1
|
Lekpor CE, Botchway FA, Driss A, Bashi A, Abrahams AD, Kusi KA, Futagbi G, Alema-Mensah E, Agbozo W, Solomon W, Harbuzariu A, Adjei AA, Stiles JK. Circulating biomarkers associated with pediatric sickle cell disease. Front Mol Biosci 2024; 11:1481441. [PMID: 39749215 PMCID: PMC11694143 DOI: 10.3389/fmolb.2024.1481441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Sickle cell disease (SCD) is a genetic blood disorder caused by a mutation in the HBB gene, which encodes the beta-globin subunit of hemoglobin. This mutation leads to the production of abnormal hemoglobin S (HbS), causing red blood cells to deform into a sickle shape. These deformed cells can block blood flow, leading to complications like chronic hemolysis, anemia, severe pain episodes, and organ damage. SCD genotypes include HbSS, HbSC (HbC is an abnormal variant of hemoglobin), and HbS/β-thalassemia. Sickle cell trait (SCT), HbAS, represents the carrier state, while other hemoglobin variants include HbCC, HbAC, and the normal HbAA. Over 7.5 million people worldwide live with SCD, with a high mortality rate in sub-Saharan Africa, including Ghana. Despite its prevalence, SCD is underdiagnosed and poorly managed, especially in children. Characterized by intravascular hemolysis, SCD leads to oxidative stress, endothelial activation, and systemic inflammation. Identifying circulating blood biomarkers indicative of organ damage and systemic processes is vital for understanding SCD and improving patient management. However, research on biomarkers in pediatric SCD is limited and few have been identified and validated. This study explores specific circulating biomarkers in pediatric SCD in Ghana (West Africa), hypothesizing that inflammatory and neuronal injury markers in children with SCD could predict disease outcomes. Methods Clinical data were collected from 377 children aged 3-8 years with various Hb genotypes, including SCD and SCT, at Korle-Bu Teaching Hospital in Accra, Ghana (2021-2022). A total of 80 age- and sex-matched subjects were identified. A cross-sectional study utilized a multiplexed immunoassay procedure to evaluate serum biomarkers, including cytokines, chemokines, vascular injury markers, systemic inflammation markers, cell-free heme scavengers, brain-derived neurotrophic factor (BDNF), and angiogenic factors. Results Elevated levels of BDNF, Ang-2, CXCL10, CCL11, TNF-α, IL-6, IL-10, IL12p40, ICAM-1, VCAM-1, Tie-2, and VEGFA were observed in HbSS subjects, correlating with hemoglobin level, leukocyte, and erythrocyte counts. Heme scavengers like HO-1, hemopexin, and haptoglobin also correlated with these parameters. ROC and AUC analyses demonstrated the potential of these biomarkers in predicting SCD outcomes. Conclusion These findings suggest that there are significant differences between biomarker expression among the different genotypes examined. We conclude that a predictive algorithm based on these biomarkers could be developed and validated through longitudinal assessment of within-genotype differences and correlation of the data with disease severity or outcomes. With such a tool one can enhance SCD management and improve patient outcomes. This approach may pave the way for personalized interventions and better clinical care for pediatric SCD patients.
Collapse
Affiliation(s)
- Cecilia Elorm Lekpor
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
- Department of Pathology, Korle-Bu Teaching Hospital, University of Ghana Medical School, Accra, Ghana
- Department of Animal Biology and Conservation Sciences, University of Ghana, Accra, Ghana
| | | | - Adel Driss
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Alaijah Bashi
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Afua D. Abrahams
- Department of Pathology, Korle-Bu Teaching Hospital, University of Ghana Medical School, Accra, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Godfred Futagbi
- Department of Animal Biology and Conservation Sciences, University of Ghana, Accra, Ghana
| | - Ernest Alema-Mensah
- Community Health and Preventive Medicine, Morehouse School of Medicine, Atlanta, GA, United States
| | - William Agbozo
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Wesley Solomon
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | | | - Andrew A. Adjei
- Department of Pathology, Korle-Bu Teaching Hospital, University of Ghana Medical School, Accra, Ghana
| | - Jonathan K. Stiles
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
2
|
Youssry I, Mostafa AS, Hamed DH, Hafez YFA, Bishai IE, Selim YMM. Role of endothelial dysfunction in sleep-disordered breathing in egyptian children with sickle cell disease. BMC Pediatr 2024; 24:626. [PMID: 39354381 PMCID: PMC11443814 DOI: 10.1186/s12887-024-05066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Endothelial dysfunction is an integral pathophysiologic mechanism in sickle cell disease (SCD), and can lead to many complications. Sleep-disordered breathing (SDB) is a SCD complication with diverse incidence and pathophysiology. This study aimed to determine the prevalence of SDB in children with SCD and to assess its relation to endothelial dysfunction. METHODS Sixty children with SCD and 60 healthy controls were enrolled. The levels of TNF-α, IL-6, and IL-17A were evaluated in the entire cohort using enzyme-linked immunosorbent assay (ELISA) kits. Polysomnography (PSG) was performed for all SCD patients after completion of the Pediatric Sleep Questionnaire (PSQ). RESULTS TNF-α, IL-6, and IL-17A levels were significantly greater in children with SCD than in controls (p-values < 0.001, < 0.001, and 0.006, respectively). The PSQ revealed symptoms suggestive of SDB in 50 children with SCD (83.3%), and PSG revealed obstructive sleep apnea (OSA) in 44 children with SCD (73.3%); 22 patients had mild OSA, and 22 had moderate-to-severe OSA according to the apnea-hypopnea index (AHI). TNF-α was significantly greater in SCD children who reported heavy or loud breathing, trouble breathing or struggle to breathe, and difficulty waking up in the morning (p-values = 0.002, 0.002, and 0.031, respectively). The IL-6 levels were significantly greater in SCD children who stopped growing normally (p-value = 0.002). The levels of IL-6 and IL-17A were significantly greater in SCD children with morning headaches (p-values = 0.007 and 0.004, respectively). CONCLUSION Children with SCD showed a high prevalence of SDB with significantly elevated levels of markers of endothelial function, highlighting the interplay of SDB and endothelial dysfunction in SCD.
Collapse
Affiliation(s)
- Ilham Youssry
- Department of Pediatric Hematology, Faculty ofMedicine, Cairo University, Giza, Egypt
| | - Abla S Mostafa
- Department of Pediatric Pulmonology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Dina H Hamed
- Department of Pediatric Pulmonology, Faculty of Medicine, Cairo University, Giza, Egypt
| | | | - Irene E Bishai
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Yasmeen M M Selim
- Department of Pediatric Hematology, Faculty ofMedicine, Cairo University, Giza, Egypt.
| |
Collapse
|
3
|
Igbineweka NE, van Loon JJWA. Gene-environmental influence of space and microgravity on red blood cells with sickle cell disease. NPJ Genom Med 2024; 9:44. [PMID: 39349487 PMCID: PMC11442622 DOI: 10.1038/s41525-024-00427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/09/2024] [Indexed: 10/02/2024] Open
Abstract
A fundamental question in human biology and for hematological disease is how do complex gene-environment interactions lead to individual disease outcome? This is no less the case for sickle cell disease (SCD), a monogenic disorder of Mendelian inheritance, both clinical course, severity, and treatment response, is variable amongst affected individuals. New insight and discovery often lie between the intersection of seemingly disparate disciplines. Recently, opportunities for space medicine have flourished and have offered a new paradigm for study. Two recent Nature papers have shown that hemolysis and oxidative stress play key mechanistic roles in erythrocyte pathogenesis during spaceflight. This paper reviews existing genetic and environmental modifiers of the sickle cell disease phenotype. It reviews evidence for erythrocyte pathology in microgravity environments and demonstrates why this may be relevant for the unique gene-environment interaction of the SCD phenotype. It also introduces the hematology and scientific community to methodological tools for evaluation in space and microgravity research. The increasing understanding of space biology may yield insight into gene-environment influences and new treatment paradigms in SCD and other hematological disease phenotypes.
Collapse
Affiliation(s)
- Norris E Igbineweka
- Imperial College London, Centre for Haematology, Department of Immunology & Inflammation, Commonwealth Building, Hammersmith Campus, Du Cane, London, W12 0NN, UK.
- Department of Haematology, King's College Hospital NHS Foundation Trust Denmark Hill, SE5 9RS, London, UK.
| | - Jack J W A van Loon
- Dutch Experiment Support Center (DESC), Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam Bone Center (ABC), Amsterdam UMC Location VU University Medical Center (VUmc) & Academic Centre for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081, LA Amsterdam, The Netherlands
- European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), TEC-MMG, Keplerlaan 1, 2201, AZ Noordwijk, The Netherlands
| |
Collapse
|
4
|
Bukini D, Makani J, McCune J, Lee D, Bansbach C, De Vita S, Kemps D, Amin E, Spector J, Tisdale J. Consensus-driven target product profiles for curative sickle cell disease gene therapies. Mol Ther Methods Clin Dev 2024; 32:101287. [PMID: 39104574 PMCID: PMC11298580 DOI: 10.1016/j.omtm.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Therapeutic innovation to address sickle cell disease (SCD) is at a historical apex, characterized by a drug discovery, development, and commercialization landscape that includes potentially curative gene therapies. Given the wide geographic distribution of SCD, with a major presence in Africa, it is imperative that new medicines are designed to meet the specific needs of persons with SCD everywhere. Target product profiles (TPPs) detail the desired attributes of new medicines and serve as a guide for drug developers. To support research efforts for curative treatments for SCD, we mobilized a large multi-disciplinary expert group to generate consensus-driven TPPs for ex vivo and in vivo SCD gene therapies, utilizing a modified Delphi methodology supplemented with virtual workshops. The main findings are TPPs that describe 20 minimal and optimal criteria for novel gene therapy products in categories of scope (3 criteria), performance/safety (11 criteria), manufacturing (4 criteria), and administration (2 criteria). TPPs for ex vivo and in vivo products differed in some performance/safety criteria and all criteria pertaining to manufacturing and administration. These outputs will ideally support development of durable treatments that are safe, efficacious, and practical for persons with SCD in global settings.
Collapse
Affiliation(s)
- Daima Bukini
- Sickle Cell Disease Program, Muhimbili University of Health and Allied Sciences, Dar es Salaam 65001, Tanzania
| | - Julie Makani
- Sickle Cell Disease Program, Muhimbili University of Health and Allied Sciences, Dar es Salaam 65001, Tanzania
- SickleInAfrica, Clinical Coordinating Center, Muhimbili University of Health and Allied Sciences, Dar es Salaam 65001, Tanzania
- Imperial College London, SW7 2AZ London, UK
| | - Joseph McCune
- HIV Frontiers, Global Health Accelerator, Bill & Melinda Gates Foundation, Seattle, WA 98109, USA
| | - Dennis Lee
- HIV Frontiers, Global Health Accelerator, Bill & Melinda Gates Foundation, Seattle, WA 98109, USA
| | | | - Serena De Vita
- Translational Clinical Oncology, Biomedical Research, Novartis, Cambridge, MA 02139, USA
| | - Dominic Kemps
- HIV Cure Africa Acceleration Partnership, Sommartel, NW1 8DS London, UK
| | - Elianna Amin
- Global Health, Biomedical Research, Novartis, Emeryville, CA 94608, USA
| | - Jonathan Spector
- Global Health, Biomedical Research, Novartis, Cambridge, MA 02139, USA
| | - John Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, Bethesda, MD 20814, USA
| |
Collapse
|
5
|
Quang T, Mostashari G, Berning E, Gopalan BP, Lizarralde-Iragorri MA, Lovins D, Shet AS, Tromberg BJ. Non-invasive optical and laboratory hematologic biomarkers correlate in patients with sickle cell disease. BIOMEDICAL OPTICS EXPRESS 2024; 15:4829-4841. [PMID: 39346999 PMCID: PMC11427197 DOI: 10.1364/boe.527770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 10/01/2024]
Abstract
The goal of this study is to identify non-invasive optical hemodynamic biomarkers that can index laboratory hematology measurements in sickle cell disease (SCD). We acquired frequency-domain NIRS (FD-NIRS) and diffuse correlation spectroscopy (DCS) data from the forearms and foreheads of 17 participants in a randomized, double-blind, placebo-controlled trial evaluating effects of isoquercetin (IQ) on thromboinflammation in SCD. We observed multiple, significant correlations between optical and hematology biomarkers including cerebral tissue oxygen saturation (StO2) and hematocrit (HCT); oxyhemoglobin ([O2Hb]) recovery rate and intercellular adhesion molecule 1 (ICAM-1); and blood flow index (BFI) reperfusion rate and coagulation index (CI). The potential of these non-invasive optical biomarkers for assessing vascular pathophysiology for the management of SCD warrants further exploration.
Collapse
Affiliation(s)
- Timothy Quang
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA
| | - Golnar Mostashari
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA
| | - Elise Berning
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA
| | - Bindu Parachalil Gopalan
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | | | - Dianna Lovins
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Arun S Shet
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Bruce J Tromberg
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20814, USA
| |
Collapse
|
6
|
Costa E, Isgrò A, de Montalembert M, Leufkens HGM, Ware RE, De Franceschi L. Successes and pitfalls in orphan drug development for sickle cell disease. Blood Adv 2024; 8:2455-2465. [PMID: 38522095 PMCID: PMC11112610 DOI: 10.1182/bloodadvances.2023011730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/26/2024] Open
Abstract
ABSTRACT Sickle cell disease (SCD) is a hereditary red cell disorder with a large disease burden at a global level. In the United States and Europe, medicines may qualify for orphan designation (OD), a regulatory status that provides incentives to boost development. We evaluated the development of new therapies for SCD using data for OD granted in the United States and Europe over the last 2 decades (2000-2021). We analyzed their characteristics, pathophysiological targets, trends, and OD sponsors. We then investigated the approval outcomes, including the phase success rate and reasons for discontinuation across different variables. We identified 57 ODs for SCD: 43 (75.4%) small molecules, 32 (56.1%) for oral administration, and 36 (63.1%) for chronic use to prevent SCD complications. At the end of the study (2021), development of 34 of 57 ODs was completed. Four ODs were approved with a success rate of 11.8%. Products targeting upstream causative events of SCD pathophysiology had a 1.8 higher success rate compared with products targeting disease consequences. Large companies showed a fourfold higher success rate compared with small-medium enterprises. Failures in clinical development were mainly seen in phase 3 for a lack of efficacy on vaso-occlusive crisis as the primary study end point, likely related to variable definitions and heterogeneity of pain scoring and treatment. Both advances in SCD knowledge and regulatory incentives paved the way for new therapies for SCD. Our finding of high failure rates in late-stage clinical development signals the need for better early-stage predictive models, also in the context of meaningful clinical end points.
Collapse
Affiliation(s)
- Enrico Costa
- Division of Pharmacoepidemiology and Clinical Pharmacology, World Health Organization Collaborating Centre for Pharmaceutical Policy and Regulation, Utrecht University, Utrecht, The Netherlands
| | - Antonella Isgrò
- Centralized Procedures Office, Innovation and Pharmaceutical Strategy Division, Italian Medicines Agency, Rome, Italy
| | - Mariane de Montalembert
- Department of Pediatrics, Necker-Enfants Malades Hospital, Assistance Publique-Hopitaux de Paris Centre, Paris, France
| | - Hubert G. M. Leufkens
- Emeritus Professor Regulatory Science and Pharmaceutical Policy, Division of Pharmacoepidemiology and Clinical Pharmacoepidemiology, Utrecht University, Utrecht, The Netherlands
| | - Russell E. Ware
- Division of Hematology and Global Health Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | | |
Collapse
|
7
|
Feugray G, Grall M, Dumesnil C, Brunel V, Benhamou Y, Quillard Muraine M, Billoir P. Lipid and hemolysis parameters predicting acute chest syndrome in adulthood with sickle cell disease. Lipids Health Dis 2024; 23:140. [PMID: 38755670 PMCID: PMC11100209 DOI: 10.1186/s12944-024-02135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
Sickle cell disease (SCD) is a lifelong blood disorder affecting approximately 100,000 people in the United States and is one of the most common monogenic diseases. A serious complication of SCD is acute chest syndrome (ACS). ACS is a condition with a high rate of morbidity and mortality. The aim of the study was to assess hemolysis and lipid parameters in a cohort of confirmed SCD patients to predict ACS development in the following year.Standard lipid were performed (triglycerides, total cholesterol, high-density cholesterol, low-density cholesterol) panel to calculate of non-HDL-C, large buoyant LDL cholesterol (lbLDL-C) and small dense LDL cholesterol (sdLDL-C) with Sampson equation. Hemolysis and hematologic parameters were also evaluated.Among 91 patients included between September 2018 and June 2021, thirty-seven patients had history of ACS and 6 patients developed ACS during following year. In unadjusted logistic regression, total bilirubin was associated with ACS occurrence (RR: 1.2 [1.05-1.51] p = 0.013). Concerning lipid profile, non-HDL-C (RR: 0.87 [0.0.67-0.99] p = 0.04) and sdLDL-C (RR: 0.78 [0.49-0.96] p = 0.03) were associated with ACS occurrence decrease. C-reactive protein was associated with ACS occurrence (RR: 1.27 [1.065-1.85] p = 0.011).Based on these findings, this study demonstrated that several biomarker easily available can be used at steady state to predict ACS in the following year. The validation of these results are required to ensure the reproducibility of the findings.
Collapse
Affiliation(s)
- Guillaume Feugray
- Department of General Biochemistry, Normandie Univ, UNIROUEN, INSERM U1096 EnVI, CHU Rouen, Rouen, F-76000, France.
- Service de Biochimie, Centre hospitalier Universitaire Charles Nicolle, 1 rue de Germont, Rouen, 76031, France.
| | - Maximilien Grall
- Department of Internal Medicine, CHU Rouen, Rouen, F-76000, France
| | - Cécile Dumesnil
- Department of Pediatric Onco-Hematology, CHU Rouen, Rouen, F-76000, France
| | - Valéry Brunel
- Department of General Biochemistry, CHU Rouen, Rouen, F-76000, France
| | - Ygal Benhamou
- Department of Internal Medicine, Normandie Univ, UNIROUEN, INSERM U1096, CHU Rouen, Rouen, F-76000, France
| | - Muriel Quillard Muraine
- Department of General Biochemistry, Normandie Univ, UNIROUEN, INSERM U1404 INSERMU1073 ADEN, CHU Rouen, CIC-CRB, Rouen, F-76000, France
| | - Paul Billoir
- Normandie Univ, UNIROUEN, INSERM U1096 EnVI, CHU Rouen, Vascular Hemostasis Unit, Rouen, F-76000, France
| |
Collapse
|
8
|
Tuono RDM, Simo JL, Nya PCB, Chedjou JP, Fotsing CBK, Chetcha BC, Tah CF, Tayou CT, Mbatcham WF, Pieme CA. Haptoglobin gene polymorphism and iron profile in sickle cell disease patients with inflammation in Yaounde, Cameroon. Mol Genet Genomic Med 2024; 12:e2302. [PMID: 37970725 PMCID: PMC10767582 DOI: 10.1002/mgg3.2302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/16/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Major sickle cell syndromes are the most common hemoglobinopathy in the world. The sickle cell patients are subjected to several factors causing inflammation, and the genetic identification of each individual allows to focus the possibility of allelic variations influence of a specific gene and then the polymorphism. This study aims at determining the distribution of HP gene (OMIM#140100) and their involvement on hematological parameters and the iron profile in the sickle cell patients presenting an inflammation condition during major sickle cell syndromes in Cameroun. METHODS A case-control analytical study has been conducted over a period of 6 months. Cases consisting of sickle cell patients in a situation of inflammation and control of non-inflamed sickle cell patients. The patients presenting major sickle cell syndromes, interned and/or followed at the Hematology Department of the Regional Hospital of Bafoussam and the Central Hospital of Yaoundé have been recruited. HP genotyping was carried out at the Laboratory for Public Health Research Biotechnologies (LAPHER-Biotech) in Yaoundé using allele-specific PCR. Also, inflammatory, hematological parameters and martial assessment were explored by standard methods. Statistical analysis of the data was performed using the statistical tool R version 4.1.1. The comparison of proportions of alleles was made with the chi-square test, and the Wilcoxon test was used to compare the median between different groups using the statistical tool R version 4.1.1. RESULTS We analyzed the samples of 149 patients. The HP polymorphism describes a significant frequency of the "1F" allele (69.8%) followed by the "2" allele (46.31%). In addition, 80 patients (53.69%), 48 (32.21%), and 21 (14.09%) presented the genotype HP 1-1, HP 2-1, and HP 2-2, respectively. And eighty-one percent (81%) patients with genotype HP 2-2 showed a significant higher relative frequency of thrombocytosis compared with the genotype HP 1-1 and HP 2-1, respectively (51.2% and 68.8%, p = 0.087). The proportion of inflammation in the HP 2-2 group was higher (57.1%) compared with the other groups (respectively 42.5% and 35.4% in the HP 1-1 and HP 2-1 groups). Furthermore, the median CRP was significantly higher in the HP 2-2 group compared with the other groups (p = 0.039). Moreover, the entire population of the HP 2-2 group showed an elevation of ferritin and IL6 unlike the HP 1-1 and HP 2-1 groups. CONCLUSION This study demonstrates a higher frequency of genotype HP 1-1 followed by the HP 2-2 genotype in patients with major sickle cell syndromes. However, a larger proportion of patients with genotype HP 2-2 are associated with hematological profile disorders, inflammation, and dysregulation of iron metabolism. Then, the haptoglobin polymorphism contributes to the severity of major sickle cell syndromes.
Collapse
Affiliation(s)
- Romaric De Manfouo Tuono
- Department of Hematology, Virology, and Infectious Disease, Faculty of Medicine and Biomedical SciencesUniversity of Yaounde 1YaoundéCameroon
- Faculty of Health SciencesUniversity of MontagnesBangangteCameroon
- Laboratory of Biochemistry, Department of Biochemistry, Faculty of Medicine and Biomedical SciencesUniversity of Yaounde 1YaoundéCameroon
| | | | | | - Jean Paul Chedjou
- Public Health and Biotechnology Research Laboratory (LAPHER‐Biotech)YaoundéCameroon
| | | | - Bernard Claude Chetcha
- Department of Hematology, Virology, and Infectious Disease, Faculty of Medicine and Biomedical SciencesUniversity of Yaounde 1YaoundéCameroon
| | - Calvino Fomboh Tah
- Public Health and Biotechnology Research Laboratory (LAPHER‐Biotech)YaoundéCameroon
| | - Claude Tagny Tayou
- Department of Hematology, Virology, and Infectious Disease, Faculty of Medicine and Biomedical SciencesUniversity of Yaounde 1YaoundéCameroon
| | - Wilfried Fon Mbatcham
- Public Health and Biotechnology Research Laboratory (LAPHER‐Biotech)YaoundéCameroon
- Department of Biochemistry, Faculty of ScienceUniversity of Yaounde IYaoundéCameroon
| | | |
Collapse
|
9
|
Tuono RDM, Simo JL, Nya PCB, Chedjou JP, Fotsing CBK, Chetcha BC, Tah CF, Tayou CT, Mbatcham WF, Pieme CA. Haptoglobin gene polymorphism and iron profile in sickle cell disease patients with inflammation in Yaounde, Cameroon. Mol Genet Genomic Med 2024; 12. [DOI: https:/doi.org/10.1002/mgg3.2302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/13/2023] [Indexed: 04/01/2024] Open
Abstract
AbstractBackgroundMajor sickle cell syndromes are the most common hemoglobinopathy in the world. The sickle cell patients are subjected to several factors causing inflammation, and the genetic identification of each individual allows to focus the possibility of allelic variations influence of a specific gene and then the polymorphism. This study aims at determining the distribution of HP gene (OMIM#140100) and their involvement on hematological parameters and the iron profile in the sickle cell patients presenting an inflammation condition during major sickle cell syndromes in Cameroun.MethodsA case–control analytical study has been conducted over a period of 6 months. Cases consisting of sickle cell patients in a situation of inflammation and control of non‐inflamed sickle cell patients. The patients presenting major sickle cell syndromes, interned and/or followed at the Hematology Department of the Regional Hospital of Bafoussam and the Central Hospital of Yaoundé have been recruited. HP genotyping was carried out at the Laboratory for Public Health Research Biotechnologies (LAPHER‐Biotech) in Yaoundé using allele‐specific PCR. Also, inflammatory, hematological parameters and martial assessment were explored by standard methods. Statistical analysis of the data was performed using the statistical tool R version 4.1.1. The comparison of proportions of alleles was made with the chi‐square test, and the Wilcoxon test was used to compare the median between different groups using the statistical tool R version 4.1.1.ResultsWe analyzed the samples of 149 patients. The HP polymorphism describes a significant frequency of the “1F” allele (69.8%) followed by the “2” allele (46.31%). In addition, 80 patients (53.69%), 48 (32.21%), and 21 (14.09%) presented the genotype HP 1‐1, HP 2‐1, and HP 2‐2, respectively. And eighty‐one percent (81%) patients with genotype HP 2‐2 showed a significant higher relative frequency of thrombocytosis compared with the genotype HP 1‐1 and HP 2‐1, respectively (51.2% and 68.8%, p = 0.087). The proportion of inflammation in the HP 2‐2 group was higher (57.1%) compared with the other groups (respectively 42.5% and 35.4% in the HP 1‐1 and HP 2‐1 groups). Furthermore, the median CRP was significantly higher in the HP 2‐2 group compared with the other groups (p = 0.039). Moreover, the entire population of the HP 2‐2 group showed an elevation of ferritin and IL6 unlike the HP 1‐1 and HP 2‐1 groups.ConclusionThis study demonstrates a higher frequency of genotype HP 1‐1 followed by the HP 2‐2 genotype in patients with major sickle cell syndromes. However, a larger proportion of patients with genotype HP 2‐2 are associated with hematological profile disorders, inflammation, and dysregulation of iron metabolism. Then, the haptoglobin polymorphism contributes to the severity of major sickle cell syndromes.
Collapse
Affiliation(s)
- Romaric De Manfouo Tuono
- Department of Hematology, Virology, and Infectious Disease, Faculty of Medicine and Biomedical Sciences University of Yaounde 1 Yaoundé Cameroon
- Faculty of Health Sciences University of Montagnes Bangangte Cameroon
- Laboratory of Biochemistry, Department of Biochemistry, Faculty of Medicine and Biomedical Sciences University of Yaounde 1 Yaoundé Cameroon
| | | | | | - Jean Paul Chedjou
- Public Health and Biotechnology Research Laboratory (LAPHER‐Biotech) Yaoundé Cameroon
| | | | - Bernard Claude Chetcha
- Department of Hematology, Virology, and Infectious Disease, Faculty of Medicine and Biomedical Sciences University of Yaounde 1 Yaoundé Cameroon
| | - Calvino Fomboh Tah
- Public Health and Biotechnology Research Laboratory (LAPHER‐Biotech) Yaoundé Cameroon
| | - Claude Tagny Tayou
- Department of Hematology, Virology, and Infectious Disease, Faculty of Medicine and Biomedical Sciences University of Yaounde 1 Yaoundé Cameroon
| | - Wilfried Fon Mbatcham
- Public Health and Biotechnology Research Laboratory (LAPHER‐Biotech) Yaoundé Cameroon
- Department of Biochemistry, Faculty of Science University of Yaounde I Yaoundé Cameroon
| | | |
Collapse
|
10
|
Tuono De Manfouo R, Louokdom JS, Chetcha BC, Nya PCB, Pieme CA, Tagny CT. Homozygote drepanocytosis: Ferric status and inflammation in world and Africa: Review article and meta analysis. Health Sci Rep 2023; 6:e1609. [PMID: 37808933 PMCID: PMC10551275 DOI: 10.1002/hsr2.1609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
Background and Aims Major sickle cell syndromes are subjected to a high frequency of hemolysis, infections, oxidative stress, and vasooclusive crises which promote inflammation and iron balance disorders. We aimed to systematically review and analyze the studies in this patients addressing in general, and Africa in particular. Methods The systematic review of published articles in the Pubmed and Google Scholar databases was carried out according to the recommendations of the PRISMA model. The case-control articles have been included. The data extracted from the articles were analyzed using statistical software R. The standardized mean difference (SMD) was used to assess the extent of the disease on the different variables studied. Results At the end, 128 articles were obtained; but only 33 were elligible for meta-analysis. A SMD of -1.79 was obtained for hemoglobin between the sickle cell patients and the controls due to the deviation from the overall mean hemoglobin in the cases (8 ± 2 g/dL) and in controls (13 ± 3 g/dL). Sickle cell disease showed a significant extent on ferritin [SMD = 2.61; (95% confidence interval, CI: 2.39-2.83); (p < 0.01)] compared to non-sickle cell patients thus describing a higher risk for sickle cell sufferer to have ferritin disorders. The included studies also described the influence of sickle cell anemia on serum iron [SMD = 1.52; (95% CI: 1.32-1.76); (p < 0.01)] compared to normal subjects. The high risk of inflammation has been described as higher in sickle cell patients [SMD = 0.38; (95% CI: 0.25-0.50)], reflecting the moderate extent of sickle cell disease on inflammation. Conclusion Patients with major sickle cell syndrome in inflammation have a higher risk of iron profile disorders compared to the normal population. Further studies are needed to explore mechanisms for preventing the deleterious effects of iron from this hemolysis, for example haptoglobin genotyping.
Collapse
Affiliation(s)
- Romaric Tuono De Manfouo
- Department of Microbiology, Parasitology, Hematology, and Infectious Diseases, Faculty of Medicine and Biomedical SciencesUniversité de Yaoundé 1YaoundéCameroon
- Department of Medicine, Pharmacy, and Biomedical Sciences, Higher Institute of Health SciencesUniversité des MontagnesBangangtéCameroon
| | - Josué Simo Louokdom
- Department of Medicine, Pharmacy, and Biomedical Sciences, Higher Institute of Health SciencesUniversité des MontagnesBangangtéCameroon
| | - Bernard Claude Chetcha
- Department of Microbiology, Parasitology, Hematology, and Infectious Diseases, Faculty of Medicine and Biomedical SciencesUniversité de Yaoundé 1YaoundéCameroon
| | | | - Constant Anatole Pieme
- Department of Microbiology, Parasitology, Hematology, and Infectious Diseases, Faculty of Medicine and Biomedical SciencesUniversité de Yaoundé 1YaoundéCameroon
| | - Claude Tayou Tagny
- Department of Microbiology, Parasitology, Hematology, and Infectious Diseases, Faculty of Medicine and Biomedical SciencesUniversité de Yaoundé 1YaoundéCameroon
| |
Collapse
|
11
|
Steinberg MH, Gladwin MT. "Severity" in adult sickle cell disease. Am J Hematol 2023; 98:1508-1511. [PMID: 37449407 DOI: 10.1002/ajh.27024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Martin H Steinberg
- Department of Medicine, Division of Hematology and Medical Oncology, Center of Excellence for Sickle Cell Disease, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Mark T Gladwin
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Piel FB, Rees DC, DeBaun MR, Nnodu O, Ranque B, Thompson AA, Ware RE, Abboud MR, Abraham A, Ambrose EE, Andemariam B, Colah R, Colombatti R, Conran N, Costa FF, Cronin RM, de Montalembert M, Elion J, Esrick E, Greenway AL, Idris IM, Issom DZ, Jain D, Jordan LC, Kaplan ZS, King AA, Lloyd-Puryear M, Oppong SA, Sharma A, Sung L, Tshilolo L, Wilkie DJ, Ohene-Frempong K. Defining global strategies to improve outcomes in sickle cell disease: a Lancet Haematology Commission. Lancet Haematol 2023; 10:e633-e686. [PMID: 37451304 PMCID: PMC11459696 DOI: 10.1016/s2352-3026(23)00096-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 07/18/2023]
Abstract
All over the world, people with sickle cell disease (an inherited condition) have premature deaths and preventable severe chronic complications, which considerably affect their quality of life, career progression, and financial status. In addition, these people are often affected by stigmatisation or structural racism, which can contribute to stress and poor mental health. Inequalities affecting people with sickle cell disease are also reflected in the distribution of the disease—mainly in sub-Saharan Africa, India, and the Caribbean—whereas interventions, clinical trials, and funding are mostly available in North America, Europe, and the Middle East. Although some of these characteristics also affect people with other genetic diseases, the fate of people with sickle cell disease seems to be particularly unfair. Simple, effective interventions to reduce the mortality and morbidity associated with sickle cell disease are available. The main obstacle preventing better outcomes in this condition, which is a neglected disease, is associated with inequalities impacting the patient populations. The aim of this Commission is to highlight the problems associated with sickle cell disease and to identify achievable goals to improve outcomes both in the short and long term. The ambition for the management of people with sickle cell disease is that curative treatments become available to every person with the condition. Although this would have seemed unrealistic a decade ago, developments in gene therapy make this potentially achievable, albeit in the distant future. Until these curative technologies are fully developed and become widely available, health-care professionals (with the support of policy makers, funders, etc) should make sure that a minimum standard of care (including screening, prophylaxis against infection, acute medical care, safe blood transfusion, and hydroxyurea) is available to all patients. In considering what needs to be achieved to reduce the global burden of sickle cell disease and improve the quality of life of patients, this Commission focuses on five key areas: the epidemiology of sickle cell disease (Section 1 ); screening and prevention (Section 2 ); established and emerging treatments for the management of the disease (Section 3 ); cellular therapies with curative potential (Section 4 ); and training and education needs (Section 5 ). As clinicians, researchers, and patients, our objective to reduce the global burden of sickle cell disease aligns with wider public health aims to reduce inequalities, improve health for all, and develop personalised treatment options. We have observed in the past few years some long-awaited momentum following the development of innovative point-of-care testing devices, new approved drugs, and emerging curative options. Reducing the burden of sickle cell disease will require substantial financial and political commitment, but it will impact the lives of millions of patients and families worldwide and the lessons learned in achieving this goal would unarguably benefit society as a whole.
Collapse
Affiliation(s)
- Frédéric B Piel
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
| | - David C Rees
- Department of Paediatric Haematology, King's College London, King's College Hospital, London, UK
| | - Michael R DeBaun
- Department of Pediatrics, Vanderbilt-Meharry Center of Excellence for Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Obiageli Nnodu
- Department of Haematology and Blood Transfusion, College of Health Sciences and Centre of Excellence for Sickle Cell Disease Research and Training, University of Abuja, Abuja, Nigeria
| | - Brigitte Ranque
- Department of Internal Medicine, Georges Pompidou European Hospital, Assistance Publique-Hopitaux de Paris Centre, University of Paris Cité, Paris, France
| | - Alexis A Thompson
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Russell E Ware
- Division of Hematology and Global Health Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Miguel R Abboud
- Department of Pediatrics and Adolescent Medicine, and Sickle Cell Program, American University of Beirut, Beirut, Lebanon
| | - Allistair Abraham
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Emmanuela E Ambrose
- Department of Paediatrics and Child Health, Bugando Medical Centre, Mwanza, Tanzania
| | - Biree Andemariam
- New England Sickle Cell Institute, University of Connecticut Health, Connecticut, USA
| | - Roshan Colah
- Department of Haematogenetics, Indian Council of Medical Research National Institute of Immunohaematology, Mumbai, India
| | - Raffaella Colombatti
- Pediatric Oncology Hematology Unit, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Nicola Conran
- Department of Clinical Medicine, School of Medical Sciences, Center of Hematology and Hemotherapy (Hemocentro), University of Campinas-UNICAMP, Campinas, Brazil
| | - Fernando F Costa
- Department of Clinical Medicine, School of Medical Sciences, Center of Hematology and Hemotherapy (Hemocentro), University of Campinas-UNICAMP, Campinas, Brazil
| | - Robert M Cronin
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Mariane de Montalembert
- Department of Pediatrics, Necker-Enfants Malades Hospital, Assistance Publique-Hopitaux de Paris Centre, Paris, France
| | - Jacques Elion
- Paris Cité University and University of the Antilles, Inserm, BIGR, Paris, France
| | - Erica Esrick
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Anthea L Greenway
- Department Clinical Haematology, Royal Children's Hospital, Parkville and Department Haematology, Monash Health, Clayton, VIC, Australia
| | - Ibrahim M Idris
- Department of Hematology, Aminu Kano Teaching Hospital/Bayero University Kano, Kano, Nigeria
| | - David-Zacharie Issom
- Department of Business Information Systems, School of Management, HES-SO University of Applied Sciences and Arts of Western Switzerland, Geneva, Switzerland
| | - Dipty Jain
- Department of Paediatrics, Government Medical College, Nagpur, India
| | - Lori C Jordan
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zane S Kaplan
- Department of Clinical Haematology, Monash Health and Monash University, Melbourne, VIC, Australia
| | - Allison A King
- Departments of Pediatrics and Internal Medicine, Divisions of Pediatric Hematology and Oncology and Hematology, Washington University School of Medicine, St Louis, MO, USA
| | - Michele Lloyd-Puryear
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Samuel A Oppong
- Department of Obstetrics and Gynecology, University of Ghana Medical School, Accra, Ghana
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lillian Sung
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Leon Tshilolo
- Institute of Biomedical Research/CEFA Monkole Hospital Centre and Official University of Mbuji-Mayi, Mbuji-Mayi, Democratic Republic of the Congo
| | - Diana J Wilkie
- Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL, USA
| | - Kwaku Ohene-Frempong
- Division of Hematology, Children's Hospital of Philadelphia, Pennsylvania, USA; Sickle Cell Foundation of Ghana, Kumasi, Ghana
| |
Collapse
|
13
|
Lins CF, Salmon CEG, Amorim de Souza L, Quesado RCS, de Souza Moraes R, Silva-Pinto AC, Matos MA, Nogueira-Barbosa MH. Quantitative MRI evaluation of bone marrow in sickle cell disease: relationship with haemolysis and clinical severity. Clin Radiol 2023; 78:e268-e278. [PMID: 36623977 DOI: 10.1016/j.crad.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 12/27/2022]
Abstract
AIM To evaluate bone marrow fat fraction using the Dixon technique (FFDix) of magnetic resonance imaging (MRI) as a potential biomarker of haemolysis and clinical severity in the overall assessment and follow-up of sickle cell disease (SCD) patients. MATERIAL AND METHODS The present study was a cross-sectional study in which healthy individuals and SCD patients (matched for age, sex, and weight) were subjected to MRI of the lumbar spine and pelvis to quantify FFDix in the bone marrow using the Dixon technique. SCD severity was analysed by clinical and laboratory data, and an online calculator. A high degree of haemolysis was defined using the cut-off values haemoglobin (Hb) ≤10 g/dl, lactate dehydrogenase (LDH) ≥325 U/l, reticulocytes ≥3% and total bilirubin (TB) ≥1.2 mg/dl. Pearson's correlation, receiver operating characteristic (ROC) curve and binary logistic regression analysis were performed. RESULTS Forty-eight SCD patients (26 homozygous: HbSS and 22 compound heterozygous: HbSC) and 48 healthy individuals participated in the study. FFDix was lower in SCD patients than in the control group, showing even lower values in the HbSS subtype and patients with a higher degree of haemolysis. HbSC patients with a higher degree of haemolysis using hydroxyurea (medium dosage 9.8 mg/kg/day) had lower FFDix. ROC curves and odds ratios for detecting patients with a higher degree of haemolysis at the different FFDix measurement sites demonstrated excellent performance: iliac bones (cut-off ≤16.75%, AUC = 0.824, p<0.001), femoral heads (cut-off ≤46.7%, AUC = 0.775, p=0.001), lumbar vertebrae (cut-off ≤7.8%, AUC = 0.755, p=0.002). CONCLUSION Decreased FFDix is indicative of higher degree of haemolysis and SCD severity with great potential as a non-invasive biomarker contributing to the overall assessment and follow-up of SCD patients.
Collapse
Affiliation(s)
- C Freitas Lins
- Bahiana School of Medicine and Public Health (EBMSP), Av. Dom João VI, 275, Brotas, Salvador, Bahia, Brazil; Clínica Delfin Medicina Diagnóstica, Av. Antônio Carlos Magalhães, 442, Pituba, Salvador, Bahia, Brazil; Ribeirão Preto Medical School, USP Ribeirão Preto, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Campus Universitário s/n - Monte Alegre, Ribeirão Preto, SP, Brazil; Ribeirão Preto Medical School Musculoskeletal Imaging Research Laboratory, Brazil.
| | - C E Garrido Salmon
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - L Amorim de Souza
- Bahiana School of Medicine and Public Health (EBMSP), Av. Dom João VI, 275, Brotas, Salvador, Bahia, Brazil
| | - R C Saldanha Quesado
- Bahiana School of Medicine and Public Health (EBMSP), Av. Dom João VI, 275, Brotas, Salvador, Bahia, Brazil
| | - R de Souza Moraes
- Clínica Delfin Medicina Diagnóstica, Av. Antônio Carlos Magalhães, 442, Pituba, Salvador, Bahia, Brazil
| | - A C Silva-Pinto
- Ribeirão Preto Medical School, USP Ribeirão Preto, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Campus Universitário s/n - Monte Alegre, Ribeirão Preto, SP, Brazil
| | - M Almeida Matos
- Bahiana School of Medicine and Public Health (EBMSP), Av. Dom João VI, 275, Brotas, Salvador, Bahia, Brazil
| | - M H Nogueira-Barbosa
- Ribeirão Preto Medical School, USP Ribeirão Preto, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Campus Universitário s/n - Monte Alegre, Ribeirão Preto, SP, Brazil; Ribeirão Preto Medical School Musculoskeletal Imaging Research Laboratory, Brazil; Department of Orthopedic Surgery, University of Missouri Health Care, Columbia, MO, USA
| |
Collapse
|
14
|
Chan KH, Rizvi SH, De Jesus-Rojas W, Stark JM, Mosquera RA, Prada-Ruiz AC, Gonzales T, Brown DL, Menon NM, Nguyen TT, Jon CK, Yadav A. Pulmonary hypertension screening in children with sickle cell disease. Pediatr Blood Cancer 2023; 70:e29980. [PMID: 36069612 DOI: 10.1002/pbc.29980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/30/2022] [Accepted: 08/18/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Screening for pulmonary hypertension (PHT) is recommended in children with sickle cell disease (SCD). However, best approaches are poorly described. We examined the utility of PHT symptoms, echocardiogram (ECHO), N-terminal-pro hormone brain natriuretic peptide (NT-proBNP), and BNP to screen for PHT in the SCD pediatric population. METHODS Children (8-18 years old) with SCD-HbSS and HbSthal° were prospectively included and underwent PHT screening. The screening consisted of a comprehensive PHT symptoms evaluation, ECHO measurement, and NT-proBNP and BNP levels. RESULTS A total of 73 patients were included (mean age 12 ± 5.7 years; >80% on hydroxyurea), of which 37% had a symptom consistent with PHT, including exertional dyspnea (26.5%), fatigue (17.6%), palpitation (14.7%), and chest pain (10.3%). ECHO was obtained in 53 (72.6%) patients, with only ECHO of 48 patients included in the final analysis. Elevated ECHO peak tricuspid regurgitant jet velocity (TRV) >2.5 m/s or indirect findings to suggest PHT were seen in only two of 48 (4.2%). No significant differences were seen between those with and without PHT symptoms when compared for NT-proBNP, BNP, hemoglobin, pulmonary function testing, fractional exhaled nitric oxide, asthma, oxygen saturation, and sleep apnea. CONCLUSION PHT symptoms are not consistent with ECHO, NT-proBNP nor BNP findings in children with SCD. PHT prevalence based on TRV was low in children on hydroxyurea, therefore screening may not be warranted for this group.
Collapse
Affiliation(s)
- Kok Hoe Chan
- Division of Hematology/Oncology, Department of Internal Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Syeda Hiba Rizvi
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Wilfredo De Jesus-Rojas
- Ponce Health Science University and Ponce Research Institute, Department of Pediatrics and Basic Science, School of Medicine, Ponce, Puerto Rico, USA
| | - James M Stark
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Ricardo A Mosquera
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Adriana Carolina Prada-Ruiz
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Traci Gonzales
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Deborah L Brown
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Neethu M Menon
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Trinh T Nguyen
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Cindy K Jon
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Aravind Yadav
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas, USA
| |
Collapse
|
15
|
Inostroza-Nieves Y, Rivera A, Romero JR. Blockade of endothelin-1 receptor B regulates molecules of the major histocompatibility complex in sickle cell disease. Front Immunol 2023; 14:1124269. [PMID: 36926339 PMCID: PMC10011151 DOI: 10.3389/fimmu.2023.1124269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Major Histocompatibility Complex (MHC) molecules have been proposed to play a role in Sickle Cell Disease (SCD) pathophysiology. Endothelial cells express MHC molecules following exposure to cytokines. SCD is characterized, in part, by vascular endothelial cell activation, increased oxidative stress, sickle cell adhesion, and excess levels of endothelin-1 (ET-1) contributing to vaso-occlusive crises. ET-1 activates endothelial cells, induces oxidative stress and inflammation, and alters erythrocyte volume homeostasis. However, the role of ET-1 on MHC regulation in SCD is unclear. We first studied two sickle transgenic knockout mouse models of moderate to severe disease phenotype, βS-Antilles and Berkeley (BERK) mice. We observed significant increases in H2-Aa mRNA levels in spleens, lungs, and kidneys from transgenic sickle mice when compared to transgenic knockout mice expressing human hemoglobin A (HbA). Mice treated for 14 days with ET-1 receptor antagonists significantly reduced H2-Aa mRNA levels. We characterized the effect of ET-1 on MHC class II expression in the human endothelial cell line EA.hy926. We observed dose-dependent increases in the expression of MHC class II (HLA-DRA) and MHC transcription factor (CIITA) that were significantly blocked by treatment with BQ788, a selective blocker of ET-1 type B receptors. Chromatin immunoprecipitation studies in EA.hy926 cells showed that ET-1 increased Histone H3 acetylation of the HLA-DRA promoter, an event blocked by BQ788 treatment. These results implicate ET-1 as a novel regulator of MHC class II molecules and suggest that ET-1 receptor blockade represents a promising therapeutic approach to regulate both immune and vascular responses in SCD.
Collapse
Affiliation(s)
- Yaritza Inostroza-Nieves
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States.,Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Biochemistry and Pharmacology, San Juan Bautista School of Medicine, Caguas, Puerto Rico
| | - Alicia Rivera
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pathology, Harvard Medical School, Boston, MA, United States.,Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - José R Romero
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Sickle Cell Disease Pathophysiology and Related Molecular and Biophysical Biomarkers. Hematol Oncol Clin North Am 2022; 36:1077-1095. [DOI: 10.1016/j.hoc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Gu Q, Palani CD, Smith A, Li B, Amos-Abanyie EK, Ogu U, Lu L, Pace BS, Starlard-Davenport A. MicroRNA29B induces fetal hemoglobin via inhibition of the HBG repressor protein MYB in vitro and in humanized sickle cell mice. Front Med (Lausanne) 2022; 9:1043686. [PMID: 36507536 PMCID: PMC9732025 DOI: 10.3389/fmed.2022.1043686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Therapeutic strategies aimed at reactivating HBG gene transcription and fetal hemoglobin (HbF) synthesis remain the most effective strategy to ameliorate the clinical symptoms of sickle cell disease (SCD). We previously identified microRNA29B (MIR29B) as a novel HbF inducer via targeting enzymes involved in DNA methylation. We provided further evidence that the introduction of MIR29B into KU812 leukemia cells significantly reduced MYB protein expression. Therefore, the aim of this study was to determine the extent to which MIR29B mediates HbF induction via targeting MYB in KU812 leukemia cells and human primary erythroid progenitors and to investigate the role of MIR29B in HbF induction in vivo in the humanized Townes SCD mouse model. Materials and methods Human KU812 were cultured and normal CD34 cells (n = 3) were differentiated using a two-phase erythropoiesis culturing system and transfected with MIR29B (50 and 100 nM) mimic or Scrambled (Scr) control in vitro. A luciferase reporter plasmid overexpressing MYB was transfected into KU812 cells. Luciferase activity was quantified after 48 h. Gene expression was determined by quantitative real-time PCR. In vivo studies were conducted using Townes SCD mice (6 per group) treated with MIR29B (2, 3, and 4 mg/kg/day) or Scr control by 28-day continuous infusion using subcutaneous mini osmotic pumps. Blood samples were collected and processed for complete blood count (CBC) with differential and reticulocytes at weeks 0, 2, and 4. Flow cytometry was used to measure the percentage of HbF-positive cells. Results In silico analysis predicted complementary base-pairing between MIR29B and the 3'-untranslated region (UTR) of MYB. Overexpression of MIR29B significantly reduced MYB mRNA and protein expression in KU812 cells and erythroid progenitors. Using a luciferase reporter vector that contained the full-length MYB 3'-UTR, we observed a significant reduction in luciferase activity among KU812 cells that co-expressed MIR29B and the full-length MYB 3'-UTR as compared to cells that only expressed MYB 3'-UTR. We confirmed the inhibitory effect of a plasmid engineered to overexpress MYB on HBG activation and HbF induction in both KU812 cells and human primary erythroid progenitors. Co-expression of MIR29B and MYB in both cell types further demonstrated the inhibitory effect of MIR29B on MYB expression, resulting in HBG reactivation by real-time PCR, Western blot, and flow cytometry analysis. Finally, we confirmed the ability of MIR29B to reduce sickling and induce HbF by decreasing expression of MYB and DNMT3 gene expression in the humanized Townes sickle cell mouse model. Discussion Our findings support the ability of MIR29B to induce HbF in vivo in Townes sickle cell mice. This is the first study to provide evidence of the ability of MIR29B to modulate HBG transcription by MYB gene silencing in vivo. Our research highlights a novel MIR-based epigenetic approach to induce HbF supporting the discovery of new drugs to expand treatment options for SCD.
Collapse
Affiliation(s)
- Qingqing Gu
- Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chithra D. Palani
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, United States,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, United States
| | - Alana Smith
- Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Biaori Li
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, United States,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, United States
| | - Ernestine Kubi Amos-Abanyie
- Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ugochi Ogu
- Center for Sickle Cell Disease, Department of Medicine-Hematology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Betty S. Pace
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, United States,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, United States
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States,Center for Sickle Cell Disease, The University of Tennessee Health Science Center, Memphis, TN, United States,*Correspondence: Athena Starlard-Davenport,
| |
Collapse
|
18
|
Lad H, Naskar S, Punyasri Pasupuleti SKDB, Nahrel R, Sihare P, Chandak GR, Patra PK. Evaluation of pharmacological efficacy and safety of hydroxyurea in sickle cell disease: Study of a pediatric cohort from Chhattisgarh, India. Pediatr Hematol Oncol 2022; 40:395-406. [PMID: 36226857 DOI: 10.1080/08880018.2022.2126042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Sickle cell disease (SCD) is a disease of abnormal hemoglobin associated with severe clinical phenotype and recurrent complications. Hydroxyurea (HU) is one of the US-FDA approved and commonly used drug for the treatment of adult SCD patients with clinical -severity. However, its use in the pediatric groups remains atypical. Despite a high prevalence of the disease in the state Chhattisgarh, there is a lack of evidence supporting its use in pediatric patients. This study aimed to evaluate the pharmacological and clinical efficacy and safety of HU in a large pediatric cohort with SCD from Central India. The study cohort consisted of 164 SCD (138 Hb SS and 26 Hb S beta-thalassemia) children (≤14 years of age) on HU therapy, who were monitored for toxicity, hematological and clinical efficacy at baseline (Pre-HU) and after 24 months (Post-HU). The results highlight the beneficial effects of HU at a mean dose of 18.7 ± 7.0 mg/kg/day. A significant improvement was observed, not only in physical and clinical parameters but also in hematological parameters which include fetal hemoglobin (Hb F), total hemoglobin, hematocrit, mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) levels, when evaluated against the baseline. We did not observe any significant adverse effects during the treatment period. Similar results were obtained on independent analysis of Hb SS and Hb Sβ patients. These findings strengthen the beneficial effect of hydroxyurea in pediatric population also without any serious adverse effects and builds up ground for expanding its use under regular monitoring.
Collapse
Affiliation(s)
- Harsha Lad
- Chhattisgarh Institute of Medical Sciences (CIMS), Bilaspur, Chhattisgarh, India
| | - Shoma Naskar
- Genomic Research on Complex diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, Telangana, India
| | - S K D B Punyasri Pasupuleti
- Genomic Research on Complex diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, Telangana, India
| | - Rakesh Nahrel
- Chhattisgarh Institute of Medical Sciences (CIMS), Bilaspur, Chhattisgarh, India
| | - Pradeep Sihare
- Sihare Children's Hospital, Bilaspur, Chhattisgarh, India
| | - Giriraj R Chandak
- Genomic Research on Complex diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, Telangana, India
| | - Pradeep K Patra
- Chhattisgarh Institute of Medical Sciences (CIMS), Bilaspur, Chhattisgarh, India
| |
Collapse
|
19
|
Coexistence of sickle cell disease and systemic lupus erythematosus is associated with quantitative and qualitative impairments in circulating regulatory B cells. Hum Immunol 2022; 83:818-825. [DOI: 10.1016/j.humimm.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022]
|
20
|
Abstract
Sickle cell disease (SCD) is characterized by variable clinical outcomes, with some patients suffering life-threatening complications during childhood, and others living relatively symptom-free into old age. Because of this variability, there is an important potential role for precision medicine, in which particular different treatments are selected for different groups of patients. However, the application of precision medicine in SCD is limited by difficulties in identifying different prognostic groups and the small number of available treatments. The main genetic determinant of outcomes in SCD is the underlying β-globin genotype, with sickle cell anemia (HbSS) and hemoglobin SC disease (HbSC) forming the 2 major forms of the disease in most populations of African origin. Although there are clear differences in clinical outcomes between these conditions, treatments approaches are very similar, with little evidence on how to treat HbSC in particular. Other genomic information, such as the co-inheritance of α-thalassemia, or high fetal hemoglobin (HbF) levels, is of some prognostic value but insufficient to determine treatments. Precision medicine is further limited by the fact that the 2 main drugs used in SCD, penicillin and hydroxyurea, are currently recommended for all patients. Newer treatments, such as crizanlizumab and voxelotor, raise the possibility that groups will emerge who respond best to particular drugs or combinations. Perhaps the best current example of precision medicine in SCD is the selective use of blood transfusions as primary stroke prevention in children with evidence of cerebral vasculopathy. More precise treatments may emerge as we understand more about the pathology of SCD, including problems with erythropoiesis.
Collapse
|
21
|
Azul M, Vital EF, Lam WA, Wood DK, Beckman JD. Microfluidic methods to advance mechanistic understanding and translational research in sickle cell disease. Transl Res 2022; 246:1-14. [PMID: 35354090 PMCID: PMC9218997 DOI: 10.1016/j.trsl.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
Abstract
Sickle cell disease (SCD) is caused by a single point mutation in the β-globin gene of hemoglobin, which produces an altered sickle hemoglobin (HbS). The ability of HbS to polymerize under deoxygenated conditions gives rise to chronic hemolysis, oxidative stress, inflammation, and vaso-occlusion. Herein, we review recent findings using microfluidic technologies that have elucidated mechanisms of oxygen-dependent and -independent induction of HbS polymerization and how these mechanisms elicit the biophysical and inflammatory consequences in SCD pathophysiology. We also discuss how validation and use of microfluidics in SCD provides the opportunity to advance development of numerous therapeutic strategies, including curative gene therapies.
Collapse
Affiliation(s)
- Melissa Azul
- Department of Pediatrics, Mayo Clinic, Rochester, Minnesota
| | - Eudorah F Vital
- Wallace H. Coulter Department of Biomedical Engineering and Institute for Electronics and Nanotechnology, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Wilbur A Lam
- Wallace H. Coulter Department of Biomedical Engineering and Institute for Electronics and Nanotechnology, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - David K Wood
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Joan D Beckman
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
22
|
Pradhan-Sundd T, Kato GJ, Novelli EM. Molecular Mechanisms of Hepatic Dysfunction in Sickle Cell Disease: Lessons From The Townes Mouse Model. Am J Physiol Cell Physiol 2022; 323:C494-C504. [PMID: 35759437 PMCID: PMC9359658 DOI: 10.1152/ajpcell.00175.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sickle cell disease (SCD) is an autosomal-recessive-genetic disorder that affects ~100,000 Americans and millions of people worldwide. Erythrocyte sickling, vaso-occlusion, sterile inflammation and hemolysis are the major pathophysiological pathways leading to liver injury in SCD. Although hepatic dysfunction affects up to 10-40% of SCD patients, therapeutic approaches to prevent liver injury in SCD are not known, and the molecular mechanisms promoting progressive liver injury in SCD remain poorly understood. Animal models have been beneficial in bridging the gap between preclinical and translational research in SCD. Recent advances in methodology have allowed the development of several humanized mouse models to address various aspects of SCD related liver diseases. This review provides an overview of current knowledge of the molecular mechanisms and potential therapeutic options of SCD associated liver dysfunction using the Townes mouse model.
Collapse
Affiliation(s)
- Tirthadipa Pradhan-Sundd
- Pittsburgh Heart, Liver and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Enrico M Novelli
- Pittsburgh Heart, Liver and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
23
|
Determinants of severity in sickle cell disease. Blood Rev 2022; 56:100983. [PMID: 35750558 DOI: 10.1016/j.blre.2022.100983] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022]
Abstract
Sickle cell disease is a very variable condition, with outcomes ranging from death in childhood to living relatively symptom free into the 8th decade. Much of this variability is unexplained. The co-inheritance of α thalassaemia and factors determining HbF levels significantly modify the phenotype, but few other significant genetic variants have been identified, despite extensive studies. Environmental factors are undoubtedly important, with socio-economics and access to basic medical care explaining the huge differences in outcomes between many low- and high-income countries. Exposure to cold and windy weather seems to precipitate acute complications in many people, although these effects are unpredictable and vary with geography. Many studies have tried to identify prognostic factors which can be used to predict outcomes, particularly when applied in infancy. Overall, low haemoglobin, low haemoglobin F percentage and high reticulocytes in childhood are associated with worse outcomes, although again these effects are fairly weak and inconsistent.
Collapse
|
24
|
Starlard-Davenport A, Gu Q, Pace BS. Targeting Genetic Modifiers of HBG Gene Expression in Sickle Cell Disease: The miRNA Option. Mol Diagn Ther 2022; 26:497-509. [PMID: 35553407 PMCID: PMC9098152 DOI: 10.1007/s40291-022-00589-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
Sickle cell disease (SCD) is one of the most common inherited hemoglobinopathy disorders that affects millions of people worldwide. Reactivation of HBG (HBG1, HBG2) gene expression and induction of fetal hemoglobin (HbF) is an important therapeutic strategy for ameliorating the clinical symptoms and severity of SCD. Hydroxyurea is the only US FDA-approved drug with proven efficacy to induce HbF in SCD patients, yet serious complications have been associated with its use. Over the last three decades, numerous additional pharmacological agents that reactivate HBG transcription in vitro have been investigated, but few have proceeded to FDA approval, with the exception of arginine butyrate and decitabine; however, neither drug met the requirements for routine clinical use due to difficulties with oral delivery and inability to achieve therapeutic levels. Thus, novel approaches that produce sufficient efficacy, specificity, and sustainable HbF induction with low adverse effects are desirable. More recently, microRNAs (miRNAs) have gained attention for their diagnostic and therapeutic potential to treat various diseases ranging from cancer to Alzheimer’s disease via targeting oncogenes and their gene products. Thus, it is plausible that miRNAs that target HBG regulatory genes may be useful for inducing HbF as a treatment for SCD. Our laboratory and others have documented the association of miRNAs with HBG activation or suppression via silencing transcriptional repressors and activators, respectively, of HBG expression. Herein, we review progress made in understanding molecular mechanisms of miRNA-mediated HBG regulation and discuss the extent to which molecular targets of HBG might be suitable prospects for development of SCD clinical therapy. Lastly, we discuss challenges with the application of miRNA delivery in vivo and provide potential strategies for overcoming barriers in the future.
Collapse
Affiliation(s)
- Athena Starlard-Davenport
- College of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Qingqing Gu
- College of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
| | - Betty S Pace
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, USA.,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| |
Collapse
|
25
|
Franck P, Buijs P, Meenhuis A, Dane M, Postma C, Spaans A, Gijsbertha N, Kuypers FA, Hudig C, Kerkhoffs JL. The ektacytometric elongation Index (EI) of erythrocytes, validation of a prognostic, rheological biomarker for patients with sickle cell disease. Eur J Haematol Suppl 2022; 108:413-422. [PMID: 35088912 DOI: 10.1111/ejh.13748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Validation of the measurement of erythrocyte deformability as a useful prognostic, rheological biomarker for patients with sickle cell disease (SCD). METHODS The degree of reduced deformability was based on the value of the maximum elongation index (EImax ) of the deformability curve of an osmotic gradient ektacytometer. The performance of this technique was analytically and clinically validated by analysing 200 normal subjects and 100 patients with well-documented thalassemia's and Hb variants in relation to their clinical condition. RESULTS In this study, we show that EImax is a reproducible parameter with a small inter-individual coefficient of (Biological) variation (CV)=1.6% and a small intra-individual CV=3.5%. We demonstrate that loss of deformability correlates with the clinical condition and the various mutations underlying sickle cell disease and thalassemia. For SCD patients, a strongly reduced EImax with a cut-off =0.360 is a signal for future vaso-occlusive (VOC) events requiring hospitalisation with a specificity=85%, sensitivity=80%, PPV=81% and NPV=84% based on a ROC curve (AUC=0.89). CONCLUSION This study validated the clinical utility of EImax as a prognostic marker for future clinical problems in individual high-risk SCD patients. In addition, EImax may help to achieve an adequate personal transfusion policy for an optimal blood flow in anaemic patients with SCD.
Collapse
Affiliation(s)
- Paul Franck
- Laboratory of Clinical Chemistry and Hematology, LabWest / Haga Teaching Hospital, The Hague, The Netherlands
| | - Petra Buijs
- Department of Hematology, Haga Teaching Hospital, The Hague, The Netherlands
| | - Annemarie Meenhuis
- Laboratory of Clinical Chemistry and Hematology, Tergooi Medical Centre, Hilversum, The Netherlands
| | - Martijn Dane
- Laboratory of Clinical Chemistry and Hematology, LabWest / Haga Teaching Hospital, The Hague, The Netherlands
| | - Cobie Postma
- Laboratory of Clinical Chemistry and Hematology, LabWest / Haga Teaching Hospital, The Hague, The Netherlands
| | - Anja Spaans
- Laboratory of Clinical Chemistry and Hematology, LabWest / Haga Teaching Hospital, The Hague, The Netherlands
| | | | - Frans A Kuypers
- Division of Hematology, Department of Pediatrics, University of California, San Francisco, USA
| | - Cisca Hudig
- Laboratory of Clinical Chemistry and Hematology, LabWest / Haga Teaching Hospital, The Hague, The Netherlands
| | | |
Collapse
|
26
|
Hoogenboom WS, Alamuri TT, McMahon DM, Balanchivadze N, Dabak V, Mitchell WB, Morrone KB, Manwani D, Duong TQ. Clinical outcomes of COVID-19 in patients with sickle cell disease and sickle cell trait: A critical appraisal of the literature. Blood Rev 2022; 53:100911. [PMID: 34838342 PMCID: PMC8605823 DOI: 10.1016/j.blre.2021.100911] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/18/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023]
Abstract
Individuals with sickle cell disease (SCD) and sickle cell trait (SCT) have many risk factors that could make them more susceptible to COVID-19 critical illness and death compared to the general population. With a growing body of literature in this field, a comprehensive review is needed. We reviewed 71 COVID-19-related studies conducted in 15 countries and published between January 1, 2020, and October 15, 2021, including a combined total of over 2000 patients with SCD and nearly 2000 patients with SCT. Adults with SCD typically have a mild to moderate COVID-19 disease course, but also a 2- to 7-fold increased risk of COVID-19-related hospitalization and a 1.2-fold increased risk of COVID-19-related death as compared to adults without SCD, but not compared to controls with similar comorbidities and end-organ damage. There is some evidence that persons with SCT have increased risk of COVID-19-related hospitalization and death although more studies with risk-stratification and properly matched controls are needed to confirm these findings. While the literature suggests that most children with SCD and COVID-19 have mild disease and low risk of death, some children with SCD, especially those with SCD-related comorbidities, are more likely to be hospitalized and require escalated care than children without SCD. However, children with SCD are less likely to experience COVID-19-related severe illness and death compared to adults with or without SCD. SCD-directed therapies such as transfusion and hydroxyurea may be associated with better COVID-19 outcomes, but prospective studies are needed for confirmation. While some studies have reported favorable short-term outcomes for COVID-19 patients with SCD and SCT, the long-term effects of SARS-CoV-2 infection are unknown and may affect individuals with SCD and SCT differently from the general population. Important focus areas for future research should include multi-center studies with larger sample sizes, assessment of hemoglobin genotype and SCD-modifying therapies on COVID-19 outcomes, inclusion of case-matched controls that account for the unique sample characteristics of SCD and SCT populations, and longitudinal assessment of post-COVID-19 symptoms.
Collapse
Affiliation(s)
- Wouter S. Hoogenboom
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA,Corresponding authors at: Albert Einstein College of Medicine and Montefiore Medical Center, Department of Radiology, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Tharun T. Alamuri
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Daniel M. McMahon
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Nino Balanchivadze
- Department of Hematology and Oncology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Vrushali Dabak
- Department of Hematology and Oncology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - William B. Mitchell
- Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Kerry B. Morrone
- Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Deepa Manwani
- Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Tim Q. Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA,Corresponding authors at: Albert Einstein College of Medicine and Montefiore Medical Center, Department of Radiology, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| |
Collapse
|
27
|
Mawalla WF, Nasser A, Jingu JS, Joseph H, Mmbaga LG, Shija E, Kakumbula H, Lubuva NB, Meda C, Chamba C. Acute chest syndrome and COVID‐19 in hydroxyurea naïve sickle cell disease patient in a low resource setting. EJHAEM 2022; 3:507-512. [PMID: 35602245 PMCID: PMC9110990 DOI: 10.1002/jha2.397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Acute chest syndrome (ACS) is a severe complication of sickle cell disease (SCD) and one of the leading causes of mortality in SCD patients. The management of ACS is challenging and requires prompt intervention to halt clinical deterioration. With the outbreak of the Coronavirus Disease 2019 (COVID‐19) pandemic, which also primarily results in acute respiratory illness, the clinical picture and treatment outcome in SCD patients with ACS remain unknown. We present a case of a 30‐year‐old male who came in with features of painful vaso‐occlusive episode and haemolysis that later evolved to acute chest syndrome. Chest X‐ray showed pneumonic changes and mild bilateral pleural effusion, and nasal Reverse Transcription‐Polymerase Chain Reaction (RT‐PCR) for COVID‐19 test came out positive. He was managed supportively with simple transfusion, antibiotics, dexamethasone and oxygen support with a good clinical outcome. Presenting with non‐specific symptoms and similar respiratory symptoms and signs, the clinical picture of COVID‐19 can prove difficult to discern from that of ACS due to other causes. This report emphasizes a need for a higher index of suspicion whenever a SCD patient presents with symptoms of acute respiratory distress.
Collapse
Affiliation(s)
- William Frank Mawalla
- Department of Haematology and Blood Transfusion Muhimbili University of Health and Allied Sciences Dar es Salaam Tanzania
| | - Ahlam Nasser
- Department of Haematology and Blood Transfusion Muhimbili University of Health and Allied Sciences Dar es Salaam Tanzania
| | - James Salumu Jingu
- Department of Internal Medicine Muhimbili National Hospital Dar es Salaam Tanzania
| | - Happiness Joseph
- Department of Haematology and Blood Transfusion Muhimbili University of Health and Allied Sciences Dar es Salaam Tanzania
| | - Lilian Gasper Mmbaga
- Department of Haematology and Blood Transfusion Muhimbili University of Health and Allied Sciences Dar es Salaam Tanzania
| | - Eunice Shija
- Department of Haematology and Blood Transfusion Muhimbili University of Health and Allied Sciences Dar es Salaam Tanzania
| | - Helena Kakumbula
- Department of Internal Medicine Muhimbili National Hospital Dar es Salaam Tanzania
| | - Neema Budodi Lubuva
- Department of Internal Medicine Muhimbili National Hospital Dar es Salaam Tanzania
| | - Collins Meda
- Department of Internal Medicine Muhimbili National Hospital Dar es Salaam Tanzania
| | - Clara Chamba
- Department of Haematology and Blood Transfusion Muhimbili University of Health and Allied Sciences Dar es Salaam Tanzania
| |
Collapse
|
28
|
Adeniyi O, Baptista R, Bhowmick S, Cookson A, Nash RJ, Winters A, Shen J, Mur LAJ. Isolation and Characterisation of Quercitrin as a Potent Anti-Sickle Cell Anaemia Agent from Alchornea cordifolia. J Clin Med 2022; 11:jcm11082177. [PMID: 35456270 PMCID: PMC9024604 DOI: 10.3390/jcm11082177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 02/02/2023] Open
Abstract
Alchornea cordifolia Müll. Arg. (commonly known as Christmas Bush) has been used traditionally in Africa to treat sickle cell anaemia (a recessive disease, arising from the S haemoglobin (Hb) allele), but the active compounds are yet to be identified. Herein, we describe the use of sequential fractionation coupled with in vitro anti-sickling assays to purify the active component. Sickling was induced in HbSS genotype blood samples using sodium metabisulphite (Na2S2O5) or through incubation in 100% N2. Methanol extracts of A. cordifolia leaves and its sub-fractions showed >70% suppression of HbSS erythrocyte sickling. The purified compound demonstrated a 87.2 ± 2.39% significant anti-sickling activity and 93.1 ± 2.69% erythrocyte sickling-inhibition at 0.4 mg/mL. Nuclear magnetic resonance (NMR) spectra and high-resolution mass spectroscopy identified it as quercitrin (quercetin 3-rhamnoside). Purified quercitrin also inhibited the polymerisation of isolated HbS and stabilized sickle erythrocytes membranes. Metabolomic comparisons of blood samples using flow-infusion electrospray-high resolution mass spectrometry indicated that quercitrin could convert HbSS erythrocyte metabolomes to be like HbAA. Sickling was associated with changes in antioxidants, anaerobic bioenergy, and arachidonic acid metabolism, all of which were reversed by quercitrin. The findings described could inform efforts directed to the development of an anti-sickling drug or quality control assessments of A. cordifolia preparations.
Collapse
Affiliation(s)
- Olayemi Adeniyi
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (O.A.); (R.B.); (S.B.); (A.C.); (A.W.)
- Biochemistry Unit, Department of Science Technology, The Federal Polytechnic, Ado-Ekiti 360231, Nigeria
| | - Rafael Baptista
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (O.A.); (R.B.); (S.B.); (A.C.); (A.W.)
| | - Sumana Bhowmick
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (O.A.); (R.B.); (S.B.); (A.C.); (A.W.)
| | - Alan Cookson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (O.A.); (R.B.); (S.B.); (A.C.); (A.W.)
| | - Robert J. Nash
- PhytoQuest Ltd., Plas Gogerddan, Aberystwyth SY23 3EB, UK;
| | - Ana Winters
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (O.A.); (R.B.); (S.B.); (A.C.); (A.W.)
| | - Jianying Shen
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: (J.S.); (L.A.J.M.)
| | - Luis A. J. Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (O.A.); (R.B.); (S.B.); (A.C.); (A.W.)
- Correspondence: (J.S.); (L.A.J.M.)
| |
Collapse
|
29
|
Cordovil K, Crivelli M, Brito FDSB, Fleury M. Body composition, energy expenditure, and markers of hemolysis in adults with sickle cell disease. THE NORTH AFRICAN JOURNAL OF FOOD AND NUTRITION RESEARCH 2022; 6:55-65. [DOI: 10.51745/najfnr.6.13.55-65] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/03/2022] [Indexed: 08/05/2024]
Abstract
Background: Historically, malnutrition is described in individuals with SCD. However, more recent studies have shown a change in the profile of the nutritional status and distribution of body composition of SCD patients, mainly adult individuals. Aims: To assess the body composition (BC), resting energy expenditure (REE), and the biomarkers of hemolysis in adults with sickle cell disease (SCD). Subjects and Methods: A cross-sectional observational study was performed with 64 individuals over 39 years old in the treatment from two reference centers for SCD located in the city of Rio de Janeiro, Brazil. The dual-energy X-ray absorptiometry (DXA) and indirect calorimetry were used to assess BC and REE, respectively. Blood levels of hemoglobin, reticulocytes, lactate dehydrogenase (LDH), leukocytes, platelets, total and direct bilirubin, total protein, and albumin were measured to assess the hemolysis and protein status. The descriptive and inferential analysis was composed of the different methods (one-way ANOVA with the multiple comparison test of Tukey, Student t-test, and Pearson's correlation coefficient). Were considered statistically significant when the p-values were ≤ 0.05. Results: Most participants with SCD were female sex, colored (brown/black), and mean age of 51.2 years old. The obesity prevalence was 70.7% according to the body fat (BF%), with a major mean among women (p < 0.0001). Men had a higher mean of lean mass (LM) (p=0.0005) and fat-free mass (FFM) (p=0.0007). There was no difference for REE in comparing the genotypes (p= 0.53), and genders (p=0.075). The hemolysis markers (LDH, reticulocytes, and TB) correlated inversely with BMI (p=0.013), FM (p=0.022), and FFM (p=0.034). Conclusions: The important change observed in body composition in people with sickle cell disease was characterized by a high percentage of fat body and a decrease in lean mass. The hemolysis markers LDH, reticulocytes, and BT correlated inversely with BMI, FM, and FFM indicating that high levels of hemolysis may affect nutritional status, without influencing the REE.
Keywords: sickle cell disease, body composition, fat mass, fat-free mass, energy expenditure, hemolysis.
Collapse
Affiliation(s)
- Karen Cordovil
- Postgraduate Program in Medical Science, Medical Science College, State University of Rio de Janeiro. Professor Manoel de Abreu Avenue, 444, second floor, Vila Isabel. Rio de Janeiro, RJ, Brazil. Zip Code 20550-170
| | - Marise Crivelli
- Postgraduate Program in Nutrition, Food and Health, Nutrition Institute, State University of Rio de Janeiro. São Francisco Xavier Street, 900, João Lyra Filho Pavilion, Twelfth floor, Maracanã, Rio de Janeiro, RJ, Brazil. Zip Code 20550-000
| | - Flávia dos Santos Barbosa Brito
- Department Social Nutrition, Nutrition Institute, State University of Rio de Janeiro. São Francisco Xavier Street, 900, João Lyra Filho Pavilion, Twelfth floor - Maracanã, Rio de Janeiro, RJ, Brazil. Zip Code 20550-000
| | - Marcos Fleury
- Laboratory Clinical Analysis, Pharmacy College, Federal University of Rio de Janeiro. Carlos Chagas Filho Avenue, Block K, Room 50, Ilha do Fundão, Cidade Universitária, Rio de Janeiro, RJ, Brazil. Zip Code 21941-590
| |
Collapse
|
30
|
Shear-Stress-Gradient and Oxygen-Gradient Ektacytometry in Sickle Cell Patients at Steady State and during Vaso-Occlusive Crises. Cells 2022; 11:cells11030585. [PMID: 35159394 PMCID: PMC8834105 DOI: 10.3390/cells11030585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Oxygen gradient ektacytometry (oxygenscan) measures the changes in red blood cell (RBC) deformability in normoxia and during deoxygenation. We investigated the changes in RBC deformability, measured by both oxygenscan and classical shear-stress-gradient ektacytometry, in 10 patients with sickle cell disease (SCD) during vaso-occlusive crisis (VOC) versus steady state. Oxygenscan and shear-stress-gradient ektacytometry parameters were also measured in 38 SCD patients at steady state on two different occasions. Shear-stress-gradient ektacytometry parameters, maximal RBC deformability at normoxia and the minimum RBC deformability during deoxygenation were lower during VOC compared to steady state. The oxygen partial pressure at which RBCs started to sickle (PoS) was not significantly affected by VOC, but the results were very heterogeneous: the PoS increased in 5 in 10 patients and decreased in 4 in 10 patients. Both oxygenscan and shear-stress-gradient ektacytometry parameters remained unchanged in patients at steady state between two sets of measurements, performed at 17 ± 8 months intervals. In conclusion, the present study showed that both oxygen gradient ektacytometry and shear-stress-gradient ektacytometry are sensitive to disease activity in SCD, and that both techniques give comparable results; however, the oxygen-dependent propensity of RBCs to sickle was highly variable during VOC.
Collapse
|
31
|
Ben Moftah M, Eswayah A. Repurposing of Hydroxyurea Against COVID-19: A Promising Immunomodulatory Role. Assay Drug Dev Technol 2022; 20:55-62. [PMID: 34990284 DOI: 10.1089/adt.2021.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cytokine release syndrome, a prominent mechanism of morbidity and mortality in patients with coronavirus disease 2019 (COVID-19), can cause multiple bodily reactions, including excessive release of proinflammatory mediators, with tumor necrosis factor-α (TNF-α) being the most prevalent cytokine combined with persistently elevated D-dimer levels that are indicative of potential thrombotic events, low levels of endogenous nitric oxide (NO) generation, and progressive decrease in hemoglobin production. In our argument, the conceptual repurposing of hydroxyurea (HU) for managing COVID-19 can provide a promising therapeutic option originating from a rich history of investigational antiviral activity. HU as a proposed supportive therapeutic agent for treating COVID-19 can exemplify a successful remedial choice through its anti-inflammatory activity along with an intrinsic propensity to control the circulatory levels of key cytokines including TNF-α. HU has the ability to undergo in vivo NO conversion acting as NO donor together with being a prominent inducer of fetal hemoglobin (HbF) production. The combination of the mentioned two properties allows HU to possess evident capability of protecting against thrombotic events by controlling D-dimer levels. The implication of our hypothetical argument sheds light on the curative potential of HU, which can be strategically harnessed against COVID-19.
Collapse
Affiliation(s)
- Moayed Ben Moftah
- Department of Medicinal and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tripoli, Tripoli, Libya
| | - Asma Eswayah
- Department of Medicinal and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tripoli, Tripoli, Libya
| |
Collapse
|
32
|
de Azevedo JTC, Costa TCDM, Lima KC, Maciel TT, Palma PVB, Darrigo-Júnior LG, Setanni Grecco CE, Stracieri ABPL, Elias JB, Pieroni F, Guerino-Cunha RL, Pinto ACS, De Santis GC, Covas DT, Hermine O, Simões BP, Oliveira MC, Malmegrim KCR. Long-Term Effects of Allogeneic Hematopoietic Stem Cell Transplantation on Systemic Inflammation in Sickle Cell Disease Patients. Front Immunol 2021; 12:774442. [PMID: 34956203 PMCID: PMC8696202 DOI: 10.3389/fimmu.2021.774442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only currently available curative treatment for sickle cell disease (SCD). However, the effects of HSCT on SCD pathophysiology are poorly elucidated. Here, we assessed red blood cell (RBC) adhesiveness, intensity of hemolysis, vascular tone markers and systemic inflammation, in SCD patients treated with allogeneic HSCT. Thirty-two SCD patients were evaluated before and on long-term follow-up after HSCT. Overall survival was 94% with no severe (grade III-IV) graft-vs-host disease and a 22% rejection rate (graft failure). Hematological parameters, reticulocyte counts, and levels of lactate dehydrogenase (LDH), endothelin-1 and VCAM-1 normalized in SCD patients post-HSCT. Expression of adhesion molecules on reticulocytes and RBC was lower in patients with sustained engraftment. Levels of IL-18, IL-15 and LDH were higher in patients that developed graft failure. Increased levels of plasma pro-inflammatory cytokines, mainly TNF-α, were found in SCD patients long-term after transplantation. SCD patients with sustained engraftment after allo-HSCT showed decreased reticulocyte counts and adhesiveness, diminished hemolysis, and lower levels of vascular tonus markers. Nevertheless, systemic inflammation persists for at least five years after transplantation, indicating that allo-HSCT does not equally affect all aspects of SCD pathophysiology.
Collapse
Affiliation(s)
- Júlia Teixeira Cottas de Azevedo
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program in Basic and Applied Immunology of the Ribeirão Preto Medicinal School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thalita Cristina de Mello Costa
- Bone Marrow Transplantation and Cellular Therapy Unit, University Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Keli Cristina Lima
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program in Bioscience and Biotechnology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Thiago Trovati Maciel
- Institut national de la santé et de la recherche médicale (INSERM) Unité mixte de recherche (UMR) 1163, Centre national de la recherche scientifique (CNRS) Equipe de Recherche Labellisée (ERL) 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Imagine Institute, Paris, France.,Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Patrícia Vianna Bonini Palma
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Guilherme Darrigo-Júnior
- Bone Marrow Transplantation and Cellular Therapy Unit, University Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Ana Beatriz P L Stracieri
- Bone Marrow Transplantation and Cellular Therapy Unit, University Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Juliana Bernardes Elias
- Bone Marrow Transplantation and Cellular Therapy Unit, University Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fabiano Pieroni
- Bone Marrow Transplantation and Cellular Therapy Unit, University Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Renato Luiz Guerino-Cunha
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Cristina Silva Pinto
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gil Cunha De Santis
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Olivier Hermine
- Institut national de la santé et de la recherche médicale (INSERM) Unité mixte de recherche (UMR) 1163, Centre national de la recherche scientifique (CNRS) Equipe de Recherche Labellisée (ERL) 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Imagine Institute, Paris, France.,Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Belinda Pinto Simões
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Carolina Oliveira
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Internal Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen Cristina Ribeiro Malmegrim
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
33
|
Abdulwahab H, Aljishi M, Sultan A, Al-Kafaji G, Sridharan K, Bakhiet M, Taha S. Whole blood transcriptomic analysis reveals PLSCR4 as a potential marker for vaso-occlusive crises in sickle cell disease. Sci Rep 2021; 11:22199. [PMID: 34772994 PMCID: PMC8590045 DOI: 10.1038/s41598-021-01702-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022] Open
Abstract
Sickle cell disease, a common genetic blood disorder, results from a point mutation in the β-globin gene affecting the configuration of hemoglobin, predisposing to painful vaso-occlusive crisis (VOC) and multi-organ dysfunctions. There is a huge variation in the phenotypic expressions of SCD and VOC owing to genetic and environmental factors. This study aimed to characterize the whole blood gene expression profile using Microarray technology in Bahraini patients with SCD determining the differentially expressed genes in steady-state (n = 10) and during VOC (n = 10) in comparison to healthy controls (n = 8). Additionally, the study intended to identify potential genetic marker associated with hemolysis. The analysis identified 2073 and 3363 genes that were dysregulated during steady-state and VOC, respectively, compared to healthy controls. Moreover, 1078 genes were differentially expressed during VOC compared to steady state. The PLSCR4 gene was almost 6-fold up-regulated in microarray, 4-fold in polymerase chain reaction, and a mean protein concentration of 0.856 ng/ml was observed in enzyme-linked immunosorbent assay during VOC compared to steady-state (0.238 ng/ml) (p < 0.01). Amongst these genes, PLSCR4 is involved in erythrocyte membrane deformity thus, predisposing to hemolysis, adhesion, and thrombosis. In conclusion, PLSCR4 may serve as a potential biomarker for VOC and future large-scale validation are recommended.
Collapse
Affiliation(s)
- Hawra Abdulwahab
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al Jawhara Center for Molecular Medicine, Genetics and Inherited Diseases, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Muna Aljishi
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al Jawhara Center for Molecular Medicine, Genetics and Inherited Diseases, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Ameera Sultan
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al Jawhara Center for Molecular Medicine, Genetics and Inherited Diseases, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Ghada Al-Kafaji
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al Jawhara Center for Molecular Medicine, Genetics and Inherited Diseases, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Kannan Sridharan
- Department of Pharmacology and Therapeutics, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Moiz Bakhiet
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al Jawhara Center for Molecular Medicine, Genetics and Inherited Diseases, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Safa Taha
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al Jawhara Center for Molecular Medicine, Genetics and Inherited Diseases, Arabian Gulf University, Manama, Kingdom of Bahrain.
| |
Collapse
|
34
|
Renella R. Biomarkers for the central nervous system complications of sickle cell disease: are we there yet? Proteomics Clin Appl 2021; 15:e2100026. [PMID: 34160906 DOI: 10.1002/prca.202100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/19/2021] [Indexed: 11/10/2022]
Abstract
Sickle cell disease (SCD, OMIM #603903), an autosomal recessively inherited β-hemoglobinopathy, was the first human disorder delineated at a molecular level. The putative single nucleotide mutation in the HBB gene generates an abnormal hemoglobin species, which polymerizes in deoxygenated conditions causing irreversible changes in erythrocyte shape and function. Sickling erythrocytes are in turn responsible for microvascular vaso-occlusion, hemolysis and a systemic vasculopathy in patients. SCD has represented an attractive field for proteomic investigation since its methodological infancy. Clinically actionable biomarkers, especially for the prevention of cerebrovascular complications in children with the condition, are urgently needed and their discovery remains a major challenge. In this issue, Lance and colleagues report of their unbiased proteomic studies on samples from the participants of the landmark prospective, randomized, single-blind SIT trial (NEJM 2014). Their results reveal numerous brain-enriched plasma proteins specific for SCD, and for silent cerebral infarcts in this disorder, and further analyses highlight novel cellular mechanisms behind the brain damage in SCD. Although the goal of identifying reliable biomarker candidates for cerebrovascular complications could not be met, the dataset produced by the authors constitutes a significant contribution to the field and opens new horizons for further clinical and laboratory investigation.
Collapse
Affiliation(s)
- Raffaele Renella
- Pediatric Hematology-Oncology Unit, Division of Pediatrics, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
35
|
Njoku F, Zhang X, Shah BN, Machado RF, Han J, Saraf SL, Gordeuk VR. Biomarkers of clinical severity in treated and untreated sickle cell disease: a comparison by genotypes of a single center cohort and African Americans in the NHANES study. Br J Haematol 2021; 194:767-778. [PMID: 34268729 PMCID: PMC8373676 DOI: 10.1111/bjh.17682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022]
Abstract
Haemolysis and vaso-occlusion underlie multi-organ system complications in sickle cell disease (SCD). We assessed real-world biomarkers in University of Illinois adult SCD patients, categorised as severe (HbSS/Sβ0 -thalassaemia; n = 342) or mild (HbSC/Sβ+ -thalassaemia; n = 100) genotypes and stratified according to treatment. African-American controls from the National Health and Nutrition Examination Survey (NHANES) were matched with each genotype category. Most measures of haemolysis, anaemia, inflammation and function of kidneys, liver and lungs differed markedly in untreated severe genotype patients compared to NHANES controls. These same biomarkers were significantly closer to the NHANES control range in untreated mild versus severe genotype patients, but they were not improved in severe genotype patients receiving treatment with hydroxycarbamide or blood transfusions, except that haemoglobin and HbF were higher with hydroxycarbamide. Systolic blood pressures did not differ among the SCD and NHANES groups, but diastolic pressures were higher in mild genotype patients. Ferritin in severe genotype patients on chronic transfusions was 50-fold higher than NHANES controls. The cross-sectional real-world biomarkers of patients on hydroxycarbamide or transfusions were not markedly improved compared to untreated patients. This may be due partly to poor compliance or more severe disease. Our findings highlight the need for more effective treatments.
Collapse
Affiliation(s)
- Franklin Njoku
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Xu Zhang
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Binal N. Shah
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN
| | - Jin Han
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL
| | - Santosh L. Saraf
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Victor R. Gordeuk
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
36
|
Pitanga TN, Santana SS, Zanette DL, Guarda CC, Santiago RP, Maffili VV, Lima JB, Carvalho GQ, Filho JR, Ferreira JRD, Aleluia MM, Nascimento VML, Carvalho MOS, Lyra IM, Borges VM, Oliveira RR, Goncalves MS. Effect of lysed and non-lysed sickle red cells on the activation of NLRP3 inflammasome and LTB4 production by mononuclear cells. Inflamm Res 2021; 70:823-834. [PMID: 34196737 DOI: 10.1007/s00011-021-01461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE AND DESIGN This study tested the hypothesis that sickle red blood cell (SS-RBC) can induce inflammasome NLRP3 components gene expression in peripheral blood mononuclear cells (PBMCs) as well as interleukin-1β (IL-1β) and leukotriene B4 (LTB4) production. Additionally, we investigated the effect of hydroxyurea (HU) treatment in these inflammatory markers. METHODS PBMCs from healthy donors (AA-PBMC) were challenged with intact and lysed RBCs from SCA patients (SS-RBC) and from healthy volunteers (AA-RBC). NLRP3, IL-1β, IL-18 and Caspase-1 gene expression levels were assessed by quantitative PCR (qPCR). IL-1β protein levels and LTB4 were measured by ELISA. RESULTS We observed that lysed SS-RBC induced the expression of inflammasome NLRP3 components, but this increase was more prominent for CASP1 and IL18 expression levels. Moreover, we observed that intact SS-RBC induced higher production of IL-1β and LTB4 than lysed SS-RBC. Although SCA patients treated with HU have a reduction in NLRP3 gene expression and LTB4 production, this treatment did not modulate the expression of other inflammasome components or IL-1β production. CONCLUSIONS Thus, our data suggest that caspase-1, IL-1β and IL-18 may contribute to the inflammatory status observed in SCA and that HU treatment may not interfere in this inflammatory pathway.
Collapse
Affiliation(s)
- Thassila N Pitanga
- Instituto Gonçalo Moniz, FIOCRUZ Bahia, Fundação Oswaldo Cruz / FIOCRUZ, Rua Waldemar Falcão, n. 121, Candeal, Salvador, Bahia, 40296710, Brazil.,Universidade Católica do Salvador (UCSAL), Salvador, Bahia, Brazil
| | - Sânzio S Santana
- Instituto Gonçalo Moniz, FIOCRUZ Bahia, Fundação Oswaldo Cruz / FIOCRUZ, Rua Waldemar Falcão, n. 121, Candeal, Salvador, Bahia, 40296710, Brazil.,Universidade Católica do Salvador (UCSAL), Salvador, Bahia, Brazil
| | - Dalila L Zanette
- Fundação Oswaldo Cruz, Instituto Carlos Chagas (ICC-FIOCRUZ/PR), Curitiba, Paraná, Brazil
| | - Caroline C Guarda
- Instituto Gonçalo Moniz, FIOCRUZ Bahia, Fundação Oswaldo Cruz / FIOCRUZ, Rua Waldemar Falcão, n. 121, Candeal, Salvador, Bahia, 40296710, Brazil
| | - Rayra P Santiago
- Instituto Gonçalo Moniz, FIOCRUZ Bahia, Fundação Oswaldo Cruz / FIOCRUZ, Rua Waldemar Falcão, n. 121, Candeal, Salvador, Bahia, 40296710, Brazil
| | - Vitor V Maffili
- Instituto Gonçalo Moniz, FIOCRUZ Bahia, Fundação Oswaldo Cruz / FIOCRUZ, Rua Waldemar Falcão, n. 121, Candeal, Salvador, Bahia, 40296710, Brazil
| | - Jonilson B Lima
- Universidade Federal do Oeste da Bahia (UFOB), Barreiras, Bahia, Brazil
| | - Graziele Q Carvalho
- Instituto Gonçalo Moniz, FIOCRUZ Bahia, Fundação Oswaldo Cruz / FIOCRUZ, Rua Waldemar Falcão, n. 121, Candeal, Salvador, Bahia, 40296710, Brazil
| | - Jaime R Filho
- Instituto Gonçalo Moniz, FIOCRUZ Bahia, Fundação Oswaldo Cruz / FIOCRUZ, Rua Waldemar Falcão, n. 121, Candeal, Salvador, Bahia, 40296710, Brazil
| | | | - Milena M Aleluia
- Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Valma M L Nascimento
- Fundação de Hematologia e Hemoterapia da Bahia (HEMOBA), Salvador, Bahia, Brazil
| | - Magda O S Carvalho
- Hospital Universitário Professor Edgard Santos (HUPES), UFBA, Salvador, Bahia, Brazil
| | - Isa M Lyra
- Hospital Universitário Professor Edgard Santos (HUPES), UFBA, Salvador, Bahia, Brazil
| | - Valéria M Borges
- Instituto Gonçalo Moniz, FIOCRUZ Bahia, Fundação Oswaldo Cruz / FIOCRUZ, Rua Waldemar Falcão, n. 121, Candeal, Salvador, Bahia, 40296710, Brazil
| | - Ricardo R Oliveira
- Instituto Gonçalo Moniz, FIOCRUZ Bahia, Fundação Oswaldo Cruz / FIOCRUZ, Rua Waldemar Falcão, n. 121, Candeal, Salvador, Bahia, 40296710, Brazil
| | - Marilda S Goncalves
- Instituto Gonçalo Moniz, FIOCRUZ Bahia, Fundação Oswaldo Cruz / FIOCRUZ, Rua Waldemar Falcão, n. 121, Candeal, Salvador, Bahia, 40296710, Brazil. .,Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil.
| |
Collapse
|
37
|
Uçucu S, Karabıyık T, Azik F. Difficulties in the diagnosis of Hb S/Beta thalassemia: Really a mild disease? J Med Biochem 2021; 41:32-39. [PMID: 35291497 PMCID: PMC8882016 DOI: 10.5937/jomb0-30420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/24/2021] [Indexed: 11/09/2022] Open
Abstract
Background HbS/b cases having clinical, hematologic and electrophoretic similarities cannot be sufficiently distinguished from sickle cell anemia cases and are misdiagnosed as sickle cell anemia. This study will investigate the congruence between the HPLC thalassemia scanning tests and the laboratory findings compared to the DNA sequence analysis results of the patients diagnosed with SCA between 2016 and 2020. This study also aims to indicate the current status to accurately diagnose sickle cell anemia and HbS/b in the light of hematologic, electrophoretic and molecular studies. Methods Fourteen patients who were diagnosed with SCA in hospitals at different cities in Turkey and followed by the Thalassemia Diagnosis, Treatment and Research Center, Muğla Sıtkı Koçman University were included in this retrospective study. The socio-demographic characteristics, hemogram, hemoglobin variant analysis results and DNA chain analysis results of the patients were taken from the database of the centre and then examined. The informed consents were taken from the patients. The patients were administered a survey containing questions about transfusion history and diagnostic awareness. The Beta-Thalassemia mutations were analysed using a DNA sequencer (Dade Behring, Germany) based on the Sanger method. Results According to the DNA sequence analysis, the results of these patients diagnosed with SCA in hospitals in different cities of Turkey were the following: of 14 patients, 8 had HbS/b0, and HbS/b+ and one had HbS carrier, and one had Hb-O, and three had SCA. The patient with HbS carrier status also contains three additional mutations, all of which are heterozygous. We discovered that although two of three mutations, which are c.315+16G>C and c.316-185C>T, are previously reported as benign, at least one of the two mentioned mutations, when combined with HbS, causes transfusion-dependent HbS/b. Conclusions Briefly, HbSS and HbS/b thalassemia genotypes cannot be definitely characterized by electrophoretic and hematologic data, resulting in misdiagnosis. c.315+16G>C and c.316-185C>T are previously reported as benign; at least one of the two mentioned mutations, when combined with HbS, causes transfusion-dependent HbS/b. In undeveloped or some developing countries, molecular diagnosis methods and genetic analyses cannot be used. If mutation analyses could be performed, then such differential diagnosis errors would reduce. However, if mutation analysis cannot be performed, other methods such as HPLC, capillary electrophoresis absolutely be sought to have insight into the parental carriage status.
Collapse
Affiliation(s)
- Süheyl Uçucu
- Ministry of Public Health Care Laboratory, Department of Medical Biochemistry, Muğla, Turkey
| | - Talha Karabıyık
- Bursa City Hospital, Department of Medical Biochemistry, Bursa, Turkey
| | - Fatih Azik
- Muğla Sıtkı Koçman University, Faculty of Medicine, Department of Pediatric Hematology-Oncology, Muğla, Turkey
| |
Collapse
|
38
|
Evaluation of Longitudinal Pain Study in Sickle Cell Disease (ELIPSIS) by patient-reported outcomes, actigraphy, and biomarkers. Blood 2021; 137:2010-2020. [PMID: 33067606 DOI: 10.1182/blood.2020006020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/04/2020] [Indexed: 12/14/2022] Open
Abstract
Clinical trials in sickle cell disease (SCD) often focus on health care utilization for painful vaso-occlusive crises (VOCs). However, no objective, quantifiable pain biomarkers exist, pain is not specific to VOCs, health care utilization varies between patients, unreported at-home VOCs likely contribute to long-term outcomes, and patient-reported outcomes are seldom considered. This noninterventional, longitudinal, 6-month study aimed to develop tools to identify VOCs in SCD patients with or without health care utilization. Participants wore an actigraph device, tracking sleep and activity. Patients with SCD used an electronic patient-reported outcome (ePRO) tool to collect data on pain, medication, fatigue, and daily function. Patients self-reported when they experienced VOC pain (VOC day). Biomarkers were collected every 3 weeks (non-VOC). Self-reported VOCs triggered at-home or in-hospital blood collection. The study enrolled 37 participants with SCD; 35 completed the study. Participants reported 114 VOC events and 346 VOC days, of which 62.3% and 78.3%, respectively, were self-treated at home. The ePRO and actigraphy captured end points of pain, functionality, fatigue, activity, and sleep; each was significantly altered on VOC days compared with non-VOC days. Biomarkers collected at home or in the hospital on VOC days were significantly altered compared with non-VOC baseline values, including leukocyte-platelet aggregates, microfluidic-based blood cell adhesion, interleukin-6, C-reactive protein, interleukin-10, tumor necrosis factor-α, and thrombin-antithrombin. The Evaluation of Longitudinal Pain Study in Sickle Cell Disease (ELIPSIS) trial shows the feasibility of accurately monitoring out-of-hospital pain by using patient-reported VOC days as potential end points for clinical trials in SCD; it describes the changes in biomarkers and activity measured by actigraphy that may enable improved identification and assessment of VOCs.
Collapse
|
39
|
Associations between TGF- β1 Levels and Markers of Hemolysis, Inflammation, and Tissue Remodeling in Pediatric Sickle Cell Patients. Mediators Inflamm 2021; 2021:4651891. [PMID: 33790690 PMCID: PMC7984885 DOI: 10.1155/2021/4651891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/01/2021] [Indexed: 01/01/2023] Open
Abstract
Transforming growth factor beta (TGF-β) is a cytokine with important involvement in biological processes related to the pathogenesis of sickle cell disease (SCD), including endothelial and vascular dysfunction, inflammation, and hematopoietic homeostasis. This study is aimed at investigating associations between levels of TGF-β1 and classical laboratory biomarkers and inflammatory mediators, as well as the tissue inhibitor of metalloproteases-1 (TIMP-1) and matrix metalloproteinase-9 (MMP-9), in pediatric patients (n = 123) with SCD in steady state: 84 with sickle cell anemia (HbSS) and 39 with hemoglobin SC disease (HbSC). A healthy control (HC) group of 59 individuals was also included. Hematological and biochemical analyses were carried out using electronic methods. TGF-β1, TIMP-1, and MMP-9 plasma quantifications were performed by ELISA. TGF-β1 plasma levels were higher in HbSS individuals than in HbSC and HC. In individuals with HbSS, TGF-β1 levels were positively correlated with red blood cells, hemoglobin, hematocrit, platelets, and TIMP-1. In addition, HbSS individuals with TGF-β1 levels above the median (≥72.29 ng/mL) also presented increased monocyte counts and decreased albumin levels. In patients with HbSC, TGF-β1 levels were positively correlated with leukocytes, eosinophils, lymphocytes, monocytes, and platelets, as well as levels of TIMP-1, VLDL-C, triglycerides, heme, and AST. Additionally, HbSC individuals with TGF-β1 levels above the median (≥47.80 ng/mL) presented increased leukocyte and platelet counts, as well as increased levels of triglycerides, VLDL-C, MMP-9, and TIMP-1, and decreased HDL-C. Our findings suggest that TGF-β1 may play important roles in vascular remodeling, vasculopathy, angiogenesis, and inflammation in pediatric patients with SCD.
Collapse
|
40
|
Silva-Junior AL, Garcia NP, Cardoso EC, Dias S, Tarragô AM, Fraiji NA, Gomes MS, Amaral LR, Teixeira-Carvalho A, Martins-Filho OA, De Paula EV, Costa AG, Malheiro A. Immunological Hallmarks of Inflammatory Status in Vaso-Occlusive Crisis of Sickle Cell Anemia Patients. Front Immunol 2021; 12:559925. [PMID: 33776989 PMCID: PMC7990896 DOI: 10.3389/fimmu.2021.559925] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Sickle Cell Anemia (SCA) is the most common genetic disorder around the world. The mutation in the β-globin gene is responsible for a higher hemolysis rate, with further involvement of immunological molecules, especially cytokines, chemokines, growth factors, and anaphylatoxins. These molecules are responsible for inducing and attracting immune cells into circulation, thus contributing to increases in leukocytes and other pro-inflammatory mediators, and can culminate in a vaso-occlusive crisis (VOC). This study aimed to characterize the levels of these molecules in SCA patients in different clinical conditions in order to identify potential hallmarks of inflammation in these patients. An analytical prospective study was conducted using the serum of SCA patients in steady-state (StSt; n = 27) and VOC (n = 22), along with 53 healthy donors (HD). Samples from the VOC group were obtained on admission and on discharge, in the convalescent phase (CV). Levels of chemokines (CXCL8, CXCL10, CL2, CLL3, CCL4, CL5, and CCL11), cytokines (IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12p70, IL-13, IL-17A, TNF-α, and IFN-γ) and growth factors (VEGF, FGFb, PDGF-BB, GM-CSF, and G-CSF) were measured using a Luminex assay, and anaphylatoxins (C3a, C4a, and C5a) were measured using Cytometric Bead Array. SCA patients in StSt showed a pro-inflammatory profile, and were indicated as being higher producers of CCL2, IL-1β, IL-12p70, IFN-γ, IL-17A, and GM-CSF, while VOC is highlighted by molecules IL-4 and IL-5, but also IL-2, IL-7, PDGF-BB, and G-CSF. PDGF-BB and IL-1ra seemed to be two important hallmarks for the acute-to-chronic stage, due to their significant decrease after crisis inflammation and statistical difference in VOC and CV groups. These molecules show higher levels and a strong correlation with other molecules in VOC. Furthermore, they remain at higher levels even after crisis recovery, which suggest their importance in the role of inflammation during crisis and participation in immune cell adhesion and activation. These results support a relevant role of cytokines, neutrophil and monocytes, since these may act as markers of VOC inflammation in SCA patients.
Collapse
Affiliation(s)
- Alexander Leonardo Silva-Junior
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Nadja Pinto Garcia
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Evilázio Cunha Cardoso
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Stephanny Dias
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Andrea Monteiro Tarragô
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Nelson Abrahim Fraiji
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Matheus Souza Gomes
- Laboratório de Bioinformática e Análises Moleculares, Rede Multidisciplinar de Pesquisa, Ciência e Tecnologia, Universidade Federal de Uberlândia, Patos de Minas, Brazil
| | - Laurence Rodrigues Amaral
- Laboratório de Bioinformática e Análises Moleculares, Rede Multidisciplinar de Pesquisa, Ciência e Tecnologia, Universidade Federal de Uberlândia, Patos de Minas, Brazil
| | - Andréa Teixeira-Carvalho
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Olindo Assis Martins-Filho
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Erich Vinicius De Paula
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Escola de Ciências Médicas, Universidade de Campinas, Campinas, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Escola de Enfermagem de Manaus, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| |
Collapse
|
41
|
Aich A, Lamarre Y, Sacomani DP, Kashima S, Covas DT, de la Torre LG. Microfluidics in Sickle Cell Disease Research: State of the Art and a Perspective Beyond the Flow Problem. Front Mol Biosci 2021; 7:558982. [PMID: 33763448 PMCID: PMC7982466 DOI: 10.3389/fmolb.2020.558982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/24/2020] [Indexed: 01/21/2023] Open
Abstract
Sickle cell disease (SCD) is the monogenic hemoglobinopathy where mutated sickle hemoglobin molecules polymerize to form long fibers under deoxygenated state and deform red blood cells (RBCs) into predominantly sickle form. Sickled RBCs stick to the vascular bed and obstruct blood flow in extreme conditions, leading to acute painful vaso-occlusion crises (VOCs) – the leading cause of mortality in SCD. Being a blood disorder of deformed RBCs, SCD manifests a wide-range of organ-specific clinical complications of life (in addition to chronic pain) such as stroke, acute chest syndrome (ACS) and pulmonary hypertension in the lung, nephropathy, auto-splenectomy, and splenomegaly, hand-foot syndrome, leg ulcer, stress erythropoiesis, osteonecrosis and osteoporosis. The physiological inception for VOC was initially thought to be only a fluid flow problem in microvascular space originated from increased viscosity due to aggregates of sickled RBCs; however, over the last three decades, multiple molecular and cellular mechanisms have been identified that aid the VOC in vivo. Activation of adhesion molecules in vascular endothelium and on RBC membranes, activated neutrophils and platelets, increased viscosity of the blood, and fluid physics driving sickled and deformed RBCs to the vascular wall (known as margination of flow) – all of these come together to orchestrate VOC. Microfluidic technology in sickle research was primarily adopted to benefit from mimicking the microvascular network to observe RBC flow under low oxygen conditions as models of VOC. However, over the last decade, microfluidics has evolved as a valuable tool to extract biophysical characteristics of sickle red cells, measure deformability of sickle red cells under simulated oxygen gradient and shear, drug testing, in vitro models of intercellular interaction on endothelialized or adhesion molecule-functionalized channels to understand adhesion in sickle microenvironment, characterizing biomechanics and microrheology, biomarker identification, and last but not least, for developing point-of-care diagnostic technologies for low resource setting. Several of these platforms have already demonstrated true potential to be translated from bench to bedside. Emerging microfluidics-based technologies for studying heterotypic cell–cell interactions, organ-on-chip application and drug dosage screening can be employed to sickle research field due to their wide-ranging advantages.
Collapse
Affiliation(s)
- Anupam Aich
- Intel Corporation, Hillsboro, OR, United States
| | - Yann Lamarre
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniel Pereira Sacomani
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Simone Kashima
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Lucimara Gaziola de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
42
|
Vona R, Sposi NM, Mattia L, Gambardella L, Straface E, Pietraforte D. Sickle Cell Disease: Role of Oxidative Stress and Antioxidant Therapy. Antioxidants (Basel) 2021; 10:antiox10020296. [PMID: 33669171 PMCID: PMC7919654 DOI: 10.3390/antiox10020296] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
Sickle cell disease (SCD) is the most common hereditary disorder of hemoglobin (Hb), which affects approximately a million people worldwide. It is characterized by a single nucleotide substitution in the β-globin gene, leading to the production of abnormal sickle hemoglobin (HbS) with multi-system consequences. HbS polymerization is the primary event in SCD. Repeated polymerization and depolymerization of Hb causes oxidative stress that plays a key role in the pathophysiology of hemolysis, vessel occlusion and the following organ damage in sickle cell patients. For this reason, reactive oxidizing species and the (end)-products of their oxidative reactions have been proposed as markers of both tissue pro-oxidant status and disease severity. Although more studies are needed to clarify their role, antioxidant agents have been shown to be effective in reducing pathological consequences of the disease by preventing oxidative damage in SCD, i.e., by decreasing the oxidant formation or repairing the induced damage. An improved understanding of oxidative stress will lead to targeted antioxidant therapies that should prevent or delay the development of organ complications in this patient population.
Collapse
Affiliation(s)
- Rosa Vona
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.V.); (N.M.S.); (L.G.)
| | - Nadia Maria Sposi
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.V.); (N.M.S.); (L.G.)
| | - Lorenza Mattia
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00161 Rome, Italy;
- Endocrine-Metabolic Unit, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.V.); (N.M.S.); (L.G.)
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.V.); (N.M.S.); (L.G.)
- Correspondence: ; Tel.: +39-064-990-2443; Fax: +39-064-990-3690
| | - Donatella Pietraforte
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
43
|
Variability of Prognostic Results Based on Biological Parameters in Sickle Cell Disease Cohort Studies in Children: What Should Clinicians Know? CHILDREN-BASEL 2021; 8:children8020143. [PMID: 33668629 PMCID: PMC7917793 DOI: 10.3390/children8020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Many pediatric studies describe the association between biological parameters (BP) and severity of sickle cell disease (SCD) using different methods to collect or to analyze BP. This article assesses the methods used for collection and subsequent statistical analysis of BP, and how these impact prognostic results in SCD children cohort studies. METHODS Firstly, we identified the collection and statistical methods used in published SCD cohort studies. Secondly, these methods were applied to our cohort of 375 SCD children, to evaluate the association of BP with cerebral vasculopathy (CV). RESULTS In 16 cohort studies, BP were collected either once or several times during follow-up. The identified methods in the statistical analysis were: (1) one baseline value per patient (2) last known value; (3) mean of all values; (4) modelling of all values in a two-stage approach. Applying these four different statistical methods to our cohort, the results and interpretation of the association between BP and CV were different depending on the method used. CONCLUSION The BP prognostic value depends on the chosen statistical analysis method. Appropriate statistical analyses of prognostic factors in cohort studies should be considered and should enable valuable and reproducible conclusions.
Collapse
|
44
|
Vinhaes CL, Teixeira RS, Monteiro-Júnior JAS, Tibúrcio R, Cubillos-Angulo JM, Arriaga MB, Sabarin AG, de Souza AJ, Silva JJ, Lyra IM, Ladeia AM, Andrade BB. Hydroxyurea treatment is associated with reduced degree of oxidative perturbation in children and adolescents with sickle cell anemia. Sci Rep 2020; 10:18982. [PMID: 33149225 PMCID: PMC7642412 DOI: 10.1038/s41598-020-76075-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/16/2020] [Indexed: 01/16/2023] Open
Abstract
Sickle cell anemia (SCA) is the most common inherited hemolytic anemia worldwide. Here, we performed an exploratory study to investigate the systemic oxidative stress in children and adolescents with SCA. Additionally, we evaluated the potential impact of hydroxyurea therapy on the status of oxidative stress in a case–control study from Brazil. To do so, a panel containing 9 oxidative stress markers was measured in plasma samples from a cohort of 47 SCA cases and 40 healthy children and adolescents. Among the SCA patients, 42.5% were undertaking hydroxyurea. Multidimensional analysis was employed to describe disease phenotypes. Our results demonstrated that SCA is associated with increased levels of oxidative stress markers, suggesting the existence of an unbalanced inflammatory response in peripheral blood. Subsequent analyses revealed that hydroxyurea therapy was associated with diminished oxidative imbalance in SCA patients. Our findings reinforce the idea that SCA is associated with a substantial dysregulation of oxidative responses which may be dampened by treatment with hydroxyurea. If validated by larger prospective studies, our observations argue that reduction of oxidative stress may be a main mechanism through which hydroxyurea therapy attenuates the tissue damage and can contribute to improved clinical outcomes in SCA.
Collapse
Affiliation(s)
- Caian L Vinhaes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, 40296-710, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, 41810-710, Brazil.,School of Medicine, Faculdade de Tecnologia E Ciências (UniFTC), Salvador, 41741-590, Brazil
| | - Rozana S Teixeira
- Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador, 40290-000, Brazil.,School of Medicine, Federal University of Bahia, Salvador, 40110-100, Brazil
| | - Jay A S Monteiro-Júnior
- Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador, 40290-000, Brazil
| | - Rafael Tibúrcio
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, 40296-710, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, 41810-710, Brazil.,School of Medicine, Federal University of Bahia, Salvador, 40110-100, Brazil
| | - Juan M Cubillos-Angulo
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, 40296-710, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, 41810-710, Brazil.,School of Medicine, Federal University of Bahia, Salvador, 40110-100, Brazil
| | - María B Arriaga
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, 40296-710, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, 41810-710, Brazil.,School of Medicine, Federal University of Bahia, Salvador, 40110-100, Brazil
| | - Adrielle G Sabarin
- Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador, 40290-000, Brazil
| | - Amâncio J de Souza
- Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador, 40290-000, Brazil
| | - Jacqueline J Silva
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, 40296-710, Brazil.,Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador, 40290-000, Brazil
| | - Isa M Lyra
- University Salvador (UNIFACS), Laureate International Universities, Salvador, 41720-200, Brazil
| | - Ana Marice Ladeia
- Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador, 40290-000, Brazil.,Catholic University of Salvador, Salvador, 41740-090, Brazil
| | - Bruno B Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, 40296-710, Brazil. .,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, 41810-710, Brazil. .,School of Medicine, Faculdade de Tecnologia E Ciências (UniFTC), Salvador, 41741-590, Brazil. .,Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador, 40290-000, Brazil. .,School of Medicine, Federal University of Bahia, Salvador, 40110-100, Brazil. .,University Salvador (UNIFACS), Laureate International Universities, Salvador, 41720-200, Brazil.
| |
Collapse
|
45
|
Accelerated approval of Oxbryta® (voxelotor): A case study on novel endpoint selection in sickle cell disease. Contemp Clin Trials 2020; 98:106161. [PMID: 33010428 DOI: 10.1016/j.cct.2020.106161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/14/2022]
Abstract
Sickle cell disease (SCD) is an inherited disease characterized by hemolysis, anemia, and vaso-occlusion leading to substantial morbidity and mortality. Development of prior pharmacologic therapies exclusively utilized vaso-occlusive crisis (VOC) as a clinical efficacy endpoint; however, this focus on VOC did not capture the full extent of disease symptomatology and complications and slowed the development of new therapies. Voxelotor, a hemoglobin S polymerization inhibitor, was recently approved in the United States for the treatment of SCD in adults and adolescents 12 years of age and older through an accelerated approval pathway. The rapid approval and availability of voxelotor was facilitated in a collaborative effort with the US Food and Drug Administration (FDA), using hemoglobin, a biologic surrogate endpoint, as reasonably likely to predict clinical benefit. Use of this new endpoint was supported by FDA-led multistakeholder discussions with physician and patient communities to identify unmet needs and potential clinical trial endpoints, as well as by a company-sponsored analysis of external patient-level data to demonstrate a correlation between hemoglobin change and stroke risk. A two-part phase 3 study was used to allow for rank ordering of key secondary endpoints based on a planned interim analysis. Continued open communication with the FDA was essential to gain agreement on hemoglobin as a novel endpoint and to address the unmet and urgent need of new therapies for SCD.
Collapse
|
46
|
TGFBR3 Polymorphisms (rs1805110 and rs7526590) Are Associated with Laboratory Biomarkers and Clinical Manifestations in Sickle Cell Anemia. DISEASE MARKERS 2020; 2020:8867986. [PMID: 33062074 PMCID: PMC7547350 DOI: 10.1155/2020/8867986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 01/11/2023]
Abstract
Individuals with sickle cell anemia (SCA) present chronic anemia, hemolysis, an exacerbated inflammatory response, and heterogeneous clinical complications, which may be modulated by the transforming growth factor beta (TGF-β) pathway. Thus, we aimed to investigate polymorphisms (rs1805110 and rs7526590) of the transforming growth factor beta receptor III gene (TGFBR3) with regard to laboratory biomarkers and clinical manifestations in individuals with SCA. Hematological, biochemical, immunological, and genetic analyses were carried out, as well as serum endothelin-1 measurements. The minor allele (A) of the TGFBR3 rs1805110 polymorphism was associated with increased hemoglobin, hematocrit, reticulocyte counts, total cholesterol, low-density lipoprotein, uric acid, and endothelin levels, as well as decreased platelet distribution width (PDW) and the occurrence of bone alterations. The minor allele (T) of TGFBR3 rs7526590 was associated with increased red cell distribution width, PDW, alkaline phosphatase, aspartate aminotransferase, total and indirect bilirubin, and lactate dehydrogenase levels, as well as lower ferritin levels and the occurrence of leg ulcers. Our data suggest that the minor allele (A) of TGFBR3 rs1805110 is associated with inflammation and bone alterations, while the minor allele (T) of TGFBR3 rs7526590 is related to hemolysis and the occurrence of leg ulcers.
Collapse
|
47
|
Ayoola OO, Bolarinwa RA, Onwuka CC, Idowu BM, Aderibigbe AS. Association between Endothelial Dysfunction, Biomarkers of Renal Function, and Disease Severity in Sickle Cell Disease. KIDNEY360 2020; 1:79-85. [PMID: 35372907 DOI: 10.34067/kid.0000142019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/15/2020] [Indexed: 01/15/2023]
Abstract
Background Endothelial dysfunction (ED), as ascertained by brachial artery flow-mediated dilation (FMD), is a known feature of sickle cell disease (SCD), which is present both in crisis and in steady state. The assessment of FMD was introduced to examine the vasodilator function. Our objective was to establish the relationship between ED determined by FMD, biomarkers of renal dysfunction, and biomarkers of disease severity in SCD subjects asymptomatic of renal disease. Methods We enrolled 44 patients with homozygous SCD in steady state and 33 age- and sex-matched controls between 2013 and 2014 in a tropical tertiary hospital. Ultrasonographic FMD of the right brachial artery, renal arterial Doppler, complete blood count, creatinine, fetal hemoglobin, soluble P-selectin, and cystatin C (Cys-C) levels were determined. Using the median FMD value of the control group, the SCD subjects were further classified into two groups for comparison. Results The median FMD in SCD subjects of 3.44 (IQR, 0.00-7.08) was significantly lower than that of controls, which was 5.35 (IQR, 3.60-6.78; P=0.04). There was negative correlation between FMD and Cys-C levels (r=-0.372; P=0.01) along with renal artery resistivity index (RARI; r=-0.307; P=0.04) in SCD subjects. Additionally, Cys-C level was significantly higher in SCD subjects with FMD<5.35. Conclusions Brachial artery FMD was significantly lower in SCD subjects compared with a control group. Cys-C and RARI show a negative correlation with FMD, indicating that renal function is related to ED in SCD.
Collapse
Affiliation(s)
- Oluwagbemiga Oluwole Ayoola
- Department of Radiology, Faculty of Clinical Sciences and.,Department of Radiology, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Osun State, Nigeria; and
| | - Rahman Ayodele Bolarinwa
- Department of Hematology and Blood Transfusion, Faculty of Basic Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | | | - Bukunmi Michael Idowu
- Department of Radiology, Union Diagnostics and Clinical Services PLC, Yaba, Lagos, Nigeria
| | - Adeniyi Sunday Aderibigbe
- Department of Radiology, Faculty of Clinical Sciences and.,Department of Radiology, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Osun State, Nigeria; and
| |
Collapse
|
48
|
da Guarda CC, Yahouédéhou SCMA, Santiago RP, Neres JSDS, Fernandes CFDL, Aleluia MM, Figueiredo CVB, Fiuza LM, Carvalho SP, de Oliveira RM, Fonseca CA, Ndidi US, Nascimento VML, Rocha LC, Goncalves MS. Sickle cell disease: A distinction of two most frequent genotypes (HbSS and HbSC). PLoS One 2020; 15:e0228399. [PMID: 31995624 PMCID: PMC6988974 DOI: 10.1371/journal.pone.0228399] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/14/2020] [Indexed: 01/08/2023] Open
Abstract
Sickle cell disease (SCD) consists of a group of hemoglobinopathies in which individuals present highly variable clinical manifestations. Sickle cell anemia (SCA) is the most severe form, while SC hemoglobinopathy (HbSC) is thought to be milder. Thus, we investigated the clinical manifestations and laboratory parameters by comparing each SCD genotype. We designed a cross-sectional study including 126 SCA individuals and 55 HbSC individuals in steady-state. Hematological, biochemical and inflammatory characterization was performed as well as investigation of previous history of clinical events. SCA patients exhibited most prominent anemia, hemolysis, leukocytosis and inflammation, whereas HbSC patients had increased lipid determinations. The main cause of hospitalization was pain crises on both genotypes. Vaso-occlusive events and pain crises were associated with hematological, inflammatory and anemia biomarkers on both groups. Cluster analysis reveals hematological, inflammatory, hemolytic, endothelial dysfunction and anemia biomarkers in HbSC disease as well as SCA. The results found herein corroborate with previous studies suggesting that SCA and HbSC, although may be similar from the genetic point of view, exhibit different clinical manifestations and laboratory alterations which are useful to monitor the clinical course of each genotype.
Collapse
Affiliation(s)
- Caroline Conceição da Guarda
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brasil
| | | | - Rayra Pereira Santiago
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brasil
| | - Joelma Santana dos Santos Neres
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brasil
| | - Camila Felix de Lima Fernandes
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brasil
| | | | - Camylla Vilas Boas Figueiredo
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brasil
| | - Luciana Magalhães Fiuza
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brasil
| | - Suellen Pinheiro Carvalho
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brasil
| | - Rodrigo Mota de Oliveira
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brasil
| | - Cleverson Alves Fonseca
- Laboratório de Pesquisa em Anemias, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Bahia, Brasil
| | - Uche Samuel Ndidi
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brasil
| | | | - Larissa Carneiro Rocha
- Fundação de Hematologia e Hemoterapia do Estado da Bahia, HEMOBA, Salvador, Bahia, Brasil
| | - Marilda Souza Goncalves
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brasil
- * E-mail:
| |
Collapse
|
49
|
Stephanou C, Tamana S, Minaidou A, Papasavva P, Kleanthous M, Kountouris P. Genetic Modifiers at the Crossroads of Personalised Medicine for Haemoglobinopathies. J Clin Med 2019; 8:E1927. [PMID: 31717530 PMCID: PMC6912721 DOI: 10.3390/jcm8111927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/25/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
Haemoglobinopathies are common monogenic disorders with diverse clinical manifestations, partly attributed to the influence of modifier genes. Recent years have seen enormous growth in the amount of genetic data, instigating the need for ranking methods to identify candidate genes with strong modifying effects. Here, we present the first evidence-based gene ranking metric (IthaScore) for haemoglobinopathy-specific phenotypes by utilising curated data in the IthaGenes database. IthaScore successfully reflects current knowledge for well-established disease modifiers, while it can be dynamically updated with emerging evidence. Protein-protein interaction (PPI) network analysis and functional enrichment analysis were employed to identify new potential disease modifiers and to evaluate the biological profiles of selected phenotypes. The most relevant gene ontology (GO) and pathway gene annotations for (a) haemoglobin (Hb) F levels/Hb F response to hydroxyurea included urea cycle, arginine metabolism and vascular endothelial growth factor receptor (VEGFR) signalling, (b) response to iron chelators included xenobiotic metabolism and glucuronidation, and (c) stroke included cytokine signalling and inflammatory reactions. Our findings demonstrate the capacity of IthaGenes, together with dynamic gene ranking, to expand knowledge on the genetic and molecular basis of phenotypic variation in haemoglobinopathies and to identify additional candidate genes to potentially inform and improve diagnosis, prognosis and therapeutic management.
Collapse
Affiliation(s)
| | | | | | | | - Marina Kleanthous
- Correspondence: (M.K.); (P.K.); Tel.:+357-2239-2652 (M.K.); +357-2239-2623 (P.K.)
| | - Petros Kountouris
- Correspondence: (M.K.); (P.K.); Tel.:+357-2239-2652 (M.K.); +357-2239-2623 (P.K.)
| |
Collapse
|
50
|
Laurentino MR, Parente Filho SLA, Parente LLC, da Silva Júnior GB, Daher EDF, Lemes RPG. Non-invasive urinary biomarkers of renal function in sickle cell disease: an overview. Ann Hematol 2019; 98:2653-2660. [PMID: 31641850 DOI: 10.1007/s00277-019-03813-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/26/2019] [Indexed: 12/27/2022]
Abstract
Sickle cell disease (SCD) is a hereditary condition characterized by homozygosis of the hemoglobin S (HbS) gene. Marked morbimortality is observed due to chronic hemolysis, endothelial injury, and episodes of vaso-occlusion, which leads to multi-organ damage. Renal impairment is common and may have different presentations, such as deficiency in urinary acidification or concentration, glomerulopathies, proteinuria, and hematuria, frequently resulting in end-stage renal disease (ESRD). Novel biomarkers of renal function, such as kidney injury molecule 1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) and monocyte chemoattractant protein 1 (MCP-1) are being studied in order to enable early diagnosis of kidney damage in SCD.
Collapse
Affiliation(s)
- Marília Rocha Laurentino
- Post-Graduation Program in Pharmaceutical Sciences, School of Pharmacy, Federal University of Ceara, Capitão Francisco Pedro, Street, n.1210 - Rodolfo Teófilo, Fortaleza, Ceara, CEP 60430-370, Brazil.
| | - Sérgio Luiz Arruda Parente Filho
- Medical Sciences Post-Graduation Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Geraldo Bezerra da Silva Júnior
- Public Health Post-Graduation Program, School of Medicine, Health Sciences Center, University of Fortaleza, Fortaleza, Ceara, Brazil
| | - Elizabeth De Francesco Daher
- Medical Sciences Post-Graduation Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Romélia Pinheiro Gonçalves Lemes
- Post-Graduation Program in Pharmaceutical Sciences, School of Pharmacy, Federal University of Ceara, Capitão Francisco Pedro, Street, n.1210 - Rodolfo Teófilo, Fortaleza, Ceara, CEP 60430-370, Brazil
| |
Collapse
|