1
|
Liu H, Tao Z, Wang Y, Liu X, Wang C, Liu L, Hu M. A member of the CAP protein superfamily, Hc-CAP-15, is important for the parasitic-stage development of Haemonchus contortus. Parasit Vectors 2023; 16:290. [PMID: 37592312 PMCID: PMC10433639 DOI: 10.1186/s13071-023-05907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND The CAP superfamily proteins are distributed widely in eukaryotes and play crucial roles in various biological processes. However, very little is known about their functions in parasitic nematodes, including Haemonchus contortus, a socioeconomically important parasitic nematode. We have therefore studied a member of the CAP protein family of H. contortus, named Hc-CAP-15, with the aim to explore its roles in regulating the parasitic developmental process. METHODS The conservation and phylogenetic relationships, spatial expression and temporal transcription profiles of Hc-CAP/cap-15, as well its biological function during parasite development were investigated using bioinformatics, immunofluorescence, real-time PCR and RNA interference (RNAi). RESULTS Hc-CAP-15 was found to be a single-domain CAP protein consisting of four conserved motifs that is localized in the cuticle, intestine and oocyte of adult worms. Hc-cap-15 was transcribed at all developmental stages of H. contortus, with the highest transcription level in parasitic fourth-stage larvae (L4s). Silencing of Hc-cap-15 resulted in a significant increase in the body length of L4s. CONCLUSIONS The results suggested that Hc-CAP-15 is important for the development of H. contortus. Our findings provide a basis for further study of the functions of the CAP family proteins in H. contortus and related parasitic nematodes.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuolin Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yifan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Ayiseh RB, Mbah GE, Manfo FPT, Kulu TK, Njotu FN, Monya E, Ndi EM, Tumanjong IM, Mainsah EN, Sakanari J, Lustigman S, Cho-Ngwa F. Survival of worm masses of Onchocerca ochengi in gerbils and hamsters: implications for the development of an in vivo macrofilaricide screening model. Parasitol Res 2023:10.1007/s00436-023-07859-7. [PMID: 37154921 DOI: 10.1007/s00436-023-07859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
Onchocerciasis, the second leading infectious cause of blindness, afflicts approximately 21 million people globally. Its control is limited to the use of the microfilaricidal drugs, ivermectin and moxidectin. Both drugs are unable to kill the adult worms which can survive for up to 15 years in patients, justifying the urgent need for potent and novel macrofilaricides that kill adult worms. The development of such drugs has been hindered by the lack of an appropriate small laboratory animal model to evaluate potential drug candidates in vivo. This study assessed the survival of O. ochengi female worms and their embryos over time in two laboratory rodents: gerbils and hamsters and tested using "proof-of-concept" studies, whether known macrofilaricidal drugs can kill these worms. Animals were surgically implanted with mechanical or collagenase-liberated O. ochengi worm masses, and necropsied at various time points to test for survival. Recovered worm masses were assessed for viability by biochemical analysis (MTT/formazan assay) or fecundity (embryogram). Flubendazole (FBZ) administered at 20 mg/kg body weight was used to validate both rodent models. By day 26 post-implantation of 15 worm masses, a median of 7.00 (4.00-10.00) was recovered from hamsters, and 2.50 (2.00-4.00) from gerbils. Worm masses recovered from gerbils were mostly disintegrated or fragmented, with significantly higher fragmentation observed with collagenase-liberated worm masses. FBZ had no significant effect on the number of worm masses recovered, but enhanced embryo degradation in gerbils and reduced worm mass viability in hamsters. This exploratory study has revealed the gerbil and hamster as permissible rodents to adult female worms of O. ochengi. The hamsters appeared to maintain the worms longer, compared to gerbils.
Collapse
Affiliation(s)
- Rene Bilingwe Ayiseh
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon.
| | - Glory Enjong Mbah
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Biology, Higher Teacher Training College (HTTC), The University of Bamenda, Bambili, Cameroon
- National Higher Polytechnic Institute (NAHPI), The University of Bamenda, Bambili, Cameroon
| | - Faustin Pascal Tsague Manfo
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - Tessy-Koko Kulu
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - Fabrice Ngoh Njotu
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - Elvis Monya
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - Emmanuel Menang Ndi
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - Irene Memeh Tumanjong
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - Evans Ngandung Mainsah
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - Judy Sakanari
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Sara Lustigman
- New York Blood Center, Lindsey F. Kimball Research Institute, New York City, NY, USA
| | - Fidelis Cho-Ngwa
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon.
- National Higher Polytechnic Institute (NAHPI), The University of Bamenda, Bambili, Cameroon.
| |
Collapse
|
3
|
Joshi P, Mishra PKK. Functional Diversity of the Excretory/Secretory Proteins of Nematode Parasites. Acta Parasitol 2022; 67:619-627. [PMID: 35113339 DOI: 10.1007/s11686-022-00523-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 01/18/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Parasites release a wide array of protein as excretory and secretory products (ESPs). Irrespective of their mode of propagation, ESPs are found to be secreted or excreted by both naturally occurring and laboratory-cultivated parasites. Mass spectrometry-based approaches have been extensively used to identify and characterize the ESP constituents. ESPs are involved in various cellular activities such as immune modulation, proteolysis, inhibition of proteases and protection of cells against oxidants. Specifically, their role in host immune evasion by down-regulation of pro-inflammatory cytokines and up-regulation of anti-inflammatory cytokines attracts scientific attention. A thorough investigation of functional diversity of ESPs may be helpful in planning control strategies against many parasites. METHODS This review focuses on diversity of ES proteins, various approaches to identify them and discusses about the biochemical and functional aspects of such proteins. RESULTS The diverse array of proteins secreted or excreted (a, GST-1, acetylcholinesterase, GAPDH) by the parasites are also described emphasizing their role in cellular physiology. CONCLUSION Finally, it concludes by citing some of these proteins as potential therapeutic agents against helminth challenge.
Collapse
Affiliation(s)
- Paritosh Joshi
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, U.P., 243122, India.
- Panchvati, Bijroli, Bhimtal, Uttarakhand, India.
| | - Prasanta Kumar K Mishra
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, U.P., 243122, India.
- Unit of Veterinary Clinical Complex, Faculty of Veterinary and Animal Sciences, RGSC, Banaras Hindu University, Mirzapur, U.P., India.
| |
Collapse
|
4
|
Zhan B, Bottazzi ME, Hotez PJ, Lustigman S. Advancing a Human Onchocerciasis Vaccine From Antigen Discovery to Efficacy Studies Against Natural Infection of Cattle With Onchocerca ochengi. Front Cell Infect Microbiol 2022; 12:869039. [PMID: 35444961 PMCID: PMC9015098 DOI: 10.3389/fcimb.2022.869039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Human onchocerciasis is a devastating neglected tropical disease caused by infection of the filarial nematode Onchocerca volvulus. The infection can cause irreversible visual impairment or blindness and stigmatizing dermatitis. More than 32 million people were estimated to be infected with O. volvulus in Africa, and 385,000 suffered from blindness. Even though the implementation of mass drug administration (MDA) with ivermectin has reduced the global prevalence of onchocerciasis, O. volvulus infection remains challenging to control because MDA with ivermectin cannot be implemented in endemic areas co-endemic with loiasis due to the risk of severe adverse events. There is also emerging drug resistance to ivermectin that further complicates the elimination of onchocerciasis. Thus, the development of a vaccine that would induce protective immunity and reduce infection burden is essential. Efforts to develop prophylactic and/or therapeutic vaccines for onchocerciasis have been explored since the late 1980s by many researchers and entities, and here we summarize the recent advances made in the development of vaccines against the infection of O. volvulus and onchocerciasis.
Collapse
Affiliation(s)
- Bin Zhan
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| |
Collapse
|
5
|
Hotterbeekx A, Perneel J, Vieri MK, Colebunders R, Kumar-Singh S. The Secretome of Filarial Nematodes and Its Role in Host-Parasite Interactions and Pathogenicity in Onchocerciasis-Associated Epilepsy. Front Cell Infect Microbiol 2021; 11:662766. [PMID: 33996633 PMCID: PMC8113626 DOI: 10.3389/fcimb.2021.662766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
Filarial nematodes secrete bioactive molecules which are of interest as potential mediators for manipulating host biology, as they are readily available at the host-parasite interface. The adult parasites can survive for years in the mammalian host, due to their successful modulation of the host immune system and most of these immunomodulatory strategies are based on soluble mediators excreted by the parasite. The secretome of filarial nematodes is a key player in both infection and pathology, making them an interesting target for further investigation. This review summarises the current knowledge regarding the components of the excretory-secretory products (ESPs) of filarial parasites and their bioactive functions in the human host. In addition, the pathogenic potential of the identified components, which are mostly proteins, in the pathophysiology of onchocerciasis-associated epilepsy is discussed.
Collapse
Affiliation(s)
- An Hotterbeekx
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.,Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Jolien Perneel
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.,Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Melissa Krizia Vieri
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.,Global Health Institute, University of Antwerp, Antwerp, Belgium
| | | | - Samir Kumar-Singh
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Pollet J, Chen WH, Strych U. Recombinant protein vaccines, a proven approach against coronavirus pandemics. Adv Drug Deliv Rev 2021; 170:71-82. [PMID: 33421475 PMCID: PMC7788321 DOI: 10.1016/j.addr.2021.01.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/15/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023]
Abstract
With the COVID-19 pandemic now ongoing for close to a year, people all over the world are still waiting for a vaccine to become available. The initial focus of accelerated global research and development efforts to bring a vaccine to market as soon as possible was on novel platform technologies that promised speed but had limited history in the clinic. In contrast, recombinant protein vaccines, with numerous examples in the clinic for many years, missed out on the early wave of investments from government and industry. Emerging data are now surfacing suggesting that recombinant protein vaccines indeed might offer an advantage or complement to the nucleic acid or viral vector vaccines that will likely reach the clinic faster. Here, we summarize the current public information on the nature and on the development status of recombinant subunit antigens and adjuvants targeting SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Jeroen Pollet
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, United States of America.
| | - Wen-Hsiang Chen
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, United States of America
| | - Ulrich Strych
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, United States of America
| |
Collapse
|
7
|
Vanhamme L, Souopgui J, Ghogomu S, Ngale Njume F. The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca volvulus Excretory Secretory Products. Pathogens 2020; 9:pathogens9110975. [PMID: 33238479 PMCID: PMC7709020 DOI: 10.3390/pathogens9110975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/15/2023] Open
Abstract
Nematodes constitute a very successful phylum, especially in terms of parasitism. Inside their mammalian hosts, parasitic nematodes mainly dwell in the digestive tract (geohelminths) or in the vascular system (filariae). One of their main characteristics is their long sojourn inside the body where they are accessible to the immune system. Several strategies are used by parasites in order to counteract the immune attacks. One of them is the expression of molecules interfering with the function of the immune system. Excretory-secretory products (ESPs) pertain to this category. This is, however, not their only biological function, as they seem also involved in other mechanisms such as pathogenicity or parasitic cycle (molting, for example). We will mainly focus on filariae ESPs with an emphasis on data available regarding Onchocerca volvulus, but we will also refer to a few relevant/illustrative examples related to other worm categories when necessary (geohelminth nematodes, trematodes or cestodes). We first present Onchocerca volvulus, mainly focusing on the aspects of this organism that seem relevant when it comes to ESPs: life cycle, manifestations of the sickness, immunosuppression, diagnosis and treatment. We then elaborate on the function and use of ESPs in these aspects.
Collapse
Affiliation(s)
- Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
- Correspondence:
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
| | - Stephen Ghogomu
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon;
| | - Ferdinand Ngale Njume
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon;
| |
Collapse
|
8
|
Gupta T, Gupta SK. Potential adjuvants for the development of a SARS-CoV-2 vaccine based on experimental results from similar coronaviruses. Int Immunopharmacol 2020; 86:106717. [PMID: 32585611 PMCID: PMC7301105 DOI: 10.1016/j.intimp.2020.106717] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
The extensive efforts around the globe are being made to develop a suitable vaccine against COVID-19 (Coronavirus Disease-19) caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2). An effective vaccine should be able to induce high titers of neutralizing antibodies to prevent the virus from attaching to the host cell receptors. However, to elicit the protective levels of antibodies, a vaccine may require multiple doses or assistance from other immunostimulatory molecules. Further, the vaccine should be able to induce protective levels of antibodies rapidly with the least amount of antigen used. This decreases the cost of a vaccine and makes it affordable. As the pandemic has hit most countries across the globe, there will be an overwhelming demand for the vaccine in a quick time. Incorporating a suitable adjuvant in a SARS-CoV-2 vaccine may address these requirements. This review paper will discuss the experimental results of the adjuvanted vaccine studies with similar coronaviruses (CoVs) which might be useful to select an appropriate adjuvant for a vaccine against rapidly emergingSARS-CoV-2. We also discuss the current progress in the development of adjuvanted vaccines against the disease.
Collapse
Affiliation(s)
- Tania Gupta
- Dr GC Negi College of Veterinary and Animal Sciences, Palampur 176062, Himachal Pradesh, India.
| | - Shishir K Gupta
- CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
9
|
Immunoreactive Proteins in the Esophageal Gland Cells of Anisakis Simplex Sensu Stricto Detected by MALDI-TOF/TOF Analysis. Genes (Basel) 2020; 11:genes11060683. [PMID: 32580523 PMCID: PMC7349779 DOI: 10.3390/genes11060683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/15/2023] Open
Abstract
In plant and animal nematode parasites, proteins derived from esophageal gland cells have been shown to be important in the host-nematodes relationship but little is known about the allergenic potential of these proteins in the genus Anisakis. Taking into account the increase of anisakiasis and allergies related to these nematodes, immunoreactive properties of gland cell proteins were investigated. Two hundred ventricles were manually dissected from L3 stage larvae of Aniskakis simplex s.s. to allow direct protein analysis. Denaturing gel electrophoresis followed by monochromatic silver staining which revealed the presence of differential (enriched) proteins when compared to total nematode extracts. Such comparison was performed by means of 1D and 2D electrophoresis. Pooled antisera from Anisakis spp.-allergic patients were used in western blots revealing the presence of 13 immunoreactive bands in the ventricular extracts in 1D, with 82 spots revealed in 2D. The corresponding protein bands and spots were excised from the silver-stained gel and protein assignation was made by MALDI-TOF/TOF. A total of 13 (including proteoforms) were unambiguously identified. The majority of these proteins are known to be secreted by nematodes into the external environment, of which three are described as being major allergens in other organisms with different phylogenetic origin and one is an Anisakis simplex allergen.
Collapse
|
10
|
Sun W, Li Q, Ning X, Yang Y, Guo J, Zhu Q, Guo Y, Li H, Wang Y, Zhou Y, Kou Z. TFPR1 acts as an immune regulator and an efficient adjuvant for proteins and peptides by activating immune cells, primarily through TLR2. Vaccine 2019; 38:288-297. [PMID: 31629567 DOI: 10.1016/j.vaccine.2019.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 09/03/2019] [Accepted: 10/05/2019] [Indexed: 02/08/2023]
Abstract
Triflin, a non-toxic protein found in the venom of the Habu snake, belongs to the CRISP (cysteine-rich secretory protein) family, which comprises two domains: a C-terminal cysteine-rich domain (CRD) and an N-terminal pathogenesis-related-1 (PR-1) domain. The function of the highly structurally conserved PR-1 domain is unknown. Here, we successfully expressed the PR-1 domain of triflin (hereafter called TFPR1) in E. coli. Animal experiments showed that TFPR1 augmented Th1-biased antibody- and cell-mediated immune responses in mice immunized with two protein antigens (OVA and HBsAg) or a peptide antigen (HIV-1 pep). A flow cytometry-based binding assay and in vitro stimulation with TFPR1 showed that it triggered Th1-biased proinflammatory and immunoregulatory cytokine secretion primarily by binding to B cells and macrophages within the mouse splenocyte population. Quantitative RT-PCR, antibody blocking assays using a specific anti-mTLR2 antibody, and stimulatory experiments in vitro using splenocytes from TLR2-KO mice demonstrated that TFPR1 activated murine immune cells, primarily by stimulating toll-like receptor 2 (TLR2). These results suggest that TFPR1 acts as a novel immune modulator and potent adjuvant primarily by activating TLR2. Thus, the PR-1-based core domain might play a role in immune regulation.
Collapse
Affiliation(s)
- Weilai Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Graduate School, Anhui Medical University, Hefei 230032, China
| | - Xiuzhe Ning
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yi Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jingjing Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qing Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yuepeng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Graduate School, Anhui Medical University, Hefei 230032, China
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Graduate School, Anhui Medical University, Hefei 230032, China
| | - Zhihua Kou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Graduate School, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
11
|
George PJ, Hess JA, Jain S, Patton JB, Zhan T, Tricoche N, Zhan B, Bottazzi ME, Hotez PJ, Abraham D, Lustigman S. Antibody responses against the vaccine antigens Ov-103 and Ov-RAL-2 are associated with protective immunity to Onchocerca volvulus infection in both mice and humans. PLoS Negl Trop Dis 2019; 13:e0007730. [PMID: 31525197 PMCID: PMC6762197 DOI: 10.1371/journal.pntd.0007730] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/26/2019] [Accepted: 08/25/2019] [Indexed: 11/23/2022] Open
Abstract
Background The current strategy for the elimination of onchocerciasis is based on annual or bi-annual mass drug administration with ivermectin. However, due to several limiting factors there is a growing concern that elimination of onchocerciasis cannot be achieved solely through the current strategy. Additional tools are critically needed including a prophylactic vaccine. Presently Ov-103 and Ov-RAL-2 are the most promising vaccine candidates against an Onchocerca volvulus infection. Methodology/Principal findings Protection induced by immunization of mice with the alum-adjuvanted Ov-103 or Ov-RAL-2 vaccines appeared to be antibody dependent since AID-/- mice that could not mount antigen-specific IgG antibody responses were not protected from an Onchocerca volvulus challenge. To determine a possible association between antigen-specific antibody responses and anti-larvae protective immunity in humans, we analyzed the presence of anti-Ov-103 and anti-Ov-RAL-2 cytophilic antibody responses (IgG1 and IgG3) in individuals classified as putatively immune, and in infected individuals who developed concomitant immunity with age. It was determined that 86% of putatively immune individuals and 95% individuals with concomitant immunity had elevated IgG1 and IgG3 responses to Ov-103 and Ov-RAL-2. Based on the elevated chemokine levels associated with protection in the Ov-103 or Ov-RAL-2 immunized mice, the profile of these chemokines was also analyzed in putatively immune and infected individuals; both groups contained significantly higher levels of KC, IP-10, MCP-1 and MIP-1β in comparison to normal human sera. Moreover, human monospecific anti-Ov-103 antibodies but not anti-Ov-RAL-2 significantly inhibited the molting of third-stage larvae (L3) in vitro by 46% in the presence of naïve human neutrophils, while both anti-Ov-103 and anti-Ov-RAL-2 antibodies significantly inhibited the molting by 70–80% when cultured in the presence of naive human monocytes. Interestingly, inhibition of molting by Ov-103 antibodies and monocytes was only in part dependent on contact with the cells, while inhibition of molting with Ov-RAL-2 antibodies was completely dependent on contact with the monocytes. In comparison, significant levels of parasite killing in Ov-103 and Ov-RAL-2 vaccinated mice only occurred when cells enter the parasite microenvironment. Taken together, antibodies to Ov-103 and Ov-RAL-2 and cells are required for protection in mice as well as for the development of immunity in humans. Conclusions/Significance Alum-adjuvanted Ov-103 and Ov-RAL-2 vaccines have the potential of reducing infection and thus morbidity associated with onchocerciasis in humans. The development of cytophilic antibodies, that function in antibody-dependent cellular cytotoxicity, is essential for a successful prophylactic vaccine against this infection. Onchocerca volvulus is the causative agent of river blindness that infects approximately 17 million people, mostly in Africa. The current strategy for elimination of O. volvulus focuses on controlling transmission through ivermectin-based mass drug administration programs. Due to potential ivermectin resistance, the lack of macrofilaricidal activity by ivermectin, and the prolonged time (>20 years) needed for successful interruption of transmission in endemic areas, additional tools are critically needed including a vaccine against onchocerciasis. Ov-103 and Ov-RAL-2 are presently the most promising vaccine candidates for a prophylactic vaccine. The mechanism of protective immunity induced in mice by the alum-adjuvanted Ov-103 or Ov-RAL-2 vaccines appear to be multifactorial with essential roles for antibodies, chemokines and the specific effector cells they recruit. In this study, we show for the first time that, anti-Ov-103 and anti-Ov-RAL-2 antibodies, chemokines and innate cells also appear to be associated with protective immunity against O. volvulus infection in humans, similar to the vaccine studies observed in the O. volvulus mouse model.
Collapse
Affiliation(s)
- Parakkal Jovvian George
- Laboratory of Molecular Parasitology, Lindsley F Kimball Research Institute, New York Blood Center, New York, New York, United States of America
- * E-mail:
| | - Jessica A. Hess
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Sonia Jain
- Laboratory of Molecular Parasitology, Lindsley F Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - John B. Patton
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Tingting Zhan
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Nancy Tricoche
- Laboratory of Molecular Parasitology, Lindsley F Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Bin Zhan
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatric Tropical Medicine and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatric Tropical Medicine and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatric Tropical Medicine and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - David Abraham
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| |
Collapse
|
12
|
Secreted venom allergen-like proteins of helminths: Conserved modulators of host responses in animals and plants. PLoS Pathog 2018; 14:e1007300. [PMID: 30335852 PMCID: PMC6193718 DOI: 10.1371/journal.ppat.1007300] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite causing considerable damage to host tissue at the onset of parasitism, invasive helminths establish remarkably persistent infections in both animals and plants. Secretions released by these obligate parasites during host invasion are thought to be crucial for their persistence in infection. Helminth secretions are complex mixtures of molecules, most of which have unknown molecular targets and functions in host cells or tissues. Although the habitats of animal- and plant-parasitic helminths are very distinct, their secretions share the presence of a structurally conserved group of proteins called venom allergen-like proteins (VALs). Helminths abundantly secrete VALs during several stages of parasitism while inflicting extensive damage to host tissue. The tight association between the secretion of VALs and the onset of parasitism has triggered a particular interest in this group of proteins, as improved knowledge on their biological functions may assist in designing novel protection strategies against parasites in humans, livestock, and important food crops.
Collapse
|
13
|
Zhan B, Arumugam S, Kennedy MW, Tricoche N, Lian LY, Asojo OA, Bennuru S, Bottazzi ME, Hotez PJ, Lustigman S, Klei TR. Ligand binding properties of two Brugia malayi fatty acid and retinol (FAR) binding proteins and their vaccine efficacies against challenge infection in gerbils. PLoS Negl Trop Dis 2018; 12:e0006772. [PMID: 30296268 PMCID: PMC6193737 DOI: 10.1371/journal.pntd.0006772] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/18/2018] [Accepted: 08/21/2018] [Indexed: 11/19/2022] Open
Abstract
Parasitic nematodes produce an unusual class of fatty acid and retinol (FAR)-binding proteins that may scavenge host fatty acids and retinoids. Two FARs from Brugia malayi (Bm-FAR-1 and Bm-FAR-2) were expressed as recombinant proteins, and their ligand binding, structural characteristics, and immunogenicities examined. Circular dichroism showed that rBm-FAR-1 and rBm-FAR-2 are similarly rich in α-helix structure. Unexpectedly, however, their lipid binding activities were found to be readily differentiated. Both FARs bound retinol and cis-parinaric acid similarly, but, while rBm-FAR-1 induced a dramatic increase in fluorescence emission and blue shift in peak emission by the fluorophore-tagged fatty acid (dansyl-undecanoic acid), rBm-FAR-2 did not. Recombinant forms of the related proteins from Onchocerca volvulus, rOv-FAR-1 and rOv-FAR-2, were found to be similarly distinguishable. This is the first FAR-2 protein from parasitic nematodes that is being characterized. The relative protein abundance of Bm-FAR-1 was higher than Bm-FAR-2 in the lysates of different developmental stages of B. malayi. Both FAR proteins were targets of strong IgG1, IgG3 and IgE antibody in infected individuals and individuals who were classified as endemic normal or putatively immune. In a B. malayi infection model in gerbils, immunization with rBm-FAR-1 and rBm-FAR-2 formulated in a water-in-oil-emulsion (®Montanide-720) or alum elicited high titers of antigen-specific IgG, but only gerbils immunized with rBm-FAR-1 formulated with the former produced a statistically significant reduction in adult worms (68%) following challenge with B. malayi infective larvae. These results suggest that FAR proteins may play important roles in the survival of filarial nematodes in the host, and represent potential candidates for vaccine development against lymphatic filariasis and related filarial infections.
Collapse
Affiliation(s)
- Bin Zhan
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatric Tropical Medicine and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Sridhar Arumugam
- Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States of America
| | - Malcolm W. Kennedy
- Institute of Biodiversity Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, Scotland, UK
| | - Nancy Tricoche
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States of America
| | - Lu-Yun Lian
- NMR Centre for Structural Biology, University of Liverpool, Crown Street, Liverpool, United Kingdom
| | - Oluwatoyin A. Asojo
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatric Tropical Medicine and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States of America
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatric Tropical Medicine and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatric Tropical Medicine and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States of America
| | - Thomas R. Klei
- Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States of America
| |
Collapse
|
14
|
Expansion of cap superfamily proteins in the genome of Mesocestoides corti : An extreme case of a general bilaterian trend. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Spatio-temporal expression of Mesocestoides corti McVAL2 during strobilar development. Exp Parasitol 2017; 181:30-39. [DOI: 10.1016/j.exppara.2017.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 06/09/2017] [Accepted: 07/23/2017] [Indexed: 11/18/2022]
|
16
|
Lustigman S, Makepeace BL, Klei TR, Babayan SA, Hotez P, Abraham D, Bottazzi ME. Onchocerca volvulus: The Road from Basic Biology to a Vaccine. Trends Parasitol 2017; 34:64-79. [PMID: 28958602 DOI: 10.1016/j.pt.2017.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/27/2017] [Accepted: 08/30/2017] [Indexed: 11/18/2022]
Abstract
Human onchocerciasis - commonly known as river blindness - is one of the most devastating yet neglected tropical diseases, leaving many millions in sub-Saharan Africa blind and/or with chronic disabilities. Attempts to eliminate onchocerciasis, primarily through the mass drug administration of ivermectin, remains challenging and has been heightened by the recent news that drug-resistant parasites are developing in some populations after years of drug treatment. Needed, and needed now, in the fight to eliminate onchocerciasis are new tools, such as preventive and therapeutic vaccines. This review summarizes the progress made to advance the onchocerciasis vaccine from the research laboratory into the clinic.
Collapse
Affiliation(s)
- Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F Kimball Research Institute, New York Blood Center, New York, NY, USA.
| | - Benjamin L Makepeace
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Thomas R Klei
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Simon A Babayan
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow and Moredun Research Institute, Glasgow, UK
| | - Peter Hotez
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Section of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - David Abraham
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Section of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
17
|
Host protective ASP-based vaccine against the parasitic nematode Ostertagia ostertagi triggers NK cell activation and mixed IgG1-IgG2 response. Sci Rep 2016; 6:29496. [PMID: 27403891 PMCID: PMC4941725 DOI: 10.1038/srep29496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022] Open
Abstract
The mucus-dwelling parasite Ostertagia ostertagi is one of the most important gastrointestinal nematodes in cattle. Our group has previously demonstrated the protective capacity of a vaccine against this parasite based on a native activation-associated secreted protein ASP1 (nASP) in combination with the saponin adjuvant QuilA. The aim of the current study was to analyse the effect of both antigen and adjuvant on the cellular and humoral vaccine-induced immune responses by comparing the native ASP to a recombinant version expressed in Pichia pastoris (pASP) and replacing QuilA by Al(OH)3. Immunization of cattle with the protective nASP+QuilA vaccine was associated with antigen-induced proliferation of natural killer (NK) cells combined with IFN-γ secretion and the induction of a mixed IgG1/IgG2 antibody response. ASP-specific activation and proliferation of NK cells was also observed in mice following the same vaccination regime. Replacing QuilA by Al(OH)3 or nASP by pASP significantly decreased the capacity of the vaccines to trigger both NK cell activation and antibody responses and failed to induce protection against a challenge infection. Reduction of the structurally anchoring disulphide bonds of the nASP completely abolished its ability to induce NK cell activation and antibody responses, highlighting the importance of protein conformation for the immunostimulatory activity.
Collapse
|
18
|
Silvarrey MC, Echeverría S, Costábile A, Castillo E, Paulino M, Esteves A. Identification of novel CAP superfamily protein members of Echinococcus granulosus protoscoleces. Acta Trop 2016; 158:59-67. [PMID: 26899679 DOI: 10.1016/j.actatropica.2016.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 02/11/2016] [Accepted: 02/14/2016] [Indexed: 11/25/2022]
Abstract
Echinoccocus granulosus is the causative agent of Cyst Echinococcosis, a zoonotic infection affecting humans and livestock representing a public health and an economic burden for several countries. Despite decades of investigation an effective vaccine still remains to be found. Parasitic cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins (CAPs) have been proposed as vaccine candidates against helmith's infection. In this work we have identified two novel proteins of this superfamily expressed at the protoescoleces larval stage named EgVAL1 and EgVAL2. The open reading frame sequences were deduced. The aminoacidic sequence was analyzed and confronted against already known vertebrate' and helminth's proteins sequences in order to infer putative functions. Immunolocalization studies were also performed. The obtained data supported by immunolocalization studies and homology models suggest that these proteins could be involved in protease activity inhibition.
Collapse
|
19
|
Enhanced humoral response to influenza vaccine in aged mice with a novel adjuvant, rOv-ASP-1. Vaccine 2016; 34:887-92. [PMID: 26795365 PMCID: PMC4731280 DOI: 10.1016/j.vaccine.2016.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 11/21/2022]
Abstract
Influenza-specific antibody levels were significantly increased after immunization with TIV + rOv-ASP-1 in aged mice. rOv-ASP-1 was superior to the conventional adjuvant alum in inducing specific IgG after TIV immunization in aged mice. Co-administration of rOv-ASP-1 induced cross-reactive antibody and enhanced cross-protection.
Immunization is the best way to prevent seasonal epidemics and pandemics of influenza. There are two kinds of influenza vaccines available in the United States: an inactivated vaccine (TIV) and an attenuated vaccine; however, only TIV is approved for immunization of the elderly population. While the aged population has the highest rate of influenza vaccination, the protective efficacy is low as evidenced by elderly individuals having the highest mortality associated with influenza. Recently, we reported that an adjuvant derived from the helminth parasite Onchocerca volvulus, named O. volvulus activation-associated secreted protein-1 (Ov-ASP-1), can significantly enhance the protective efficacy of an inactivated vaccine (TIV) in young adult mice. In the current study, we examined whether this recombinant Ov-ASP-1 (rOv-ASP-1) can enhance the efficacy of TIV in aged mice as well. While primary immunization with TIV alone produced only a low level of influenza-specific antibodies (total IgG, IgG1, and IgG2c) in aged mice, the antibody levels were significantly increased after immunization with TIV + rOv-ASP-1. More importantly, the level of the total IgG in aged mice administered TIV + rOv-ASP-1 was comparable to that of young adult mice immunized with TIV alone. Co-administration of rOv-ASP-1 induced a low level of cross-reactive antibody and enhanced the protective efficacy of TIV in aged mice, reflected by significantly increased survival after challenge with a heterologous influenza virus. rOv-ASP-1 was also superior to the conventional adjuvant alum in inducing specific IgG after TIV immunization in aged mice, and in conferring protection after challenge. These results demonstrate that rOv-ASP-1 may serve as a potential adjuvant for influenza vaccine to improve the efficacy of protection in the elderly.
Collapse
|
20
|
McNulty SN, Rosa BA, Fischer PU, Rumsey JM, Erdmann-Gilmore P, Curtis KC, Specht S, Townsend RR, Weil GJ, Mitreva M. An Integrated Multiomics Approach to Identify Candidate Antigens for Serodiagnosis of Human Onchocerciasis. Mol Cell Proteomics 2015; 14:3224-33. [PMID: 26472727 PMCID: PMC4762623 DOI: 10.1074/mcp.m115.051953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/10/2015] [Indexed: 11/27/2022] Open
Abstract
Improved diagnostic methods are needed to support ongoing efforts to eliminate onchocerciasis (river blindness). This study used an integrated approach to identify adult female Onchocerca volvulus antigens that can be explored for developing serodiagnostic tests. The first step was to develop a detailed multi-omics database of all O. volvulus proteins deduced from the genome, gene transcription data for different stages of the parasite including eight individual female worms (providing gene expression information for 94.8% of all protein coding genes), and the adult female worm proteome (detecting 2126 proteins). Next, female worm proteins were purified with IgG antibodies from onchocerciasis patients and identified using LC-MS with a high-resolution hybrid quadrupole-time-of-flight mass spectrometer. A total of 241 immunoreactive proteins were identified among those bound by IgG from infected individuals but not IgG from uninfected controls. These included most of the major diagnostic antigens described over the past 25 years plus many new candidates. Proteins of interest were prioritized for further study based on a lack of conservation with orthologs in the human host and other helminthes, their expression pattern across the life cycle, and their consistent expression among individual female worms. Based on these criteria, we selected 33 proteins that should be carried forward for testing as serodiagnostic antigens to supplement existing diagnostic tools. These candidates, together with the extensive pan-omics dataset generated in this study are available to the community (http://nematode.net) to facilitate basic and translational research on onchocerciasis.
Collapse
Affiliation(s)
- Samantha N McNulty
- From the ‡McDonnell Genome Institute, Washington University in St Louis, Missouri 63108
| | - Bruce A Rosa
- From the ‡McDonnell Genome Institute, Washington University in St Louis, Missouri 63108
| | - Peter U Fischer
- §Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jeanne M Rumsey
- ¶Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Petra Erdmann-Gilmore
- ¶Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kurt C Curtis
- §Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Sabine Specht
- **Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany 53127
| | - R Reid Townsend
- ¶Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110; ‖Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Gary J Weil
- §Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Makedonka Mitreva
- From the ‡McDonnell Genome Institute, Washington University in St Louis, Missouri 63108; §Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110;
| |
Collapse
|
21
|
Vlaminck J, Borloo J, Vercruysse J, Geldhof P, Claerebout E. Vaccination of calves against Cooperia oncophora with a double-domain activation-associated secreted protein reduces parasite egg output and pasture contamination. Int J Parasitol 2015; 45:209-13. [DOI: 10.1016/j.ijpara.2014.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/07/2014] [Accepted: 11/09/2014] [Indexed: 11/24/2022]
|
22
|
Cofactor independent phosphoglycerate mutase of Brugia malayi induces a mixed Th1/Th2 type immune response and inhibits larval development in the host. BIOMED RESEARCH INTERNATIONAL 2014; 2014:590281. [PMID: 25061608 PMCID: PMC4100390 DOI: 10.1155/2014/590281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 05/06/2014] [Accepted: 05/20/2014] [Indexed: 01/24/2023]
Abstract
Lymphatic filariasis is a major debilitating disease, endemic in 72 countries putting more than 1.39 billion people at risk and 120 million are already infected. Despite the significant progress in chemotherapeutic advancements, there is still need for other measures like development of an effective vaccine or discovery of novel drug targets. In this study, structural and immunological characterization of independent phosphoglycerate mutase of filarial parasite Brugia malayi was carried out. Protein was found to be expressed in all major parasite life stages and as an excretory secretory product of adult parasites. Bm-iPGM also reacted to all the categories of human bancroftian patient's sera including endemic normals. In vivo immunological behaviour of protein was determined in immunized BALB/c mice followed by prophylactic analysis in BALB/c mice and Mastomys coucha. Immunization with Bm-iPGM led to generation of a mixed Th1/Th2 type immune response offering 58.2% protection against larval challenge in BALB/c and 65–68% protection in M. coucha. In vitro studies confirmed participation of anti-Bm-iPGM antibodies in killing of B. malayi infective larvae and microfilariae through ADCC mechanism. The present findings reveal potential immunoprotective nature of Bm-iPGM advocating its worth as an antifilarial vaccine candidate.
Collapse
|
23
|
Vaccines to combat river blindness: expression, selection and formulation of vaccines against infection with Onchocerca volvulus in a mouse model. Int J Parasitol 2014; 44:637-46. [PMID: 24907553 DOI: 10.1016/j.ijpara.2014.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 01/21/2023]
Abstract
Human onchocerciasis is a neglected tropical disease caused by Onchocerca volvulus and an important cause of blindness and chronic disability in the developing world. Although mass drug administration of ivermectin has had a profound effect on control of the disease, additional tools are critically needed including the need for a vaccine against onchocerciasis. The objectives of the present study were to: (i) select antigens with known vaccine pedigrees as components of a vaccine; (ii) produce the selected vaccine antigens under controlled conditions, using two expression systems and in one laboratory and (iii) evaluate their vaccine efficacy using a single immunisation protocol in mice. In addition, we tested the hypothesis that joining protective antigens as a fusion protein or in combination, into a multivalent vaccine, would improve the ability of the vaccine to induce protective immunity. Out of eight vaccine candidates tested in this study, Ov-103, Ov-RAL-2 and Ov-CPI-2M were shown to reproducibly induce protective immunity when administered individually, as fusion proteins or in combination. Although there was no increase in the level of protective immunity induced by combining the antigens into one vaccine, these antigens remain strong candidates for inclusion in a vaccine to control onchocerciasis in humans.
Collapse
|
24
|
Rofatto HK, Parker-Manuel SJ, Barbosa TC, Tararam CA, Alan Wilson R, Leite LC, Farias LP. Tissue expression patterns of Schistosoma mansoni Venom Allergen-Like proteins 6 and 7. Int J Parasitol 2012; 42:613-20. [DOI: 10.1016/j.ijpara.2012.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 03/25/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
|
25
|
Analysis of heavy-chain antibody responses and resistance to Parelaphostrongylus tenuis in experimentally infected alpacas. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1019-26. [PMID: 22593238 DOI: 10.1128/cvi.00178-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The parasitic nematode Parelaphostrongylus tenuis is an important cause of neurologic disease of camelids in central and eastern North America. The aim of this study was to determine whether alpacas develop resistance to disease caused by P. tenuis in response to a previous infection or a combination of controlled infection and immunization. Alpacas were immunized with a homogenate of third-stage larvae (L3) and simultaneously implanted subcutaneously with diffusion chambers containing 20 live L3. Sham-treated animals received adjuvant alone and empty chambers. The protocol was not effective in inducing resistance to oral challenge with 10 L3, and disease developed between 60 and 71 days following infection. Immediately following the onset of neurologic disease, affected animals were treated with a regimen of anthelmintic and anti-inflammatory drugs, and all recovered. One year later, a subset of alpacas from this experiment was challenged with 20 L3 and the results showed that prior infection induced resistance to disease. Primary and secondary infections induced production of conventional and heavy-chain IgGs that reacted with soluble antigens in L3 homogenates but did not consistently recognize a recombinant form of a parasite-derived aspartyl protease inhibitor. Thus, the latter antigen may not be a good candidate for serology-based diagnostic tests. Antibody responses to parasite antigens occurred in the absence of overt disease, demonstrating that P. tenuis infection can be subclinical in a host that has been considered to be highly susceptible to disease. The potential for immunoprophylaxis to be effective in preventing disease caused by P. tenuis was supported by evidence of resistance to reinfection.
Collapse
|
26
|
Choi YJ, Ghedin E, Berriman M, McQuillan J, Holroyd N, Mayhew GF, Christensen BM, Michalski ML. A deep sequencing approach to comparatively analyze the transcriptome of lifecycle stages of the filarial worm, Brugia malayi. PLoS Negl Trop Dis 2011; 5:e1409. [PMID: 22180794 PMCID: PMC3236722 DOI: 10.1371/journal.pntd.0001409] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/19/2011] [Indexed: 11/19/2022] Open
Abstract
Background Developing intervention strategies for the control of parasitic nematodes continues to be a significant challenge. Genomic and post-genomic approaches play an increasingly important role for providing fundamental molecular information about these parasites, thus enhancing basic as well as translational research. Here we report a comprehensive genome-wide survey of the developmental transcriptome of the human filarial parasite Brugia malayi. Methodology/Principal Findings Using deep sequencing, we profiled the transcriptome of eggs and embryos, immature (≤3 days of age) and mature microfilariae (MF), third- and fourth-stage larvae (L3 and L4), and adult male and female worms. Comparative analysis across these stages provided a detailed overview of the molecular repertoires that define and differentiate distinct lifecycle stages of the parasite. Genome-wide assessment of the overall transcriptional variability indicated that the cuticle collagen family and those implicated in molting exhibit noticeably dynamic stage-dependent patterns. Of particular interest was the identification of genes displaying sex-biased or germline-enriched profiles due to their potential involvement in reproductive processes. The study also revealed discrete transcriptional changes during larval development, namely those accompanying the maturation of MF and the L3 to L4 transition that are vital in establishing successful infection in mosquito vectors and vertebrate hosts, respectively. Conclusions/Significance Characterization of the transcriptional program of the parasite's lifecycle is an important step toward understanding the developmental processes required for the infectious cycle. We find that the transcriptional program has a number of stage-specific pathways activated during worm development. In addition to advancing our understanding of transcriptome dynamics, these data will aid in the study of genome structure and organization by facilitating the identification of novel transcribed elements and splice variants. Lymphatic filariasis, also known as elephantiasis, is a tropical disease affecting over 120 million people worldwide. More than 40 million people live with painful, disfiguring symptoms that can cause severe debilitation and social stigma. The disease is caused by infection with thread-like filarial nematodes (roundworms) that have a complex parasitic lifecycle involving both human and mosquito hosts. In the study, the authors profiled the transcriptome (the set of genes transcribed into messenger RNA rather than all of those in the genome) of the human filarial worm Brugia malayi in different lifecyle stages using deep sequencing technology. The analysis revealed major transitions in RNA expression from eggs through larval stages to adults. Using statistical approaches, the authors identified groups of genes with distinct life stage dependent transcriptional patterns, with particular emphasis on genes displaying sex-biased or germline-enriched patterns and those displaying significant changes during larval development. This study presents a first comprehensive analysis of the lifecycle transcriptome of B. malayi, providing fundamental molecular information that should help researchers better understand parasite biology and could provide clues for the development of more effective interventions.
Collapse
Affiliation(s)
- Young-Jun Choi
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elodie Ghedin
- Department of Computational and Systems Biology, Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Matthew Berriman
- The Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Jacqueline McQuillan
- The Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Nancy Holroyd
- The Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - George F. Mayhew
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bruce M. Christensen
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michelle L. Michalski
- Department of Biology and Microbiology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
27
|
Cantacessi C, Gasser RB. SCP/TAPS proteins in helminths--where to from now? Mol Cell Probes 2011; 26:54-9. [PMID: 22005034 DOI: 10.1016/j.mcp.2011.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
Abstract
A diverse array of proteins belonging to the SCP/TAPS 'family' has been described for various eukaryotic organisms, including parasites. Although SCP/TAPS proteins have been hypothesized to play key roles in various fundamental biological processes, such as host-pathogen interactions and defence mechanisms, there is still a limited understanding of the precise roles of these proteins. Here, we review current knowledge of key SCP/TAPS proteins of helminths and their proposed roles in parasite-host interactions. Molecular investigations of these molecules in parasites and the integration of structural and functional data could lead to new and innovative approaches for the treatment and control of parasitic diseases, with important biotechnological outcomes.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | |
Collapse
|
28
|
Bergquist R, Lustigman S. Control of important helminthic infections vaccine development as part of the solution. ADVANCES IN PARASITOLOGY 2010; 73:297-326. [PMID: 20627146 DOI: 10.1016/s0065-308x(10)73010-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Among the tools available for the control of helminth infections, chemotherapy has come to totally dominate the field. In the veterinary field, development of drug resistance has appeared but this is not (yet) a problem in the control of human diseases. Although there is no vaccine commercially available for any human parasitic infection yet, recent progress in vaccine development is making this a future possibility for several diseases. The goal of chemotherapy is to alleviate infection and morbidity in the definitive host, or reduce transmission, while the effect of available vaccine candidates would mainly be to influence transmission through targeting the intermediate or reservoir host, when the infection is zoonotic. Apart from this general scheme, there are also vaccine candidates targeting the parasites in the definitive host, in particular the early developmental stages, which should reduce the risk of drug failure. Since the biological targets in most cases are different, vaccination would be synergistic with drug therapy. This review covers diseases caused by helminthes in both humans and animals and includes examples of diseases caused by cestodes, nematodes and trematodes. The focus is on infections for which vaccine development has been undertaken for a long time, resulting in products that could realistically become integrated into control strategies in the near future.
Collapse
|
29
|
Li BW, Rush AC, Mitreva M, Yin Y, Spiro D, Ghedin E, Weil GJ. Transcriptomes and pathways associated with infectivity, survival and immunogenicity in Brugia malayi L3. BMC Genomics 2009; 10:267. [PMID: 19527522 PMCID: PMC2708187 DOI: 10.1186/1471-2164-10-267] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 06/15/2009] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Filarial nematode parasites cause serious diseases such as elephantiasis and river blindness in humans, and heartworm infections in dogs. Third stage filarial larvae (L3) are a critical stage in the life cycle of filarial parasites, because this is the stage that is transmitted by arthropod vectors to initiate infections in mammals. Improved understanding of molecular mechanisms associated with this transition may provide important leads for development of new therapies and vaccines to prevent filarial infections. This study explores changes in gene expression associated with the transition of Brugia malayi third stage larvae (BmL3) from mosquitoes into mammalian hosts and how these changes are affected by radiation. Radiation effects are especially interesting because irradiated L3 induce partial immunity to filarial infections. The underlying molecular mechanisms responsible for the efficacy of such vaccines are unkown. RESULTS Expression profiles were obtained using a new filarial microarray with 18, 104 64-mer elements. 771 genes were identified as differentially expressed in two-way comparative analyses of the three L3 types. 353 genes were up-regulated in mosquito L3 (L3i) relative to cultured L3 (L3c). These genes are important for establishment of filarial infections in mammalian hosts. Other genes were up-regulated in L3c relative to L3i (234) or irradiated L3 (L3ir) (22). These culture-induced transcripts include key molecules required for growth and development. 165 genes were up-regulated in L3ir relative to L3c; these genes encode highly immunogenic proteins and proteins involved in radiation repair. L3ir and L3i have similar transcription profiles for genes that encode highly immunogenic proteins, antioxidants and cuticle components. CONCLUSION Changes in gene expression that normally occur during culture under conditions that support L3 development and molting are prevented or delayed by radiation. This may explain the enhanced immunogenicity of L3ir. Gene Ontology and KEGG analyses revealed altered pathways between L3 types. Energy and "immune pathways" are up-regulated and may be needed for L3i invasion and survival, while growth and development are priorities for L3c. This study has improved our understanding of molecules involved in parasite invasion and immune evasion, potential targets of protective immunity, and molecules required for parasite growth and development.
Collapse
Affiliation(s)
- Ben-Wen Li
- Department of internal medicine, Washington University School of Medicine, St, Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
He Y, Barker SJ, MacDonald AJ, Yu Y, Cao L, Li J, Parhar R, Heck S, Hartmann S, Golenbock DT, Jiang S, Libri NA, Semper AE, Rosenberg WM, Lustigman S. Recombinant Ov-ASP-1, a Th1-biased protein adjuvant derived from the helminth Onchocerca volvulus, can directly bind and activate antigen-presenting cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:4005-16. [PMID: 19299698 DOI: 10.4049/jimmunol.0800531] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We previously reported that rOv-ASP-1, a recombinant Onchocerca volvulus activation associated protein-1, was a potent adjuvant for recombinant protein or synthetic peptide-based Ags. In this study, we further evaluated the adjuvanticity of rOv-ASP-1 and explored its mechanism of action. Consistently, recombinant full-length spike protein of SARS-CoV or its receptor-binding domain in the presence of rOv-ASP-1 could effectively induce a mixed but Th1-skewed immune response in immunized mice. It appears that rOv-ASP-1 primarily bound to the APCs among human PBMCs and triggered Th1-biased proinflammatory cytokine production probably via the activation of monocyte-derived dendritic cells and the TLR, TLR2, and TLR4, thus suggesting that rOv-ASP-1 is a novel potent innate adjuvant.
Collapse
Affiliation(s)
- Yuxian He
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cantacessi C, Campbell BE, Visser A, Geldhof P, Nolan MJ, Nisbet AJ, Matthews JB, Loukas A, Hofmann A, Otranto D, Sternberg PW, Gasser RB. A portrait of the "SCP/TAPS" proteins of eukaryotes--developing a framework for fundamental research and biotechnological outcomes. Biotechnol Adv 2009; 27:376-88. [PMID: 19239923 DOI: 10.1016/j.biotechadv.2009.02.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 02/05/2009] [Accepted: 02/11/2009] [Indexed: 01/17/2023]
Abstract
A wide range of proteins belonging to the SCP/TAPS "family" has been described for various eukaryotic organisms, including plants and animals (vertebrates and invertebrates, such as helminths). Although SCP/TAPS proteins have been proposed to play key roles in a number of fundamental biological processes, such as host-pathogen interactions and defence mechanisms, there is a paucity of information on their genetic relationships, structures and functions, and there is no standardised nomenclature for these proteins. A detailed analysis of the relationships of members of the SCP/TAPS family of proteins, based on key protein signatures, could provide a foundation for investigating these areas. In this article, we review the current state of knowledge of key SCP/TAPS proteins of eukaryotes, with an emphasis on those from parasitic helminths, and undertake a comprehensive, systematic phylogenetic analysis of currently available full-length protein sequence data (considering characteristic protein signatures or motifs) to infer relationships and provide a framework (based on statistical support) for the naming of these proteins. This framework is intended to guide genomic and molecular biological explorations of key SCP/TAPS molecules associated with infectious diseases of plants and animals. In particular, fundamental investigations of these molecules in parasites and the integration of structural and functional data could lead to new and innovative approaches for the control of parasitic diseases, with important biotechnological outcomes.
Collapse
Affiliation(s)
- C Cantacessi
- Department of Veterinary Science, The University of Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Vedi S, Dangi A, Hajela K, Misra-Bhattacharya S. Vaccination with 73kDa recombinant heavy chain myosin generates high level of protection against Brugia malayi challenge in jird and mastomys models. Vaccine 2008; 26:5997-6005. [PMID: 18817835 DOI: 10.1016/j.vaccine.2008.08.073] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 08/19/2008] [Accepted: 08/19/2008] [Indexed: 11/29/2022]
Abstract
We have earlier reported identification, expression and purification of a 2.0kb cDNA clone coding for Brugia malayi heavy chain myosin which exhibited strong immuno-reactivity with bancroftian sera from endemic normal (EN) human subjects which are considered to be putatively immune. In the present study, immunoprophylactic characterization of B. malayi recombinant myosin was carried out in rodent models and the protective efficacy was evaluated by assessing the microfilarial burden and adult worm counts in vaccinated host after an infective larval challenge. Data indicates that immunization resulted in to a significant reduction in microfilarial burden (approximately 76%) and adult worm establishment (54-58%), accompanied with embryostatic effect (70-75%) in both the animal models. The findings suggest that immune-protection by recombinant myosin was conferred through both humoral and cellular arms of immunity as indicated by an increased antibody titer with predominance of IgG2a and IgG2b isotypes along with elevated level of IgG1 apart from significant proliferation of lymphocytes, increased nitric oxide production and profound adherence of splenocytes causing cytotoxicity to microfilariae and infective larvae. The present study indicates that the recombinant B. malayi myosin is a promising vaccine candidate against human lymphatic filarial infection.
Collapse
Affiliation(s)
- Satish Vedi
- Division of Parasitology, Central Drug Research Institute, Lucknow (U.P.), India
| | | | | | | |
Collapse
|
33
|
Xiao W, Du L, Liang C, Guan J, Jiang S, Lustigman S, He Y, Zhou Y. Evaluation of recombinant Onchocerca volvulus activation associated protein-1 (ASP-1) as a potent Th1-biased adjuvant with a panel of protein or peptide-based antigens and commercial inactivated vaccines. Vaccine 2008; 26:5022-9. [PMID: 18675867 DOI: 10.1016/j.vaccine.2008.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 07/12/2008] [Accepted: 07/15/2008] [Indexed: 11/26/2022]
Abstract
Alum, the only adjuvant approved for clinical applications, can induce strong humoral (Th2) but weak cellular (Th1) immune responses. It is necessary to develop safe and effective adjuvants capable of inducing both humoral and cellular immune responses. We previously showed that activation-associated protein-1 (ASP-1) derived from Onchocerca volvulus has potent adjuvant activity. In this study, we have further evaluated the adjuvanticity of recombinant ASP-1 using a panel of recombinant proteins or synthetic peptide-based antigens, including ovalbumin (OVA), synthetic HIV peptide (HIV-p), recombinant HIV gp41 (rgp41) and HBV HBsAg, as well as three commercially available inactivated vaccines against haemorrhagic fever with renal syndrome (HFRS), Influenza and Rabies. Our results indicate that ASP-1 induced significantly higher IgG1 (Th2-associated) and IgG2a (Th1-associated) responses than alum adjuvant against OVA antigen, HIV-p, and rgp41. Consistently, it induced similar level of IgG1 responses as alum but higher level of IgG2a and IFN-gamma-producing T cell responses than alum adjuvant against HBsAg. Further, ASP-1 improved both IgG1 and IgG2a responses to three commercial inactivated vaccines when used separately or in combination. In conclusion, the recombinant ASP-1, unlike alum adjuvant, is able to induce both Th1 and Th2-associated humoral responses and Th1 cellular responses, suggesting that it can be further developed as a promising adjuvant for subunit-based and inactivated vaccines.
Collapse
Affiliation(s)
- Wenjun Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
AL-RIYAMI L, EGAN CA, BRADLEY JE, LUSTIGMAN S, HARNETT W. Failure of ES-62 to inhibit T-helper type 1 responses to other filarial nematode antigens. Parasite Immunol 2008; 30:304-8. [DOI: 10.1111/j.1365-3024.2008.01024.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Geldhof P, Meyvis Y, Vercruysse J, Claerebout E. Vaccine testing of a recombinant activation-associated secreted protein (ASP1) from Ostertagia ostertagi. Parasite Immunol 2008; 30:57-60. [PMID: 18086018 DOI: 10.1111/j.1365-3024.2007.01001.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous vaccination trials against the economically important cattle parasite Ostertagia ostertagi have indicated the protective capacity of activation-associated secreted proteins (ASPs). The further development of these antigens into a commercial vaccine will require their recombinant expression. The aim of the current study was to clone and express Oo-asp1 in a baculovirus expression system and to evaluate the protective capacity of the recombinant protein against an O. ostertagi challenge infection in cattle. The full coding sequence of Oo-asp1 was cloned in a baculovirus expression vector in frame with a carboxy-terminal Histidine tag and recombinant virus was used to infect an insect cell culture. Western blot analysis with anti-His and anti-Oo-ASP1 antibodies showed the production of recombinant Oo-ASP1. The cell pellet containing the recombinant was subsequently used to immunize seven calves three times intramuscularly with QuilA as adjuvant. Control animals were solely injected with the QuilA adjuvant. The challenge infection with O. ostertagi consisted of 30,000 L3 larvae per animal given over 30 days (1000 larvae/day, 5 days/week) and started the same day as the final immunization. Immunization with the recombinant Oo-ASP1 did not result in any level of protection against the challenge infection. There was no reduction in faecal egg output or in worm burdens. Moreover, Western blot analyses and ELISA indicated that, although the animals raised an antibody response against the recombinant Oo-ASP1, there was hardly a response against the native Oo-ASP1, suggesting that the baculovirus expressed recombinant was wrongly folded or lacked essential secondary modifications. Further analysis of the structure of the native ASPs and their glycosylations is being done.
Collapse
Affiliation(s)
- P Geldhof
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, Belgium.
| | | | | | | |
Collapse
|
36
|
MacDonald AJ, Libri NA, Lustigman S, Barker SJ, Whelan MA, Semper AE, Rosenberg WM. A novel, helminth-derived immunostimulant enhances human recall responses to hepatitis C virus and tetanus toxoid and is dependent on CD56+ cells for its action. Clin Exp Immunol 2008; 152:265-73. [PMID: 18341617 DOI: 10.1111/j.1365-2249.2008.03623.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have described previously an immunostimulant derived from Onchocerca volvulus, the helminth parasite that causes onchocerciasis. Recombinant O. volvulus activation-associated secreted protein-1 (rOv-ASP-1) was a potent adjuvant for antibody and cellular responses to protein, polypeptide and small peptide antigens. Our aims were to determine whether rOv-ASP-1 is immunostimulatory for human peripheral blood mononuclear cells (PBMC) and, if so, whether it could augment cellular responses against human pathogen antigens in vitro. Cytokines from rOv-ASP-1-stimulated human PBMC were measured by a fluorescence activated cell sorter-based multiplex assay. Recall responses of normal healthy donor (NHD) and chronic hepatitis C virus (c-HCV)-infected patient PBMC to tetanus toxoid (TT) or HCV core (HCVco) antigen, respectively, were measured by interferon-gamma enzyme-linked immunospot assays. Interferon-gamma was the predominant cytokine induced by rOv-ASP-1. 77.3% of NHD anti-TT and 88.9% of c-HCV anti-HCVco responses were enhanced by rOv-ASP-1. The immunostimulant effect was dependent upon contact between CD56+ and CD56- fractions of PBMC. We have described a helminth-derived protein that can act as an immunostimulant for human recall responses in vitro to TT and, perhaps more importantly, HCV antigens in patients with chronic HCV infection. Our longer-term goal would be to boost anti-viral responses in chronic infections such as HCV.
Collapse
Affiliation(s)
- A J MacDonald
- iQur Ltd, Mailpoint 811, Southampton General Hospital, Southampton, UK.
| | | | | | | | | | | | | |
Collapse
|
37
|
Meyvis Y, Geldhof P, Gevaert K, Timmerman E, Vercruysse J, Claerebout E. Vaccination against Ostertagia ostertagi with subfractions of the protective ES-thiol fraction. Vet Parasitol 2007; 149:239-45. [PMID: 17881131 DOI: 10.1016/j.vetpar.2007.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 07/30/2007] [Accepted: 08/03/2007] [Indexed: 11/26/2022]
Abstract
Previous vaccination trials against Ostertagia ostertagi in cattle have demonstrated the protective capacity of a protein fraction termed ES-thiol, which is enriched for activation-associated secreted proteins (ASPs) and cysteine proteases. In this study, ES-thiol was subfractionated through Q-Sepharose anion exchange chromatography to determine whether the ASPs and/or the cysteine proteases are responsible for the induced protection. Calves (seven/group) were immunized three times intramuscularly with 100 microg of ES-thiol or equivalent amounts of an ASP-enriched fraction, a cysteine protease-enriched fraction or a rest fraction, with QuilA adjuvant. A negative control group only received QuilA. After the final immunization the animals were challenged with a trickle infection of 25,000 infectious L3 larvae (1000 L3/day; 5 days/week). During a 2-month period the geometric mean cumulative faecal egg count (FEC) of the ES-thiol group was reduced by 62% compared to the QuilA control group (P<0.05). Groups injected with the ASP-enriched, the cysteine protease-enriched and the rest fraction demonstrated a reduction in cumulative FEC of 74, 80 and 70%, respectively (P<0.01). Although no significant reductions in worm burdens were observed, adult male and female worms were significantly smaller in all vaccinated groups (P<0.05), except for male worms from the ES-thiol group. These results suggest the protective capacity of ASPs and the presence of other protective antigens in the ES-thiol fraction.
Collapse
Affiliation(s)
- Y Meyvis
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
38
|
Geldhof P, De Maere V, Vercruysse J, Claerebout E. Recombinant expression systems: the obstacle to helminth vaccines? Trends Parasitol 2007; 23:527-32. [DOI: 10.1016/j.pt.2007.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 08/14/2007] [Accepted: 08/14/2007] [Indexed: 01/06/2023]
|
39
|
Anand SB, Gnanasekar M, Thangadurai M, Prabhu PR, Kaliraj P, Ramaswamy K. Immune response studies with Wuchereria bancrofti vespid allergen homologue (WbVAH) in human lymphatic filariasis. Parasitol Res 2007; 101:981-8. [PMID: 17558521 PMCID: PMC2763210 DOI: 10.1007/s00436-007-0571-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 04/26/2007] [Indexed: 10/23/2022]
Abstract
A homologue of Brugia malayi venom allergen (BmVAH) was cloned from the infective stages (L3) of Wuchereria bancrofti. Sequence analysis showed 90% sequence identity between WbVAH and BmVAH. Recombinant WbVAH was then expressed and purified. VAH from other nematode parasites is being evaluated as potential vaccine candidates. Because W. bancrofti infections are more prevalent than B. malayi, it will significantly benefit using W. bancrofti antigens for vaccine development. In this study, we have evaluated the human immune responses to rWbVAH in putatively immune individuals who live in the endemic regions (endemic normal, EN) to determine the vaccine potential of WbVAH. These responses were then compared to those in infected individuals (microfilaraemic, MF and chronic pathology, CP). Results show that EN subjects carry WbVAH-specific IgG1, IgG2, and IgG3 circulating antibodies. It is interesting to note that CP patients also carried antibodies against WbVAH that was mainly of the IgG3 isotype. Peripheral blood mononuclear cells (PBMC) from EN individuals responded strongly to rWbVAH by proliferating and secreting IFN-gamma. PBMC from MF patients also proliferated in response to rWbVAH but secreted mainly IL-10. Thus, there was a clear dichotomy in the cytokine production by infected patients vs individuals who are putatively immune (EN). Although vaccine potential of WbVAH has not been established yet, our findings suggest that WbVAH mediated immune responses in EN individuals is primarily Th1-biased. Further vaccination studies are underway in animal models to determine the role of WbVAH in protective immunity against W. bancrofti and B. malayi infections.
Collapse
Affiliation(s)
- Setty Balakrishnan Anand
- S. B. Anand · M. Thangadurai · P. R. Prabhu · P. Kaliraj, Centre for Biotechnology, Anna University, Chennai 600025, India
- M. Gnanasekar · K. Ramaswamy, Department of Biomedical Sciences, College of Medicine, University of Illinois, 1601 Parkview Avenue, Rockford, IL 61107, USA,
| | - Munirathinam Gnanasekar
- S. B. Anand · M. Thangadurai · P. R. Prabhu · P. Kaliraj, Centre for Biotechnology, Anna University, Chennai 600025, India
- M. Gnanasekar · K. Ramaswamy, Department of Biomedical Sciences, College of Medicine, University of Illinois, 1601 Parkview Avenue, Rockford, IL 61107, USA,
| | - Mani Thangadurai
- S. B. Anand · M. Thangadurai · P. R. Prabhu · P. Kaliraj, Centre for Biotechnology, Anna University, Chennai 600025, India
- M. Gnanasekar · K. Ramaswamy, Department of Biomedical Sciences, College of Medicine, University of Illinois, 1601 Parkview Avenue, Rockford, IL 61107, USA,
| | - Prince R. Prabhu
- S. B. Anand · M. Thangadurai · P. R. Prabhu · P. Kaliraj, Centre for Biotechnology, Anna University, Chennai 600025, India
- M. Gnanasekar · K. Ramaswamy, Department of Biomedical Sciences, College of Medicine, University of Illinois, 1601 Parkview Avenue, Rockford, IL 61107, USA,
| | - Perumal Kaliraj
- S. B. Anand · M. Thangadurai · P. R. Prabhu · P. Kaliraj, Centre for Biotechnology, Anna University, Chennai 600025, India
- M. Gnanasekar · K. Ramaswamy, Department of Biomedical Sciences, College of Medicine, University of Illinois, 1601 Parkview Avenue, Rockford, IL 61107, USA,
| | - Kalyanasundaram Ramaswamy
- S. B. Anand · M. Thangadurai · P. R. Prabhu · P. Kaliraj, Centre for Biotechnology, Anna University, Chennai 600025, India
- M. Gnanasekar · K. Ramaswamy, Department of Biomedical Sciences, College of Medicine, University of Illinois, 1601 Parkview Avenue, Rockford, IL 61107, USA,
| |
Collapse
|
40
|
Gene discovery for the carcinogenic human liver fluke, Opisthorchis viverrini. BMC Genomics 2007; 8:189. [PMID: 17587442 PMCID: PMC1913519 DOI: 10.1186/1471-2164-8-189] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 06/22/2007] [Indexed: 12/30/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) – cancer of the bile ducts – is associated with chronic infection with the liver fluke, Opisthorchis viverrini. Despite being the only eukaryote that is designated as a 'class I carcinogen' by the International Agency for Research on Cancer, little is known about its genome. Results Approximately 5,000 randomly selected cDNAs from the adult stage of O. viverrini were characterized and accounted for 1,932 contigs, representing ~14% of the entire transcriptome, and, presently, the largest sequence dataset for any species of liver fluke. Twenty percent of contigs were assigned GO classifications. Abundantly represented protein families included those involved in physiological functions that are essential to parasitism, such as anaerobic respiration, reproduction, detoxification, surface maintenance and feeding. GO assignments were well conserved in relation to other parasitic flukes, however, some categories were over-represented in O. viverrini, such as structural and motor proteins. An assessment of evolutionary relationships showed that O. viverrini was more similar to other parasitic (Clonorchis sinensis and Schistosoma japonicum) than to free-living (Schmidtea mediterranea) flatworms, and 105 sequences had close homologues in both parasitic species but not in S. mediterranea. A total of 164 O. viverrini contigs contained ORFs with signal sequences, many of which were platyhelminth-specific. Examples of convergent evolution between host and parasite secreted/membrane proteins were identified as were homologues of vaccine antigens from other helminths. Finally, ORFs representing secreted proteins with known roles in tumorigenesis were identified, and these might play roles in the pathogenesis of O. viverrini-induced CCA. Conclusion This gene discovery effort for O. viverrini should expedite molecular studies of cholangiocarcinogenesis and accelerate research focused on developing new interventions, drugs and vaccines, to control O. viverrini and related flukes.
Collapse
|
41
|
Hotez PJ, Ferris MT. The antipoverty vaccines. Vaccine 2006; 24:5787-99. [PMID: 16759763 DOI: 10.1016/j.vaccine.2006.05.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 05/08/2006] [Accepted: 05/09/2006] [Indexed: 11/26/2022]
Abstract
The neglected tropical diseases represent a group of parasitic and bacterial diseases, occurring primarily in rural areas or impoverished urban areas of developing countries. Because of their chronic and stigmatizing character and their impact on child development, pregnancy outcomes, and worker productivity, the neglected tropical diseases are considered poverty-promoting conditions. Through the activities of public-private partnerships, first or second-generation recombinant vaccines for three of these conditions--hookworm, leishmaniasis, and schistosomiasis, have undergone early development and clinical testing. However, through the acquisition of extensive bioinformatics information or animal model testing for several other neglected tropical diseases pathogens, it is possible to consider new generation vaccines as well for amebiasis, Buruli ulcer, Chagas disease, Chlamydia infections (including trachoma), leprosy, leptospirosis, and the treponematoses. Early development of such antipoverty vaccines will require the establishment of product development public-private partnerships and partnerships with innovative developing countries where these diseases are endemic.
Collapse
Affiliation(s)
- Peter J Hotez
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University and the Sabin Vaccine Institute, Washington, DC 20037, USA.
| | | |
Collapse
|
42
|
MacDonald AJ, Cao L, He Y, Zhao Q, Jiang S, Lustigman S. rOv-ASP-1, a recombinant secreted protein of the helminth Onchocercavolvulus, is a potent adjuvant for inducing antibodies to ovalbumin, HIV-1 polypeptide and SARS-CoV peptide antigens. Vaccine 2005; 23:3446-52. [PMID: 15837368 PMCID: PMC7115491 DOI: 10.1016/j.vaccine.2005.01.098] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 12/27/2004] [Accepted: 01/05/2005] [Indexed: 11/17/2022]
Abstract
We studied the adjuvanticity of recombinant Onchocerca volvulus activation associated protein-1 (rOv-ASP-1) for ovalbumin (OVA) in mice. After a single immunization and one boost, rOv-ASP-1 exceeded the efficacy of alum or MPL + TDM adjuvants in terms of end-point total IgG or IgG1 and IgG2a anti-OVA titres. Using the helminth-derived adjuvant, IgG isotype responses to OVA were of a mixed Th1/Th2 profile and spleen cell cytokines exclusively Th1-type. The potent adjuvanticity of rOv-ASP-1 was confirmed in mice vaccinated with a 37-mer peptide from the S protein of SARS-CoV and an HIV-1 gp120-CD4 chimeric polypeptide antigen. Unusually for a helminth product, the rOv-ASP-1 adjuvant augmented not only Th2 but also Th1 responses, the latter property being of potential utility in stimulating anti-viral immune responses.
Collapse
Affiliation(s)
- Angus J MacDonald
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, The New York Blood Center, 310 East 67th Street, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Bethony J, Loukas A, Smout M, Brooker S, Mendez S, Plieskatt J, Goud G, Bottazzi ME, Zhan B, Wang Y, Williamson A, Lustigman S, Correa-Oliveira R, Xiao S, Hotez PJ. Antibodies against a secreted protein from hookworm larvae reduce the intensity of hookworm infection in humans and vaccinated laboratory animals. FASEB J 2005; 19:1743-5. [PMID: 16037096 DOI: 10.1096/fj.05-3936fje] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of a vaccine would provide an important new tool for the control of human hookworm infection. On the basis of successful vaccination of laboratory animals with living irradiated, third-stage hookworm larvae (L3), we examined the antibody responses of individuals from hookworm endemic areas of Brazil and China against the most abundant L3 secreted antigens, the ancylostoma secreted proteins, ASP-1 and ASP-2. Logistic regression was used to investigate the effects of antibody isotype responses to ASPs on the risk of an individual harboring heavy hookworm infection. A significant protective association was observed between increasing anti-ASP-2 IgE levels and the risk of heavy hookworm infection. To confirm that ASP-2 is a protective antigen, laboratory dogs were immunized with recombinant ASP-2 formulated with the GlaxoSmithKline Adjuvant, AS03. Sera obtained from the immunized dogs exhibited high geometric mean antibody titers, immunoprecipitated native ASP-2 from L3 extracts and localized the site of ASP-2 expression to the glandular esophagus and body channels exiting to the cuticle. The sera also exhibited an increased ability to inhibit migration of L3 through tissue in vitro relative to sera from AS03-injected controls. Upon L3 challenge, the ASP-2 vaccinated dogs exhibited significant reductions in fecal egg counts and intestinal hookworm burden. These findings provide strong support for the development of an effective recombinant vaccine against hookworm infection in humans.
Collapse
Affiliation(s)
- Jeffrey Bethony
- Department of Microbiology and Tropical Medicine, The George Washington University, Washington, DC 20037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Asojo OA, Goud G, Dhar K, Loukas A, Zhan B, Deumic V, Liu S, Borgstahl GEO, Hotez PJ. X-ray structure of Na-ASP-2, a pathogenesis-related-1 protein from the nematode parasite, Necator americanus, and a vaccine antigen for human hookworm infection. J Mol Biol 2005; 346:801-14. [PMID: 15713464 DOI: 10.1016/j.jmb.2004.12.023] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2004] [Revised: 12/08/2004] [Accepted: 12/09/2004] [Indexed: 11/15/2022]
Abstract
Human hookworm infection is a major cause of anemia and malnutrition of adults and children in the developing world. As part of on-going efforts to control hookworm infection, The Human Hookworm Vaccine Initiative has identified candidate vaccine antigens from the infective L3 larval stages of the parasite, including a family of pathogenesis-related (PR) proteins known as the Ancylostoma-secreted proteins (ASPs). A novel crystal structure of Na-ASP-2, a PR-1 protein secreted by infective larvae of the human hookworm Necator americanus, has been solved to resolution limits of 1.68 A and to an R-factor of 17% using the recombinant protein expressed in and secreted by Pichia pastoris. The overall fold of Na-ASP-2 is a three-layer alphabetaalpha sandwich flanked by an N-terminal loop and a short, cysteine-rich C terminus. Our structure reveals a large central cavity that is flanked by His129 and Glu106, two residues that are well conserved in all parasitic nematode L3 ASPs. Na-ASP-2 has structural and charge similarities to chemokines, which suggests that Na-ASP-2 may be an extra-cellular ligand of an unknown receptor. Na-ASP-2 is a useful homology model for NIF, a natural antagonistic ligand of CR3 receptor. From these modeling studies, possible binding modes were predicted. In addition, this first structure of a PR-1 protein from parasitic helminths may shed light on the molecular basis of host-parasite interactions.
Collapse
Affiliation(s)
- Oluwatoyin A Asojo
- Eppley Institute for Research in Cancer and Allied Diseases, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The scientific study of human hookworm infection began at the dawn of the twentieth century. In recent years, there have been dramatic improvements in our understanding of many aspects of this globally widespread parasite. This chapter reviews recent advances in our understanding in the biology, immunology, epidemiology, public health significance and control of hookworm, and to look forward to the study of this important parasite in the 21st century. Advances in molecular biology has lead to the identification of a variety of new molecules from hookworms, which have importance either in the molecular pathogenesis of hookworm infection or in the host-parasite relationship; some are also promising vaccine targets. At present, relatively little is known about the immune responses to hookworm infection, although it has recently been speculated that hookworm and other helminths may modulate specific immune responses to other pathogens and vaccines. Our epidemiological understanding of hookworm has improved through the development of mathematical models of transmission dynamics, which coupled with decades of field research across multiple epidemiological settings, have shown that certain population characteristics can now be recognised as common to the epidemiology, population biology and control of hookworm and other helminth species. Recent recognition of the subtle, but significant, impact of hookworm on health and education, together with the simplicity, safety, low cost and efficacy of chemotherapy has spurred international efforts to control the morbidity due to infection. Large-scale treatment programmes are currently underway, ideally supported by health education and integrated with the provision of improved water and sanitation. There are also on-going efforts to develop novel anthelmintic drugs and anti-hookworm vaccines.
Collapse
Affiliation(s)
- Simon Brooker
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | | | |
Collapse
|