1
|
Göcebe D, Jansakun C, Zhang Y, Staffer S, Tuma-Kellner S, Altamura S, Muckenthaler MU, Merle U, Herrmann T, Chamulitrat W. Myeloid-specific fatty acid transport protein 4 deficiency induces a sex-dimorphic susceptibility for nonalcoholic steatohepatitis in mice fed a high-fat, high-cholesterol diet. Am J Physiol Gastrointest Liver Physiol 2023; 324:G389-G403. [PMID: 36881564 PMCID: PMC10085558 DOI: 10.1152/ajpgi.00181.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023]
Abstract
Newborns with FATP4 mutations exhibit ichthyosis prematurity syndrome (IPS), and adult patients show skin hyperkeratosis, allergies, and eosinophilia. We have previously shown that the polarization of macrophages is altered by FATP4 deficiency; however, the role of myeloid FATP4 in the pathogenesis of nonalcoholic steatohepatitis (NASH) is not known. We herein phenotyped myeloid-specific Fatp4-deficient (Fatp4M-/-) mice under chow and high-fat, high-cholesterol (HFHC) diet. Bone-marrow-derived macrophages (BMDMs) from Fatp4M-/- mice showed significant reduction in cellular sphingolipids in males and females, and additionally phospholipids in females. BMDMs and Kupffer cells from Fatp4M-/- mice exhibited increased LPS-dependent activation of proinflammatory cytokines and transcription factors PPARγ, CEBPα, and p-FoxO1. Correspondingly, these mutants under chow diet displayed thrombocytopenia, splenomegaly, and elevated liver enzymes. After HFHC feeding, Fatp4M-/- mice showed increased MCP-1 expression in livers and subcutaneous fat. Plasma MCP-1, IL4, and IL13 levels were elevated in male and female mutants, and female mutants additionally showed elevation of IL5 and IL6. After HFHC feeding, male mutants showed an increase in hepatic steatosis and inflammation, whereas female mutants showed a greater severity in hepatic fibrosis associated with immune cell infiltration. Thus, myeloid-FATP4 deficiency led to steatotic and inflammatory NASH in males and females, respectively. Our work offers some implications for patients with FATP4 mutations and also highlights considerations in the design of sex-targeted therapies for NASH treatment.NEW & NOTEWORTHY FATP4 deficiency in BMDMs and Kupffer cells led to increased proinflammatory response. Fatp4M-/- mice displayed thrombocytopenia, splenomegaly, and elevated liver enzymes. In response to HFHC feeding, male mutants were prone to hepatic steatosis, whereas female mutants showed exaggerated fibrosis. Our study provides insights into a sex-dimorphic susceptibility to NASH by myeloid-FATP4 deficiency.
Collapse
Affiliation(s)
- Deniz Göcebe
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Chutima Jansakun
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
- School of Allied Health Sciences, Walailak University, Nakhonsrithammarat, Thailand
| | - Yuling Zhang
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Simone Staffer
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), German Centre for Cardiovascular Research, Partner Site, University of Heidelberg, Heidelberg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Walee Chamulitrat
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Li H, Herrmann T, Seeßle J, Liebisch G, Merle U, Stremmel W, Chamulitrat W. Role of fatty acid transport protein 4 in metabolic tissues: insights into obesity and fatty liver disease. Biosci Rep 2022; 42:BSR20211854. [PMID: 35583196 PMCID: PMC9160530 DOI: 10.1042/bsr20211854] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Abstract
Fatty acid (FA) metabolism is a series of processes that provide structural substances, signalling molecules and energy. Ample evidence has shown that FA uptake is mediated by plasma membrane transporters including FA transport proteins (FATPs), caveolin-1, fatty-acid translocase (FAT)/CD36, and fatty-acid binding proteins. Unlike other FA transporters, the functions of FATPs have been controversial because they contain both motifs of FA transport and fatty acyl-CoA synthetase (ACS). The widely distributed FATP4 is not a direct FA transporter but plays a predominant function as an ACS. FATP4 deficiency causes ichthyosis premature syndrome in mice and humans associated with suppression of polar lipids but an increase in neutral lipids including triglycerides (TGs). Such a shift has been extensively characterized in enterocyte-, hepatocyte-, and adipocyte-specific Fatp4-deficient mice. The mutants under obese and non-obese fatty livers induced by different diets persistently show an increase in blood non-esterified free fatty acids and glycerol indicating the lipolysis of TGs. This review also focuses on FATP4 role on regulatory networks and factors that modulate FATP4 expression in metabolic tissues including intestine, liver, muscle, and adipose tissues. Metabolic disorders especially regarding blood lipids by FATP4 deficiency in different cell types are herein discussed. Our results may be applicable to not only patients with FATP4 mutations but also represent a model of dysregulated lipid homeostasis, thus providing mechanistic insights into obesity and development of fatty liver disease.
Collapse
Affiliation(s)
- Huili Li
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Thomas Herrmann
- Westkuesten Hospital, Esmarchstraße 50, 25746 Heide, Germany
| | - Jessica Seeßle
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
FATP4 inactivation in cultured macrophages attenuates M1- and ER stress-induced cytokine release via a metabolic shift towards triacylglycerides. Biochem J 2021; 478:1861-1877. [PMID: 33900381 DOI: 10.1042/bcj20210155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022]
Abstract
Fatty acid transport protein 4 (FATP4) belongs to a family of acyl-CoA synthetases which activate long-chain fatty acids into acyl-CoAs subsequently used in specific metabolic pathways. Patients with FATP4 mutations and Fatp4-null mice show thick desquamating skin and other complications, however, FATP4 role on macrophage functions has not been studied. We here determined whether the levels of macrophage glycerophospholipids, sphingolipids including ceramides, triacylglycerides, and cytokine release could be altered by FATP4 inactivation. Two in vitro experimental systems were studied: FATP4 knockdown in THP-1-derived macrophages undergoing M1 (LPS + IFNγ) or M2 (IL-4) activation and bone marrow-derived macrophages (BMDMs) from macrophage-specific Fatp4-knockout (Fatp4M-/-) mice undergoing tunicamycin (TM)-induced endoplasmic reticulum stress. FATP4-deficient macrophages showed a metabolic shift towards triacylglycerides and were protected from M1- or TM-induced release of pro-inflammatory cytokines and cellular injury. Fatp4M-/- BMDMs showed specificity in attenuating TM-induced activation of inositol-requiring enzyme1α, but not other unfolded protein response pathways. Under basal conditions, FATP4/Fatp4 deficiency decreased the levels of ceramides and induced an up-regulation of mannose receptor CD206 expression. The deficiency led to an attenuation of IL-8 release in THP-1 cells as well as TNF-α and IL-12 release in BMDMs. Thus, FATP4 functions as an acyl-CoA synthetase in macrophages and its inactivation suppresses the release of pro-inflammatory cytokines by shifting fatty acids towards the synthesis of specific lipids.
Collapse
|
4
|
Tan SP, Brown SB, Griffiths CE, Weller RB, Gibbs NK. Feeding filaggrin: effects of l-histidine supplementation in atopic dermatitis. Clin Cosmet Investig Dermatol 2017; 10:403-411. [PMID: 29042806 PMCID: PMC5634381 DOI: 10.2147/ccid.s146760] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Atopic dermatitis (AD), also known as eczema, is one of the most common chronic skin conditions worldwide, affecting up to 16% of children and 10% of adults. It is incurable and has significant psychosocial and economic impacts on the affected individuals. AD etiology has been linked to deficiencies in the skin barrier protein, filaggrin. In mammalian skin, l-histidine is rapidly incorporated into filaggrin. Subsequent filaggrin proteolysis releases l-histidine as an important natural moisturizing factor (NMF). In vitro studies were conducted to investigate the influence of l-histidine on filaggrin processing and barrier function in human skin-equivalent models. Our further aim was to examine the effects of daily oral l-histidine supplementation on disease severity in adult AD patients. We conducted a randomized, double-blind, placebo-controlled, crossover, nutritional supplementation pilot study to explore the effects of oral l-histidine in adult AD patients (n=24). In vitro studies demonstrated that l-histidine significantly increased both filaggrin formation and skin barrier function (P<0.01, respectively). Data from the clinical study indicated that once daily oral l-histidine significantly reduced (P<0.003) AD disease severity by 34% (physician assessment using the SCORingAD tool) and 39% (patient self-assessment using the Patient Oriented Eczema Measure tool) after 4 weeks of treatment. No improvement was noted with the placebo (P>0.32). The clinical effect of oral l-histidine in AD was similar to that of mid-potency topical corticosteroids and combined with its safety profile suggests that it may be a safe, nonsteroidal approach suitable for long-term use in skin conditions that are associated with filaggrin deficits such as AD.
Collapse
Affiliation(s)
- Siao Pei Tan
- MRC Centre for Inflammation Research.,Department of Dermatology, The University of Edinburgh, Edinburgh
| | - Simon B Brown
- MRC Centre for Inflammation Research.,Department of Dermatology, The University of Edinburgh, Edinburgh
| | - Christopher Em Griffiths
- Dermatology Centre, Division of Musculoskeletal and Dermatological Sciences, Salford Royal NHS Foundation Trust, University of Manchester, Manchester
| | - Richard B Weller
- MRC Centre for Inflammation Research.,Department of Dermatology, The University of Edinburgh, Edinburgh
| | - Neil K Gibbs
- Dermatology Centre, Division of Musculoskeletal and Dermatological Sciences, Salford Royal NHS Foundation Trust, University of Manchester, Manchester.,Curapel, Life Sciences Hub Wales, Cardiff, UK
| |
Collapse
|
5
|
Cheng Y, El-Kattan A, Zhang Y, Ray AS, Lai Y. Involvement of Drug Transporters in Organ Toxicity: The Fundamental Basis of Drug Discovery and Development. Chem Res Toxicol 2016; 29:545-63. [DOI: 10.1021/acs.chemrestox.5b00511] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yaofeng Cheng
- Pharmaceutical
Candidate Optimization, Bristol-Myers Squibb Company, 3551 Lawrenceville
Road, Princeton, New Jersey 08540, United States
| | - Ayman El-Kattan
- Department
of Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., 610 Main
Street, Cambridge, Massachusetts 02139, United States
| | - Yan Zhang
- Drug
Metabolism and Biopharmaceutics, Incyte Corporation, 1801 Augustine
Cutoff, Wilmington, Delaware 19803, United States
| | - Adrian S. Ray
- Department
of Drug Metabolism, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Yurong Lai
- Pharmaceutical
Candidate Optimization, Bristol-Myers Squibb Company, 3551 Lawrenceville
Road, Princeton, New Jersey 08540, United States
| |
Collapse
|
6
|
Seeßle J, Liebisch G, Schmitz G, Stremmel W, Chamulitrat W. Palmitate activation by fatty acid transport protein 4 as a model system for hepatocellular apoptosis and steatosis. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:549-65. [PMID: 25603556 DOI: 10.1016/j.bbalip.2015.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/18/2014] [Accepted: 01/09/2015] [Indexed: 12/15/2022]
Abstract
Fatty acid transport protein (FATP) 4 is a minor FATP in the liver but it has some activity towards palmitate 16:0 (Pal). We here chose FATP4 as a representative model enzyme for acyl-CoA synthetases (ACSs), and FATPs to determine whether Pal activation would lead to apoptosis and alteration in lipid metabolism. By using FATP4 overexpressed (FATP4) Huh-7 cells, we showed that FATP4 was localized in the endoplasmic reticulum (ER) and mitochondria of FATP4 cells. FATP4 cells were more responsive to Pal than the control GFP cells in increasing palmitoyl-CoA and oleoyl-CoA activities as well as apoptosis by ~2-3 folds. The lipoapoptosis susceptibility by FATP4 was coupled with the increased JNK, PUMA, caspase3, PARP-1 activation as well as Rac-1-mediated cytoskeletal reorganization, and decreased insulin sensitivity. This was associated with increased contents of neutral lipids and significant alteration in composition of phospholipids and sphingolipids including increased lysophosphatidylcholine (LPC), ceramide, and hexosylceramide, as well as an increase of saturated:polyunsaturated fatty acid ratio in LPC and PC, but a decrease of this ratio in phosphatidylethanolamine pool. By use of ceramide synthase inhibitors, our results showed that FATP4-sensitized lipoapoptosis was not mediated by ceramides. Moreover, FATP4 expression was increased in fatty livers in vivo. Thus, our model system has provided a clue that Pal activation FATP4 triggers hepatocellular apoptosis via altered phospholipid composition and steatosis by acylation into complex lipids. This may be a redundant mechanism for other ER-localizing ACSs and FATPs in the liver, and hence their involvement in the development of fatty liver disease.
Collapse
Affiliation(s)
- Jessica Seeßle
- Department of Internal Medicine IV, Gastroenterology and Infectious Disease, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, Gastroenterology and Infectious Disease, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, Gastroenterology and Infectious Disease, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
7
|
Abstract
The epidermis functions as a physical barrier to the external environment and works to prevent loss of water from the skin. Numerous factors have been implicated in the formation of epidermal barriers, such as cornified envelopes, corneocytes, lipids, junctional proteins, proteases, protease inhibitors, antimicrobial peptides, and transcription factors. This review illustrates human diseases (ichthyoses) and animal models in which the epidermal barrier is disrupted or dysfunctional at steady state owing to ablation of one or more of the above factors. These diseases and animal models help us to understand the complicated mechanisms of epidermal barrier formation and give further insights on epidermal development.
Collapse
|
8
|
Hagberg C, Mehlem A, Falkevall A, Muhl L, Eriksson U. Endothelial fatty acid transport: role of vascular endothelial growth factor B. Physiology (Bethesda) 2014; 28:125-34. [PMID: 23455771 DOI: 10.1152/physiol.00042.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dietary lipids present in the circulation have to be transported through the vascular endothelium to be utilized by tissue cells, a vital mechanism that is still poorly understood. Vascular endothelial growth factor B (VEGF-B) regulates this process by controlling the expression of endothelial fatty acid transporter proteins (FATPs). Here, we summarize research on the role of the vascular endothelium in nutrient transport, with emphasis on VEGF-B signaling.
Collapse
|
9
|
Fatty acid transporters in skin development, function and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:362-8. [PMID: 24120574 DOI: 10.1016/j.bbalip.2013.09.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/25/2013] [Accepted: 09/30/2013] [Indexed: 12/12/2022]
Abstract
Fatty acids in the epidermis can be incorporated into complex lipids or exist in a free form, and they are crucial to proper functions of the epidermis and its appendages, such as sebaceous glands. Epidermal fatty acids can be synthesized de novo by keratinocytes or taken up from extracutaneous sources in a process that likely involves protein transporters. Several proteins that are expressed in the epidermis have been proposed to facilitate the uptake of long-chain fatty acids (LCFA) in mammalian cells, including fatty acid translocase/CD36, fatty acid binding protein, and fatty acid transport protein (FATP)/very long-chain acyl-CoA synthetase. In this review, we will discuss the mechanisms by which these candidate transporters facilitate the uptake of fatty acids. We will then discuss the clinical implications of defects in these transporters and relevant animal models, including the FATP4 animal models and ichthyosis prematurity syndrome, a congenital ichthyosis caused by FATP4 deficiency. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
|
10
|
Anderson CM, Stahl A. SLC27 fatty acid transport proteins. Mol Aspects Med 2013; 34:516-28. [PMID: 23506886 DOI: 10.1016/j.mam.2012.07.010] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/18/2012] [Indexed: 12/20/2022]
Abstract
The uptake and metabolism of long chain fatty acids (LCFA) are critical to many physiological and cellular processes. Aberrant accumulation or depletion of LCFA underlie the pathology of numerous metabolic diseases. Protein-mediated transport of LCFA has been proposed as the major mode of LCFA uptake and activation. Several proteins have been identified to be involved in LCFA uptake. This review focuses on the SLC27 family of fatty acid transport proteins, also known as FATPs, with an emphasis on the gain- and loss-of-function animal models that elucidate the functions of FATPs in vivo and how these transport proteins play a role in physiological and pathological situations.
Collapse
Affiliation(s)
- Courtney M Anderson
- Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California Berkeley, CA, USA
| | | |
Collapse
|
11
|
Lin MH, Hsu FF, Miner JH. Requirement of fatty acid transport protein 4 for development, maturation, and function of sebaceous glands in a mouse model of ichthyosis prematurity syndrome. J Biol Chem 2012; 288:3964-76. [PMID: 23271751 DOI: 10.1074/jbc.m112.416990] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fatty acid transport protein 4 (FATP4) is one of a family of six transmembrane proteins that facilitate long- and very long-chain fatty acid uptake. FATP4 is expressed in several tissues, including skin. Mutations in human SLC27A4, which encodes FATP4, cause ichthyosis prematurity syndrome, characterized by a thick desquamating epidermis and premature birth. Mice lacking FATP4, which genetically model the human disease, are born with tight, thick skin and a defective skin barrier; they die neonatally due to dehydration and restricted movements. Both the skin phenotype and the lethality are rescued by transgene expression of FATP4 in suprabasal keratinocytes. Sebaceous glands in Fatp4 null skin grafted onto nude mice were found to be dystrophic and enwrapped by thick layers of epithelial cells. Consistent with these results, transgene-rescued Fatp4 null mice showed a subnormal level of FATP4 expression in sebocytes and exhibited abnormal development of both sebaceous glands and meibomian glands, specialized sebaceous glands of the eyelids. Sebum from these mice contained a reduced level of type II diester wax, a major mouse sebum lipid species, and showed perturbations in mass spectrometric profiles of diester wax and cholesteryl ester species. In addition, these mice showed an impaired ability to repel water and regulate body temperature after water immersion. Taken together, our results suggest that FATP4 plays crucial roles in the development and maturation of both sebaceous and meibomian glands, as well as in the formation and composition of sebum, likely by regulating the trafficking of fatty acids necessary for proper synthesis of sebum lipids.
Collapse
Affiliation(s)
- Meei-Hua Lin
- Department of Internal Medicine, Renal Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
12
|
A spontaneous Fatp4/Scl27a4 splice site mutation in a new murine model for congenital ichthyosis. PLoS One 2012; 7:e50634. [PMID: 23226340 PMCID: PMC3511458 DOI: 10.1371/journal.pone.0050634] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/23/2012] [Indexed: 11/19/2022] Open
Abstract
Congenital ichthyoses are life-threatening conditions in humans. We describe here the identification and molecular characterization of a novel recessive mutation in mice that results in newborn lethality with severe congenital lamellar ichthyosis. Mutant newborns have a taut, shiny, non-expandable epidermis that resembles cornified manifestations of autosomal-recessive congenital ichthyosis in humans. The skin is stretched so tightly that the newborn mice are immobilized. The genetic defect was mapped to a region near the proximal end of chromosome 2 by SNP analysis, suggesting Fatp4/Slc27a4 as a candidate gene. FATP4 mutations in humans cause ichthyosis prematurity syndrome (IPS), and mutations of Fatp4 in mice have previously been found to cause a phenotype that resembles human congenital ichthyoses. Characterization of the Fatp4 cDNA revealed a fusion of exon 8 to exon 10, with deletion of exon 9. Genomic sequencing identified an A to T mutation in the splice donor sequence at the 3'-end of exon 9. Loss of exon 9 results in a frame shift mutation upstream from the conserved very long-chain acyl-CoA synthase (VLACS) domain. Histological studies revealed that the mutant mice have defects in keratinocyte differentiation, along with hyperproliferation of the stratum basale of the epidermis, a hyperkeratotic stratum corneum, and reduced numbers of secondary hair follicles. Since Fatp4 protein is present primarily at the stratum granulosum and the stratum spinosum, the hyperproliferation and the alterations in hair follicle induction suggest that very long chain fatty acids, in addition to being required for normal cornification, may influence signals from the stratum corneum to the basal cells that help to orchestrate normal skin differentiation.
Collapse
|
13
|
Franke WW, Pape UF. Diverse types of junctions containing tight junction proteins in stratified mammalian epithelia. Ann N Y Acad Sci 2012; 1257:152-7. [DOI: 10.1111/j.1749-6632.2012.06504.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
The expression and function of fatty acid transport protein-2 and -4 in the murine placenta. PLoS One 2011; 6:e25865. [PMID: 22028793 PMCID: PMC3197585 DOI: 10.1371/journal.pone.0025865] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/13/2011] [Indexed: 11/19/2022] Open
Abstract
Background The uptake and trans-placental trafficking of fatty acids from the maternal blood into the fetal circulation are essential for embryonic development, and involve several families of proteins. Fatty acid transport proteins (FATPs) uniquely transport fatty acids into cells. We surmised that placental FATPs are germane for fetal growth, and are regulated during hypoxic stress, which is associated with reduced fat supply to the fetus. Methodology/Principal Findings Using cultured primary term human trophoblasts we found that FATP2, FATP4 and FATP6 were highly expressed in trophoblasts. Hypoxia enhanced the expression of trophoblastic FATP2 and reduced the expression of FATP4, with no change in FATP6. We also found that Fatp2 and Fatp4 are expressed in the mouse amnion and placenta, respectively. Mice deficient in Fatp2 or Fatp4 did not deviate from normal Mendelian distribution, with both embryos and placentas exhibiting normal weight and morphology, triglyceride content, and expression of genes related to fatty acid mobilization. Conclusions/Significance We conclude that even though hypoxia regulates the expression of FATP2 and FATP4 in human trophoblasts, mouse Fatp2 and Fatp4 are not essential for intrauterine fetal growth.
Collapse
|
15
|
Kazantzis M, Stahl A. Fatty acid transport proteins, implications in physiology and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:852-7. [PMID: 21979150 DOI: 10.1016/j.bbalip.2011.09.010] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/19/2011] [Accepted: 09/19/2011] [Indexed: 01/12/2023]
Abstract
Uptake of long-chain fatty acids plays pivotal roles in metabolic homeostasis and human physiology. Uptake rates must be controlled in an organ-specific fashion to balance storage with metabolic needs during transitions between fasted and fed states. Many obesity-associated diseases, such as insulin resistance in skeletal muscle, cardiac lipotoxicity, and hepatic steatosis, are thought to be driven by the overflow of fatty acids from adipose stores and the subsequent ectopic accumulation of lipids resulting in apoptosis, ER stress, and inactivation of the insulin receptor signaling cascade. Thus, it is of critical importance to understand the components that regulate the flux of fatty acid between the different organ systems. Cellular uptake of fatty acids by key metabolic organs, including the intestine, adipose tissue, muscle, heart, and liver, has been shown to be protein mediated and various unique combinations of fatty acid transport proteins (FATPs/SLC27A1-6) are expressed by all of these tissues. Here we review our current understanding of how FATPs can contribute to normal physiology and how FATP mutations as well as hypo- and hypermorphic changes contribute to disorders ranging from cardiac lipotoxicity to hepatosteatosis and ichthyosis. Ultimately, our increasing knowledge of FATP biology has the potential to lead to the development of new diagnostic tools and treatment options for some of the most pervasive chronic human disorders. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.
Collapse
|
16
|
Khnykin D, Rønnevig J, Johnsson M, Sitek JC, Blaas HGK, Hausser I, Johansen FE, Jahnsen FL. Ichthyosis prematurity syndrome: clinical evaluation of 17 families with a rare disorder of lipid metabolism. J Am Acad Dermatol 2011; 66:606-16. [PMID: 21856041 DOI: 10.1016/j.jaad.2011.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/31/2011] [Accepted: 04/21/2011] [Indexed: 12/27/2022]
Abstract
BACKGROUND Ichthyosis prematurity syndrome (IPS) is classified as a syndromic congenital ichthyosis based on the presence of skin changes at birth, ultrastructural abnormalities in the epidermis, and extracutaneous manifestations. Recently, mutations in the fatty acid transporter protein 4 gene have been identified in patients with IPS. OBJECTIVE We sought to perform a detailed clinical evaluation of patients with IPS identified in Norway. METHODS Clinical examination and follow-up of all patients (n = 23) and light and electron microscopic examination of skin biopsy specimens were performed. RESULTS IPS was characterized prenatally by ultrasound findings of polyhydramnios, separation of membranes, echogenic amniotic fluid, and clear chorionic fluid. All patients were born prematurely with sometimes life-threatening neonatal asphyxia; this was likely caused by aspiration of corneocyte-containing amniotic fluid as postmortem examination of lung tissue in two patients revealed keratin debris filling the bronchial tree and alveoli. The skin appeared erythrodermic, swollen, and covered by a greasy, thick vernix caseosa-like "scale" at birth, and evolved rapidly to a mild chronic ichthyosis. Many patients subsequently had chronic, severe pruritus. Histopathologic and ultrastructural examination of skin biopsy specimens showed hyperkeratosis, acanthosis, dermal inflammation, and characteristic aggregates of curved lamellar structures in the upper epidermis. Peripheral blood eosinophilia was invariably present and most patients had increased serum immunoglobulin E levels. Over 70% of the patients had a history of respiratory allergy and/or food allergy. LIMITATIONS The study included only 23 patients because of the rarity of the disease. CONCLUSION IPS is characterized by defined genetic mutations, typical ultrastructural skin abnormalities, and distinct prenatal and postnatal clinical features.
Collapse
Affiliation(s)
- Denis Khnykin
- Department of Pathology and Centre of Immune Regulation, Oslo University Hospital-Rikshospitalet and University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lenz LS, Marx J, Chamulitrat W, Kaiser I, Gröne HJ, Liebisch G, Schmitz G, Elsing C, Straub BK, Füllekrug J, Stremmel W, Herrmann T. Adipocyte-specific inactivation of Acyl-CoA synthetase fatty acid transport protein 4 (Fatp4) in mice causes adipose hypertrophy and alterations in metabolism of complex lipids under high fat diet. J Biol Chem 2011; 286:35578-35587. [PMID: 21808061 DOI: 10.1074/jbc.m111.226530] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fatp4 exhibits acyl-CoA synthetase activity and is thereby able to catalyze the activation of fatty acids for further metabolism. However, its actual function in most tissues remains unresolved, and its role in cellular fatty acid uptake is still controversial. To characterize Fatp4 functions in adipocytes in vivo, we generated a mouse line with adipocyte-specific inactivation of the Fatp4 gene (Fatp4(A-/-)). Under standard conditions mutant mice showed no phenotypical aberrance. Uptake of radiolabeled palmitic and lignoceric acid into adipose tissue of Fatp4(A-/-) mice was unchanged. When exposed to a diet enriched in long chain fatty acids, Fatp4(A-/-) mice gained more body weight compared with control mice, although they were not consuming more food. Pronounced obesity was accompanied by a thicker layer of subcutaneous fat and greater adipocyte circumference, although expression of genes involved in de novo lipogenesis was not changed. However, the increase in total fat mass was contrasted by a significant decrease in various phospholipids, sphingomyelin, and cholesteryl esters in adipocytes. Livers of Fatp4-deficient animals under a high fat diet exhibited a higher degree of fatty degeneration. Nonetheless, no evidence for changes in insulin sensitivity and adipose inflammation was found. In summary, the results of this study confirm that Fatp4 is not crucial for fatty acid uptake into adipocytes. Instead, under the condition of a diet enriched in long chain fatty acids, adipocyte-specific Fatp4 deficiency results in adipose hypertrophy and profound alterations in the metabolism of complex lipids.
Collapse
Affiliation(s)
- Lena-Solveig Lenz
- Department of Internal Medicine IV, University of Heidelberg, 69120 Heidelberg
| | - Jana Marx
- Department of Internal Medicine IV, University of Heidelberg, 69120 Heidelberg
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University of Heidelberg, 69120 Heidelberg
| | - Iris Kaiser
- Department of Internal Medicine IV, University of Heidelberg, 69120 Heidelberg
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, 69120 Heidelberg
| | - Gerhard Liebisch
- Institute of Clinical Chemistry, University of Regensburg, 93042 Regensburg
| | - Gerd Schmitz
- Institute of Clinical Chemistry, University of Regensburg, 93042 Regensburg
| | - Christoph Elsing
- Department of Internal Medicine, St. Elisabeth Hospital, 46225 Dorsten
| | - Beate K Straub
- Department of General Pathology, Institute of Pathology, 69120 Heidelberg
| | - Joachim Füllekrug
- Department of Internal Medicine IV, University of Heidelberg, 69120 Heidelberg
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, University of Heidelberg, 69120 Heidelberg
| | - Thomas Herrmann
- Department of Internal Medicine IV, University of Heidelberg, 69120 Heidelberg; Department of Internal Medicine I, Klinikum Idar-Oberstein, 55743 Idar-Oberstein, Germany.
| |
Collapse
|
18
|
Khnykin D, Miner JH, Jahnsen F. Role of fatty acid transporters in epidermis: Implications for health and disease. DERMATO-ENDOCRINOLOGY 2011; 3:53-61. [PMID: 21695012 PMCID: PMC3117002 DOI: 10.4161/derm.3.2.14816] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/07/2011] [Accepted: 01/13/2011] [Indexed: 12/31/2022]
Abstract
Skin epidermis is an active site of lipid synthesis. The intercellular lipids of human stratum corneum (SC) are unique in composition and quite different from the lipids found in most biological membranes. The three major lipids in the SC are free fatty acids, cholesterol and ceramides. Fatty acids can be synthesized by keratinocytes de novo and, in addition, need to be taken up from the circulation. The latter process has been shown to be protein mediated, and several fatty acid transporters are expressed in skin. Recent studies of transgenic and knockout animal models for fatty acid transporters and the identification of fatty acid transport protein 4 (FATP4 or SLC27A4) mutations as causative for Ichthyosis Prematurity Syndrome highlight the vital roles of fatty acid transport and metabolism in skin homeostasis. This review provides an overview of our current understanding of the role of fatty acids and their transporters in cutaneous biology, including their involvement in epidermal barrier generation and skin inflammation.
Collapse
Affiliation(s)
- Denis Khnykin
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT); Department of Pathology; Oslo University Hospital-Rikshospitalet; Oslo, Norway
| | | | | |
Collapse
|
19
|
Metzger D, Chambon P. Generation of Spatio-Temporally Controlled Targeted Somatic Mutations in the Mouse. CURRENT PROTOCOLS IN MOUSE BIOLOGY 2011; 1:55-70. [PMID: 26068987 DOI: 10.1002/9780470942390.mo100128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The generation of ligand-activated site-specific Cre recombinases has led to the development of cell type-specific temporally controlled targeted somatic mutagenesis in the mouse. We illustrate this technique using K14-Cre-ER(T2) transgenic mice that express the tamoxifen (tam)-activatable Cre-ER(T2) recombinase in epidermal basal keratinocytes to induce mutations in epidermal keratinocytes of adult mice. Our highly reproducible technique, based on induction of Cre-ER(T2) recombinase activity by tamoxifen administration at low doses (once daily 100-µg intraperitoneal injection for 5 days), has allowed the generation of site-directed somatic mutations of numerous genes in mouse epidermal keratinocytes, and several mouse models of human diseases. The present step-by-step protocol describes how to introduce temporally controlled targeted mutations in epidermal keratinocytes of adult mice. Curr. Protoc. Mouse Biol. 1:55-70. © 2011 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Daniel Metzger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, and Collège de France, Illkirch, France
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, and Collège de France, Illkirch, France
| |
Collapse
|
20
|
Glatz JFC, Luiken JJFP, Bonen A. Membrane Fatty Acid Transporters as Regulators of Lipid Metabolism: Implications for Metabolic Disease. Physiol Rev 2010; 90:367-417. [DOI: 10.1152/physrev.00003.2009] [Citation(s) in RCA: 515] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Long-chain fatty acids and lipids serve a wide variety of functions in mammalian homeostasis, particularly in the formation and dynamic properties of biological membranes and as fuels for energy production in tissues such as heart and skeletal muscle. On the other hand, long-chain fatty acid metabolites may exert toxic effects on cellular functions and cause cell injury. Therefore, fatty acid uptake into the cell and intracellular handling need to be carefully controlled. In the last few years, our knowledge of the regulation of cellular fatty acid uptake has dramatically increased. Notably, fatty acid uptake was found to occur by a mechanism that resembles that of cellular glucose uptake. Thus, following an acute stimulus, particularly insulin or muscle contraction, specific fatty acid transporters translocate from intracellular stores to the plasma membrane to facilitate fatty acid uptake, just as these same stimuli recruit glucose transporters to increase glucose uptake. This regulatory mechanism is important to clear lipids from the circulation postprandially and to rapidly facilitate substrate provision when the metabolic demands of heart and muscle are increased by contractile activity. Studies in both humans and animal models have implicated fatty acid transporters in the pathogenesis of diseases such as the progression of obesity to insulin resistance and type 2 diabetes. As a result, membrane fatty acid transporters are now being regarded as a promising therapeutic target to redirect lipid fluxes in the body in an organ-specific fashion.
Collapse
Affiliation(s)
- Jan F. C. Glatz
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Joost J. F. P. Luiken
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Arend Bonen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
21
|
Klar J, Schweiger M, Zimmerman R, Zechner R, Li H, Törmä H, Vahlquist A, Bouadjar B, Dahl N, Fischer J. Mutations in the fatty acid transport protein 4 gene cause the ichthyosis prematurity syndrome. Am J Hum Genet 2009; 85:248-53. [PMID: 19631310 PMCID: PMC2725242 DOI: 10.1016/j.ajhg.2009.06.021] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 06/23/2009] [Accepted: 06/24/2009] [Indexed: 12/01/2022] Open
Abstract
Ichthyosis prematurity syndrome (IPS) is an autosomal-recessive disorder characterized by premature birth and neonatal asphyxia, followed by a lifelong nonscaly ichthyosis with atopic manifestations. Here we show that the gene encoding the fatty acid transport protein 4 (FATP4) is mutated in individuals with IPS. Fibroblasts derived from a patient with IPS show reduced activity of very long-chain fatty acids (VLCFA)-CoA synthetase and a specific reduction in the incorporation of VLCFA into cellular lipids. The human phenotype is consistent with Fatp4 deficiency in mice that is characterized by a severe skin phenotype, a defective permeability barrier function, and perturbed VLCFA metabolism. Our results further emphasize the importance of fatty acid metabolism for normal epidermal barrier function illustrated by deficiency of a member in the FATP family of proteins.
Collapse
Affiliation(s)
- Joakim Klar
- Department of Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Robert Zimmerman
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Hao Li
- Department of Medical Sciences, Uppsala University Hospital, 75185 Uppsala, Sweden
| | - Hans Törmä
- Department of Medical Sciences, Uppsala University Hospital, 75185 Uppsala, Sweden
| | - Anders Vahlquist
- Department of Medical Sciences, Uppsala University Hospital, 75185 Uppsala, Sweden
| | - Bakar Bouadjar
- Department of Dermatology, CHU of Bab-El-Oued, 16000 Algiers, Algeria
| | - Niklas Dahl
- Department of Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Judith Fischer
- CEA, Institut de Génomique, CNG, 91057 Evry Cedex, France
| |
Collapse
|
22
|
Wang S, Soni KG, Semache M, Casavant S, Fortier M, Pan L, Mitchell GA. Lipolysis and the integrated physiology of lipid energy metabolism. Mol Genet Metab 2008; 95:117-26. [PMID: 18762440 DOI: 10.1016/j.ymgme.2008.06.012] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 06/30/2008] [Accepted: 06/30/2008] [Indexed: 11/18/2022]
Abstract
Fat cell lipolysis, the cleavage of triglycerides and release of fatty acids and glycerol, evolved to enable survival during prolonged food deprivation but is paradoxically increased in obesity, in which a surfeit of all energy metabolites is found. Essential, previously-unsuspected components have been discovered in the lipolytic machinery, at the protective interface of the lipid droplet surface and in the signaling pathways that control lipolysis. At least two adipocyte lipases are important for controlling lipolysis, hormone-sensitive lipase (HSL) and adipocyte triglyceride lipase (ATGL). Perilipin (PLIN) and possibly other proteins of the lipid droplet surface are master regulators of lipolysis, protecting or exposing the triglyceride core of the droplet to lipases. The prototypes for hormonal lipolytic control are beta adrenergic stimulation and suppression by insulin, both of which affect cyclic AMP levels and hence the protein kinase A-mediated phosphorylation of HSL and PLIN. Newly-recognized mediators of lipolysis include atrial natriuretic peptide, cyclic GMP, the ketone body 3-hydroxybutyrate, AMP kinase and mitogen-activated kinases. Lipolysis must be interpreted in its physiological context since similar rates of basal or stimulated lipolysis occur under different conditions and by different mechanisms. Age, sex, anatomical site, genotype and species differences are each important variables. Manipulation of lipolysis has therapeutic potential in several inborn errors and in the metabolic syndrome that frequently complicates obesity.
Collapse
Affiliation(s)
- Shupei Wang
- Division of Medical Genetics, CHU Sainte-Justine, Montréal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Shim J, Moulson CL, Newberry EP, Lin MH, Xie Y, Kennedy SM, Miner JH, Davidson NO. Fatty acid transport protein 4 is dispensable for intestinal lipid absorption in mice. J Lipid Res 2008; 50:491-500. [PMID: 18843142 DOI: 10.1194/jlr.m800400-jlr200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
FA transport protein 4 (FATP4), one member of a multigene family of FA transporters, was proposed as a major FA transporter in intestinal lipid absorption. Due to the fact that Fatp4(-/-) mice die because of a perinatal skin defect, we rescued the skin phenotype using an FATP4 transgene driven by a keratinocyte-specific promoter (Fatp4(-/-);Ivl-Fatp4(tg/+) mice) to elucidate the role of intestinal FATP4 in dietary lipid absorption. Fatp4(-/-);Ivl-Fatp4(tg/+) mice and wild-type littermates displayed indistinguishable food consumption, growth, and weight gain on either low or high fat (Western) diets, with no differences in intestinal triglyceride (TG) absorption or fecal fat losses. Cholesterol absorption and intestinal TG absorption kinetics were indistinguishable between the genotypes, although Western diet fed Fatp4(-/-);Ivl-Fatp4(tg/+) mice showed a significant increase in enterocyte TG and FA content. There was no compensatory upregulation of other FATP family members or any other FA or cholesterol transporters in Fatp4(-/-);Ivl-Fatp4(tg/+) mice. Furthermore, although serum cholesterol levels were lower in Fatp4(-/-);Ivl-Fatp4(tg/+) mice, there was no difference in hepatic VLDL secretion in-vivo or in hepatic lipid content on either a chow or Western diet. Taken together, our studies find no evidence for a physiological role of intestinal FATP4 in dietary lipid absorption in mice.
Collapse
Affiliation(s)
- Jien Shim
- J. Shim, C. Moulson, and E. Newberry contributed equally to this work; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Casey L Moulson
- J. Shim, C. Moulson, and E. Newberry contributed equally to this work; Deceased; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Elizabeth P Newberry
- J. Shim, C. Moulson, and E. Newberry contributed equally to this work; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Meei-Hua Lin
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yan Xie
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Susan M Kennedy
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jeffrey H Miner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Nicholas O Davidson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110.
| |
Collapse
|
24
|
Nickerson JG, Momken I, Benton CR, Lally J, Holloway GP, Han XX, Glatz JFC, Chabowski A, Luiken JJFP, Bonen A. Protein-mediated fatty acid uptake: regulation by contraction, AMP-activated protein kinase, and endocrine signals. Appl Physiol Nutr Metab 2008; 32:865-73. [PMID: 18059611 DOI: 10.1139/h07-084] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty acid transport into heart and skeletal muscle occurs largely through a highly regulated protein-mediated mechanism involving a number of fatty acid transporters. Chronically altered muscle activity (chronic muscle stimulation, denervation) alters fatty acid transport by altering the expression of fatty acid transporters and (or) their subcellular location. Chronic exposure to leptin downregulates while insulin upregulates fatty acid transport by altering concomitantly the expression of fatty acid transporters. Fatty acid transport can also be regulated within minutes, by muscle contraction, AMP-activated protein kinase activation, leptin, and insulin, through induction of the translocation of fatty acid translocase (FAT)/CD36 from its intracellular depot to the plasma membrane. In insulin-resistant muscle, a permanent relocation of FAT/CD36 to the sarcolemma appears to account for the excess accretion of intracellular lipids that interfere with insulin signaling. Recent work has also shown that FAT/ CD36, but not plasma membrane associated fatty acid binding protein, is involved, along with carnitine palmitoyltransferase, in regulating mitochondrial fatty acid oxidation. Finally, studies in FAT/CD36 null mice indicate that this transporter has a key role in regulating fatty acid metabolism in muscle.
Collapse
Affiliation(s)
- James G Nickerson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Functional domains of the fatty acid transport proteins: studies using protein chimeras. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:135-43. [PMID: 18258213 DOI: 10.1016/j.bbalip.2008.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 01/07/2008] [Accepted: 01/09/2008] [Indexed: 11/21/2022]
Abstract
Fatty acid transport proteins (FATP) function in fatty acid trafficking pathways, several of which have been shown to participate in the transport of exogenous fatty acids into the cell. Members of this protein family also function as acyl CoA synthetases with specificity towards very long chain fatty acids or bile acids. These proteins have two identifying sequence motifs: The ATP/AMP motif, an approximately 100 amino acid segment required for ATP binding and common to members of the adenylate-forming super family of proteins, and the FATP/VLACS motif that consists of approximately 50 amino acid residues and is restricted to members of the FATP family. This latter motif has been implicated in fatty acid transport in the yeast FATP orthologue Fat1p. In the present studies using a yeast strain containing deletions in FAT1 (encoding Fat1p) and FAA1 (encoding the major acyl CoA synthetase (Acsl) Faa1p) as an experimental platform, the phenotypic and functional properties of specific murine FATP1-FATP4 and FATP6-FATP4 protein chimeras were evaluated in order to define elements within these proteins that further distinguish the fatty acid transport and activation functions. As expected from previous work FATP1 and FATP4 were functional in the fatty acid transport pathway, while and FATP6 was not. All three isoforms were able to activate the very long chain fatty acids arachidonate (C(20:4)) and lignocerate (C(24:0)), but with distinguishing activities between saturated and highly unsaturated ligands. A 73 amino acid segment common to FATP1 and FATP4 and between the ATP/AMP and FATP/VLACS motifs was identified by studying the chimeras, which is hypothesized to contribute to the transport function.
Collapse
|
26
|
Feingold KR. Thematic review series: skin lipids. The role of epidermal lipids in cutaneous permeability barrier homeostasis. J Lipid Res 2007; 48:2531-46. [PMID: 17872588 DOI: 10.1194/jlr.r700013-jlr200] [Citation(s) in RCA: 276] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The permeability barrier is required for terrestrial life and is localized to the stratum corneum, where extracellular lipid membranes inhibit water movement. The lipids that constitute the extracellular matrix have a unique composition and are 50% ceramides, 25% cholesterol, and 15% free fatty acids. Essential fatty acid deficiency results in abnormalities in stratum corneum structure function. The lipids are delivered to the extracellular space by the secretion of lamellar bodies, which contain phospholipids, glucosylceramides, sphingomyelin, cholesterol, and enzymes. In the extracellular space, the lamellar body lipids are metabolized by enzymes to the lipids that form the lamellar membranes. The lipids contained in the lamellar bodies are derived from both epidermal lipid synthesis and extracutaneous sources. Inhibition of cholesterol, fatty acid, ceramide, or glucosylceramide synthesis adversely affects lamellar body formation, thereby impairing barrier homeostasis. Studies have further shown that the elongation and desaturation of fatty acids is also required for barrier homeostasis. The mechanisms that mediate the uptake of extracutaneous lipids by the epidermis are unknown, but keratinocytes express LDL and scavenger receptor class B type 1, fatty acid transport proteins, and CD36. Topical application of physiologic lipids can improve permeability barrier homeostasis and has been useful in the treatment of cutaneous disorders.
Collapse
Affiliation(s)
- Kenneth R Feingold
- Metabolism Section, Medical Service, Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94121, USA.
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Fatty acid transport proteins are a family of proteins involved in fatty acid uptake and activation. This review summarizes recent progress in elucidating the function of fatty acid transport proteins. RECENT FINDINGS Recent experiments clearly establish FATP1 as a regulated fatty acid transporter in both adipose tissue and muscle with important roles in energy homeostasis, thermogenesis and insulin resistance. Knockout of FATP5 in mice show it to be a bifunctional protein required for both hepatic fatty acid uptake and bile acid reconjugation. The most striking phenotype of FATP4 deletion is a defect in skin homeostasis, which may be due to its very long chain acyl-coenzyme A synthetase activity. Fatty acid transport proteins are increasingly being recognized as multifunctional proteins that can mediate the uptake of fatty acids as well as catalyze the formation of coenzyme A derivatives using long-chain and very-long chain fatty acids, bile acids and bile acid precursors as substrates. SUMMARY Modulation of fatty acid transport protein function can result in altered energy homeostasis and insulin sensitivity, defective skin homeostasis, and altered bile acid metabolism. Both fatty acid uptake and enzymatic activity of fatty acid transport proteins likely contribute to these phenotypes. Future studies are needed to better understand the molecular mechanism of fatty acid transport protein function and the physiological role of FATP2, FATP3, and FATP6.
Collapse
Affiliation(s)
- Ruth E Gimeno
- Department of Cardiovascular and Metabolic Diseases, Wyeth Research, Cambridge, Massachusetts 02140, USA.
| |
Collapse
|
28
|
Moran JL, Qiu H, Turbe-Doan A, Yun Y, Boeglin WE, Brash AR, Beier DR. A mouse mutation in the 12R-lipoxygenase, Alox12b, disrupts formation of the epidermal permeability barrier. J Invest Dermatol 2007; 127:1893-7. [PMID: 17429434 DOI: 10.1038/sj.jid.5700825] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nonbullous congenital ichthyosiform erythroderma (NCIE) is a nonsyndromic form of autosomal recessive congenital ichthyosis characterized by hyperkeratosis and a disruption in the epidermal permeability barrier. Identification of mutations in two lipoxygenases (LOXs), ALOX12B (12R-LOX) and ALOXE3 (eLOX3), and further functional studies implicate ALOX12B and ALOXE3 in the etiology of NCIE. Here, we report a mutation in Alox12b in the recessive ethylnitrosurea-induced mouse mutant, mummy (Alox12b(mmy-Bei)). mummy mutants have red, scaly skin and die perinatally. Histologically, mummy mutants display defects in the epidermis. We mapped mummy to a 1.9 Mb interval on Chr. 11 containing Alox12b (12R-LOX), Aloxe3 (eLOX3) and Alox15b (8-LOX). Sequencing of all three genes identified a nonsense mutation in the catalytic domain of Alox12b. We demonstrate that mummy mutants have a disrupted epidermal permeability barrier and that the nonsense mutation in mummy abolishes the enzyme activity of 12R-LOX. The mummy mutant provides a mouse model for LOX-mediated NCIE and is the first described mouse mutant affecting epidermal barrier formation identified by forward genetics.
Collapse
Affiliation(s)
- Jennifer L Moran
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Bonen A, Chabowski A, Luiken JJFP, Glatz JFC. Is membrane transport of FFA mediated by lipid, protein, or both? Mechanisms and regulation of protein-mediated cellular fatty acid uptake: molecular, biochemical, and physiological evidence. Physiology (Bethesda) 2007; 22:15-29. [PMID: 17342856 DOI: 10.1152/physiologyonline.2007.22.1.15] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Arend Bonen
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| | | | | | | |
Collapse
|
30
|
Moulson CL, Lin MH, White JM, Newberry EP, Davidson NO, Miner JH. Keratinocyte-specific expression of fatty acid transport protein 4 rescues the wrinkle-free phenotype in Slc27a4/Fatp4 mutant mice. J Biol Chem 2007; 282:15912-20. [PMID: 17401141 DOI: 10.1074/jbc.m701779200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FATP4 (fatty acid transport protein 4; also known as SLC27A4) is the most widely expressed member of a family of six long chain fatty acid transporters. FATP4 is highly expressed in enterocytes and has therefore been proposed to be a major importer of dietary fatty acids. Two independent mutations in Fatp4 cause mice to be born with thick, tight, shiny, "wrinkle-free" skin and a defective skin barrier; they die within hours of birth from dehydration and restricted movements. In contrast, induced keratinocyte-specific deficiency of FATP4 in adult mice causes only mild skin abnormalities. Therefore, whether the loss of FATP4 from skin or a systemic gestational metabolic defect causes the severe skin defects and neonatal lethality remain important unanswered questions. To investigate the basis for the phenotype, we first generated wild-type tetraploid/mutant diploid aggregates that should lead to rescue of any abnormalities caused by loss of FATP4 from the placenta. However, the skin phenotype was not ameliorated. We then generated transgenic mice expressing exogenous FATP4 either widely or specifically in suprabasal keratinocytes, and we bred the transgenes onto the Fatp4(-/-) background. Both modes of FATP4 expression led to rescue of the neonatally lethal skin defects, and the resulting mice were viable and fertile. Keratinocyte expression of an FATP4 variant with mutations in the acyl-CoA synthetase domain did not provide any degree of rescue. We conclude that expression of FATP4 with an intact acyl-CoA synthetase domain in suprabasal keratinocytes is necessary for normal skin development and that FATP4 functions in establishing the cornified envelope.
Collapse
Affiliation(s)
- Casey L Moulson
- Renal Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
31
|
Doege H, Stahl A. Protein-mediated fatty acid uptake: novel insights from in vivo models. Physiology (Bethesda) 2006; 21:259-68. [PMID: 16868315 DOI: 10.1152/physiol.00014.2006] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Long-chain fatty acids are both important metabolites as well as signaling molecules. Fatty acid transport proteins are key mediators of cellular fatty acid uptake and recent transgenic and knockout animal models have provided new insights into their contribution to energy homeostasis and to pathological processes, including obesity and insulin desensitization.
Collapse
Affiliation(s)
- Holger Doege
- Palo Alto Medical Foundation Research Institute, Palo Alto, CA, USA
| | | |
Collapse
|