by octinoxate, or 2-ethylhexyl-4-methoxycinnamate (CAS number: 5466-77-3) is one of the most widely used UV-B filter in the cosmetic industry. The toxic effects of OMC have alarmed the public, but there is still no consensus in the scientific community about its use. This article aims to provide an overview of the UV filters' photoprotection, emphasizing the OMC and the possible negative effects it may have on the public health. Moreover, the current legislation will be addressed. In summary, the recommendations should be rethought to assess their risk-benefit, since the existing literature warns us to endocrine-disrupting effects of OMC. Further studies should be focus on the toxicity of OMC alone, in mixture and should consider its degradation products, to improve the knowledge of its risk assessment as EDC.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal.
| | - Carla Quintaneiro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Luiza Breitenfeld
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal.
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal.
| |
Collapse
|
5
|
Popiół J, Gunia-Krzyżak A, Słoczyńska K, Piska K, Kocot N, Żelaszczyk D, Krupa A, Wójcik-Pszczoła K, Marona H, Pękala E. In vitro safety evaluation of (6-methoxy-9-oxo-9 H-xanthen-2-yl)methyl ( E)-3-(2,4-dimethoxyphenyl)acrylate (K-116) - the novel potential UV filter designed by means of a double chromophore strategy. Xenobiotica 2024; 54:266-278. [PMID: 38819995 DOI: 10.1080/00498254.2024.2363332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/02/2024]
Abstract
The use of topical photoprotection is necessary to reduce adverse effects caused by excessive exposure to ultraviolet radiation. Despite the high standards set for UV filters, many of them may contribute to the occurrence of adverse effects. The newly synthesised compound K-116, the (E)-cinnamoyl xanthone derivative, could be an alternative. We conducted extended in vitro safety evaluation of compound K-116. The research included assessment of irritation potential on skin tissue, evaluation of penetration through the epidermis, and assessment of phototoxicity, and mutagenicity. Additionally, the eco-safety of compound K-116 was evaluated, including an examination of its degradation pathway in the Cunninghamella echinulata model, as well as in silico simulation of the toxicity of both the parent compound and its degradation products. The research showed that compound K-116 tested in future application conditions is deprived of skin irritant potential additionally it does not penetrate through the epidermis. Results showed that K-116 concentrate is not phototoxic and not mutagenic. The eco-safety studies showed that it undergoes biodegradation in 27% in Cunninghamella echinulata model. The parent compound and formed metabolite are less toxic than reference UV filters (octinoxate and octocrylene).
Collapse
Affiliation(s)
- Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Natalia Kocot
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University, Kraków, Poland
| | - Dorota Żelaszczyk
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
6
|
Duda-Madej A, Viscardi S, Grabarczyk M, Topola E, Kozłowska J, Mączka W, Wińska K. Is Camphor the Future in Supporting Therapy for Skin Infections? Pharmaceuticals (Basel) 2024; 17:715. [PMID: 38931382 PMCID: PMC11206849 DOI: 10.3390/ph17060715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The aim of this review is to present the potential application of camphor-a bicyclic monoterpene ketone-in the prevention of skin infections. Skin diseases represent a heterogeneous group of disorders characterized by prolonged symptoms that significantly diminish the quality of life. They affect the dermis, the epidermis, and even subcutaneous tissue. They very often have a bacterial or fungal background. Therapy for dermatological skin disorders is difficult and long-term. Therefore, it is important to find a compound, preferably of natural origin, that (i) prevents the initiation of this infection and (ii) supports the skin's repair process. Based on its documented anti-inflammatory, antibacterial, antifungal, anti-acne, anesthetic, strengthening, and warming properties, camphor can be used as a preventative measure in dermatological infectious diseases and as a component in medical and cosmetic products. This work discusses the structure and physicochemical properties of camphor, its occurrence, and methods of obtaining it from natural sources as well as through chemical synthesis. The use of camphor in industrial preparations is also presented. Additionally, after a detailed review of the literature, the metabolism of camphor, its interactions with other medicinal substances, and its antimicrobial properties against bacteria and fungi involved in skin diseases are discussed with regard to their resistance.
Collapse
Affiliation(s)
- Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (E.T.)
| | - Małgorzata Grabarczyk
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (M.G.); (J.K.); (K.W.)
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (E.T.)
| | - Joanna Kozłowska
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (M.G.); (J.K.); (K.W.)
| | - Wanda Mączka
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (M.G.); (J.K.); (K.W.)
| | - Katarzyna Wińska
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (M.G.); (J.K.); (K.W.)
| |
Collapse
|
7
|
Breakell T, Kowalski I, Foerster Y, Kramer R, Erdmann M, Berking C, Heppt MV. Ultraviolet Filters: Dissecting Current Facts and Myths. J Clin Med 2024; 13:2986. [PMID: 38792526 PMCID: PMC11121922 DOI: 10.3390/jcm13102986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Skin cancer is a global and increasingly prevalent issue, causing significant individual and economic damage. UV filters in sunscreens play a major role in mitigating the risks that solar ultraviolet ra-diation poses to the human organism. While empirically effective, multiple adverse effects of these compounds are discussed in the media and in scientific research. UV filters are blamed for the dis-ruption of endocrine processes and vitamin D synthesis, damaging effects on the environment, induction of acne and neurotoxic and carcinogenic effects. Some of these allegations are based on scientific facts while others are simply arbitrary. This is especially dangerous considering the risks of exposing unprotected skin to the sun. In summary, UV filters approved by the respective governing bodies are safe for human use and their proven skin cancer-preventing properties make them in-dispensable for sensible sun protection habits. Nonetheless, compounds like octocrylene and ben-zophenone-3 that are linked to the harming of marine ecosystems could be omitted from skin care regimens in favor of the myriad of non-toxic UV filters.
Collapse
Affiliation(s)
- Thomas Breakell
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (T.B.); (I.K.); (Y.F.); (R.K.); (M.E.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN) and CCC Alliance WERA, 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| | - Isabel Kowalski
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (T.B.); (I.K.); (Y.F.); (R.K.); (M.E.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN) and CCC Alliance WERA, 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| | - Yannick Foerster
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (T.B.); (I.K.); (Y.F.); (R.K.); (M.E.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN) and CCC Alliance WERA, 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
- Department of Dermatology and Allergy Biederstein, Technical University (TU) Munich, 80802 Munich, Germany
| | - Rafaela Kramer
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (T.B.); (I.K.); (Y.F.); (R.K.); (M.E.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN) and CCC Alliance WERA, 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| | - Michael Erdmann
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (T.B.); (I.K.); (Y.F.); (R.K.); (M.E.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN) and CCC Alliance WERA, 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| | - Carola Berking
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (T.B.); (I.K.); (Y.F.); (R.K.); (M.E.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN) and CCC Alliance WERA, 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| | - Markus V. Heppt
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (T.B.); (I.K.); (Y.F.); (R.K.); (M.E.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN) and CCC Alliance WERA, 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| |
Collapse
|
8
|
Gracia-Cazaña T, Aguilera J, Navarro-Bielsa A, González S, Lim HW, Gilaberte Y. New trends on personalized sunscreens. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12967. [PMID: 38616500 DOI: 10.1111/phpp.12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND/PURPOSE Nowadays, there are emerging trends in customized and personalized photoprotection, focusing on the innovative approaches to enhance sun protection efficacy tailored to individual needs. METHODS We conducted an electronic search of the following databases: MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, Cochrane Skin Group Specialised Skin Register, and TESEO. Specific search terms related to personalized photoprotection and the variables of age, genetic predisposition, skin phototype, photodermatosis, and physiological conditions such as pregnancy, as well as lifestyle habits were used. RESULTS/CONCLUSION The article highlights the challenges and opportunities in adopting personalized photoprotection strategies, aiming to promote skin health and prevent the harmful effects of UV radiation in the era of precision medicine.
Collapse
Affiliation(s)
- Tamara Gracia-Cazaña
- Department of Dermatology, Miguel Servet University Hospital, IIS Aragón, Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
| | - José Aguilera
- Department of Dermatology and Medicine, Faculty of Medicine, Photobiological Dermatology Laboratory, Medical Research Center, University of Malaga, Malaga, Spain
| | - Alba Navarro-Bielsa
- Department of Dermatology, Miguel Servet University Hospital, IIS Aragón, Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
| | | | - Henry W Lim
- Department of Dermatology, Henry Ford Health Systems, Henry Ford Medical Center-New Center One, Detroit, Michigan, USA
| | - Yolanda Gilaberte
- Department of Dermatology, Miguel Servet University Hospital, IIS Aragón, Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
9
|
Colás-Ruiz NR, Pintado-Herrera MG, Santonocito M, Salerno B, Tonini F, Lara-Martín PA, Hampel M. Bioconcentration, biotransformation, and transcriptomic impact of the UV-filter 4-MBC in the manila clam Ruditapes philippinarum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169178. [PMID: 38072265 DOI: 10.1016/j.scitotenv.2023.169178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Ultraviolet filters (UV-filters) are compounds extensively used in personal care products. These compounds are produced at increasing rates and discharged into marine ecosystems in unknown quantities and with no regulation, making them emerging contaminants. Among those, the UV-filter 4-Methylbenzylidene camphor (4-MBC) is used in a variety of personal care products such as sunscreens, soaps, or lipsticks. This high consumption has resulted in its presence in various environmental matrices at in concentrations ranging from ng to μg L-1. Very little is known, however, about the possible adverse effects in exposed non-target organisms. Our study presents novel data on the bioconcentration, toxicokinetics, and molecular effects of 4-MBC in a marine bivalve species of commercial interest, Ruditapes philippinarum (Manila clam). Organisms were exposed at two different concentrations (1.34 and 10.79 μg L-1) of 4-MBC for 7 days, followed by a 3-day depuration period (clean sea waters). Bioconcentration factors (BCF) were 3562 and 2229 L kg-1 for the low and high exposure concentrations, respectively, making this pollutant bioaccumulative according to REACH criteria. Up to six 4-MBC biotransformation products (BTPs)were identified, 2 of them for the first time. Transcriptomic analysis revealed between 658 and 1310 differently expressed genes (DEGs) after 4-MBC exposure. Functional and enrichment analysis of the DEGs showed the activation of the detoxification pathway to metabolize and excrete the bioconcentrated 4-MBC, which also involved energy depletion and caused an impact on the metabolism of carbohydrates and lipids and in the oxidative phosphorylation pathways. Oxidative stress and immune response were also evidenced through the activation of cathepsins and the complement system. Such elucidation of the mode of action of a ubiquitous pollutant such as 4-MBC at the molecular level is valuable both from an environmental point of view and for the sustainable production of Manila clam, one of the most cultivated mollusk species worldwide.
Collapse
Affiliation(s)
- Nieves R Colás-Ruiz
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain.
| | - Marina G Pintado-Herrera
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - Melania Santonocito
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cadiz, Av. República Saharaui s/n, 11510 Puerto Real, Cadiz, Spain
| | - Barbara Salerno
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cadiz, Av. República Saharaui s/n, 11510 Puerto Real, Cadiz, Spain
| | - Federico Tonini
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cadiz, Av. República Saharaui s/n, 11510 Puerto Real, Cadiz, Spain
| | - Pablo A Lara-Martín
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - Miriam Hampel
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
10
|
Wang M, Tan J, Qi Z, Ge X, Li G, Yu Y. A combined study of skin penetration by confocal Raman spectroscopy and human metabolism: A case of benzophenone-3 in sunscreen. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122868. [PMID: 37926406 DOI: 10.1016/j.envpol.2023.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Although numerous experiments on benzophenone-3 (BP3) have shown that it can permeate into the skin, the in vivo penetration situation and urinary metabolic trend have not yet been investigated. In this study, sunscreen containing 5.72% BP3 was selected for human-skin exposure. Confocal Raman was successfully used to investigate in vivo skin penetration of BP3 in sunscreen. During 2 h of skin exposure, the semi-quantitative mean values were 5.50, 13.48, 15.79, and 15.00 μg/cm2 after application of sunscreen for 15, 30, 60, and 120 min, respectively, indicating that BP3 penetrated the stratum corneum during 60-120 min. After a single exposure of human limbs, BP3 was quickly metabolized and excreted through urine and reached its peak concentration in the 6th hour, whereas its metabolite 2,4-dihydroxybenzophenone (BP1) reached its peak concentration in the 9th hour. Meanwhile, 6% BP3 and 1% BP1 were excreted through the urine within 48 h, but the concentration of 2,2'-dihydroxy-4-methoxybenzophenone (BP8) was low, although it varied greatly within 48 h after exposure. During consecutive exposures, a significant correlation (p < 0.05) between BP3 concentration and exposure time was found, indicating that BP3 concentration increased at longer exposure times. Therefore, combining Raman spectroscopy and human sample analysis provided a new way to assess absorption and metabolism of personal care additives in the human body.
Collapse
Affiliation(s)
- Meimei Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jianhua Tan
- National Quality Supervision and Testing Center for Cosmetics (Guangzhou), Guangzhou Quality Supervision and Testing Institute, Guangzhou, 511447, China
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiang Ge
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Broniowska Ż, Tomczyk I, Grzmil P, Bystrowska B, Skórkowska A, Maciejska A, Kazek G, Budziszewska B. Benzophenone-2 exerts reproductive toxicity in male rats. Reprod Toxicol 2023; 120:108450. [PMID: 37543253 DOI: 10.1016/j.reprotox.2023.108450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Benzophenone derivatives such as benzophenone-2 (BP-2) belong to the group of endocrine disrupting compounds (EDCs). Increased exposure to EDCs is considered to be an important factor behind the decline of human fertility. The main aim of the present study was to determine the effect of BP-2 on testicular function specified by sperm analysis, the level of sex hormones and their receptors. Since BP-2 has been shown to activate the immune system, another aim of the research was to verify the hypothesis that the immune system may be contributing to the testis toxicity of this compound and for this purpose changes in macrophage and lymphocyte populations in the testes were determined. BP-2 at a dose of 100 mg/kg was administered dermally, twice daily at a dose of 100 mg/kg for 4-weeks. It was shown that BP-2 reduced the number and motility of sperm and increased the number of sperm showing morphological changes. By determining the concentration of sex hormones, a significant decrease in testosterone levels and an increase in the blood levels of 17β-estradiol were demonstrated. Similar to the results obtained from the blood samples, testosterone levels in the testes were lowered, which could affect sperm parameters. The effect of BP-2 on lowering testosterone levels and the number of sperm cells may be due to immunoactivation in the testes, because it has been detected that this compound significantly decreased the number of the immunosuppressive resident testicular macrophages (TMs) (CD68-CD163+), but increased pro-inflammatory TMs with monocyte-like properties (CD68+CD163-).
Collapse
Affiliation(s)
- Żaneta Broniowska
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, PL, Poland.
| | - Igor Tomczyk
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Paweł Grzmil
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Beata Bystrowska
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, PL, Poland
| | - Alicja Skórkowska
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, PL, Poland
| | - Alicja Maciejska
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, PL, Poland
| | - Grzegorz Kazek
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland
| | - Bogusława Budziszewska
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, PL, Poland
| |
Collapse
|
12
|
Morin SM, Gregory KJ, Medeiros B, Terefe T, Hoshyar R, Alhusseiny A, Chen S, Schwartz RC, Jerry DJ, Vandenberg LN, Schneider SS. Benzophenone-3 exposure alters composition of tumor infiltrating immune cells and increases lung seeding of 4T1 breast cancer cells. ADVANCES IN CANCER BIOLOGY - METASTASIS 2023; 7:100080. [PMID: 37593105 PMCID: PMC10434833 DOI: 10.1016/j.adcanc.2022.100080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Environmental chemicals are a persistent and pervasive part of everyday life. A subset of environmental chemicals are xenoestrogens, compounds that bind to the estrogen receptor (ER) and drive estrogen-related processes. One such chemical, benzophenone-3 (BP3), is a common chemical in sunscreen. It is a potent UV protectant but also is quickly absorbed through the skin. While it has been approved by the FDA, there is a renewed interest in the safety of BP3, particularly in relation to breast cancer. The focus of this study was to examine the impact that BP3 has on triple negative breast cancer (TNBC) through alterations to cells in the immune microenvironment. In this study, we exposed female mice to one of two doses of BP3 before injecting them with a TNBC cell line. Several immune endpoints were examined both in the primary tissues and from in vitro studies of T cell behavior. Our studies revealed that in the lung tumor microenvironment, exposure to BP3 not only increased the number of metastases, but also the total area of tumor coverage. We also found that BP3 caused alterations in immune populations in a tissue-dependent manner, particularly in T cells. Taken together, our data suggest that while BP3 may not directly affect the proliferation of TNBC, growth and metastasis of TNBC-derived tumors can be altered by BP3 exposures via the alterations in the immune populations of the tumor microenvironment.
Collapse
Affiliation(s)
- Stephanie M. Morin
- Pioneer Valley Life Sciences Institute, Springfield, MA, 01199, USA
- Dept of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Kelly J. Gregory
- Pioneer Valley Life Sciences Institute, Springfield, MA, 01199, USA
| | - Brenda Medeiros
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, 01003, USA
| | - Tigist Terefe
- Pioneer Valley Life Sciences Institute, Springfield, MA, 01199, USA
| | - Reyhane Hoshyar
- Breast Cancer and the Environment Research Program, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Ahmed Alhusseiny
- University of Massachusetts Chan Medical School-Baystate, Department of Pathology, Springfield, MA, 01199, USA
| | - Shiuan Chen
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Richard C. Schwartz
- Breast Cancer and the Environment Research Program, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - D. Joseph Jerry
- Dept of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, 01003, USA
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Springfield, MA, 01199, USA
- Dept of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
- University of Massachusetts Chan Medical School-Baystate, Department of Surgery, Springfield, MA, 01199, USA
| |
Collapse
|
13
|
Schmidtkunz C, Küpper K, Weber T, Leng G, Kolossa-Gehring M. A time trend of urinary 4-methylbenzylidene camphor metabolites in young adults from Germany. ENVIRONMENTAL RESEARCH 2023; 228:115833. [PMID: 37028537 DOI: 10.1016/j.envres.2023.115833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/14/2023] [Accepted: 04/01/2023] [Indexed: 05/16/2023]
Abstract
4-methylbenzylidene camphor (4-MBC) is used as a UV-B filter in cosmetics. Two oxidized metabolites of 4-MBC - 3-(4-carboxybenzylidene)camphor (cx-MBC) and 3-(4-carboxybenzylidene)-6-hydroxycamphor (cx-MBC-OH) - were analyzed in 250 24-h urine samples from young adults in Germany. The samples were from the German Environmental Specimen Bank (ESB) and represented exposure in the years 1995, 2005, 2010, 2015 and 2019. A UHPLC-MS/MS method enabled the sensitive determination of both metabolites, with limits of quantification at 0.15 μg L-1 (cx-MBC) and 0.30 μg L-1 (cx-MBC-OH), respectively. A temporal trend of the internal exposure to 4-MBC was clearly noticeable. The metabolite cx-MBC was frequently quantifiable at the beginning of the period: in 70% of the samples in 1995, and 56% in 2005. After 2005, urinary concentrations and detection rates of cx-MBC dropped to reach very low levels. In 2015 and 2019, the detection rate was only 2% and 0%, respectively. A similar trend was observed for cx-MBC-OH, though overall, this metabolite was detected less often and at lower concentration levels than cx-MBC. Nowadays, measurable levels of urinary 4-MBC metabolites are an extremely rare occurrence in Germany. These trends are consistent with the history of 4-MBC use by the cosmetic industry. The highest measured individual concentration of 16.20 μg L-1 (in a sample of the year 2005) was still more than 30 times below the health-based guidance value (HBM-I). An investigation of the ratios between both metabolites uncovered several features of the 4-MBC metabolism which have been essentially overlooked until now. In particular, stereochemical aspects should be explored in future studies. As urine was collected in autumn/winter in Northwestern Germany, the 4-MBC metabolites measured probably do not arise from sunscreen products in a narrow sense. They rather may reveal the use of other skin care products containing 4-MBC for UV protection as an added feature.
Collapse
Affiliation(s)
- Christoph Schmidtkunz
- Currenta GmbH & Co. OHG, Institute of Biomonitoring, Chempark Gebäude Q 18, D-51368 Leverkusen, Germany.
| | - Katja Küpper
- Currenta GmbH & Co. OHG, Institute of Biomonitoring, Chempark Gebäude Q 18, D-51368 Leverkusen, Germany
| | - Till Weber
- Umweltbundesamt, Corrensplatz 1, D-14195 Berlin, Germany
| | - Gabriele Leng
- Currenta GmbH & Co. OHG, Institute of Biomonitoring, Chempark Gebäude Q 18, D-51368 Leverkusen, Germany
| | | |
Collapse
|
14
|
Antunes F, Mota IF, Fangueiro JF, Lopes G, Pintado M, Costa PS. From sugarcane to skin: Lignin as a multifunctional ingredient for cosmetic application. Int J Biol Macromol 2023; 234:123592. [PMID: 36773873 DOI: 10.1016/j.ijbiomac.2023.123592] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Lignin has been suggested as a promising candidate for cosmetic applications due to its remarkable potential to absorb ultraviolet rays and distinctive antioxidant activity. This study aims at evaluating the performance of lignin from sugarcane bagasse (SCB) as natural UV blocker, antioxidant, and pigment. Lignin was extracted from SCB, characterized and incorporated into a blemish balm (BB) cream. The biological potential, concretely, in vitro and in vivo sun protection factor (SPF) and in vitro UVA-PF, and safety were assessed. A high-purity SCB lignin (>92 %) was obtained by a mild alkaline extraction process. The results of cytotoxicity, mutagenicity, skin sensitization and in vivo acute cutaneous irritation demonstrated that SCB lignin is safe for topical applications. Lignin showed capacity to scavenge both ABTS and DPPH radicals, which were preserved after its incorporation into the cosmetic formulation. Notable results were achieved in terms of in vitro and in vivo SPF of 9.5 ± 2.9 and 9.6 ± 0.8, respectively. Furthermore, the tested lignin-based BB cream revealed a broad-spectrum UV protection (critical wavelength of 378 ± 0.5 nm). These results suggest SCB lignin as multifunctional and safe ingredient for use in cosmetic products.
Collapse
Affiliation(s)
- Filipa Antunes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal Unipessoal Lda, Portugal
| | - Inês F Mota
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Joana F Fangueiro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Graciliana Lopes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Patrícia Santos Costa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
15
|
Weiss V, Gobec M, Jakopin Ž. In vitro investigation of immunomodulatory activities of selected UV-filters. Food Chem Toxicol 2023; 174:113684. [PMID: 36813152 DOI: 10.1016/j.fct.2023.113684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Organic UV filters are ubiquitous as they are used in numerous personal care products. Consequently, people constantly come into direct or indirect contact with these chemicals. Albeit studies of the effects of UV filters on human health have been undertaken, their toxicological profiles are not complete. In this work, we investigated the immunomodulatory properties of eight UV filters representing different chemotypes, including benzophenone-1, benzophenone-3, ethylhexyl methoxycinnamate, octyldimethyl-para-aminobenzoic acid, octyl salate, butylmethoxydibenzoylmethane, 3-benzylidenecamphor, and 2,4-di-tert-butyl-6-(5-chlorobenzotriazol-2-yl)phenol. We demonstrated that none of these UV filters were cytotoxic to THP-1 cells at concentrations up to 50 μM. Importantly, our study highlighted the capacity of nontoxic concentrations of avobenzone and 3-benzylidene camphor to increase the secretion of interleukin 8 (IL-8) from both THP-1 cells and THP-1 derived macrophages. Further, they also exhibited a pronounced decrease of IL-6 and IL-10 release from lipopolysaccharide-stimulated peripheral blood mononuclear cells. The observed immune cell alterations suggest that exposure to 3-BC and BMDM could be involved in immune deregulation. Our research thus provided additional insight into UV filter safety profile.
Collapse
Affiliation(s)
- Veronika Weiss
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
16
|
Eftekhari A, Morrison GC. Exposure to oxybenzone from sunscreens: daily transdermal uptake estimation. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:283-291. [PMID: 34531536 DOI: 10.1038/s41370-021-00383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Fugacity, the driving force for transdermal uptake of chemicals, can be difficult to predict based only on the composition of complex, non-ideal mixtures such as personal care products. OBJECTIVE Compare the predicted transdermal uptake of benzophenone-3 (BP-3) from sunscreen lotions, based on direct measurements of BP-3 fugacity in those products, to results of human subject experiments. METHODS We measured fugacity relative to pure BP-3, for commercial sunscreens and laboratory mixtures, using a previously developed/solid-phase microextraction (SPME) method. The measured fugacity was combined with a transdermal uptake model to simulate urinary excretion rates of BP-3 resulting from sunscreen use. The model simulations were based on the reported conditions of four previously published human subject studies, accounting for area applied, time applied, showering and other factors. RESULTS The fugacities of commercial lotions containing 3-6% w/w BP-3 were ~20% of the supercooled liquid vapor pressure. Simulated dermal uptake, based on these fugacities, are within a factor of 3 of the mean results reported from two human-subject studies. However, the model significantly underpredicts total excreted mass from two other human-subject studies. This discrepancy may be due to limitations in model inputs, such as fugacity of BP-3 in lotions used in those studies. SIGNIFICANCE The results suggest that combining measured fugacity with such a model may provide order-of-magnitude accurate predictions of transdermal uptake of BP-3 from daily application of sunscreen products.
Collapse
Affiliation(s)
- Azin Eftekhari
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Glenn C Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
17
|
Muzata TS, Gebrekrstos A, Orasugh JT, Ray SS. An overview of recent advances in polymer composites with improved
UV
‐shielding properties. J Appl Polym Sci 2023. [DOI: 10.1002/app.53693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Tanyaradzwa S. Muzata
- Department of Polymer Technology and Engineering Harare Institute of Technology Harare Zimbabwe
| | - Amanuel Gebrekrstos
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
- Centre for Nanostructures and Advanced Materials DSI‐CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria South Africa
| | - Jonathan Tersur Orasugh
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
- Centre for Nanostructures and Advanced Materials DSI‐CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria South Africa
| | - Suprakas Sinha Ray
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
- Centre for Nanostructures and Advanced Materials DSI‐CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria South Africa
| |
Collapse
|
18
|
Tao Z, Wang Z, Zhu S, Wang S, Wang Z. Associations between benzophenone-3 and sex steroid hormones among United States adult men. Reprod Toxicol 2022; 114:44-51. [DOI: 10.1016/j.reprotox.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
19
|
Review on photoprotection: a clinician’s guide to the ingredients, characteristics, adverse effects, and disease-specific benefits of chemical and physical sunscreen compounds. Arch Dermatol Res 2022; 315:735-749. [PMID: 36443500 DOI: 10.1007/s00403-022-02483-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/15/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Photoprotection is a critical health prevention strategy to reduce the deleterious effects of ultraviolet radiation (UVR) and visible light (VL). Methods of photoprotection are reviewed in this paper, with an emphasis on sunscreen. The most appropriate sunscreen formulation for personal use depends on several factors. Active sunscreen ingredients vary in their protective effect over the UVR and VL spectrum. There are dermatologic diseases that cause photosensitivity or that are aggravated by a particular action spectrum. In these situations, sunscreen suggestions can address the specific concern. Sunscreen does not represent a single entity. Appropriate personalized sunscreen selection is critical to improve compliance and clinical outcomes. Health care providers can facilitate informed product selection with awareness of evolving sunscreen formulations and counseling patients on appropriate use. This review aims to summarize different forms of photoprotection, discuss absorption of sunscreen ingredients, possible adverse effects, and disease-specific preferences for chemical, physical or oral agents that may decrease UVR and VL harmful effects.
Collapse
|
20
|
Jung W, Seok SH, Shin S, Ryu SH, Kim KB, Shin BS, Kim TH. Toxicokinetics, Percutaneous Absorption and Tissue Distribution of Benzophenone-3, an UV Filtering Agent, in Rats. TOXICS 2022; 10:672. [PMID: 36355963 PMCID: PMC9697188 DOI: 10.3390/toxics10110672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to evaluate in vitro skin permeation and deposition, in vivo toxicokinetics, percutaneous absorption and tissue distribution of benzophenone-3 (BP-3) in rats. Four transdermal formulations containing BP-3 were prepared and evaluated for in vitro skin permeation and deposition of BP-3 using Franz diffusion cells. A gel formulation was used in subsequent in vivo percutaneous absorption due to its high in vitro skin permeation and deposition. Compared to intravenous (i.v.) injection, the prolonged terminal t1/2 (3.1 ± 1.6 h for i.v. injection and 18.3 ± 5.8 h for topical application) was observed indicating occurrence of flip-flop kinetics after topical application. The bioavailability of BP-3 after topical application was 6.9 ± 1.8%. The tissue-to-plasma partition coefficient (kp) for testis, considered a toxic target for BP-3, was less than 1.. Overall, findings of this study may be useful for risk assessment of BP-3.
Collapse
Affiliation(s)
- Woohyung Jung
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Gyeongbuk, Korea
| | - Su Hyun Seok
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Gyeonggi, Korea
| | - Soyoung Shin
- College of Pharmacy, Wonkwang University, Iksan 54538, Jeonbuk, Korea
| | - Sung Ha Ryu
- College of Pharmacy, Dankook University, Cheonan 31116, Chungnam, Korea
- R&D Center, GL Pharm Tech Corp., Seongnam-si 13202, Gyeonggi, Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Cheonan 31116, Chungnam, Korea
- Center for Human Risk Assessment, Dankook University, Cheonan 31116, Chungnam, Korea
| | - Beom Soo Shin
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Gyeonggi, Korea
| | - Tae Hwan Kim
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Gyeongbuk, Korea
| |
Collapse
|
21
|
Organic ultraviolet filters regulate hyaluronan metabolism in human epidermal keratinocytes through the phosphatidylinositol 3-kinase pathway. Toxicol In Vitro 2022; 86:105511. [DOI: 10.1016/j.tiv.2022.105511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
22
|
Klančič V, Gobec M, Jakopin Ž. Environmental contamination status with common ingredients of household and personal care products exhibiting endocrine-disrupting potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73648-73674. [PMID: 36083363 DOI: 10.1007/s11356-022-22895-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The continuous use of household and personal care products (HPCPs) produces an immense amount of chemicals, such as parabens, bisphenols, benzophenones and alkylphenol ethoxylates, which are of great concern due to their well-known endocrine-disrupting properties. These chemicals easily enter the environment through man-made activities, thus contaminating the biota, including soil, water, plants and animals. Thus, on top of the direct exposure on account of their presence in HPCPs, humans are also susceptible to secondary indirect exposure attributed to the ubiquitous environmental contamination. The aim of this review was therefore to examine the sources and occurrence of these noteworthy contaminants (i.e. parabens, bisphenols, benzophenones, alkylphenol ethoxylates), to summarise the available research on their environmental presence and to highlight their bioaccumulation potential. The most notable environmental contaminants appear to be MeP and PrP among parabens, BPA and BPS among bisphenols, BP-3 among benzophenones and NP among alkylphenols. Their maximum detected concentrations in the environment are mostly in the range of ng/L, while in human tissues, their maximum concentrations achieved μg/L due to bioaccumulation, with BP-3 and nonylphenol showing the highest potential to bioaccumulate. Finally, of another great concern is the fact that even the unapproved parabens and benzophenones have been detected in the environment.
Collapse
Affiliation(s)
- Veronika Klančič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
23
|
Mao JF, Li W, Ong CN, He Y, Jong MC, Gin KYH. Assessment of human exposure to benzophenone-type UV filters: A review. ENVIRONMENT INTERNATIONAL 2022; 167:107405. [PMID: 35843073 DOI: 10.1016/j.envint.2022.107405] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
To avoid the harmful effects of UV radiation, benzophenone-type UV filters (BPs) are widely used in personal care products and other synthetic products. Biomonitoring studies have shown the presence of BPs in various human biological samples, raising health concerns. However, there is a paucity of data on the global human exposure to this group of contaminants. In this study, we compiled data on the body burden of BPs along with the possible exposure routes and biotransformation pathways. BPs can easily penetrate the skin barrier and thus, they can be absorbed through the skin. In the human body, BPs can undergo Phase I (mainly demethylation and hydroxylation) and Phase II (mainly glucuronidation and sulfation) biotransformations. From a total of 158 studies, most of the studies are related to urine (concentration up to 92.7 mg L-1), followed by those reported in blood (up to 0.9 mg L-1) and milk (up to 0.8 mg L-1). Among BPs, benzophenone-1 and benzophenone-3 are the most commonly detected congeners. The body burden of BPs is associated with various factors, including the country of residence, lifestyle, income, education level, and ethnicity. The presence of BPs in maternal urine (up to 1.1 mg L-1), placenta (up to 9.8 ng g-1), and amniotic fluid (up to 15.7 μg L-1) suggests potential risks of prenatal exposure. In addition, transplacental transfer of BPs is possible, as demonstrated by their presence in maternal serum and cord serum. The possible association of BPs exposure and health effects was discussed. Future human biomonitoring studies and studies on the potential health effects are warranted. Overall, this review provides a summary of the global human exposure to BPs and can serve as supporting evidence to guide usage in order to protect humans from being exposed to BPs.
Collapse
Affiliation(s)
- Jason Feijian Mao
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, China; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Wenxuan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mui-Choo Jong
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
24
|
Volk KR, Casabianca LB. Quantum mechanical study of interactions between sunscreen ingredients and nucleotide bases. J Mol Model 2022; 28:243. [PMID: 35925497 DOI: 10.1007/s00894-022-05253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022]
Abstract
Interactions between the popular sunscreen ingredients oxybenzone and homosalate and DNA bases have been studied using density functional theory and ab initio methods. Low-energy structures for each sunscreen ingredient interacting with each nucleotide base in either a pi-stacked or hydrogen-bonded fashion were found. The binding energies are comparable to those for the Watson-Crick-Franklin Ade-Thy and Cyt-Gua pairs. Pi-stacked and hydrogen-bonded structures are comparable in energy, with hydrogen-bonded structures having a more negative counterpoise-corrected binding energy, while the final pi-stacked structures are lower in energy. This is due to a geometrical rearrangement required to form the hydrogen bonds that raise the total energy of the complex. It was also found that when using the M06-2X density functional, the STO-3G basis set favors hydrogen bonding, but 6-31G(d) and 6-31 + G(s) basis sets predict similar binding geometries.
Collapse
Affiliation(s)
- Kyle R Volk
- Department of Chemistry, Clemson University, Clemson, SC, USA
| | | |
Collapse
|
25
|
Zicarelli G, Multisanti CR, Falco F, Faggio C. Evaluation of toxicity of Personal Care Products (PCPs) in freshwaters: Zebrafish as a model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103923. [PMID: 35772612 DOI: 10.1016/j.etap.2022.103923] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/19/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Personal care products (PCPs) are part of the large and growing family of emerging contaminants (ECs). Many daily products such as sunscreens, toothpaste, make-up products, perfume, and others, fall under this definition, and their use is increasing exponentially. Furthermore, the degradation of some components of these products is limited. Indeed, they are able to easily reach and accumulate in aquatic systems, representing a new class of contaminants. Moreover, due to their chemical properties, they can interfere at different biological levels, and for this reason, they need to be thoroughly investigated. We have reviewed the literature on PCPs, with a special focus on the adverse effects on the freshwater zebrafish (Danio rerio). The aim of this work is to provide a careful assessment of the toxicity of these compounds, in order to raise awareness for more conscious and responsible use.
Collapse
Affiliation(s)
- Giorgia Zicarelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166S Agata-Messina, Italy.
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166S Agata-Messina, Italy.
| | - Francesca Falco
- Institute of Marine Biological Resources and Biotechnologies, National Research Council (CNR), Mazara del Vallo, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166S Agata-Messina, Italy.
| |
Collapse
|
26
|
Iribarne-Durán LM, Serrano L, Peinado FM, Peña-Caballero M, Hurtado JA, Vela-Soria F, Fernández MF, Freire C, Artacho-Cordón F, Olea N. Biomonitoring bisphenols, parabens, and benzophenones in breast milk from a human milk bank in Southern Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154737. [PMID: 35337871 DOI: 10.1016/j.scitotenv.2022.154737] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Human breast milk is considered the optimal source of nutrition for infants. Milk from breast milk banks offers an alternative to infant formulas for vulnerable hospitalized neonates most likely to benefit from exclusive human milk feeding. However, breast milk can also be a source of exposure to environmental contaminants, including endocrine-disrupting chemicals (EDCs). AIM To evaluate concentrations of phenolic EDCs, including bisphenols, parabens (PBs), and benzophenones (BPs), in samples from a human milk bank in Granada, Southern Spain and to explore sociodemographic, reproductive, and lifestyle factors related to their concentrations in the milk. METHODS Concentrations of three bisphenols [bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS)], four PBs [methyl- (MeP), ethyl- (EtP), propyl- (n-PrP), and butyl-paraben (n-BuP)], and six BPs [BP-1, BP-2, BP-3, BP-6, BP-8, and 4-hydroxy-BP] were determined in milk samples from 83 donors. Information on potential explanatory variables was gathered using the milk bank donor form and an ad hoc questionnaire. Multiple linear and logistic regression models were fitted. RESULTS Detectable concentrations were found of at least one of the analyzed compounds in all donor breast milk samples and at least five compounds in one-fifth of them. The most frequently detected compounds were MeP (90.5%), BP-3 (75.0%), EtP (51.2%), n-PrP (46.4%), and BPA (41.7%). Median concentrations ranged between <0.10 ng/mL (n-PrP, n-BuP, BP-1) and 0.59 ng/mL (BP-3). No sample contained detectable concentrations of BPF, BPS, or most BPs (BP-2, BP-6, BP-8, and 4- hydroxy-BP). Breast milk phenol concentrations were associated with parity, the utilization of deodorants, mouthwash, skin care products, and cosmetics, and the intake of nutritional supplements. CONCLUSIONS Results reveal the widespread presence of BPA, PBs, and BP-3 in donor breast milk samples, highlighting the need for preventive measures to enhance the benefits of breast milk from milk banks and from breastfeeding women in general.
Collapse
Affiliation(s)
- L M Iribarne-Durán
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain
| | - L Serrano
- Neonatal Intensive Care Unit, Virgen de las Nieves University Hospital, E-18012 Granada, Spain
| | - F M Peinado
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain
| | - M Peña-Caballero
- Neonatal Intensive Care Unit, Virgen de las Nieves University Hospital, E-18012 Granada, Spain
| | - J A Hurtado
- Neonatal Intensive Care Unit, Virgen de las Nieves University Hospital, E-18012 Granada, Spain
| | - F Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain
| | - M F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain; Department of Radiology and Physical Medicine, University of Granada, E-18016 Granada, Spain
| | - C Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain.
| | - F Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain; Department of Radiology and Physical Medicine, University of Granada, E-18016 Granada, Spain.
| | - N Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain; Department of Radiology and Physical Medicine, University of Granada, E-18016 Granada, Spain; Nuclear Medicine Unit, San Cecilio University Hospital, E-18016 Granada, Spain
| |
Collapse
|
27
|
Chu CC, Hasan ZAA, Tan CP, Nyam KL. In vitro safety evaluation of sunscreen formulation from nanostructured lipid carriers using human cells and skin model. Toxicol In Vitro 2022; 84:105431. [PMID: 35809791 DOI: 10.1016/j.tiv.2022.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
There is a risk of toxicological reactions due to systemic absorption and photo-instability of sunscreens. The study aimed to investigate the safety profile (cytotoxicity, phototoxicity, photostability, UV filter release profile, and skin irritation properties) of sunscreen (NLC-TRF sunscreen) produced from nanostructured lipid carriers (NLCs) and tocotrienol-rich fraction (TRF). The cytotoxicity and phototoxicity of the sunscreen were evaluated on normal human dermal fibroblast (NHDF) and skin irritation properties was tested on skin model. Besides, the photoprotection in pre- and post-UV irradiation were analysed to determine the photostability. Additionally, the release profile for UV filters (diethylamino hydroxybenzoyl hexyl benzoate (DHHB) and ethylhexyl triazone (EHT)) were evaluated. The NLC-TRF sunscreen demonstrated no cytotoxicity and skin irritation to cause cell death. It showed no phototoxic effect and high photostability up to 10 Minimal Erythema Dose (MED) to ensure high SPF value above 50 and broad-spectrum of UV absorption. The NLC-TRF sunscreen implies its safety for topical application with sustainable release profile for UV filter (cumulative release of 28% for DHHB and 40% for EHT after 8 h) due to the application of NLCs. The results suggest that the NLC-TRF sunscreen is an advanced formulation with improved stability and is safe for topical delivery.
Collapse
Affiliation(s)
- Chee Chin Chu
- Faculty of Applied Sciences, UCSI University, 56000 Kuala Lumpur, Malaysia
| | - Zafarizal Aldrin Azizul Hasan
- Advanced Oleochemical Technology Division, Malaysian Palm Oil Board, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Chin Ping Tan
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Kar Lin Nyam
- Faculty of Applied Sciences, UCSI University, 56000 Kuala Lumpur, Malaysia.
| |
Collapse
|
28
|
Raei H, Karimi Torshizi MA, Sharafi M, Ahmadi H. Sperm flow cytometric parameters, antioxidant status, and testicular histomorphology in roosters fed diets supplemented with camphor. Poult Sci 2022; 101:102014. [PMID: 35901646 PMCID: PMC9326334 DOI: 10.1016/j.psj.2022.102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022] Open
Abstract
Genetic selection based on the high growth rate and consequently high slaughter weight in broiler chickens has caused many problems in broiler breeders. A negative correlation between growth and reproductive traits has declined semen quality and fertility in roosters. The present study aimed to evaluate the effects of camphor levels on some reproductive parameters included semen parameters, antioxidant status, and testicular development in broiler breeder roosters. Thirty-five ROSS 308 broiler breeder roosters were divided into 5 groups to receive camphor (C) levels: C0, C50, C250, C750, and C1000 ppm for 12 consecutive weeks (31–43 wk). Body weight, seminal volume, sperm concentration, and percentage of live and morphologically normal sperm were not affected by diets (P > 0.05), however, significantly were changed by bird age over the experiment (P < 0.05). Semen quality factor (SQF) significantly was affected by both diets and age (P < 0.05). Mitochondrial activity, apoptotic-like changes, and DNA fragmentation were improved in the groups fed camphor levels compared to the control group (P < 0.05). Testes weight (left, right, and combined weights) and gonadosomatic index were increased linearly by the camphor supplementation (P < 0.05). The serum activity of glutathione peroxidase (GPX) was not affected by treatments, however, superoxide dismutase (SOD) activity, ferric ion reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity were significantly higher in C50, C250, and C750, respectively (P < 0.05). The lower malondialdehyde (MDA) content in the testes and liver samples was observed in C750 (P < 0.05). Excluding the number of Sertoli cells and blood vessels, other histomorphological traits of testes showed one of the linear or quadratic responses to the camphor levels (P < 0.05). It can be concluded that camphor as an antioxidant source may improve reproduction performance in roosters.
Collapse
Affiliation(s)
- Hamid Raei
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Nasr, Tehran 14115-336, Iran
| | | | - Mohsen Sharafi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Nasr, Tehran 14115-336, Iran
| | - Hamed Ahmadi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Nasr, Tehran 14115-336, Iran
| |
Collapse
|
29
|
Slavchev IM, Mitrev Y, Shivachev B, Valcheva V, Dogonadze M, Solovieva N, Vyazovaya A, Mokrousov I, Link W, Jiménez L, Cautain B, Mackenzie TA, Portugal I, Lopes F, Capela R, Perdigão J, Dobrikov GM. Synthesis, Characterization and Complex Evaluation of Antibacterial Activity and Cytotoxicity of New Arylmethylidene Ketones and Pyrimidines with Camphane Skeletons. ChemistrySelect 2022. [DOI: 10.1002/slct.202201339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ivaylo M. Slavchev
- Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences bl. 9, Acad. G. Bonchev str. Sofia 1113 Bulgaria
| | - Yavor Mitrev
- Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences bl. 9, Acad. G. Bonchev str. Sofia 1113 Bulgaria
| | - Boris Shivachev
- Institute of Mineralogy and Crystallography Bulgarian Academy of Sciences, bl. 107, Acad. G. Bonchev str. Sofia 1113 Bulgaria
| | - Violeta Valcheva
- Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences bl. 26, Acad. G. Bonchev str. Sofia 1113 Bulgaria
| | - Marine Dogonadze
- St. Petersburg Research Institute of Phthisiopulmonology St. Petersburg Russia
| | - Natalia Solovieva
- St. Petersburg Research Institute of Phthisiopulmonology St. Petersburg Russia
- Laboratory of Molecular Epidemiology and Evolutionary Genetics St. Petersburg Pasteur Institute St. Petersburg Russia
| | - Anna Vyazovaya
- Laboratory of Molecular Epidemiology and Evolutionary Genetics St. Petersburg Pasteur Institute St. Petersburg Russia
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics St. Petersburg Pasteur Institute St. Petersburg Russia
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4 28029 Madrid Spain
| | - Lucía Jiménez
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4 28029 Madrid Spain
| | - Bastien Cautain
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores de Andalucía Parque Tecnológico de Ciencias de la Salud Avda. del Conocimiento 34 18016 Granada Spain
| | - Thomas A. Mackenzie
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores de Andalucía Parque Tecnológico de Ciencias de la Salud Avda. del Conocimiento 34 18016 Granada Spain
| | - Isabel Portugal
- iMed.ULisboa – Instituto de Investigação do Medicamento Faculdade de Farmácia Universidade de Lisboa Lisboa Portugal
| | - Francisca Lopes
- iMed.ULisboa – Instituto de Investigação do Medicamento Faculdade de Farmácia Universidade de Lisboa Lisboa Portugal
| | - Rita Capela
- iMed.ULisboa – Instituto de Investigação do Medicamento Faculdade de Farmácia Universidade de Lisboa Lisboa Portugal
| | - João Perdigão
- iMed.ULisboa – Instituto de Investigação do Medicamento Faculdade de Farmácia Universidade de Lisboa Lisboa Portugal
| | - Georgi M. Dobrikov
- Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences bl. 9, Acad. G. Bonchev str. Sofia 1113 Bulgaria
| |
Collapse
|
30
|
Yang Y, Ako-Adounvo AM, Wang J, Coelho SG, Adah SA, Matta MK, Strauss D, Michele TM, Wang J, Faustino PJ, O’Connor T, Ashraf M. In Vitro Testing of Sunscreens for Dermal Absorption: Method Comparison and Rank Order Correlation with In Vivo Absorption. AAPS PharmSciTech 2022; 23:121. [PMID: 35459978 DOI: 10.1208/s12249-022-02275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Evaluating the dermal absorption of sunscreen UV filters requires the development of a bio-predictable in vitro permeation test (IVPT). This work describes the comparison of two IVPT methods and rank order correlations of in vitro absorption (skin permeation and retention) with the in vivo absorption (AUC and skin retention) of sunscreens. The IVPT was compared regarding the following elements: (1) application of a single finite dose vs. an infinite dose and (2) the use of heat-separated human epidermis vs. dermatomed skin models. The IVPT was used to evaluate dermal absorption of six UV filters (avobenzone, homosalate, octinoxate, octisalate, octocrylene, and oxybenzone) in commercial sunscreens. Both the in vivo and in vitro permeation studies demonstrated that all UV filters were absorbed following a single-dose application. Sunscreens were rank ordered by the amount of the UV filters absorbed. Data obtained from the IVPT method using a single finite dose and heat-separated human epidermis was found to correlate with the clinical data. Rank orders of the cumulative in vitro skin permeation and the in vivo AUC were found comparable for oxybenzone, homosalate, octisalate, and octinoxate. Rank orders of the in vitro and in vivo skin retention of oxybenzone and octinoxate were also comparable. Additional IVPT parameters may be optimized to enhance the discriminatory power for UV filters with low skin permeation potential (e.g., avobenzone and octocrylene).
Collapse
|
31
|
El-Yazbi AF, Khalil HA, Belal TS, El-Kimary EI. Inexpensive bioluminescent genosensor for sensitive determination of DNA damage induced by some commonly used sunscreens. Anal Biochem 2022; 651:114700. [DOI: 10.1016/j.ab.2022.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/01/2022]
|
32
|
Słoczyńska K, Popiół J, Gunia-Krzyżak A, Koczurkiewicz-Adamczyk P, Żmudzki P, Pękala E. Evaluation of Two Novel Hydantoin Derivatives Using Reconstructed Human Skin Model EpiskinTM: Perspectives for Application as Potential Sunscreen Agents. Molecules 2022; 27:molecules27061850. [PMID: 35335215 PMCID: PMC8949075 DOI: 10.3390/molecules27061850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/28/2022] Open
Abstract
This study aimed to assess two novel 5-arylideneimidazolidine-2,4-dione (hydantoin) derivatives (JH3 and JH10) demonstrating photoprotective activity using the reconstructed human skin model EpiskinTM. The skin permeability, irritation, and phototoxicity of the compounds was evaluated in vitro. Moreover, the in vitro genotoxicity and human metabolism of both compounds was studied. For skin permeation and irritation experiments, the test compounds were incorporated into a formulation. It was shown that JH3 and JH10 display no skin irritation and no phototoxicity. Both compounds did not markedly enhance the frequency of micronuclei in CHO-K1 cells in the micronucleus assay. Preliminary in vitro studies with liver microsomes demonstrated that hydrolysis appears to constitute their important metabolic pathway. EpiskinTM permeability experiments showed that JH3 permeability was lower than or close to currently used UV filters, whereas JH10 had the potential to permeate the skin. Therefore, a restriction of this compound permeability should be obtained by choosing the right vehicle or by optimizing it, which should be addressed in future studies.
Collapse
Affiliation(s)
- Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (P.K.-A.); (E.P.)
- Correspondence: ; Tel.: +48-126-205-577
| | - Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (P.K.-A.); (E.P.)
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (P.K.-A.); (E.P.)
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (P.K.-A.); (E.P.)
| |
Collapse
|
33
|
Jesus A, Sousa E, Cruz MT, Cidade H, Lobo JMS, Almeida IF. UV Filters: Challenges and Prospects. Pharmaceuticals (Basel) 2022; 15:ph15030263. [PMID: 35337062 PMCID: PMC8955451 DOI: 10.3390/ph15030263] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
The use of sunscreens is an established and recommended practice to protect skin from solar-induced damage. Around 30 UV filters can be used in sunscreen products in the European Union, which ought to follow the requirements of the regulation 1223/2009 to ensure their efficacy and safety for humans. Nevertheless, low photostability and putative toxicity for humans and environment have been reported for some UV filters. Particularly, the negative impact in marine organisms has recently raised concern on the scientific community. Therefore, it is important to develop new UV filters with improved safety profile and photostability. Over the last two decades, nearly 200 new compounds have revealed promising photoprotection properties. The explored compounds were obtained through different approaches, including exploration of natural sources, synthetic pathways, and nanotechnology. Almost 50 natural products and around 140 synthetic derivatives, such as benzimidazoles, benzotriazoles, hydroxycinnamic acids, xanthones, triazines, among others, have been studied aiming the discovery of novel, effective, and safer future photoprotective agents. Herein, we provide the reader with an overview about UV filters’ challenges and prospects, offering a forward-looking to the next-generation of UV filters.
Collapse
Affiliation(s)
- Ana Jesus
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (J.M.S.L.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Maria T. Cruz
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal;
- Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- Correspondence: (H.C.); (I.F.A.); Tel.: +351-220-428 (I.F.A.)
| | - José M. Sousa Lobo
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (J.M.S.L.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Isabel F. Almeida
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (J.M.S.L.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (H.C.); (I.F.A.); Tel.: +351-220-428 (I.F.A.)
| |
Collapse
|
34
|
Liu WJ, Yang H, Park YK, Kwon E, Huang CW, Thanh BX, Khiem TC, You S, Ghanbari F, Lin KYA. Enhanced degradation of ultra-violet stabilizer Bis(4-hydroxy)benzophenone using oxone catalyzed by hexagonal nanoplate-assembled CoS 3-dimensional cluster. CHEMOSPHERE 2022; 288:132427. [PMID: 34600922 DOI: 10.1016/j.chemosphere.2021.132427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
As UV-light stabilizers, Bis(4-hydroxy)benzophenone (BBP), are extensively consumed to quench radicals from photooxidation, continuous release of BPs into the environment poses serious threats to the ecology in view of their xenohormone toxicities, and BBP shall be eliminated from water to avoid its adverse effect. Since sulfate radical (SR)-based chemical oxidation techniques have been proven as effective procedures for eliminating organic emerging contaminants, this study aims to develop useful SR-based procedures through activating Oxone for degrading BBP in water. In contrast to the conventional Co3O4, cobalt sulfide (CoS) is particularly proposed as an alternative heterogeneous catalyst for activating Oxone to degrade BBP because CoS exhibits more reactive redox characteristics. As structures of catalysts predominantly control their catalytic activities, in this study, a unique nanoplate-assembled CoS (NPCS) 3D cluster is fabricated via a convenient one-step process to serve as a promising heterogeneous catalyst for activating Oxone to degrade BBP. With NPCS = 100 mg/L and Oxone = 200 mg/L, 5 mg/L of BBP can be completely eliminated in 60 min. The catalytic activity of NPCS towards Oxone activation also significantly surpasses the reference material, Co3O4, to enhance degradation of BBP. Ea of BBP degradation by NPCS-activated Oxone is also determined as a relatively low value of 42.7 kJ/mol. The activation mechanism as well as degradation pathway of BBP degradation by NPCS-activated Oxone was investigated and validated through experimental evidences and density functional theory (DFT) calculation to offer valuable insights into degradation behaviors for developing SR-based processes of BBP degradation using CoS catalysts.
Collapse
Affiliation(s)
- Wei-Jie Liu
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Hongta Yang
- Department of Chemical Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Eilhann Kwon
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gunja-dong, Gwangjin-gu, Seoul, Republic of Korea
| | - Chao-Wei Huang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Bui Xuan Thanh
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology, VNU-HCM, 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, 700000, Viet Nam
| | - Ta Cong Khiem
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Farshid Ghanbari
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran.
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan.
| |
Collapse
|
35
|
Iribarne-Durán LM, Peinado FM, Freire C, Castillero-Rosales I, Artacho-Cordón F, Olea N. Concentrations of bisphenols, parabens, and benzophenones in human breast milk: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150437. [PMID: 34583069 DOI: 10.1016/j.scitotenv.2021.150437] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Breast milk is the main source of nutrition for infants but may be responsible for their exposure to environmental chemicals, including endocrine-disrupting chemicals. AIM To review available evidence on the presence and concentrations of bisphenols, parabens (PBs), and benzophenones (BPs) in human milk and to explore factors related to exposure levels. METHODS A systematic review was carried out using Medline, Web of Science, and Scopus databases, conducting a comprehensive search of peer-reviewed original articles published during the period 2000-2020, including epidemiological and methodological studies. Inclusion criteria were met by 50 studies, which were compiled by calculating weighted detection frequencies and arithmetic mean concentrations of the chemicals. Their risk of bias was assessed using the ROBINS-I checklist. RESULTS Among the 50 reviewed studies, concentrations of bisphenols were assessed by 37 (74.0%), PBs by 21 (42.0%), and BPs by 10 (20.0%). Weighted detection frequencies were 63.6% for bisphenol-A (BPA), 27.9-63.4% for PBs, and 39.5% for benzophenone-3 (BP-3). Weighted mean concentrations were 1.4 ng/mL for BPA, 0.2-14.2 ng/mL for PBs, and 24.4 ng/mL for BP-3. Mean concentrations ranged among studies from 0.1 to 3.9 ng/mL for BPA, 0.1 to 1063.6 ng/mL for PBs, and 0.5 to 72.4 ng/mL for BP-3. The highest concentrations of BPA and PBs were reported in samples from Asia (versus America and Europe). Higher BPA and lower methyl-paraben concentrations were observed in samples collected after 2010. Elevated concentrations of these chemicals were associated with socio-demographic and lifestyle factors in eight studies (16.0%). Two epidemiological studies showed moderate/serious risk of bias. CONCLUSIONS This systematic review contributes the first overview of the widespread presence and concentrations of bisphenols, PBs, and BPs in human breast milk, revealing geographical and temporal variations. The methodological heterogeneity of published studies underscores the need for well-conducted studies to assess the magnitude of exposure to these chemicals from human milk.
Collapse
Affiliation(s)
- L M Iribarne-Durán
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012 Granada, Spain
| | - F M Peinado
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012 Granada, Spain
| | - C Freire
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain
| | | | - F Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain; Departamento de Radiología y Medicina Física, Universidad de Granada, E-18016 Granada, Spain.
| | - N Olea
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain; Departamento de Radiología y Medicina Física, Universidad de Granada, E-18016 Granada, Spain; Unidad de Medicina Nuclear, Hospital Universitario San Cecilio, E-18016 Granada, Spain
| |
Collapse
|
36
|
do Prado AH, Duarte JL, Filippo LDD, Victorelli FD, de Abreu Fantini MC, Peccinini RG, Chorilli M. Bioadhesive liquid crystal systems for octyl methoxycinnamate skin delivery. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Galicka A, Sutkowska-Skolimowska J. The Beneficial Effect of Rosmarinic Acid on Benzophenone-3-Induced Alterations in Human Skin Fibroblasts. Int J Mol Sci 2021; 22:11451. [PMID: 34768882 PMCID: PMC8584053 DOI: 10.3390/ijms222111451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/22/2022] Open
Abstract
Benzophenone-3 (BP-3) is one of the most widely used chemical sunscreens. The results of many in vitro and in vivo tests confirm its high percutaneous penetration and systemic absorption, which question the safety of its wide use. The aim of our research was to assess the effect of this compound on components of the skin extracellular matrix, and to investigate whether rosmarinic acid (RA) could reduce BP-3-induced changes in human skin fibroblasts. BP-3 used at concentrations of 0.1-100 µM caused a number of unfavorable changes in the level of type I collagen, decorin, sulfated glycosaminoglycans, hyaluronic acid, elastin, and expression or activity of matrix metalloproteinases (MMP-1, MMP-2), elastase and hyaluronidase. Moreover, the intracellular retention of collagen was accompanied by changes in the expression of proteins modifying and controlling the synthesis and secretion of this protein. Most importantly, RA at a concentration of 100 µM significantly reduced or completely abolished the adverse effects of BP-3. Based on these findings, it can be concluded that this polyphenol may provide effective protection against BP-3-induced disturbances in skin cells, which may have important clinical implications.
Collapse
Affiliation(s)
- Anna Galicka
- Department of Medical Chemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland;
| | | |
Collapse
|
38
|
Trouillard A, Sabri A, Prot-Labarthe S, Storme T, Bourrat E, Soulairol I. [Pediatric exposure to endocrine disruptors and carcinogenic, mutagenic or reprotoxic substances by pharmaceutical forms intended for the cutaneous route: Regulatory provisions in France, in Europe, and state of the art of scientific knowledge]. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 80:426-439. [PMID: 34481784 DOI: 10.1016/j.pharma.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/15/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The objective is to conduct a review of pediatric exposure to substances whose endocrine disrupting (ED), carcinogenic, mutagenic, or reprotoxic (CMR) character has been confirmed or remains controversial, through their use in pharmaceutical forms intended for the cutaneous route, as well as regulatory measures diligent at the national and European levels. METHODS A bibliographical search was carried out on the databases PubMed, Web of Science, Cochrane Library, supplemented by a search for recommendations from French and European authorities. References were selected following an assessment of their relevance to our topic. RESULTS Seventy-one references were selected. Pediatric exposure to endocrine disruptors and CMR substances remains through products formulated for their use, but also through indirect exposure to products commonly used by adults. Exposure arises both from the choice of excipients (parabens, phenoxyethanol), packaging materials (bisphenols, phthalates) and the qualitative or quantitative nature of the active ingredients (iodine, boron, pyrethroids, organic sunscreens). CONCLUSION The health professional must be able to develop a critical mind on such substances in order to inform and promote therapeutic adherence, guaranteeing the safety of the child's care.
Collapse
Affiliation(s)
- A Trouillard
- Pôle ALPHA, pharmacie à usage intérieur, centre hospitalier de Béziers, 2, rue Valentin Haüy, 34500 Béziers cedex, France.
| | - A Sabri
- Pharmacie à usage intérieur, hôpital universitaire Robert-Debré, Assistance publique-Hôpitaux de Paris, 75019 Paris, France
| | - S Prot-Labarthe
- Pharmacie à usage intérieur, UF Pharmacie clinique, CHU de Nantes, 44093 Nantes cedex 01, France
| | - T Storme
- Pharmacie à usage intérieur, hôpital universitaire Robert-Debré, Assistance publique-Hôpitaux de Paris, 75019 Paris, France
| | - E Bourrat
- Service de dermatologie, hôpital Saint-Louis, Assistance publique-Hôpitaux de Paris, 75010 Paris, France; Service de pédiatrie générale, hôpital universitaire Robert-Debré, Assistance publique-Hôpitaux de Paris, 75019 Paris, France
| | - I Soulairol
- Pharmacie à usage intérieur, hôpital universitaire Carémeau, CHU de Nîmes, 30000 Nîmes, France; ICGM, CNRS, ENSCM, université de Montpellier, 34000 Montpellier, France
| |
Collapse
|
39
|
Yin JY, Oh WD, Kwon E, Thanh BX, You S, Wang H, Lin KYA. Cobalt sulfide nanofilm-assembled cube as an efficient catalyst for activating monopersulfate to degrade UV filter, 4,4′-dihydroxybenzophenone, in water. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126891] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Sampattavanich N, Chandayani N, Intarasupht J, Nakakes A. An in vivo study to evaluate the influence of oil blotting paper on the efficacy of sunscreen. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2021; 37:324-328. [PMID: 33426707 DOI: 10.1111/phpp.12656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/15/2019] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Ultraviolet radiation (UVR) is a major cause of photoaging and photocarcinogenesis. An appropriate application of sunscreen can effectively protect UV damage but cause unpleasant skin oiliness. Oil blotting paper is commonly used to reduce oiliness in some parts of the world although its influence on the efficacy of sunscreen has not been carefully investigated. OBJECTIVE To evaluate the efficacy of sunscreen after applying oil blotting paper. MATERIALS AND METHODS Measurement of oiliness and sunscreen efficacy was compared before and after the use of oil blotting paper in 11 healthy volunteers, 10 females, and 1 male. Specifically, 3 zones on each subject's back were exposed to UVR from a solar simulator, that is, 1) no sunscreen, 2) sunscreen (organic sunscreen at 2 mg/cm2 SPF 30) left on for 30 minutes, and 3) sunscreen left on for 30 minutes followed by application of oil blotting paper. Skin oiliness was also compared before and after oil blotting using a sebumeter. All areas were phototested for the comparison of the minimal erythema dose (MED) and sun protection factor (SPF). RESULTS The averaged MED of our subjects is 4.3 standard erythema doses (SED) in the unprotected area. The averaged MED was decreased after oil blotting from 89.8 SED to 59.8 SED. The SPF was also decreased from 20.70 to 13.99. CONCLUSIONS Application of oil blotting paper significantly reduces the efficacy of organic sunscreen.
Collapse
|
41
|
Carve M, Allinson G, Nugegoda D, Shimeta J. Trends in environmental and toxicity research on organic ultraviolet filters: A scientometric review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145628. [PMID: 33940738 DOI: 10.1016/j.scitotenv.2021.145628] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
In recent decades, the potential toxicological and environmental effects of organic ultraviolet filters (OUVF) have received growing attention. The number of studies in this area has increased; however, presently there is no scientometric perspective addressing this topic. The purpose of this study is to identify the intellectual base and research front using the visualization and analysis software, CiteSpace. We retrieved 453 articles, published in print or online as an early-access article between 2002 and 2020, from the Web of Science with a topic search related to OUVFs, environment, and toxicology. We then analysed synthesized networks of co-authorship (author, institution, country), co-citation (author, document, journal) and co-occurring keywords. The annual publication output has trended upwards since 2002. Authors based in China accounted for 29.4% of the total publications, followed by USA (17.4%); but overall publications from Switzerland and Spain were more influential. Major research themes identified included OUVF concentrations in aquatic environments, and hormonal effects. Emerging themes included improving the sensitivity of analytical detection methods for both OUVFs and their metabolites, consequences of OUVF transport to the marine environment, and concerns over prenatal exposure. Based on keyword analysis, benzophenone-3, 4-methylbenzylidene-camphor, 3-benzylidene camphor, and ethylhexyl-methoxycinnamate are the most studied OUVFs, and effects on estrogenic activity, gene expression, reproduction, and more recently, oxidative stress, have received most attention from a toxicological perspective. Other prominent topics were sources of environmental contamination and ecological risk assessments. This study maps the major research domains of OUVF environmental toxicology research; explanations and implications of the findings are discussed; and emerging trends highlighted.
Collapse
Affiliation(s)
- Megan Carve
- Ecotoxicology Research Group, School of Sciences, RMIT University, Bundoora, Victoria 3083, Australia; Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Graeme Allinson
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of Sciences, RMIT University, Bundoora, Victoria 3083, Australia; Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, PO Box 71, Bundoora, 3078, Victoria, Australia
| | - Jeff Shimeta
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
42
|
Meyer PF, Silva RMVD, Carreiro EDM, Borges FDS, Silva FRDC, Vieira BHDA, Maia RR, Queiroga Farias SL, Soares CD, Rodrigues J, Pasqual GF. Analysis of immediate use of sunscreen after microneedling. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2021; 37:521-529. [PMID: 34080246 DOI: 10.1111/phpp.12704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 03/15/2021] [Accepted: 05/30/2021] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Microneedling promotes skin microlesions that lead to an inflammatory process, increasing cell proliferation, cell metabolism, and synthesis of collagen and elastin, therefore restoring skin integrity. OBJECTIVE This study aims to investigate the differences between the physical and the physical-chemical sunscreen application after microneedling, assessed through histological analysis. METHOD This was a two-phase study. The first phase investigated the physical and physical-chemical sunscreen penetration mixed with India ink through histological analysis. The sunscreens were applied after the microleakage in vivo on the skin of a volunteer who underwent abdominoplasty 24 hours after the procedure. Histological analyses were carried out using optical and electron microscopy. The second phase analysed the skin reactions with the use of physical sunscreen after different microneedling treatments. The sample consisted of 30 volunteers distributed into three groups: G1 received the "Roller" microneedling, G2 received pen micropuncture treatment, and G3 received the fractional radiofrequency treatment. RESULTS The histological analyses of the first phase indicated that the physical-chemical protection sunscreen penetrated more deeply, and pigment was found among the collagen fibres and the dermal fibroblast cytoplasm in comparison to the physical protection sunscreen, which had the pigment confined exclusively in the superficial epidermis layer. The second phase results demonstrated that the use of the physical protection sunscreen after the different microneedling techniques showed no adverse reactions such as itching, pain or soreness, and the hyperaemia. CONCLUSION The proposed intervention showed that the use of physical protection sunscreen after different microneedling procedures is safe.
Collapse
Affiliation(s)
- Patrícia Froes Meyer
- Federal University of Rio Grande do Norte, Natal, Brazil.,Rio Grande do Norte University Centre (UNIRN), Natal, Brazil
| | - Rodrigo Marcel Valentim da Silva
- Federal University of Rio Grande do Norte, Natal, Brazil.,Estácio de Sá University, Natal, Brazil.,Maurício de Nassau University, Natal, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Singh A, Čížková M, Bišová K, Vítová M. Exploring Mycosporine-Like Amino Acids (MAAs) as Safe and Natural Protective Agents against UV-Induced Skin Damage. Antioxidants (Basel) 2021; 10:antiox10050683. [PMID: 33925517 PMCID: PMC8145676 DOI: 10.3390/antiox10050683] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Prolonged exposure to harmful ultraviolet radiation (UVR) can induce many chronic or acute skin disorders in humans. To protect themselves, many people have started to apply cosmetic products containing UV-screening chemicals alone or together with physical sunblocks, mainly based on titanium–dioxide (TiO2) or zinc-oxide (ZnO2). However, it has now been shown that the use of chemical and physical sunblocks is not safe for long-term application, so searches for the novel, natural UV-screening compounds derived from plants or bacteria are gaining attention. Certain photosynthetic organisms such as algae and cyanobacteria have evolved to cope with exposure to UVR by producing mycosporine-like amino acids (MAAs). These are promising substitutes for chemical sunscreens containing commercially available sunblock filters. The use of biopolymers such as chitosan for joining MAAs together or with MAA-Np (nanoparticles) conjugates will provide stability to MAAs similar to the mixing of chemical and physical sunscreens. This review critically describes UV-induced skin damage, problems associated with the use of chemical and physical sunscreens, cyanobacteria as a source of MAAs, the abundance of MAAs and their biotechnological applications. We also narrate the effectiveness and application of MAAs and MAA conjugates on skin cell lines.
Collapse
|
44
|
Sunscreens and their usefulness: have we made any progress in the last two decades? Photochem Photobiol Sci 2021; 20:189-244. [PMID: 33721254 DOI: 10.1007/s43630-021-00013-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022]
Abstract
Sunscreens have now been around for decades to mitigate the Sun's damaging ultraviolet (UV) radiation which, although essential for the existence of life, is a recognized prime carcinogen. Accordingly, have suncreams achieved their intended purposes towards protection against sunburns, skin photo-ageing and the like? Most importantly, however, have they provided the expected protection against skin cancers that current sunscreen products claim to do? In the last two decades, there have been tens, if not hundreds of studies on sunscreens with respect to skin protection against UVB (280‒320 nm)-traditionally sunscreens with rather low sun protection factors (SPF) were intended to protect against this type of radiation-and UVA (320‒400 nm) radiation; a distinction between SPF and UVA protection factor (UVA-PF) is made. Many of the studies of the last two decades have focused on protection against the more skin-penetrating UVA radiation. This non-exhaustive article reviews some of the important facets of what is currently known about sunscreens with regard (i) to the physical UV filters titanium dioxide (TiO2) and zinc oxide (ZnO) and the mostly photo-unstable chemical UVB/UVA filters (e.g., octinoxate (OMC) and avobenzone (AVO), among others), (ii) to novel chemical sunscreen agents, (iii) to means that minimize the breakdown of chemical filters and improve their stability when exposed to UV sunlight, (iv) to SPF factors, and (v) to a short discussion on non-melanoma skin cancers and melanoma. Importantly, throughout the article we allude to the safety aspects of sunscreens and at the end ask the question: do active ingredients in sunscreen products pose a risk to human health, and what else can be done to enhance protection? Significant loss of skin protection from two well-known commercial suncreams when exposed to simulated UV sunlight. Cream I: titanium dioxide, ethylhexyl triazone, avobenzone, and octinoxate; Cream II: octyl salicylate, oxybenzone, avobenzone, and octinoxate.
Collapse
|
45
|
Piccinino D, Capecchi E, Tomaino E, Gabellone S, Gigli V, Avitabile D, Saladino R. Nano-Structured Lignin as Green Antioxidant and UV Shielding Ingredient for Sunscreen Applications. Antioxidants (Basel) 2021; 10:274. [PMID: 33578879 PMCID: PMC7916605 DOI: 10.3390/antiox10020274] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Green, biocompatible, and biodegradable antioxidants represent a milestone in cosmetic and cosmeceutical applications. Lignin is the most abundant polyphenol in nature, recovered as a low-cost waste from the pulp and paper industry and biorefinery. This polymer is characterized by beneficial physical and chemical properties which are improved at the nanoscale level due to the emergence of antioxidant and UV shielding activities. Here we review the use of lignin nanoparticles in cosmetic and cosmeceutical applications, focusing on sunscreen and antiaging formulations. Advances in the technology for the preparation of lignin nanoparticles are described highlighting structure activity relationships.
Collapse
Affiliation(s)
- Davide Piccinino
- Department of Ecology and Biology, University of Tuscia, San Camillo De Lellis, 01100 Viterbo, Italy; (E.C.); (E.T.); (S.G.); (V.G.)
| | - Eliana Capecchi
- Department of Ecology and Biology, University of Tuscia, San Camillo De Lellis, 01100 Viterbo, Italy; (E.C.); (E.T.); (S.G.); (V.G.)
| | - Elisabetta Tomaino
- Department of Ecology and Biology, University of Tuscia, San Camillo De Lellis, 01100 Viterbo, Italy; (E.C.); (E.T.); (S.G.); (V.G.)
| | - Sofia Gabellone
- Department of Ecology and Biology, University of Tuscia, San Camillo De Lellis, 01100 Viterbo, Italy; (E.C.); (E.T.); (S.G.); (V.G.)
| | - Valeria Gigli
- Department of Ecology and Biology, University of Tuscia, San Camillo De Lellis, 01100 Viterbo, Italy; (E.C.); (E.T.); (S.G.); (V.G.)
| | - Daniele Avitabile
- IDI Farmaceutici, Via dei Castelli Romani 73/75, 00071 Pomezia, Italy;
| | - Raffaele Saladino
- Department of Ecology and Biology, University of Tuscia, San Camillo De Lellis, 01100 Viterbo, Italy; (E.C.); (E.T.); (S.G.); (V.G.)
| |
Collapse
|
46
|
Eftekhari A, Hill JT, Morrison GC. Transdermal uptake of benzophenone-3 from clothing: comparison of human participant results to model predictions. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:149-157. [PMID: 33303958 DOI: 10.1038/s41370-020-00280-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Models of transdermal uptake of chemicals from clothing have been developed, but not compared with recent human subject experiments. In a well-characterized experiment, participants wore t-shirts pre-dosed with benzophenone-3 (BP-3) and BP-3 and a metabolite were monitored in urine voids. OBJECTIVE Compare a dynamic model of transdermal uptake from clothing to results of the human subject experiment. METHODS The model simulating dynamic transdermal uptake from clothing was coupled with direct measurements of the gas phase concentration of benzophenone-3 (BP-3) near the surface of clothing to simulate the conditions of the human subject experiment. RESULTS The base-case model results were consistent with the those reported for human subjects. The results were moderately sensitive to parameters such as the diffusivity in the stratum corneum (SC), the SC thickness, and SC-air partition coefficient. The model predictions were most sensitive to the clothing fit. Tighter clothing worn during exposure period significantly increased excretion rates but tighter fit "clean" clothing during post-exposure period acts as a sink that reduces transdermal absorption by transferring BP-3 from skin surface lipids to clothing. The shape of the excretion curve was most sensitive to the diffusivity in the SC and clothing fit. SIGNIFICANCE This research provides further support for clothing as an important mediator of dermal exposure to environmental chemicals.
Collapse
Affiliation(s)
- Azin Eftekhari
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan T Hill
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| | - Glenn C Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
47
|
Development and validation of LC-MS/MS method for the determination of UV-filters across human skin in vitro. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1167:122561. [PMID: 33571844 DOI: 10.1016/j.jchromb.2021.122561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 11/21/2022]
Abstract
A novel High-Performance Liquid Chromatography-Tandem Mass Spectrometry (HPLC-MS/MS) method was developed for the simultaneous determination of the in vitro skin permeation profile of four UV filters. The sunscreen products contained the following components: octocrylene (OC), ethylhexyl methoxycinnamate (EHMC), diethylamino hydroxybenzoyl hexyl benzonate (DHHB) and ethylhexyl salicylate (EHS). The target compounds were analyzed by HPLC-MS/MS method in positive ionization electrospray (ESI) in Multiple Reaction Monitoring (MRM) mode. The proposed method was validated in terms of the detection (LOD) and quantification limits (LOQ), linearity range, intra- and inter- day precision and accuracy of the analysis. The stability of the target compounds in solutions was also studied. All tests provided satisfactory results illustrating acceptable method performance. Samples were analyzed with simple pretreatment procedure, necessary to achieve solvent change and preconcentration. To evaluate matrix effect, the slopes of the standard regression curves with those of the matrix-matched calibration curves were compared using the Student's t-test. Quantitative evaluation of the test samples was performed using external methanolic calibration curves. Accuracy was found within the range 94.37-108.76%. The method was successfully applied to the analysis of UV filters in samples after permeability studies, in Franz's cells, for 24 h, using human skin. Concentration of sunscreens in the acceptor phase at the timescale of 24 h was very low implying the safety of the products.
Collapse
|
48
|
Chaiyabutr C, Sukakul T, Kumpangsin T, Bunyavaree M, Charoenpipatsin N, Wongdama S, Boonchai W. Ultraviolet filters in sunscreens and cosmetic products-A market survey. Contact Dermatitis 2021; 85:58-68. [PMID: 33399219 DOI: 10.1111/cod.13777] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND As several reports have raised a variety of environmental, health, and safety issues related to ultraviolet (UV) filters, it is crucial to understand the trends in the exposure of the population to UV filters. OBJECTIVE To determine the frequency of UV filter usage in sunscreens and other cosmetic products in Thai market. METHODS We surveyed the UV filter labelling on sunscreens and cosmetic products sold in the Thai market. In all, 312 sunscreens and 1350 other cosmetic products were investigated. RESULTS Titanium dioxide was the most frequently used UV filter in both sunscreens (66.7%) and other cosmetic products (68.4%). Ethylhexyl methoxycinnamate was the most common organic UVB filter, whereas butyl methoxydibenzoylmethane was the most common organic UVA filter. In sunscreens aimed at children, bis-ethylhexyloxyphenol methoxyphenyl triazine was the most commonly used UV filter. The most frequent co-occurrence of UV filters was titanium dioxide and ethylhexyl methoxycinnamate. CONCLUSIONS Titanium dioxide was the most commonly used UV filter, which differs from the findings of previous surveys. Knowing the availability and frequency of each UV filter provides valuable information about consumer exposure levels, facilitates refinements of the allergen series in patch testing, and enhances the monitoring of adverse effects of UV filters.
Collapse
Affiliation(s)
- Chayada Chaiyabutr
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanisorn Sukakul
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Titinun Kumpangsin
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Monthatip Bunyavaree
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Norramon Charoenpipatsin
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supisara Wongdama
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Waranya Boonchai
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
49
|
Fivenson D, Sabzevari N, Qiblawi S, Blitz J, Norton BB, Norton SA. Sunscreens: UV filters to protect us: Part 2-Increasing awareness of UV filters and their potential toxicities to us and our environment. Int J Womens Dermatol 2021; 7:45-69. [PMID: 33537395 PMCID: PMC7838327 DOI: 10.1016/j.ijwd.2020.08.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Sunscreens are topical preparations containing one or more compounds that filter, block, reflect, scatter, or absorb ultraviolet (UV) light. Part 2 of this review focuses on the environmental, ecological effects and human toxicities that have been attributed to UV filters. METHODS Literature review using NIH databases (eg, PubMed and Medline), FDA and EPA databases, Google Scholar, the Federal Register, and the Code of Federal Regulations (CFR). LIMITATIONS This was a retrospective literature review that involved many different types of studies across a variety of species. Comparison between reports is limited by variations in methodology and criteria for toxicity. CONCLUSIONS In vivo and in vitro studies on the environmental and biological effects of UV filters show a wide array of unanticipated adverse effects on the environment and exposed organisms. Coral bleaching receives considerable attention from the lay press, but the scientific literature identifies potential toxicities of endocrine, neurologic, neoplastic and developmental pathways. These effects harm a vast array of aquatic and marine biota, while almost no data supports human toxicity at currently used quantities (with the exception of contact allergy). Much of these data are from experimental studies or field observations; more controlled environmental studies and long-term human use data are limited. Several jurisdictions have prohibited specific UV filters, but this does not adequately address the dichotomy of the benefits of photoprotection vs lack of eco-friendly, safe, and FDA-approved alternatives.
Collapse
Key Words
- 4-MBC, 4-methylbenzylidene camphor
- AAD, American Academy of Dermatology
- Aquatic organism toxicity of UV filters
- BP-3, Benzophenone-3 or Oxybenzone
- Bioaccumulation
- CDER, Center for Drug Evaluation and Research (part of FDA)
- Coral bleaching
- EPA, Environmental Protection Agency
- Europa, European Union Commission for Public Health
- FDA, Food and Drug Administration
- GBRMPA, Great Barrier Reef Marine Park Authority
- GRASE, Generally Recognized As Safe and Effective
- Human toxicity of UV filters
- NDA, New drug application
- NHANES, National Health and Nutrition Examination Survey
- NanoTiO2, Nanoparticle titanium dioxide
- Nanoparticle toxicity
- OC, Octocrylene
- OMC, Octyl methoxycinnamate or octinoxate
- OTC, Over-the-counter
- PABA, Para-aminobenzoic acid
- PCPC, Personal care products and cosmetics
- PPCP, Pharmaceuticals and personal care products
- Sunscreen side effects
- TiO2, Titanium dioxide
- UV filter
- UV, Ultraviolet
- UVF, Ultraviolet filter
- WWTP, Wastewater treatment plant
Collapse
Affiliation(s)
- David Fivenson
- Fivenson Dermatology, 3200 W. Liberty Rd., Suite C5, Ann Arbor, MI 48103, United States
- St. Joseph Mercy Health System Ann Arbor-Dermatology Residency Program, United States
| | - Nina Sabzevari
- St. Joseph Mercy Hospital, Dermatology Resident, 5333 McAuley Drive, Suite 5003, Ypsilanti, MI 48197, United States
| | - Sultan Qiblawi
- Michigan State University College of Human Medicine, 965 Fee Rd A110, East Lansing, MI 48824, United States
| | - Jason Blitz
- Navy Region Hawaii Public Health Emergency Officer (PHEO) NMRTC, 480 Central Avenue, Code DPH, Pearl Harbor Hawaii JBPHH, HI 96860-4908, United States
| | - Benjamin B. Norton
- Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| | - Scott A. Norton
- Dermatology Division, Children’s National Hospital, 111 Michigan Avenue, NW, Washington, DC 20010, United States
- Dermatology and Pediatrics, George Washington University, Washington, DC, United States
| |
Collapse
|
50
|
Carve M, Nugegoda D, Allinson G, Shimeta J. A systematic review and ecological risk assessment for organic ultraviolet filters in aquatic environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115894. [PMID: 33120145 DOI: 10.1016/j.envpol.2020.115894] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/22/2020] [Accepted: 10/15/2020] [Indexed: 05/21/2023]
Abstract
Organic ultraviolet filters (OUVFs) are used in a wide range of manufactured products including personal care (e.g. sunscreens) and plastic items. This review summarizes the available data regarding the toxic effects of OUVFs on marine and freshwater organisms and generates the predicted no-effect concentration (PNEC) values necessary for assessing ecological risk. Through a systematic search of the literature, 89 studies were identified and ecotoxicological data extracted. Collectively, these studies described toxicity testing with 39 OUVF from 10 structural classes, with derivatives of benzophenones (49%) and camphors (16%) most studied. There was a bias towards selecting freshwater species (61%), and evaluating single OUVF effects (87%) rather than OUVF mixtures. Short-term (acute) experimentation (58%) was marginally more common than long-term (chronic) testing (42%). Reproductive, developmental, genetic, and neurological toxicity were the most commonly identified effects in aquatic organism, and were associated with molecular interactions with steroid receptors, DNA, or the production of reactive oxygen species. Species sensitivity distribution and/or assessment factors were used to calculate PNECs for 22 OUVFs and the risk quotients for 12 OUVFs. When using maximum concentrations, high risk was observed for six OUVFs in marine environments (4-methylbenzylidene-camphor, octocrylene, padimate-O, benzophenone-1, and oxybenzone, ethylhexyl-4-methoxycinnamate), and for four OUVFs in freshwater environments (ethylhexyl-4-methoxycinnamate, octocrylene, avobenzone and oxybenzone). When using median concentrations, a risk to marine environments was observed for oxybenzone. The results of this review underline that there is limited knowledge of the pathological effects of OUVFs and their metabolites in aquatic environments, and this inhibits the development of informed water-quality guidelines.
Collapse
Affiliation(s)
- Megan Carve
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Dayanthi Nugegoda
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Graeme Allinson
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Jeff Shimeta
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|