1
|
Magierecka A, Cooper B, Sloman KA, Metcalfe NB. Unpredictability of maternal environment shapes offspring behaviour without affecting stress-induced cortisol in an annual vertebrate. Horm Behav 2023; 154:105396. [PMID: 37399780 DOI: 10.1016/j.yhbeh.2023.105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Exposure of females to stressful conditions during pregnancy or oogenesis has a profound effect on the phenotype of their offspring. For example, offspring behavioural phenotype may show altered patterns in terms of the consistency of behavioural patterns and their average level of performance. Maternal stress can also affect the development of the stress axis in offspring leading to alterations in their physiological stress response. However, the majority of evidence comes from studies utilising acute stressors or exogenous glucocorticoids, and little is known about the effect of chronic maternal stress, particularly in the context of stress lasting throughout entire reproductive lifespan. To bridge this knowledge gap, we exposed female sticklebacks to stressful and unpredictable environmental conditions throughout the breeding season. We quantified the activity, sheltering and anxiety-like behaviour of offspring from three successive clutches of these females, and calculated Intra-class Correlation Coefficients for these behaviours in siblings and half-siblings. We also exposed offspring to an acute stressor and measured their peak cortisol levels. An unpredictable maternal environment had no modifying effect on inter-clutch acute stress responsivity, but resulted in diversification of offspring behaviour, indicated by an increased between-individual variability within families. This may represent a bet-hedging strategy, whereby females produce offspring differing in behavioural phenotype, to increase the chance that some of these offspring will be better at coping with the anticipated conditions.
Collapse
Affiliation(s)
- Agnieszka Magierecka
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, UK.
| | - Ben Cooper
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, UK
| | - Katherine A Sloman
- Institute for Biomedical and Environmental Health Research, University of the West of Scotland, Lanarkshire, UK
| | - Neil B Metcalfe
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, UK
| |
Collapse
|
2
|
Chronic exposure to stressors has a persistent effect on feeding behaviour but not cortisol levels in sticklebacks. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.08.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Tilley C, Barber I, Norton W. Skin swabbing protocol to collect DNA samples from small-bodied fish species. F1000Res 2021; 10:1064. [PMID: 39185076 PMCID: PMC11342036 DOI: 10.12688/f1000research.73115.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 08/27/2024] Open
Abstract
Fish species are commonly used as experimental models in the laboratory. DNA is routinely collected from these animals to permit identification of their genotype. The current standard procedure to sample DNA is fin clipping, which involves anaesthetising individuals and removing a portion of the caudal fin. While fin clipping reliably generates good quality DNA samples for downstream applications, there is evidence that it can alter health and welfare, leading to infection and impacting on the fish's behaviour. This in turn can result in greater variation in the data collected. In a recent study we adapted a skin swabbing protocol to collect DNA from small-bodied fish, including sticklebacks and zebrafish, without the use of anaesthetics or sharp instruments. A rayon-tipped swab was used to collect mucus from the flank of the fish, which was then used for DNA extraction. We subsequently demonstrated that compared to fin clipping, skin swabbing triggered fewer changes in stress axis activation and behaviour. We also found that data collected from fish that had been swabbed were less variable than data from fish that had been fin clipped, potentially allowing smaller sample sizes in experimental groups after using this technique, and thereby reducing animal use. Here we provide a detailed protocol explaining how to collect DNA samples from small laboratory fish using skin swabs.
Collapse
Affiliation(s)
- Ceinwen Tilley
- Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, Leicestershire, LE1 7RH, UK
| | - Iain Barber
- School of Animal and Rural Sciences, Nottingham Trent University, Nottingham, NG25 0QF, UK
| | - William Norton
- Genetics and Genome Biology, University of Leicester, Leicester, Leicestershire, LE1 7RH, UK
- Institute of Biology, Eotvos Lorand University, Budapest, Hungary
| |
Collapse
|
4
|
Grønnestad R, Schlenk D, Krøkje Å, Jaspers VLB, Jenssen BM, Coffin S, Bertotto LB, Giroux M, Lyche JL, Arukwe A. Alteration of neuro-dopamine and steroid hormone homeostasis in wild Bank voles in relation to tissue concentrations of PFAS at a Nordic skiing area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143745. [PMID: 33250251 DOI: 10.1016/j.scitotenv.2020.143745] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 05/09/2023]
Abstract
Perfluoroalkyl substances (PFAS) are contaminants that are applied in a wide range of consumer products, including ski products. The present study investigated the neuro-dopamine (DA) and cellular steroid hormone homeostasis of wild Bank voles (Myodes glareolus) from a skiing area in Norway (Trondheim), in relation to tissue concentrations of PFAS. We found a positive association between brain DA concentrations and the concentration of several PFAS, while there was a negative association between PFAS and dopamine receptor 1 (dr1) mRNA. The ratio between DA and its metabolites (3,4-dihydroxyphenylacetic acid: DOPAC and homovanillic acid: HVA) showed a negative association between DOPAC/DA and several PFAS, suggesting that PFAS altered the metabolism of DA via monoamine oxidase (Mao). This assumption is supported by an observed negative association between mao mRNA and PFAS. Previous studies have shown that DA homeostasis can indirectly regulate cellular estrogen (E2) and testosterone (T) biosynthesis. We found no association between DA and steroid hormone levels, while there was a negative association between some PFAS and T concentrations, suggesting that PFAS might affect T through other mechanisms. The results from the current study indicate that PFAS may alter neuro-DA and steroid hormone homeostasis in Bank voles, with potential consequences on reproduction and general health.
Collapse
Affiliation(s)
- Randi Grønnestad
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Åse Krøkje
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biosciences, Aarhus University, Roskilde, Denmark
| | - Scott Coffin
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | | | - Marissa Giroux
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Jan L Lyche
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
5
|
Skin swabbing is a refined technique to collect DNA from model fish species. Sci Rep 2020; 10:18212. [PMID: 33097784 PMCID: PMC7584585 DOI: 10.1038/s41598-020-75304-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/14/2020] [Indexed: 11/09/2022] Open
Abstract
Model fish species such as sticklebacks and zebrafish are frequently used in studies that require DNA to be collected from live animals. This is typically achieved by fin clipping, a procedure that is simple and reliable to perform but that can harm fish. An alternative procedure to sample DNA involves swabbing the skin to collect mucus and epithelial cells. Although swabbing appears to be less invasive than fin clipping, it still requires fish to be netted, held in air and handled—procedures that can cause stress. In this study we combine behavioural and physiological analyses to investigate changes in gene expression, behaviour and welfare after fin clipping and swabbing. Swabbing led to a smaller change in cortisol release and behaviour on the first day of analysis compared to fin clipping. It also led to less variability in data suggesting that fewer animals need to be measured after using this technique. However, swabbing triggered some longer term changes in zebrafish behaviour suggesting a delayed response to sample collection. Skin swabbing does not require the use of anaesthetics and triggers fewer changes in behaviour and physiology than fin clipping. It is therefore a more refined technique for DNA collection with the potential to improve fish health and welfare.
Collapse
|
6
|
Sadoul B, Geffroy B. Measuring cortisol, the major stress hormone in fishes. JOURNAL OF FISH BIOLOGY 2019; 94:540-555. [PMID: 30667059 DOI: 10.1111/jfb.13904] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/21/2019] [Indexed: 05/18/2023]
Abstract
Stress in teleosts is an increasingly studied topic because of its interaction with growth, reproduction, immune system and ultimately fitness of the animal. Whether it is for evaluating welfare in aquaculture, adaptive capacities in fish ecology, or to investigate effects of human-induced rapid environmental change, new experimental methods to describe stress physiology in captive or wild fish have flourished. Cortisol has proven to be a reliable indicator of stress and is considered the major stress hormone. Initially principally measured in blood, cortisol measurement methods are now evolving towards lower invasiveness and to allow repeated measurements over time. We present an overview of recent achievements in the field of cortisol measurement in fishes, discussing new alternatives to blood, whole body and eggs as matrices for cortisol measurement, notably mucus, faeces, water, scales and fins. In parallel, new analytical tools are being developed to increase specificity, sensitivity and automation of the measure. The review provides the founding principles of these techniques and introduces their potential as continuous monitoring tools. Finally, we consider promising avenues of research that could be prioritised in the field of stress physiology of fishes.
Collapse
Affiliation(s)
- Bastien Sadoul
- MARBEC, Ifremer, University of Montpellier, CNRS, IRD, Palavas Les-Flots, France
| | - Benjamin Geffroy
- MARBEC, Ifremer, University of Montpellier, CNRS, IRD, Palavas Les-Flots, France
| |
Collapse
|
7
|
Graham MA, Earley RL, Baker JA, Foster SA. Evolution of steroid hormones in reproductive females of the threespine stickleback fish. Gen Comp Endocrinol 2018; 268:71-79. [PMID: 30077793 DOI: 10.1016/j.ygcen.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 12/28/2022]
Abstract
Hormones play a prominent role in animal development, mediating the expression of traits and coordinating phenotypic responses to the environment. Their role as physiological integrators has implications for how populations respond to natural selection and can impact the speed and direction of evolutionary change. However, many emerging and established fish models with the potential to be ecologically or evolutionarily informative are small-bodied, making hormone sampling through traditional methods (whole-body or plasma) lethal or highly disruptive. Sampling methodology has thus restricted study design, often limiting sample sizes, and has prevented the study of at-risk/endangered populations. We utilize water-borne hormone sampling, a minimally invasive method of measuring the rate of steroid hormone release across the gills and further validate this method in a novel, evolutionary context. First, we compare water-borne hormone measures of cortisol with those quantified from plasma and whole-body samples collected from the same individuals to establish the relationship between concentrations quantified via the three methods. We then compare the release of steroid hormones in three populations of threespine stickleback to establish the sensitivity of this tool in measuring within-individual and between-individual variation in biologically relevant contexts (reproductive stages), and in assessing differences among populations with distinct evolutionary histories. We demonstrate a strong positive relationship between cortisol concentrations measured with water-borne, plasma, and whole-body collection techniques. Tracking estradiol and testosterone throughout clutch production in females produced anticipated patterns associated with growing and maturing eggs, with divergence in estradiol production in one population. Additionally, differences among populations in cortisol levels at ovulation paralleled the relative presence of a social stressor, and thus expected energetic needs within each population. We confirm that water-borne hormone sampling is sufficiently sensitive to capture biologically relevant fluctuations in steroid hormones between environmental contexts and demonstrate that among-population differences are detectable. This technique can be applied broadly to small fish to answer important ecological and evolutionary questions. By linking population variation in hormones and the multivariate phenotype, this technique will help elucidate both proximate mechanisms underlying phenotypic development and variation, and the way hormone networks alter evolutionary responses to selection.
Collapse
Affiliation(s)
- Melissa A Graham
- Clark University, Biology Department, 950 Main St, Worcester, MA 01610, USA.
| | - Ryan L Earley
- University of Alabama, Department of Biological Sciences, Box 870344, Tuscaloosa, AL 35487, USA
| | - John A Baker
- Clark University, Biology Department, 950 Main St, Worcester, MA 01610, USA
| | - Susan A Foster
- Clark University, Biology Department, 950 Main St, Worcester, MA 01610, USA
| |
Collapse
|
8
|
Pottinger TG. Modulation of the stress response in wild fish is associated with variation in dissolved nitrate and nitrite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:550-558. [PMID: 28318786 DOI: 10.1016/j.envpol.2017.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/24/2017] [Accepted: 03/09/2017] [Indexed: 06/06/2023]
Abstract
Disruption of non-reproductive endocrine systems in wildlife by chemicals has received little attention but represents a potentially significant problem. Nitrate is a major anthropogenic contaminant in the freshwater aquatic environment and has been identified as a potential disrupter of endocrine function in aquatic animals. This study was conducted to investigate the relationship between the function of the neuroendocrine stress axis in fish and inorganic N loading along reaches of rivers receiving cumulative point source and diffuse chemical inputs. To accomplish this, the responsiveness of the stress axis, quantified as the rate of release of cortisol to water across the gills during exposure to a standardised stressor, was measured in three-spined sticklebacks (Gasterosteus aculeatus L.) resident at three sites on each of four rivers in north-west England. The magnitude of the stress response in fish captured at the sites furthest downstream on all rivers was more than twice that of fish captured at upstream sites. Site-specific variation in stress axis reactivity was better explained by between-site variation in concentrations of dissolved nitrate, nitrite, and ammonia than by the concentration of wastewater treatment works effluent. An increase in the magnitude of the stress response was seen among sticklebacks at sites where long-term averaged concentrations of NH3-N, NO3-N and NO2-N exceeded 0.6, 4.0 and 0.1 mg/L respectively. These data suggest that either (i) inorganic N is a better surrogate than wastewater effluent concentration for an unknown factor or factors affecting stress axis function in fish, or (ii) dissolved inorganic N directly exerts a disruptive influence on the function of the neuroendocrine stress axis in fish, supporting concerns that nitrate is an endocrine-modulating chemical.
Collapse
Affiliation(s)
- Tom G Pottinger
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK.
| |
Collapse
|
9
|
Bensky MK, Paitz R, Pereira L, Bell AM. Testing the predictions of coping styles theory in threespined sticklebacks. Behav Processes 2016; 136:1-10. [PMID: 28017848 DOI: 10.1016/j.beproc.2016.12.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/14/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
Coping styles theory provides a framework for understanding individual variation in how animals respond to environmental change, and predicts how individual differences in stress responsiveness and behavior might relate to cognitive differences. According to coping styles theory, proactive individuals are bolder, less reactive to stressors, and more routinized than their reactive counterparts. A key tenet of coping styles theory is that variation in coping styles is maintained by tradeoffs with behavioral flexibility: proactive individuals excel in stable environments while more flexible, reactive individuals perform better in variable environments. Here, we assess evidence for coping styles within a natural population of threespined sticklebacks (Gasterosteus aculeatus). We developed a criterion-based learning paradigm to evaluate individual variation in initial and reversal learning. We observed strong individual differences in boldness, cortisol production, and learning performance. Consistent with coping styles, fish that released more cortisol were more timid in response to a predator attack and slower to learn a color discrimination task. However, there was no evidence that reactive individuals performed better when the environment changed (when the rewarded color was reversed). The failure to detect trade-offs between behavioral routinization and flexibility prompts other explanations for the maintenance of differing coping styles.
Collapse
Affiliation(s)
- Miles K Bensky
- Program in Ecology, Evolution, and Conservation Biology, School of Integrative Biology, University of Illinois, 505 S. Goodwin Ave., Urbana, IL 61801, United States.
| | - Ryan Paitz
- Program in Ecology, Evolution, and Conservation Biology, School of Integrative Biology, University of Illinois, 505 S. Goodwin Ave., Urbana, IL 61801, United States; School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - Laura Pereira
- College of Veterinary Medicine, University of Illinois, Urbana, IL, United States
| | - Alison M Bell
- Program in Ecology, Evolution, and Conservation Biology, School of Integrative Biology, University of Illinois, 505 S. Goodwin Ave., Urbana, IL 61801, United States; Institute for Genomic Biology, University of Illinois, Urbana, IL, United States
| |
Collapse
|
10
|
Sebire M, Elphinstone Davis J, Hatfield R, Winberg S, Katsiadaki I. Prozac affects stickleback nest quality without altering androgen, spiggin or aggression levels during a 21-day breeding test. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 168:78-89. [PMID: 26453812 DOI: 10.1016/j.aquatox.2015.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/02/2015] [Accepted: 09/20/2015] [Indexed: 05/25/2023]
Abstract
Pharmaceuticals are increasingly being used in human and veterinary medicine, and their presence in the aquatic environment may present a threat to non-target aquatic organisms. The selective serotonin reuptake inhibitor fluoxetine (Prozac) has been reported to affect diverse behaviours (feeding, aggression, and reproduction) and also the endocrine system (steroid biosynthesis pathway) in fish. To investigate these claims further, and in particular effects on androgen synthesis, male three-spined sticklebacks (Gasterosteus aculeatus) were exposed to fluoxetine at 0, 3.2, 10 and 32μg/L in a flow-through system for 21 days. Their sex was determined prior to exposure using a non-invasive method to collect DNA for determining the genetic sex, reported here for the first time. This was necessary as the exposure required males of a non-breeding status which had not developed secondary characteristics. Post exposure a number of biochemical (serotonin, steroid and spiggin levels) and apical (aggressive behaviour) endpoints were measured. No effects were detected on morphometric parameters, spiggin or androgen (11-ketotestosterone) levels. However, all fluoxetine-exposed male fish had higher cortisol levels in comparison to the control fish, although this effect only persisted throughout the whole exposure duration at the highest concentration (32μg/L). In addition, the ratio of 5-HIAA/5-HT (serotonin metabolite/serotonin) was significantly lower in the brains of males exposed to fluoxetine at all concentrations tested. Although we found no differences in the number of nests built by the males, the quality of the nests produced by the fluoxetine-exposed males was generally inferior consisting only of a basic, rudimentary structure. Males exposed to 32μg/L of fluoxetine displayed a delayed response to a simulated threat (rival male via own mirror image) and were less aggressive (number of bites and attacks) toward their mirror image, but these differences were not statistically significant. In summary, fluoxetine exposure resulted in reduced serotonergic activity in the male three-spined stickleback brain suggesting that the mechanism of action between humans and fish is at least partially conserved. Furthermore, this study provided additional evidence of cross-talk between the serotonergic and stress axes as demonstrated by the perturbations in cortisol levels. This potentially complex interaction at brain level may be responsible for the effects observed on nest quality, an endpoint with serious ecological consequences for this species. Finally, despite our hypothesis (an effect on steroid biosynthesis, based on limited literature evidence), we observed no effects of fluoxetine exposure (at the concentrations and duration employed) on male stickleback androgen levels.
Collapse
Affiliation(s)
- Marion Sebire
- Cefas Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, United Kingdom.
| | | | - Robert Hatfield
- Cefas Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, United Kingdom
| | - Svante Winberg
- Uppsala University, Department of Neuroscience, Box 593, 751 24 Uppsala, Sweden
| | - Ioanna Katsiadaki
- Cefas Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, United Kingdom
| |
Collapse
|
11
|
Fürtbauer I, King AJ, Heistermann M. Visible implant elastomer (VIE) tagging and simulated predation risk elicit similar physiological stress responses in three-spined stickleback Gasterosteus aculeatus. JOURNAL OF FISH BIOLOGY 2015; 86:1644-1649. [PMID: 25809838 DOI: 10.1111/jfb.12662] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/06/2015] [Indexed: 06/04/2023]
Abstract
The effect of visible implant elastomer (VIE) tagging on the immediate physiological stress response was tested in female three-spined stickleback Gasterosteus aculeatus, using non-invasive waterborne cortisol analysis. Post-tagging cortisol levels were significantly higher compared with pretreatment baseline concentrations; however, when comparing post-tagging cortisol levels with cortisol levels after exposure to a simulated aerial predator, no significant differences were found. This study indicates that VIE tagging elicits a physiological stress response similar to those occurring in the everyday lives of this important biological model organism.
Collapse
Affiliation(s)
- I Fürtbauer
- College of Science, Department of Biosciences, Swansea University, SA2 8PP, Swansea, U.K
| | | | | |
Collapse
|
12
|
Fürtbauer I, Pond A, Heistermann M, King AJ. Personality, plasticity and predation: linking endocrine and behavioural reaction norms in stickleback fish. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12400] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ines Fürtbauer
- Department of Biosciences College of Science Swansea University Swansea UK
| | - Alice Pond
- Department of Biosciences College of Science Swansea University Swansea UK
| | | | - Andrew J. King
- Department of Biosciences College of Science Swansea University Swansea UK
| |
Collapse
|
13
|
Kolluru GR, Walz J, Hanninen AF, Downey K, Kalbach B, Gupta S, Earley RL. Exploring behavioral and hormonal flexibility across light environments in guppies from low-predation populations. BEHAVIOUR 2015. [DOI: 10.1163/1568539x-00003264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Phenotypic flexibility is essential for organisms to respond to changing environments. Guppies experience light environments that alter their visibility to conspecifics and predators. We used guppies from populations with low rates of predation by fish, but which may be subject to avian predators, to test the hypotheses that conspicuous behaviors and the androgens that mediate them are reduced under high light, and that cortisol levels are increased under high light because the perceived risk is stressful. We found reduced courtship, potentially driven by the reduced female response to courtship, under high light. Aggression and testosterone levels were higher in the absence of females. We found elevated androgen and decreased cortisol levels following social interactions, but no relationship between hormones and behavior, and no influence of light level on hormones. We forward explanations for these results and advocate understanding the flexible response to light environments in a range of guppy populations.
Collapse
Affiliation(s)
- Gita R. Kolluru
- aBiological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Julia Walz
- aBiological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Amanda F. Hanninen
- bDepartment of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
- cDepartment of Biology, University of Virginia, Charlottesville, VA, USA
| | - Kate Downey
- aBiological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Brandy Kalbach
- aBiological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Shelly Gupta
- aBiological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Ryan L. Earley
- bDepartment of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
14
|
Preus-Olsen G, Olufsen MO, Pedersen SA, Letcher RJ, Arukwe A. Effects of elevated dissolved carbon dioxide and perfluorooctane sulfonic acid, given singly and in combination, on steroidogenic and biotransformation pathways of Atlantic cod. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 155:222-235. [PMID: 25063886 DOI: 10.1016/j.aquatox.2014.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 06/03/2023]
Abstract
In the aquatic environments, the predicted changes in water temperature, pO2 and pCO2 could result in hypercapnic and hypoxic conditions for aquatic animals. These conditions are thought to affect several basic cellular and physiological mechanisms. Yet, possible adverse effects of elevated CO2 (hypercapnia) on teleost fish, as well as combined effects with emerging and legacy environmental contaminants are poorly investigated. In this study, juvenile Atlantic cod (Gadus morhua) were divided into groups and exposed to three different water bath PFOS exposure regimes (0 (control), 100 and 200 μg L(-1)) for 5 days at 1h/day, followed by three different CO2-levels (normocapnia, moderate (0.3%) and high (0.9%)). The moderate CO2 level is the predicted near future (within year 2300) level, while 0.9% represent severe hypercapnia. Tissue samples were collected at 3, 6 and 9 days after initiated CO2 exposure. Effects on the endocrine and biotransformation systems were examined by analyzing levels of sex steroid hormones (E2, T, 11-KT) and transcript expression of estrogen responsive genes (ERα, Vtg-α, Vtg-β, ZP2 and ZP3). In addition, transcripts for genes encoding xenobiotic metabolizing enzymes (cyp1a and cyp3a) and hypoxia-inducible factor (HIF-1α) were analyzed. Hypercapnia alone produced increased levels of sex steroid hormones (E2, T, 11-KT) with concomitant mRNA level increase of estrogen responsive genes, while PFOS produced weak and time-dependent effects on E2-inducible gene transcription. Combined PFOS and hypercapnia exposure produced increased effects on sex steroid levels as compared to hypercapnia alone, with transcript expression patterns that are indicative of time-dependent interactive effects. Exposure to hypercapnia singly or in combination with PFOS produced modulations of the biotransformation and hypoxic responses that were apparently concentration- and time-dependent. Loading plots of principal component analysis (PCA) produced a significant grouping of individual scores according to the exposure scenarios at day 6 and 9. Overall, the PCA analysis produced a unique clustering of variables that signifies a positive correlation between exposure to high PFOS concentration and mRNA expression of E2 responsive genes. Notably, this pattern was not evident for individuals exposed to PFOS concentrations in combination with elevated CO2 scenarios. To our knowledge, the present study is the first of its kind, to evaluate such effects using combined exposure to a perfluoroalkyl sulfonate and elevated levels of CO2 saturation, representative of future oceanic climate change, in any fish species or lower vertebrate.
Collapse
Affiliation(s)
- Gunnhild Preus-Olsen
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Marianne O Olufsen
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Sindre Andre Pedersen
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
| |
Collapse
|
15
|
Huertas M, Almeida OG, Canário AVM, Hubbard PC. Tilapia male urinary pheromone stimulates female reproductive axis. Gen Comp Endocrinol 2014; 196:106-11. [PMID: 24321179 DOI: 10.1016/j.ygcen.2013.11.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/17/2013] [Accepted: 11/26/2013] [Indexed: 11/17/2022]
Abstract
Mozambique tilapia males congregate in leks where they establish dominance hierarchies and attract females to spawn in sandy pits. Dominant males store more urine than subordinates and the pattern of urination and the high sensitivity of females to male urine suggest chemical signalling via the urine. Here we show that pre-ovulated and post-spawn females when exposed to dominant male urine increased significantly, in less than 1h, the release rate of the maturation-inducing steroid 17,20β-dihydroxypregn-4-en-3-one which is maintained elevated for at least 6h. This indicates a pheromonal role for male urine in the synchronisation of spawning. Furthermore, we show that the lack of affinity of 17,20βP to sex steroid binding globulin explains, at least partly, its rapid release and lack of detection in the blood. Thus tilapia urine involvement in several communication processes confirms that cichlids have evolved a sophisticated chemical signalling system together with their complex visual, acoustic and behavioural displays.
Collapse
Affiliation(s)
- Mar Huertas
- Centro de Ciências do Mar, CCMAR-CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Olinda G Almeida
- Centro de Ciências do Mar, CCMAR-CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Adelino V M Canário
- Centro de Ciências do Mar, CCMAR-CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Peter C Hubbard
- Centro de Ciências do Mar, CCMAR-CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|