1
|
Huang Y, Li L, Hong Y, Cheng L, Gu Z. The effect of carbohydrates with different levels of digestibility on energy metabolism in vivo under hypobaric hypoxic conditions. Carbohydr Polym 2025; 351:123114. [PMID: 39779022 DOI: 10.1016/j.carbpol.2024.123114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Current strategies for improving energy supply in hypobaric hypoxic environments are limited. Therefore, this study investigates the effects of four carbohydrates with different levels of digestibility on energy metabolism in vivo in hypobaric hypoxic environments. First, we characterized the four types of carbohydrates. Subsequently, reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to characterize the expression of GLUT1, GLUT2, and SGLT1 in the glucose transport pathway in vivo. In addition, the effects of different levels of carbohydrate digestibility on energy expenditure were evaluated in vivo. The results showed that pre-gelatinized corn starch significantly increased GLUT1 gene expression in the hypobaric hypoxic conditions (1.58 times, compared to normobaric normoxic). In addition, pre-gelatinized corn starch increased energy expenditure in the hypobaric hypoxic conditions and performed better in terms of glycogen accumulation and glucose transport. Therefore, pre-gelatinized corn starch administration may be a promising strategy for long-term energy supplementation in hypobaric hypoxic.
Collapse
Affiliation(s)
- Yali Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Lingjin Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.
| | - Li Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Homer KA, Cross MR, Helms ER. Peak Week Carbohydrate Manipulation Practices in Physique Athletes: A Narrative Review. SPORTS MEDICINE - OPEN 2024; 10:8. [PMID: 38218750 PMCID: PMC10787737 DOI: 10.1186/s40798-024-00674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND Physique athletes are ranked by a panel of judges against the judging criteria of the corresponding division. To enhance on-stage presentation and performance, competitors in certain categories (i.e. bodybuilding and classic physique) achieve extreme muscle size and definition aided by implementing acute "peaking protocols" in the days before competition. Such practices can involve manipulating nutrition and training variables to increase intramuscular glycogen and water while minimising the thickness of the subcutaneous layer. Carbohydrate manipulation is a prevalent strategy utilised to plausibly induce muscle glycogen supercompensation and subsequently increase muscle size. The relationship between carbohydrate intake and muscle glycogen saturation was first examined in endurance event performance and similar strategies have been adopted by physique athletes despite the distinct physiological dissimilarities and aims between the sports. OBJECTIVES The aim of this narrative review is to (1) critically examine and appraise the existing scientific literature relating to carbohydrate manipulation practices in physique athletes prior to competition; (2) identify research gaps and provide direction for future studies; and (3) provide broad practical applications based on the findings and physiological reasoning for coaches and competitors. FINDINGS The findings of this review indicate that carbohydrate manipulation practices are prevalent amongst physique athletes despite a paucity of experimental evidence demonstrating the efficacy of such strategies on physique performance. Competitors have also been observed to manipulate water and electrolytes in conjunction with carbohydrate predicated on speculative physiological mechanisms which may be detrimental for performance. CONCLUSIONS Further experimental evidence which closely replicates the nutritional and training practices of physique athletes during peak week is required to make conclusions on the efficacy of carbohydrate manipulation strategies. Quasi-experimental designs may be a feasible alternative to randomised controlled trials to examine such strategies due to the difficulty in recruiting the population of interest. Finally, we recommend that coaches and competitors manipulate as few variables as possible, and experiment with different magnitudes of carbohydrate loads in advance of competition if implementing a peaking strategy.
Collapse
Affiliation(s)
- Kai A Homer
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632, New Zealand.
| | - Matt R Cross
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632, New Zealand
| | - Eric R Helms
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632, New Zealand
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
3
|
Schütze K, Schopp M, Fairchild TJ, Needham M. Old muscle, new tricks: a clinician perspective on sarcopenia and where to next. Curr Opin Neurol 2023; 36:441-449. [PMID: 37501556 PMCID: PMC10487352 DOI: 10.1097/wco.0000000000001185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
PURPOSE OF REVIEW This review offers a contemporary clinical approach to the recognition, prevention and management of sarcopenia, and discusses recent clinically relevant advances in the aetiopathogenesis of muscle ageing that may lead to future therapeutic targets. RECENT FINDINGS The key recent directions for sarcopenia are in the diagnosis, understanding molecular mechanisms and management. Regarding the recognition of the condition, it has become increasingly clear that different definitions hamper progress in understanding. Therefore, the Global Leadership in Sarcopenia has been established in 2022 to develop a universally accepted definition. Moreover, substantial work is occurring to understand the various roles and contribution of inflammation, oxidative stress, mitochondrial dysfunction and metabolic dysregulation on skeletal muscle function and ageing. Finally, the role of resistance-based exercise regimes has been continually emphasised. However, the role of protein supplementation and hormone replacement therapy (HRT) are still under debate, and current clinical trials are underway. SUMMARY With the global ageing of our population, there is increasing emphasis on maintaining good health. Maintenance of skeletal muscle strength and function are key to preventing frailty, morbidity and death.
Collapse
Affiliation(s)
- Katie Schütze
- School of Medicine, The University of Notre Dame Australia, Fremantle
| | - Madeline Schopp
- School of Medicine, The University of Notre Dame Australia, Fremantle
| | - Timothy J. Fairchild
- Centre for Molecular Medicine & Innovative Therapeutics
- School of Allied Health, Murdoch University
| | - Merrilee Needham
- School of Medicine, The University of Notre Dame Australia, Fremantle
- Centre for Molecular Medicine & Innovative Therapeutics
- Perron Institute of Neurological and Translational Sciences, Nedlands
- Department of Neurology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
4
|
Barakat C, Escalante G, Stevenson SW, Bradshaw JT, Barsuhn A, Tinsley GM, Walters J. Can Bodybuilding Peak Week Manipulations Favorably Affect Muscle Size, Subcutaneous Thickness, and Related Body Composition Variables? A Case Study. Sports (Basel) 2022; 10:106. [PMID: 35878117 PMCID: PMC9321665 DOI: 10.3390/sports10070106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/17/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The purpose of this case study was to implement an evidence-based dietary approach to peaking for a bodybuilding competition and monitor its impact on body composition, muscle thickness (MT), intra-to-extra-cellular fluid shifts, subcutaneous thickness (ST), and hydration status. Secondarily, to document any adverse events of this peak week approach in a small, controlled setting. Methods Dietary practices were recorded, and laboratory testing was conducted throughout peak week, including competition morning. Assessments included: dual-energy X-ray absorptiometry (DEXA) for body composition, B-mode ultrasound for MT and ST, bioimpedance spectroscopy (BIS) for total body water (TBW)/intracellular water (ICW)/extracellular water (ECW), and raw BIS data (i.e., resistance, reactance, and phase angle), urine specific gravity (USG) for hydration status, and subjective fullness. Sequential dietary manipulations were made (i.e., CHO depletion/fat loading, CHO/water loading, and a refinement phase) with specific physiological goals. This was reflected in changes observed across all assessments throughout the peak week. RESULTS From the carbohydrate-depleted state (three days out) to competition day, we observed increases in lean body mass, MT, TBW (primarily ICW), and subjective fullness. Kendall's Tau B revealed a strong relationship between carbohydrate intake and ∑MT (τ = 0.733, p = 0.056). Additionally, novel ST data demonstrated a 10% reduction for the summation of all seven sites, with some drastic changes in specific regions (e.g., -43% for triceps ST) from three days out to competition day. CONCLUSIONS These data suggest that the prototypical goals of bodybuilders' peak week (i.e., increasing muscle fullness, decreasing subcutaneous thickness) to enhance their aesthetics/muscularity presented can be achieved with a drug-free protocol involving dietary manipulations.
Collapse
Affiliation(s)
- Christopher Barakat
- Health Sciences and Human Performance Department, The University of Tampa, Tampa, FL 33606, USA; (J.T.B.); (A.B.); (J.W.)
- Competitive Breed LLC., Lutz, FL 33558, USA
| | - Guillermo Escalante
- Department of Kinesiology, California State University, San Bernardino, CA 92407, USA;
| | | | - Joshua T. Bradshaw
- Health Sciences and Human Performance Department, The University of Tampa, Tampa, FL 33606, USA; (J.T.B.); (A.B.); (J.W.)
- Competitive Breed LLC., Lutz, FL 33558, USA
| | - Andrew Barsuhn
- Health Sciences and Human Performance Department, The University of Tampa, Tampa, FL 33606, USA; (J.T.B.); (A.B.); (J.W.)
| | - Grant M. Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA;
| | - Joseph Walters
- Health Sciences and Human Performance Department, The University of Tampa, Tampa, FL 33606, USA; (J.T.B.); (A.B.); (J.W.)
| |
Collapse
|
5
|
Noakes TD. What Is the Evidence That Dietary Macronutrient Composition Influences Exercise Performance? A Narrative Review. Nutrients 2022; 14:862. [PMID: 35215511 PMCID: PMC8875928 DOI: 10.3390/nu14040862] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 01/06/2023] Open
Abstract
The introduction of the needle muscle biopsy technique in the 1960s allowed muscle tissue to be sampled from exercising humans for the first time. The finding that muscle glycogen content reached low levels at exhaustion suggested that the metabolic cause of fatigue during prolonged exercise had been discovered. A special pre-exercise diet that maximized pre-exercise muscle glycogen storage also increased time to fatigue during prolonged exercise. The logical conclusion was that the athlete's pre-exercise muscle glycogen content is the single most important acutely modifiable determinant of endurance capacity. Muscle biochemists proposed that skeletal muscle has an obligatory dependence on high rates of muscle glycogen/carbohydrate oxidation, especially during high intensity or prolonged exercise. Without this obligatory carbohydrate oxidation from muscle glycogen, optimum muscle metabolism cannot be sustained; fatigue develops and exercise performance is impaired. As plausible as this explanation may appear, it has never been proven. Here, I propose an alternate explanation. All the original studies overlooked one crucial finding, specifically that not only were muscle glycogen concentrations low at exhaustion in all trials, but hypoglycemia was also always present. Here, I provide the historical and modern evidence showing that the blood glucose concentration-reflecting the liver glycogen rather than the muscle glycogen content-is the homeostatically-regulated (protected) variable that drives the metabolic response to prolonged exercise. If this is so, nutritional interventions that enhance exercise performance, especially during prolonged exercise, will be those that assist the body in its efforts to maintain the blood glucose concentration within the normal range.
Collapse
Affiliation(s)
- Timothy David Noakes
- Department of Applied Design, Cape Peninsula University of Technology, Cape Town 8000, South Africa
| |
Collapse
|
6
|
Winwood-Smith HS, White CR, Franklin CE. Flight activity and glycogen depletion on a low-carbohydrate diet. J Exp Biol 2020; 223:jeb228379. [PMID: 32532863 DOI: 10.1242/jeb.228379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/04/2020] [Indexed: 08/26/2023]
Abstract
Glycogen is a critical store for locomotion. Depleted glycogen stores are associated with increased fatigue during exercise. The reduced effectiveness of low-carbohydrate diets for weight loss over longer time periods may arise because such diets reduce glycogen stores and thereby energy expenditure via physical activity. To explore the effect of a low-carbohydrate diet on activity and glycogen utilisation, we fed adult Drosophila melanogaster a standard or low-carbohydrate diet for 9 days and measured patterns of flight activity and rates of glycogen depletion. We hypothesised that flight activity and rates of glycogen depletion would be reduced on a low-carbohydrate diet. Flight activity was elevated in the low-carbohydrate group but glycogen depletion rates were unchanged. We conclude that increased activity is probably a foraging response to carbohydrate deficiency and speculate that the previously demonstrated metabolic depression that occurs on a low-carbohydrate diet in this species may allow for increased flight activity without increased glycogen depletion.
Collapse
Affiliation(s)
- Hugh S Winwood-Smith
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Craig R White
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Doering TM, Cox GR, Areta JL, Coffey VG. Repeated muscle glycogen supercompensation with four days' recovery between exhaustive exercise. J Sci Med Sport 2019; 22:907-911. [PMID: 30940441 DOI: 10.1016/j.jsams.2019.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To determine if a 4 d period of high carbohydrate intake can supercompensate muscle glycogen and exercise work capacity on back-to-back occasions. DESIGN Seven trained cyclists (6 male, VO2peak: 57 ± 4 mL kg-1 min-1) completed a 9-d experimental period, consisting of three intermittent exhaustive cycling trials on days 1 (trial 1), 5 (trial 2) and 9 (trial 3). Following trial 1 cyclists were fed a high carbohydrate diet (˜10 g kg-1 day-1) for eight days to assess their capacity to repeatedly supercompensate muscle glycogen with 4 d recovery. METHODS A resting muscle biopsy was obtained prior to each trial consisting of 2 min work intervals (90-60% peak power output) interspersed with 2 min recovery (40% peak power output) repeated until exhaustion. Each 72-h period between trial days included two days of low volume cycling and a rest day. Resting muscle glycogen and total work completed was determined for each trial day. RESULTS Baseline muscle glycogen on day 1 (583.6 ± 111.0 mmol kg-1 dry mass) was supercompensated on day 5 (835.1 ± 112.8 mmol kg-1 dry mass; p = 0.04, d = 2.25) and again on day 9 (848.3 ± 111.4 mmol kg-1 dry mass; p = 0.01, d = 2.38). Total cycling work capacity increased from trial 1 to trial 2 (+8.7 ± 5.4 kJ kg-1; p = 0.01; d = 1.41); a large effect was observed in trial 3 compared to trial 1 (+6.4 ± 6.8 kJ kg-1; p = 0.10; d = 1.10). CONCLUSIONS A 4 d high carbohydrate feeding strategy is sufficient to repeatedly supercompensate muscle glycogen content following exhaustive exercise and results in enhanced work capacity.
Collapse
Affiliation(s)
- Thomas M Doering
- Bond Institute of Health and Sport, Faculty of Health Sciences and Medicine, Bond University, Australia; School of Allied Health Sciences, Griffith University, Australia
| | - Gregory R Cox
- Bond Institute of Health and Sport, Faculty of Health Sciences and Medicine, Bond University, Australia
| | - José L Areta
- School of Sport and Exercise Sciences, Liverpool John Moores University, United Kingdom
| | - Vernon G Coffey
- Bond Institute of Health and Sport, Faculty of Health Sciences and Medicine, Bond University, Australia.
| |
Collapse
|
8
|
Nikolaidis PT, Veniamakis E, Rosemann T, Knechtle B. Nutrition in Ultra-Endurance: State of the Art. Nutrients 2018; 10:nu10121995. [PMID: 30558350 PMCID: PMC6315825 DOI: 10.3390/nu10121995] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/02/2018] [Accepted: 12/11/2018] [Indexed: 11/18/2022] Open
Abstract
Athletes competing in ultra-endurance sports should manage nutritional issues, especially with regards to energy and fluid balance. An ultra-endurance race, considered a duration of at least 6 h, might induce the energy balance (i.e., energy deficit) in levels that could reach up to ~7000 kcal per day. Such a negative energy balance is a major health and performance concern as it leads to a decrease of both fat and skeletal muscle mass in events such as 24-h swimming, 6-day cycling or 17-day running. Sport anemia caused by heavy exercise and gastrointestinal discomfort, under hot or cold environmental conditions also needs to be considered as a major factor for health and performance in ultra-endurance sports. In addition, fluid losses from sweat can reach up to 2 L/h due to increased metabolic work during prolonged exercise and exercise under hot environments that might result in hypohydration. Athletes are at an increased risk for exercise-associated hyponatremia (EAH) and limb swelling when intake of fluids is greater than the volume lost. Optimal pre-race nutritional strategies should aim to increase fat utilization during exercise, and the consumption of fat-rich foods may be considered during the race, as well as carbohydrates, electrolytes, and fluid. Moreover, to reduce the risk of EAH, fluid intake should include sodium in the amounts of 10–25 mmol to reduce the risk of EAH and should be limited to 300–600 mL per hour of the race.
Collapse
Affiliation(s)
- Pantelis T Nikolaidis
- Laboratory of Exercise Testing, Hellenic Air Force Academy, 13671 Dekelia, Greece.
- Exercise Physiology Laboratory, 18450 Nikaia, Greece.
| | - Eleftherios Veniamakis
- Department of Nutrition and Dietetics, Technological Educational Institute, 72300 Sitia, Greece.
| | - Thomas Rosemann
- Institute of General Practice and for Health Services Research, University of Zurich, 8091 Zurich, Switzerland.
| | - Beat Knechtle
- Institute of General Practice and for Health Services Research, University of Zurich, 8091 Zurich, Switzerland.
- Medbase St. Gallen Am Vadianplatz, 9001 St. Gallen, Switzerland.
| |
Collapse
|
9
|
Rothschild J, Earnest CP. Dietary Manipulations Concurrent to Endurance Training. J Funct Morphol Kinesiol 2018; 3:jfmk3030041. [PMID: 33466970 PMCID: PMC7739303 DOI: 10.3390/jfmk3030041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/11/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
The role of an athlete's dietary intake (both timing and food type) goes beyond simply providing fuel to support the body's vital processes. Nutritional choices also have an impact on the metabolic adaptations to training. Over the past 20 years, research has suggested that strategically reducing carbohydrate (CHO) availability during an athlete's training can modify the metabolic responses in lieu of simply maintaining a high CHO diet. Several methods have been explored to manipulate CHO availability and include: Low-carb, high-fat (LCHF) diets, performing two-a-day training without glycogen restoration between sessions, and a "sleep-low" approach entailing a glycogen-depleting session in the evening without consuming CHO until after a morning training session performed in an overnight fasted state. Each of these methods can confer beneficial metabolic adaptations for the endurance athlete including increases in mitochondrial enzyme activity, mitochondrial content, and rates of fat oxidation, yet data showing a direct performance benefit is still unclear.
Collapse
Affiliation(s)
| | - Conrad P. Earnest
- Exercise and Sport Nutrition Laboratory, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
10
|
Maunder E, Plews DJ, Kilding AE. Contextualising Maximal Fat Oxidation During Exercise: Determinants and Normative Values. Front Physiol 2018; 9:599. [PMID: 29875697 PMCID: PMC5974542 DOI: 10.3389/fphys.2018.00599] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/03/2018] [Indexed: 12/30/2022] Open
Abstract
Using a short-duration step protocol and continuous indirect calorimetry, whole-body rates of fat and carbohydrate oxidation can be estimated across a range of exercise workloads, along with the individual maximal rate of fat oxidation (MFO) and the exercise intensity at which MFO occurs (Fatmax). These variables appear to have implications both in sport and health contexts. After discussion of the key determinants of MFO and Fatmax that must be considered during laboratory measurement, the present review sought to synthesize existing data in order to contextualize individually measured fat oxidation values. Data collected in homogenous cohorts on cycle ergometers after an overnight fast was synthesized to produce normative values in given subject populations. These normative values might be used to contextualize individual measurements and define research cohorts according their capacity for fat oxidation during exercise. Pertinent directions for future research were identified.
Collapse
Affiliation(s)
- Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | | | | |
Collapse
|
11
|
Maunder E, Kilding AE, Plews DJ. Substrate Metabolism During Ironman Triathlon: Different Horses on the Same Courses. Sports Med 2018; 48:2219-2226. [DOI: 10.1007/s40279-018-0938-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Abstract
The ability of athletes to train day after day depends in large part on adequate restoration of muscle glycogen stores, a process that requires the consumption of sufficient dietary carbohydrates and ample time. Providing effective guidance to athletes and others wishing to enhance training adaptations and improve performance requires an understanding of the normal variations in muscle glycogen content in response to training and diet; the time required for adequate restoration of glycogen stores; the influence of the amount, type, and timing of carbohydrate intake on glycogen resynthesis; and the impact of other nutrients on glycogenesis. This review highlights the practical implications of the latest research related to glycogen metabolism in physically active individuals to help sports dietitians, coaches, personal trainers, and other sports health professionals gain a fundamental understanding of glycogen metabolism, as well as related practical applications for enhancing training adaptations and preparing for competition.
Collapse
Affiliation(s)
- Bob Murray
- Sports Science Insights, LLC, Crystal Lake, Illinois, USA
| | | |
Collapse
|
13
|
Miller VJ, Villamena FA, Volek JS. Nutritional Ketosis and Mitohormesis: Potential Implications for Mitochondrial Function and Human Health. J Nutr Metab 2018; 2018:5157645. [PMID: 29607218 PMCID: PMC5828461 DOI: 10.1155/2018/5157645] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Impaired mitochondrial function often results in excessive production of reactive oxygen species (ROS) and is involved in the etiology of many chronic diseases, including cardiovascular disease, diabetes, neurodegenerative disorders, and cancer. Moderate levels of mitochondrial ROS, however, can protect against chronic disease by inducing upregulation of mitochondrial capacity and endogenous antioxidant defense. This phenomenon, referred to as mitohormesis, is induced through increased reliance on mitochondrial respiration, which can occur through diet or exercise. Nutritional ketosis is a safe and physiological metabolic state induced through a ketogenic diet low in carbohydrate and moderate in protein. Such a diet increases reliance on mitochondrial respiration and may, therefore, induce mitohormesis. Furthermore, the ketone β-hydroxybutyrate (BHB), which is elevated during nutritional ketosis to levels no greater than those resulting from fasting, acts as a signaling molecule in addition to its traditionally known role as an energy substrate. BHB signaling induces adaptations similar to mitohormesis, thereby expanding the potential benefit of nutritional ketosis beyond carbohydrate restriction. This review describes the evidence supporting enhancement of mitochondrial function and endogenous antioxidant defense in response to nutritional ketosis, as well as the potential mechanisms leading to these adaptations.
Collapse
Affiliation(s)
- Vincent J. Miller
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| | - Frederick A. Villamena
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jeff S. Volek
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
TINSLEY GRANTM, MORALES ELISA, FORSSE JEFFREYS, GRANDJEAN PETERW. Impact of Acute Dietary Manipulations on DXA and BIA Body Composition Estimates. Med Sci Sports Exerc 2017; 49:823-832. [DOI: 10.1249/mss.0000000000001148] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Fuchs CJ, Gonzalez JT, Beelen M, Cermak NM, Smith FE, Thelwall PE, Taylor R, Trenell MI, Stevenson EJ, van Loon LJC. Sucrose ingestion after exhaustive exercise accelerates liver, but not muscle glycogen repletion compared with glucose ingestion in trained athletes. J Appl Physiol (1985) 2016; 120:1328-34. [PMID: 27013608 DOI: 10.1152/japplphysiol.01023.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/18/2016] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to assess the effects of sucrose vs. glucose ingestion on postexercise liver and muscle glycogen repletion. Fifteen well-trained male cyclists completed two test days. Each test day started with glycogen-depleting exercise, followed by 5 h of recovery, during which subjects ingested 1.5 g·kg(-1)·h(-1) sucrose or glucose. Blood was sampled frequently and (13)C magnetic resonance spectroscopy and imaging were employed 0, 120, and 300 min postexercise to determine liver and muscle glycogen concentrations and liver volume. Results were as follows: Postexercise muscle glycogen concentrations increased significantly from 85 ± 27 (SD) vs. 86 ± 35 mmol/l to 140 ± 23 vs. 136 ± 26 mmol/l following sucrose and glucose ingestion, respectively (no differences between treatments: P = 0.673). Postexercise liver glycogen concentrations increased significantly from 183 ± 47 vs. 167 ± 65 mmol/l to 280 ± 72 vs. 234 ± 81 mmol/l following sucrose and glucose ingestion, respectively (time × treatment, P = 0.051). Liver volume increased significantly over the 300-min period after sucrose ingestion only (time × treatment, P = 0.001). As a result, total liver glycogen content increased during postexercise recovery to a greater extent in the sucrose treatment (from 53.6 ± 16.2 to 86.8 ± 29.0 g) compared with the glucose treatment (49.3 ± 25.5 to 65.7 ± 27.1 g; time × treatment, P < 0.001), equating to a 3.4 g/h (95% confidence interval: 1.6-5.1 g/h) greater repletion rate with sucrose vs. glucose ingestion. In conclusion, sucrose ingestion (1.5 g·kg(-1)·h(-1)) further accelerates postexercise liver, but not muscle glycogen repletion compared with glucose ingestion in trained athletes.
Collapse
Affiliation(s)
- Cas J Fuchs
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands; Department of Sport, Exercise, and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | | | - Milou Beelen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Naomi M Cermak
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Fiona E Smith
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; and Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Pete E Thelwall
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; and Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Roy Taylor
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; and Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael I Trenell
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| | - Emma J Stevenson
- Department of Sport, Exercise, and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands;
| |
Collapse
|
16
|
Performance Enhancing Diets and the PRISE Protocol to Optimize Athletic Performance. J Nutr Metab 2015; 2015:715859. [PMID: 25949823 PMCID: PMC4408745 DOI: 10.1155/2015/715859] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/03/2015] [Indexed: 12/14/2022] Open
Abstract
The training regimens of modern-day athletes have evolved from the sole emphasis on a single fitness component (e.g., endurance athlete or resistance/strength athlete) to an integrative, multimode approach encompassing all four of the major fitness components: resistance (R), interval sprints (I), stretching (S), and endurance (E) training. Athletes rarely, if ever, focus their training on only one mode of exercise but instead routinely engage in a multimode training program. In addition, timed-daily protein (P) intake has become a hallmark for all athletes. Recent studies, including from our laboratory, have validated the effectiveness of this multimode paradigm (RISE) and protein-feeding regimen, which we have collectively termed PRISE. Unfortunately, sports nutrition recommendations and guidelines have lagged behind the PRISE integrative nutrition and training model and therefore limit an athletes' ability to succeed. Thus, it is the purpose of this review to provide a clearly defined roadmap linking specific performance enhancing diets (PEDs) with each PRISE component to facilitate optimal nourishment and ultimately optimal athletic performance.
Collapse
|
17
|
Hufnagl KN, Peroutka SJ. Glucose regulation in headache: implications for dietary management. Expert Rev Neurother 2014; 2:311-7. [DOI: 10.1586/14737175.2.3.311] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Fitts RH, Colloton PA, Trappe SW, Costill DL, Bain JLW, Riley DA. Effects of prolonged space flight on human skeletal muscle enzyme and substrate profiles. J Appl Physiol (1985) 2013; 115:667-79. [DOI: 10.1152/japplphysiol.00489.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our primary goal was to determine the effects of 6-mo flight on the International Space Station (ISS) on selected anaerobic and aerobic enzymes, and the content of glycogen and lipids in slow and fast fibers of the soleus and gastrocnemius. Following local anesthesia, biopsies were obtained from nine ISS crew members ∼45 days preflight and on landing day (R+0) postflight. We subdivided the crew into those who ran 200 min/wk or more (high treadmill, HT) in-flight from those who ran <100 min/wk (low treadmill, LT). In the LT group, there was a loss of lipid in soleus type I fibers, and muscle glycogen significantly increased in soleus fiber types postflight. Soleus cytochrome oxidase (CO) activity was significantly depressed postflight in the type I fiber. This was attributed to the LT group where CO activity was reduced 59%. Otherwise, there was no change in the crew mean for type I or IIa fiber glycolytic or mitochondrial enzyme activities pre- vs. postflight in either muscle. However, two of the three HT subjects ( Subjects E and H) showed significant increases in both β-hydroxyacyl-CoA dehydrogenase and citrate synthase in the soleus type I fibers, and Subject E, exhibiting the largest increase in soleus oxidative enzymes, was the only subject to show a significant decrease in glycolytic enzyme activity. It is apparent that crew members performing adequate treadmill running can maintain calf muscle enzymes, which suggests that increased fatigue with weightlessness cannot be directly caused by a decline in muscle enzyme capacity.
Collapse
Affiliation(s)
| | | | | | | | | | - D. A. Riley
- Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
19
|
Frank P, Katz A, Andersson E, Sahlin K. Acute exercise reverses starvation-mediated insulin resistance in humans. Am J Physiol Endocrinol Metab 2013; 304:E436-43. [PMID: 23269410 DOI: 10.1152/ajpendo.00416.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Within 2-3 days of starvation, pronounced insulin resistance develops, possibly mediated by increased lipid load. Here, we show that one exercise bout increases mitochondrial fatty acid (FA) oxidation and reverses starvation-induced insulin resistance. Nine healthy subjects underwent 75-h starvation on two occasions: with no exercise (NE) or with one exercise session at the end of the starvation period (EX). Muscle biopsies were analyzed for mitochondrial function, contents of glycogen, and phosphorylation of regulatory proteins. Glucose tolerance and insulin sensitivity, measured with an intravenous glucose tolerance test (IVGTT), were impaired after starvation, but in EX the response was attenuated or abolished. Glycogen stores were reduced, and plasma FA was increased in both conditions, with a more pronounced effect in EX. After starvation, mitochondrial respiration decreased with complex I substrate (NE and EX), but in EX there was an increased respiration with complex I + II substrate. EX altered regulatory proteins associated with increases in glucose disposal (decreased phosphorylation of glycogen synthase), glucose transport (increased phosphorylation of Akt substrate of 160 kDa), and FA oxidation (increased phosphorylation of acetyl-CoA carboxylase). In conclusion, exercise reversed starvation-induced insulin resistance and was accompanied by reduced glycogen stores, increased lipid oxidation capacity, and activation of signaling proteins involved in glucose transport and FA metabolism.
Collapse
Affiliation(s)
- Per Frank
- The Swedish School of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Box 5626, 114 86 Stockholm, Sweden.
| | | | | | | |
Collapse
|
20
|
Philp A, Hargreaves M, Baar K. More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am J Physiol Endocrinol Metab 2012; 302:E1343-51. [PMID: 22395109 DOI: 10.1152/ajpendo.00004.2012] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The glycogen content of muscle determines not only our capacity for exercise but also the signaling events that occur in response to exercise. The result of the shift in signaling is that frequent training in a low-glycogen state results in improved fat oxidation during steady-state submaximal exercise. This review will discuss how the amount or localization of glycogen particles can directly or indirectly result in this differential response to training. The key direct effect discussed is carbohydrate binding, whereas the indirect effects include the metabolic shift toward fat oxidation, the increase in catecholamines, and osmotic stress. Although our understanding of the role of glycogen in response to training has expanded exponentially over the past 5 years, there are still many questions remaining as to how stored carbohydrate affects the muscular adaptation to exercise.
Collapse
Affiliation(s)
- Andrew Philp
- Dept. of Neurobiology, Physiology and Behavior, University of California-Davis, 1 Shields Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
21
|
Décombaz J, Jentjens R, Ith M, Scheurer E, Buehler T, Jeukendrup A, Boesch C. Fructose and galactose enhance postexercise human liver glycogen synthesis. Med Sci Sports Exerc 2012; 43:1964-71. [PMID: 21407126 DOI: 10.1249/mss.0b013e318218ca5a] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Both liver and muscle glycogen stores play a fundamental role in exercise and fatigue, but the effect of different CHO sources on liver glycogen synthesis in humans is unclear. The aim was to compare the effect of maltodextrin (MD) drinks containing galactose, fructose, or glucose on postexercise liver glycogen synthesis. METHODS In this double-blind, triple crossover, randomized clinical trial, 10 well-trained male cyclists performed three experimental exercise sessions separated by at least 1 wk. After performing a standard exercise protocol to exhaustion, subjects ingested one of three 15% CHO solutions, namely, FRU (MD + fructose, 2:1), GAL (MD + galactose, 2:1), or GLU (MD + glucose, 2:1), each providing 69 g CHO·h(-1) during 6.5 h of recovery. Liver glycogen changes were followed using (13)C magnetic resonance spectroscopy. RESULTS Liver glycogen concentration increased at faster rates with FRU (24 ± 2 mmol·L(-1)·h(-1), P < 0.001) and with GAL (28 ± 3 mmol·L(-1)·h(-1), P < 0.001) than with GLU (13 ± 2 mmol·L(-1)·h(-1)). Liver volumes increased (P < 0.001) with FRU (9% ± 2%) and with GAL (10% ± 2%) but not with GLU (2% ± 1%, NS). Net glycogen synthesis appeared linear and was faster with FRU (8.1 ± 0.6 g·h(-1), P < 0.001) and with GAL (8.6 ± 0.9 g·h(-1), P < 0.001) than with GLU (3.7 ± 0.5 g·h(-1)). CONCLUSIONS When ingested at a rate designed to saturate intestinal CHO transport systems, MD drinks with added fructose or galactose were twice as effective as MD + glucose in restoring liver glycogen during short-term postexercise recovery.
Collapse
|
22
|
Edwards LM, Murray AJ, Holloway CJ, Carter EE, Kemp GJ, Codreanu I, Brooker H, Tyler DJ, Robbins PA, Clarke K. Short-term consumption of a high-fat diet impairs whole-body efficiency and cognitive function in sedentary men. FASEB J 2011; 25:1088-96. [PMID: 21106937 DOI: 10.1096/fj.10-171983] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
We recently showed that a short-term high-fat diet blunted exercise performance in rats, accompanied by increased uncoupling protein levels and greater respiratory uncoupling. In this study, we investigated the effects of a similar diet on physical and cognitive performance in humans. Twenty sedentary men were assessed when consuming a standardized, nutritionally balanced diet (control) and after 7 d of consuming a diet comprising 74% kcal from fat. Efficiency was measured during a standardized exercise task, and cognition was assessed using a computerized assessment battery. Skeletal muscle mitochondrial function was measured using (31)P magnetic resonance spectroscopy. The diet increased mean ± se plasma free fatty acids by 44% (0.32±0.03 vs. 0.46±0.05 mM; P<0.05) and decreased whole-body efficiency by 3% (21±1 vs. 18±1%; P<0.05), although muscle uncoupling protein (UCP3) content and maximal mitochondrial function were unchanged. High-fat diet consumption also increased subjects' simple reaction times (P<0.01) and decreased power of attention (P<0.01). Thus, we have shown that a high-fat diet blunts whole-body efficiency and cognition in sedentary men. We suggest that this effect may be due to increased respiratory uncoupling.
Collapse
Affiliation(s)
- Lindsay M Edwards
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Muscle metabolic, enzymatic and transporter responses to a session of prolonged cycling. Eur J Appl Physiol 2010; 111:827-37. [DOI: 10.1007/s00421-010-1709-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2010] [Indexed: 12/19/2022]
|
25
|
Abstract
PURPOSE OF REVIEW Carbohydrate feeding has been shown to be ergogenic, but recently substantial advances have been made in optimizing the guidelines for carbohydrate intake during prolonged exercise. RECENT FINDINGS It was found that limitations to carbohydrate oxidation were in the absorptive process most likely because of a saturation of carbohydrate transporters. By using a combination of carbohydrates that use different intestinal transporters for absorption it was shown that carbohydrate delivery and oxidation could be increased. Studies demonstrated increases in exogenous carbohydrate oxidation rates of up to 65% of glucose: fructose compared with glucose only. Exogenous carbohydrate oxidation rates reach values of 1.75 g/min whereas previously it was thought that 1 g/min was the absolute maximum. The increased carbohydrate oxidation with multiple transportable carbohydrates was accompanied by increased fluid delivery and improved oxidation efficiency, and thus the likelihood of gastrointestinal distress may be diminished. Studies also demonstrated reduced fatigue and improved exercise performance with multiple transportable carbohydrates compared with a single carbohydrate. SUMMARY Multiple transportable carbohydrates, ingested at high rates, can be beneficial during endurance sports in which the duration of exercise is 3 h or more.
Collapse
Affiliation(s)
- Asker E Jeukendrup
- School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
26
|
Murray AJ, Knight NS, Cochlin LE, McAleese S, Deacon RMJ, Rawlins JNP, Clarke K. Deterioration of physical performance and cognitive function in rats with short-term high-fat feeding. FASEB J 2009; 23:4353-60. [PMID: 19667117 DOI: 10.1096/fj.09-139691] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
Efficiency, defined as the amount of work produced for a given amount of oxygen consumed, is a key determinant of endurance capacity, and can be altered by metabolic substrate supply, in that fatty acid oxidation is less efficient than glucose oxidation. It is unclear, however, whether consumption of a high-fat diet would be detrimental or beneficial for endurance capacity, due to purported glycogen-sparing properties. In addition, a high-fat diet over several months leads to cognitive impairment. Here, we tested the hypothesis that short-term ingestion of a high-fat diet (55% kcal from fat) would impair exercise capacity and cognitive function in rats, compared with a control chow diet (7.5% kcal from fat) via mitochondrial uncoupling and energy deprivation. We found that rats ran 35% less far on a treadmill and showed cognitive impairment in a maze test with 9 d of high-fat feeding, with respiratory uncoupling in skeletal muscle mitochondria, associated with increased uncoupling protein (UCP3) levels. Our results suggest that high-fat feeding, even over short periods of time, alters skeletal muscle UCP3 expression, affecting energy production and physical performance. Optimization of nutrition to maximize the efficiency of mitochondrial ATP production could improve energetics in athletes and patients with metabolic abnormalities.
Collapse
Affiliation(s)
- Andrew J Murray
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing St., Cambridge CB23EG, UK.
| | | | | | | | | | | | | |
Collapse
|
27
|
Veldhorst MAB, Westerterp-Plantenga MS, Westerterp KR. Gluconeogenesis and energy expenditure after a high-protein, carbohydrate-free diet. Am J Clin Nutr 2009; 90:519-26. [PMID: 19640952 DOI: 10.3945/ajcn.2009.27834] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND High-protein diets have been shown to increase energy expenditure (EE). OBJECTIVE The objective was to study whether a high-protein, carbohydrate-free diet (H diet) increases gluconeogenesis and whether this can explain the increase in EE. DESIGN Ten healthy men with a mean (+/-SEM) body mass index (in kg/m(2)) of 23.0 +/- 0.8 and age of 23 +/- 1 y received an isoenergetic H diet (H condition; 30%, 0%, and 70% of energy from protein, carbohydrate, and fat, respectively) or a normal-protein diet (N condition; 12%, 55%, and 33% of energy from protein, carbohydrate, and fat, respectively) for 1.5 d according to a randomized crossover design, and EE was measured in a respiration chamber. Endogenous glucose production (EGP) and fractional gluconeogenesis were measured via infusion of [6,6-(2)H(2)]glucose and ingestion of (2)H(2)O; absolute gluconeogenesis was calculated by multiplying fractional gluconeogenesis by EGP. Body glycogen stores were lowered at the start of the intervention with an exhaustive glycogen-lowering exercise test. RESULTS EGP was lower in the H condition than in the N condition (181 +/- 9 compared with 226 +/- 9 g/d; P < 0.001), whereas fractional gluconeogenesis was higher (0.95 +/- 0.04 compared with 0.64 +/- 0.03; P < 0.001) and absolute gluconeogenesis tended to be higher (171 +/- 10 compared with 145 +/- 10 g/d; P = 0.06) in the H condition than in the N condition. EE (resting metabolic rate) was greater in the H condition than in the N condition (8.46 +/- 0.23 compared with 8.12 +/- 0.31 MJ/d; P < 0.05). The increase in EE was a function of the increase in gluconeogenesis (DeltaEE = 0.007 x Deltagluconeogenesis - 0.038; r = 0.70, R(2) = 0.49, P < 0.05). The contribution of Deltagluconeogenesis to DeltaEE was 42%; the energy cost of gluconeogenesis was 33% (95% CI: 16%, 50%). CONCLUSIONS Forty-two percent of the increase in energy expenditure after the H diet was explained by the increase in gluconeogenesis. The cost of gluconeogenesis was 33% of the energy content of the produced glucose.
Collapse
Affiliation(s)
- Margriet A B Veldhorst
- NUTRIM School for Nutrition, Toxicology and Metabolism, Department of Human Biology, Maastricht University Medical Centre, Netherlands.
| | | | | |
Collapse
|
28
|
Rowlands DS, Johnson NA, Thomson JA, Chapman P, Stannard SR. Exogenous glucose oxidation is reduced with carbohydrate feeding during exercise after starvation. Metabolism 2009; 58:1161-9. [PMID: 19428033 DOI: 10.1016/j.metabol.2009.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 03/13/2009] [Indexed: 12/25/2022]
Abstract
Lean healthy individuals are characterized by the ability to rapidly adapt metabolism to acute changes in substrate availability and metabolic rate. However, in glucose-intolerance/insulin-resistant conditions, such as that induced by starvation, the flexibility of tissues to rapidly respond to change in substrate availability is diminished. We asked whether the conundrum of increased glucose demand by the contracting skeletal muscle during prolonged exercise and the glucose intolerance of starvation would result in the obstruction of oxidative disposal of ingested (13)C-labeled glucose during exercise. Seven lean, healthy, physically active individuals (2 women, 5 men) completed a randomized crossover study comparing the effects of the normal-fed condition vs a 67-hour water-only fast on the metabolic response to carbohydrate ingestion during 80 minutes of exercise at 56% of maximum oxygen uptake. Compared with the normal condition, fasting resulted in a large overall increase in the rate of fat oxidation (mean effect, 71%; 95% confidence limit, +/-22%) and moderate reductions in both exogenous (-54%, +/-10%) and endogenous (-40%, +/-19%) glucose oxidation rates during exercise. Over the course of exercise, fat oxidation was impermeable to change in the fasting condition, but increased moderately (33%, +/-19%) in the normal condition. These changes were associated with a large increase in plasma free fatty-acid concentration (120%, +/-64%) and a moderate increase in blood lactate concentration (58%, +/-50%). In contrast, large reductions in resting blood glucose (-21%, +/-14%) and moderate reductions in plasma insulin concentrations (-47%, +/-26%) were observed in the fast condition; but this effect was reversed for glucose (30%, +/- 24%) and negated for insulin by the end of exercise. To conclude, a 67-hour fast leads to an impermeable increase in fat oxidation, suppression of both exogenous and endogenous carbohydrate oxidation, and a metabolic response consistent with resistance to contraction-induced exogenous glucose uptake and oxidation.
Collapse
Affiliation(s)
- David S Rowlands
- Institute of Food, Nutrition, and Human Health, Massey University, PO Box 756, Wellington, New Zealand.
| | | | | | | | | |
Collapse
|
29
|
Roch-Norlund AE, Bergström J, Castenfors H, Hultman E. MUSCLE GLYCOGEN IN PATIENTS WITH DIABETES MELLITUS. ACTA ACUST UNITED AC 2009. [DOI: 10.1111/j.0954-6820.1970.tb02969.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Devries MC, Tarnopolsky MA. Muscle Physiology in Healthy Men and Women and Those with Metabolic Myopathies. Phys Med Rehabil Clin N Am 2009; 20:101-31, viii-ix. [DOI: 10.1016/j.pmr.2008.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Muscle Physiology in Healthy Men and Women and Those with Metabolic Myopathies. Neurol Clin 2008; 26:115-48; ix. [DOI: 10.1016/j.ncl.2007.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
|
33
|
Zoll J, Ponsot E, Dufour S, Doutreleau S, Ventura-Clapier R, Vogt M, Hoppeler H, Richard R, Flück M. Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. J Appl Physiol (1985) 2007; 100:1258-66. [PMID: 16540710 DOI: 10.1152/japplphysiol.00359.2005] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that specific muscular transcript level adaptations participate in the improvement of endurance performances following intermittent hypoxia training in endurance-trained subjects. Fifteen male high-level, long-distance runners integrated a modified living low-training high program comprising two weekly controlled training sessions performed at the second ventilatory threshold for 6 wk into their normal training schedule. The athletes were randomly assigned to either a normoxic (Nor) (inspired O2 fraction = 20.9%, n = 6) or a hypoxic group exercising under normobaric hypoxia (Hyp) (inspired O2 fraction = 14.5%, n = 9). Oxygen uptake and speed at second ventilatory threshold, maximal oxygen uptake (VO2 max), and time to exhaustion (Tlim) at constant load at VO2 max velocity in normoxia and muscular levels of selected mRNAs in biopsies were determined before and after training. VO2 max (+5%) and Tlim (+35%) increased specifically in the Hyp group. At the molecular level, mRNA concentrations of the hypoxia-inducible factor 1alpha (+104%), glucose transporter-4 (+32%), phosphofructokinase (+32%), peroxisome proliferator-activated receptor gamma coactivator 1alpha (+60%), citrate synthase (+28%), cytochrome oxidase 1 (+74%) and 4 (+36%), carbonic anhydrase-3 (+74%), and manganese superoxide dismutase (+44%) were significantly augmented in muscle after exercise training in Hyp only. Significant correlations were noted between muscular mRNA levels of monocarboxylate transporter-1, carbonic anhydrase-3, glucose transporter-4, and Tlim only in the group of athletes who trained in hypoxia (P < 0.05). Accordingly, the addition of short hypoxic stress to the regular endurance training protocol induces transcriptional adaptations in skeletal muscle of athletic subjects. Expressional adaptations involving redox regulation and glucose uptake are being recognized as a potential molecular pathway, resulting in improved endurance performance in hypoxia-trained subjects.
Collapse
Affiliation(s)
- Joffrey Zoll
- Department of Anatomy, University of Bern, Bühlstrasse 26, 3000 Bern 9, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tsintzas K, Jewell K, Kamran M, Laithwaite D, Boonsong T, Littlewood J, Macdonald I, Bennett A. Differential regulation of metabolic genes in skeletal muscle during starvation and refeeding in humans. J Physiol 2006; 575:291-303. [PMID: 16763003 PMCID: PMC1819428 DOI: 10.1113/jphysiol.2006.109892] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study investigated the molecular alterations underlying the physiological adaptations to starvation and refeeding in human skeletal muscle. Forty-eight hours' starvation reduced whole-body insulin sensitivity by 42% and produced marked changes in expression of key carbohydrate (CHO) regulatory genes and proteins: SREBP1c and hexokinase II (HKII) were downregulated 2.5- and 5-fold, respectively, whereas the pyruvate dehydrogenase kinase 4 (PDK4) was upregulated 4-fold. These responses were not dependent on the phosphorylation status of Akt and FOXO1. On the other hand, starvation and the concomitant increase in circulating free fatty acids did not upregulate the expression of transcription factors and genes involved in fat metabolism. Twenty-four hours' refeeding with a CHO-rich diet completely reversed the changes in PDK4, HKII and SREBP1c expression in human skeletal muscle but failed to fully restore whole-body insulin sensitivity. Thus, during starvation in healthy humans, unlike rodents, regulation of fat metabolism does not require an adaptive response at transcriptional level, but adaptive changes in gene expression are required to switch off oxidative glucose disposal. Lack of effect on key proteins in the insulin-signalling pathway may indicate that changes in intracellular substrate availability/flux may be responsible for these adaptive changes in glucose metabolism. This may represent an important aspect of the molecular basis of the development of insulin resistance in metabolic conditions characterized by energy restriction.
Collapse
Affiliation(s)
- Kostas Tsintzas
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zoll J, Steiner R, Meyer K, Vogt M, Hoppeler H, Flück M. Gene expression in skeletal muscle of coronary artery disease patients after concentric and eccentric endurance training. Eur J Appl Physiol 2005; 96:413-22. [PMID: 16311763 DOI: 10.1007/s00421-005-0082-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
Low-intensity concentric (CET) and eccentric (EET) endurance-type training induce specific structural adaptations in skeletal muscle. We evaluated to which extent steady-state adaptations in transcript levels are involved in the compensatory alterations of muscle mitochondria and myofibrils with CET versus EET at a matched metabolic exercise intensity of medicated, stable coronary patients (CAD). Biopsies were obtained from vastus lateralis muscle before and after 8 weeks of CET (n=6) or EET (n=6). Transcript levels for factors involved in mitochondrial biogenesis (PGC-1alpha, Tfam), mitochondrial function (COX-1, COX-4), control of contractile phenotype (MyHC I, IIa, IIx) as well as mechanical stress marker (IGF-I) were quantified using an reverse-transcriptase polymerase chain reaction approach. After 8 weeks of EET, a reduction of the COX-4 mRNA level by 41% and a tendency for a drop in Tfam transcript concentration (-33%, P=0.06) was noted. This down-regulation corresponded to a drop in total mitochondrial volume density. MyHC-IIa transcript levels were specifically decreased after EET, and MyHC-I mRNA showed a trend towards a reduction (P=0.08). Total fiber cross-sectional area was not altered. After CET and EET, the IGF-I mRNA level was significantly increased. The PGC-1alpha significantly correlated with Tfam, and both PGC-1alpha and Tfam significantly correlated with COX-1 and COX-4 mRNAs. Post-hoc analysis identified significant interactions between the concurrent medication and muscular transcript levels as well as fiber size. Our findings support the concept that specific transcriptional adaptations mediate the divergent mitochondrial response of muscle cells to endurance training under different load condition and indicate a mismatch of processes related to muscle hypertrophy in medicated CAD patients.
Collapse
Affiliation(s)
- J Zoll
- Department of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Pre-exercise fat ingestion (i.e., long chain triacylglycerol ingestion 1 to 4 h before exercise), medium-chain triacylglycerols, fish oil, and conjugated linoleic acid have been suggested to alter metabolism to achieve weight loss, alter lipid profiles, or improve performance. However, studies have demonstrated that ingestion of meals with long-chain triacylglycerols before exercise has little or no effect on metabolism and does not alter subsequent exercise performance. Also, medium-chain triacylglycerol supplementation before or during exercise has not been shown to be ergogenic, although this could be related to the small amounts of medium-chain triacylglycerol that can be ingested before gastrointestinal discomfort occurs. Fish oil may improve red blood cell deformability, but these effects are likely to be small and do not seem to influence maximum oxygen delivery or exercise performance. Conjugated linoleic acid has been implicated in weight loss, but based on the results of human studies it must be concluded that the effects of conjugated linoleic acid on body weight loss are far less clear than those observed in animal studies. Most studies have not found any evidence for a beneficial effect of conjugated linoleic acid.
Collapse
Affiliation(s)
- Asker E Jeukendrup
- Human Performance Laboratory, School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
| | | |
Collapse
|
37
|
Fournier PA, Bräu L, Ferreira LDMCB, Fairchild T, Raja G, James A, Palmer TN. Glycogen resynthesis in the absence of food ingestion during recovery from moderate or high intensity physical activity: novel insights from rat and human studies. Comp Biochem Physiol A Mol Integr Physiol 2002; 133:755-63. [PMID: 12443931 DOI: 10.1016/s1095-6433(02)00254-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The finding that during recovery from high intensity exercise, rats have the capacity to replenish their muscle glycogen stores even in the absence of food intake has provided us with an experimental model of choice to explore further this process. Our objective here is to share those questions arising from research carried out by others and ourselves on rats and humans that are likely to be of interest to comparative biochemists/physiologists. On the basis of our findings and those of others, it is proposed that across vertebrate species: (1). the capacity of muscles to replenish their glycogen stores from endogenous carbon sources is dependent on the type of physical activity and animal species; (2). lactate and amino acids are the major endogenous carbon sources mobilized for the resynthesis of muscle glycogen during recovery from exercise, their relative contributions depending on the duration of recovery and type of exercise; (3). the relative contributions of lactate glyconeogenesis and hepatic/renal gluconeogenesis to muscle glycogen synthesis is species- and muscle fiber-dependent; and (4). glycogen synthase and phosphorylase play an important role in the control of the rate of glycogen synthesis post-exercise, with the role of glucose transport being species-dependent.
Collapse
Affiliation(s)
- P A Fournier
- Department of Human Movement and Exercise Science, The University of Western Australia, Western Australia, Crawley, Australia, 6009.
| | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Affiliation(s)
- M A Tarnopolsky
- Department of Medicine, McMaster University Medical Center, Hamilton, ON, Canada.
| | | |
Collapse
|
40
|
Abstract
During submaximal endurance exercise, women oxidize more lipid and less carbohydrate as metabolic substrates than men. This is reflected in a lower glycogen utilization in skeletal muscle and lower hepatic glucose production for women compared with men. These latter observations may explain the lower leucine oxidation observed during endurance exercise in women. Animal and preliminary human study evidence suggests that 17-beta-estradiol may be a major determinant of the sex dimorphic response in carbohydrate metabolism during exercise. From a practical standpoint, it appears necessary for women to increase their dietary energy intake (and percentage derived from carbohydrates) for four days before a sporting event in order to supercompensate muscle glycogen concentrations. Sex differences in carbohydrate metabolism may have future implications for the care of patients with diabetes and inborn errors of lipid metabolism.
Collapse
Affiliation(s)
- M A Tarnopolsky
- Department of Medicine, McMaster University Medical Centre, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
41
|
Geelen SN, Blázquez C, Geelen MJ, Sloet van Oldruitenborgh-Oosterbaan MM, Beynen AC. High fat intake lowers hepatic fatty acid synthesis and raises fatty acid oxidation in aerobic muscle in Shetland ponies. Br J Nutr 2001; 86:31-6. [PMID: 11432762 DOI: 10.1079/bjn2001364] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The metabolic effects of feeding soyabean oil instead of an isoenergetic amount of maize starch plus glucose were studied in ponies. Twelve adult Shetland ponies were given a control diet (15 g fat/kg DM) or a high-fat diet (118 g fat/kg DM) according to a parallel design. The diets were fed for 45 d. Plasma triacylglycerol (TAG) concentrations decreased by 55 % following fat supplementation. Fat feeding also reduced glycogen concentrations significantly by up to 65 % in masseter, gluteus and semitendinosus muscles (P < 0.05 and P < 0.01 and P < 0.01 respectively). The high-fat diet significantly increased the TAG content of semitendinosus muscle by 80 % (P < 0.05). Hepatic acetyl-CoA carboxylase and fatty acid synthase activities were 53 % (P < 0.01) and 56 % (P < 0.01) lower respectively in the high-fat group, but diacylglycerol acyltransferase activity was unaffected. Although carnitine palmitoyltransferase-I (CPT-I) activity in liver mitochondria was not influenced, fat supplementation did render CPT-I less sensitive to inhibition by malonyl-CoA. There was no significant effect of diet on the activity of phosphofructokinase in the different muscles. The activity of citrate synthase was raised significantly (by 25 %; P < 0.05) in the masseter muscle of fat-fed ponies, as was CPT-I activity (by 46 %; P < 0.01). We conclude that fat feeding enhances both the transport of fatty acids through the mitochondrial inner membrane and the oxidative capacity of highly-aerobic muscles. The higher oxidative ability together with the depressed rate of de novo fatty acid synthesis in liver may contribute to the dietary fat-induced decrease in plasma TAG concentrations in equines.
Collapse
Affiliation(s)
- S N Geelen
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
42
|
Walker JL, Heigenhauser GJ, Hultman E, Spriet LL. Dietary carbohydrate, muscle glycogen content, and endurance performance in well-trained women. J Appl Physiol (1985) 2000; 88:2151-8. [PMID: 10846030 DOI: 10.1152/jappl.2000.88.6.2151] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined the ability of well-trained eumenorrheic women to increase muscle glycogen content and endurance performance in response to a high-carbohydrate diet (HCD; approximately 78% carbohydrate) compared with a moderate-carbohydrate diet (MD; approximately 48% carbohydrate) when tested during the luteal phase of the menstrual cycle. Six women cycled to exhaustion at approximately 80% maximal oxygen uptake (VO(2 max)) after each of the randomly assigned diet and exercise-tapering regimens. A biopsy was taken from the vastus lateralis before and after exercise in each trial. Preexercise muscle glycogen content was high after the MD (625.2 +/- 50.1 mmol/kg dry muscle) and 13% greater after the HCD (709.0 +/- 44.8 mmol/kg dry muscle). Postexercise muscle glycogen was low after both trials (MD, 91.4 +/- 34.5; HCD, 80.3 +/- 19.5 mmol/kg dry muscle), and net glycogen utilization during exercise was greater after the HCD. The subjects also cycled longer at approximately 80% VO(2 max) after the HCD vs. MD (115:31 +/- 10:47 vs. 106:35 +/- 8:36 min:s, respectively). In conclusion, aerobically trained women increased muscle glycogen content in response to a high-dietary carbohydrate intake during the luteal phase of the menstrual cycle, but the magnitude was smaller than previously observed in men. The increase in muscle glycogen, and possibly liver glycogen, after the HCD was associated with increased cycling performance to volitional exhaustion at approximately 80% VO(2 max).
Collapse
Affiliation(s)
- J L Walker
- Department of Human Biology and Nutritional Sciences, University of Guelph, Ontario
| | | | | | | |
Collapse
|
43
|
Tanis AA, Rietveld T, Wattimena JL, Van Den Berg JW, Swart GR. Muscle glycogen does not interfere with a 13CO2 breath test to monitor liver glycogen oxidation. CLINICAL PHYSIOLOGY (OXFORD, ENGLAND) 2000; 20:126-33. [PMID: 10735980 DOI: 10.1046/j.1365-2281.2000.00237.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Naturally 13C-enriched carbohydrate has been used to label the liver glycogen pool for metabolic studies. The utilization of this glycogen was then monitored by the appearance of 13CO2 in breath. Using this method, it is assumed that during sedentary fasting the contribution of muscle glycogen towards oxidation is negligible. We investigated the influence of a different level of 13C enrichment of muscle glycogen on the 13C enrichment of breath CO2 while the breath test was carried out. In six healthy volunteers, the muscle glycogen stores were grossly depleted by a cycling exercise prior to consumption of the 13C-enriched diet which was given over a 10 h period. The oxidation of liver glycogen was measured during an 18 h sedentary fast. The results were compared with a control group who had not depleted their muscle glycogen before labelling. A higher 13C enrichment of muscle glycogen did not interfere with two parameters of liver glycogen oxidation, i.e. the duration of the plateau phase of 13CO2 and the return to baseline time. It was also shown that the 13C-labelled muscle glycogen was still available after the 18 h fast because a strenuous exercise led to a rapid 13CO2 enrichment. It is concluded that muscle glycogen 13C enrichment does not invalidate a 13CO2 breath test to measure liver glycogen oxidation during a sedentary fast.
Collapse
Affiliation(s)
- A A Tanis
- Department of Internal Medicine II, University Hospital Rotterdam - Dijkzigt, Erasmus University Rotterdam, 3015 GD Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
Casey A, Mann R, Banister K, Fox J, Morris PG, Macdonald IA, Greenhaff PL. Effect of carbohydrate ingestion on glycogen resynthesis in human liver and skeletal muscle, measured by (13)C MRS. Am J Physiol Endocrinol Metab 2000; 278:E65-75. [PMID: 10644538 DOI: 10.1152/ajpendo.2000.278.1.e65] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effect of carbohydrate (CHO) ingestion on postexercise glycogen resynthesis, measured simultaneously in liver and muscle (n = 6) by (13)C magnetic resonance spectroscopy, and subsequent exercise capacity (n = 10). Subjects cycled at 70% maximal oxygen uptake for 83 +/- 8 min on six separate occasions. At the end of exercise, subjects ingested 1 g/kg body mass (BM) glucose, sucrose, or placebo (control). Resynthesis of glycogen over a 4-h period after treatment ingestion was measured on the first three occasions, and subsequent exercise capacity was measured on occasions four through six. No glycogen was resynthesized during the control trial. Liver glycogen resynthesis was evident after glucose (13 +/- 8 g) and sucrose (25 +/- 5 g) ingestion, both of which were different from control (P < 0.01). No significant differences in muscle glycogen resynthesis were found among trials. A relationship between the CHO load (g) and change in liver glycogen content (g) was evident after 30, 90, 150, and 210 min of recovery (r = 0.59-0. 79, P < 0.05). Furthermore, a modest relationship existed between change in liver glycogen content (g) and subsequent exercise capacity (r = 0.53, P < 0.05). However, no significant difference in mean exercise time was found (control: 35 +/- 5, glucose: 40 +/- 5, and sucrose: 46 +/- 6 min). Therefore, 1 g/kg BM glucose or sucrose is sufficient to initiate postexercise liver glycogen resynthesis, which contributes to subsequent exercise capacity, but not muscle glycogen resynthesis.
Collapse
Affiliation(s)
- A Casey
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
45
|
Tanis AA, Rietveld T, Van den Berg JW, Wattimena JL, Swart GR. Influence of the 13C-enrichment of the habitual diet on a 13CO2 breath test used as an index of liver glycogen oxidation: a validation study in western Europe and Africa. Nutrition 2000; 16:6-10. [PMID: 10674227 DOI: 10.1016/s0899-9007(99)00180-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A diet containing naturally 13C-enriched carbohydrate combined with a 13CO2 breath-test analysis can be used to monitor liver glycogen oxidation in persons used to a diet low in 13C, e.g., the Western European diet. In this study, we evaluated this test principle further by changing the way we label the glycogen pool. The 13C enrichment of exhaled CO2 was studied in two groups, one in Europe and one in Africa. The European group (n = 12) was accustomed to a diet low in 13C, and they went on a 13C-enriched study diet to identify liver glycogen. The African group (n = 6) was accustomed to a diet naturally high in 13C, and they went on a diet low in 13C. The basal 13C abundance in exhaled CO2 was higher in the African group (1.0879 At%; atmospheric 1.1 atom percent) than in the European group (1.0821 At%). During the study period, the parameters for liver glycogen oxidation--the 13CO2 enrichment plateau, the plateau duration, and the return to baseline time--did not differ between groups. The abundance of 13CO2 in exhaled CO2 over time in the two groups was similar but inverse. This study confirms the use of a 13CO2 breath test to monitor liver glycogen oxidation and demonstrates how to use such a test in persons accustomed to a diet high in 13C.
Collapse
Affiliation(s)
- A A Tanis
- Department of Internal Medicine II, University Hospital Rotterdam-Dijkzigt, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Fery F, Plat L, Balasse EO. Effect of fasting on the intracellular metabolic partition of intravenously infused glucose in humans. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:E815-23. [PMID: 10567007 DOI: 10.1152/ajpendo.1999.277.5.e815] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of fasting on the pathways of insulin-stimulated glucose disposal were explored in three groups of seven normal subjects. Group 1 was submitted to a euglycemic hyperinsulinemic clamp ( approximately 100 microU/ml) after both a 12-h and a 4-day fast. The combined use of [3-(3)H]- and [U-(14)C]glucose allowed us to demonstrate that fasting inhibits, by approximately 50%, glucose disposal, glycolysis, glucose oxidation, and glycogen synthesis via the direct pathway. In group 2, in which the clamp glucose disposal during fasting was restored by hyperglycemia (155 +/- 15 mg/dl), fasting stimulated glycogen synthesis (+29 +/- 2%) and inhibited glycolysis (-32 +/- 3%) but only in its oxidative component (-40 +/- 3%). Results were similar in group 3 in which the clamp glucose disposal was restored by a pharmacological elevation of insulin ( approximately 2,800 microU/ml), but in this case, both glycogen synthesis and nonoxidative glycolysis participated in the rise in nonoxidative glucose disposal. In all groups, the reduction in total carbohydrate oxidation (indirect calorimetry) induced by fasting markedly exceeded the reduction in circulating glucose oxidation, suggesting that fasting also inhibits intracellular glycogen oxidation. Thus prior fasting favors glycogen retention by three mechanisms: 1) stimulation of glycogen synthesis via the direct pathway; 2) preferential inhibition of oxidative rather than nonoxidative glycolysis, thus allowing carbon conservation for glycogen synthesis via the indirect pathway; and 3) suppression of intracellular glycogen oxidation.
Collapse
Affiliation(s)
- F Fery
- Laboratory of Experimental Medicine, Department of Endocrinology, Erasmus Hospital, University of Brussels, B-1070 Brussels, Belgium
| | | | | |
Collapse
|
47
|
Abstract
PURPOSE Creatine is a physiologically active substance indispensable to muscle contraction. The increase in creatine phosphate obtained by supplementation is greater than the increase in total creatine achieved by specific sports training. Less well-trained people can produce an immediate energy store when supplementing creatine such as is otherwise achieved by top athletes on normal nutrition by means of speed and power training. The publications so far available indicate that creatine accumulation in muscle was accomplished using relatively high doses (20 g daily over 5 d). The objective of our study was to investigate the alterations in creatine and creatinine concentrations following lower dosages. METHODS As intermediate and finishing spurts under anaerobic conditions are gaining in importance in endurance sports, we created a special exercise test for triathletes combining endurance and interval performance. After a pretreatment exercise test was performed, the athletes ingested 6 g of creatine daily, divided into two portions for 5 d. On day 6, another exercise test was performed. RESULTS Creatine supplementation was found to have no influence on the cardiovascular system, oxygen uptake, and blood lactate concentration. The fall in blood glucose during the exercise test was significantly reduced after consumption of creatine. Although interval power performance was significantly increased by 18%, endurance performance was not influenced. CONCLUSIONS We conclude that creatine supplementation at doses of 6 g daily has positive effects on short-term exercise included into aerobic endurance exercise.
Collapse
Affiliation(s)
- M Engelhardt
- Orthopädische Universitätsklinik, Frankfurt/Main, Germany
| | | | | | | |
Collapse
|
48
|
Tanis AA, van den Berg JW, Kroneman R, Wattimena JL, Rietveld T, Nieland BH, Swart GR. Human liver glycogen metabolism assessed with a 13C-enriched diet and a 13CO2 breath test. Eur J Clin Invest 1998; 28:466-74. [PMID: 9693938 DOI: 10.1046/j.1365-2362.1998.00316.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Adequate liver glycogen stores to maintain hepatic glucose output by glycogenolysis in the post-absorptive state are essential to prevent protein loss through gluconeogenesis. There are no simple techniques to monitor liver glycogen use. METHODS In this study, we labelled liver glycogen with naturally 13C-enriched carbohydrate and measured the pattern of 13CO2 excretion and the post-prandial time during which oxidation of 13C-labelled liver glycogen was demonstrable by 13CO2 enrichment in breath. Two experiments were performed in 24 healthy volunteers. RESULTS In the first experiment we observed that breath 13CO2 enrichment returned to baseline values at 20.3 (SD 2.3, n = 12) hours post-prandially, indicating exhaustion of the 13C-labelled liver glycogen at that time. In a second experiment, breath 13CO2 enrichment in the early hours of the post-prandial phase was studied. After a steep decline, which started 2-4 h after the last meal, the 13CO2 enrichment reached a plateau phase 6 h post-prandially. This plateau phase lasted for about 6-8 h, suggesting steady-state glycogenolysis during this period. The plateau phase was followed by a further decline in 13CO2 excretion, suggesting a gradually diminishing contribution of 13C-labelled liver glycogen to substrate oxidation. CONCLUSION It is possible to label liver glycogen with a diet of naturally 13C-enriched carbohydrate. The oxidation of the labelled liver glycogen can be monitored by measuring 13C-enrichment in breath CO2.
Collapse
Affiliation(s)
- A A Tanis
- Department of Internal Medicine II, University Hospital Rotterdam-Dijkzigt, Erasmus University of Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The relationship between dietary intake and skeletal-muscle exercise metabolism is central to the interests of exercise physiologists. This area has been examined experimentally for over 100 years. Classic studies with male subjects demonstrated the importance of dietary CHO in maximizing muscle and liver glycogen stores in an attempt to optimize exercise performance. CHO becomes the predominant fuel for exercise at power outputs above 50-60% Vo2max and its availability limits prolonged aerobic exercise at intensities corresponding to 65-85% VO2max. Recent information suggests that female subjects are less able to maximize muscle glycogen stores through dietary means. Contemporary studies have documented in more detail the greater reliance on CHO metabolism following a high-CHO-low-fat and -protein diet and the greater reliance on fat metabolism following a low-CHO-high-fat and protein diet. More emphasis on documenting key enzymic changes in the energy-producing pathways and transport proteins has appeared. However, very little is known regarding the mechanisms that induce these changes over the short or long term in human skeletal muscle. For example, the central role of PDH activity in the selection of intramuscular fuel during exercise and the role of carnitine palmitoyltransferase 1 in the entry of NEFA into the mitochondria, and the effects of diet on these enzymes has received little attention to date. Many research studies have examined extreme diet variations (% total energy; > 85% CHO v. < 5-10% CHO) for short periods of time in an attempt to maximize diet-induced alterations and study the mechanisms responsible for the changes. However, future studies will need to examine less-severe diet alterations for longer periods of time that more accurately reflect what the normal population might experience, such as a diet containing (% total energy) 60 fat, 20 CHO, 20 protein or the recently popular diet with (% total energy) 30 fat, 40 CHO, 30 protein.
Collapse
Affiliation(s)
- L L Spriet
- Department of Human Biology and Nutritional Sciences, University of Guelph, Ontario, Canada.
| | | |
Collapse
|
50
|
Affiliation(s)
- N A King
- Department of Psychology, University of Leeds, UK.
| |
Collapse
|