1
|
Yuan Y, Zhu H, Huang S, Zhang Y, Shen Y. Establishment of a diagnostic model based on immune-related genes in children with asthma. Heliyon 2024; 10:e25735. [PMID: 38375253 PMCID: PMC10875436 DOI: 10.1016/j.heliyon.2024.e25735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Objective Allergic asthma is driven by an antigen-specific immune response. This study aimed to identify immune-related differentially expressed genes in childhood asthma and establish a classification diagnostic model based on these genes. Methods GSE65204 and GSE19187 were downloaded and served as training set and validation set. The immune cell composition was evaluated with ssGSEA algorithm based on the immune-related gene set. Modules that significantly related to the asthma were selected by WGCNA algorithm. The immune-related differentially expressed genes (DE-IRGs) were screened, the protein-protein interaction network and diagnostic model of DE-IRGs was constructed. The pathway and immune correlation analysis of hub DE-IRGs was analyzed. Results Eight immune cell types exhibited varying levels of abundance between the asthma and control groups. A total of 112 differentially expressed immune-related genes (DE-IRGs) was identified. Through the application of four ranking methods (MCC, MNC, DEGREE, and EPC), 17 hub DE-IRGs with overlapping significance were further selected. Subsequently, 8 optimized were identified using univariate logistic regression analysis and the LASSO regression algorithm, based on which a robust diagnostic model was constructed. Notably, TNF and CD40LG emerged as direct participants in asthma-related signaling pathways, displaying a positive correlation with the immune cell types of immature B cells, activated B cells, activated CD8 T cells, activated CD4 T cells, and myeloid-derived suppressor cells. Conclusion The diagnostic model constructed using the DE-IRGs (CCL5, CCR5, CD40LG, CD8A, IL2RB, PDCD1, TNF, and ZAP70) exhibited high and specific diagnostic value for childhood asthma. The diagnostic model may contribute to the diagnosis of childhood asthma.
Collapse
Affiliation(s)
- Yuyun Yuan
- Department of Pediatrics, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 201999, China
| | - Honghua Zhu
- Department of Medical Imaging, Shanghai Seventh People's Hospital, Shanghai, 200137, China
| | - Sihong Huang
- Department of Pediatrics, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 201999, China
| | - Yantao Zhang
- Department of Pediatrics, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 201999, China
| | - Yiyun Shen
- Department of Pediatrics, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 201999, China
| |
Collapse
|
2
|
Matysiak J, Packi K, Klimczak S, Bukowska P, Matuszewska E, Klupczyńska-Gabryszak A, Bręborowicz A, Matysiak J. Cytokine profile in childhood asthma. JOURNAL OF MEDICAL SCIENCE 2022. [DOI: 10.20883/medical.e725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Childhood asthma is a chronic airway disease, which pathogenesis is markedly heterogeneous–with multiple phenotypes defining visible characteristics and endotypes defining molecular mechanisms. Cytokines and chemokines released during inflammatory responses are key immune mediators. The cytokine response can largely determine the susceptibility to childhood asthma and its severity. The purpose of this study was to characterize the immune profile of childhood asthma. The study involved 26 children (3–18 years old), who were divided into 2 groups: study–with childhood asthma; control–without asthma. The innovative Bio-Plex method was used to determine the serum concentration of 37 inflammatory proteins in one experiment. The results were analyzed using univariate statistical tests. In the study group, the level of the 10 tested markers increased, while the level of the remaining 9 decreased compared to the control; a statistically significant reduction in concentration was obtained only for the MMP-1(p<0.05). According to the ROC curve, MMP-1 can be considered an effective discriminator of childhood asthma (p<0.05; AUC=0.752). Cytokines/chemokines may be useful in the diagnosis of childhood asthma and may also become a prognostic target in determining the phenotype/endotype of this condition. This study should be a prelude to and an incentive for more complex proteomic analyzes.
Collapse
|
3
|
Rama TA, Paciência I, Cavaleiro Rufo J, Silva D, Cunha P, Severo M, Padrão P, Moreira P, Delgado L, Moreira A. Exhaled breath condensate pH determinants in school-aged children: A population-based study. Pediatr Allergy Immunol 2021; 32:1474-1481. [PMID: 34018256 DOI: 10.1111/pai.13564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Exhaled breath condensate (EBC) pH is a promising biomarker of airway inflammation. Lack of method standardization and interstudy variability precludes its use in clinical practice. While endogenous determinants have been described, underlying mechanisms for variability are mostly unknown. Thus, we aimed to assess the association between asthma and EBC pH in children, while studying potential environmental factors for interstudy variability. METHODS A cross-sectional analysis of exhaled breath condensates from 613 children, aged 7-12 years, was conducted. Assessments included lung function and airway reversibility, exhaled nitric oxide, allergic sensitization, and body mass index (BMI). Indoor air quality (IAQ) was assessed in children's classrooms during 5 school days. Post-deaeration EBC pH showed a bimodal distribution, and the sample was split into acidic and alkaline groups. Regression models were constructed to assess the effects of asthma and asthma adjusted to IAQ parameters on EBC pH. RESULTS Following adjustment to gender and BMI, asthma was significantly associated with a lower EBC pH in the acidic group. The effect of asthma on EBC pH was independent of IAQ, in both groups. In the acidic group, EBC pH was significantly affected by temperature [β = -0.09 (-0.15, -0.02)] and PM 2.5 concentration [β = -0.16 (-0.32, -0.01)], and in the alkaline group by relative humidity [β = 0.07 (0.02, 0.13)] and concentration of endotoxins [β = -0.06 (-0.1, -0.01)]. CONCLUSION Our study shows that in addition to individual determinants such as asthma, environmental factors may influence and should be taken into consideration when interpreting EBC pH level in children.
Collapse
Affiliation(s)
- Tiago Azenha Rama
- Immunoallergology unit, Centro Hospitalar Universitário São João, Porto, Portugal.,Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Paciência
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,Epidemiology Research Unit, Institute of Public Health (EPIUnit), University of Porto, Porto, Portugal
| | - João Cavaleiro Rufo
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,Epidemiology Research Unit, Institute of Public Health (EPIUnit), University of Porto, Porto, Portugal
| | - Diana Silva
- Immunoallergology unit, Centro Hospitalar Universitário São João, Porto, Portugal.,Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Pedro Cunha
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Milton Severo
- Epidemiology Research Unit, Institute of Public Health (EPIUnit), University of Porto, Porto, Portugal
| | - Patrícia Padrão
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Pedro Moreira
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Luís Delgado
- Immunoallergology unit, Centro Hospitalar Universitário São João, Porto, Portugal.,Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - André Moreira
- Immunoallergology unit, Centro Hospitalar Universitário São João, Porto, Portugal.,Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,Epidemiology Research Unit, Institute of Public Health (EPIUnit), University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Garcia-Marcos L, Edwards J, Kennington E, Aurora P, Baraldi E, Carraro S, Gappa M, Louis R, Moreno-Galdo A, Peroni DG, Pijnenburg M, Priftis KN, Sanchez-Solis M, Schuster A, Walker S. Priorities for future research into asthma diagnostic tools: A PAN-EU consensus exercise from the European asthma research innovation partnership (EARIP). Clin Exp Allergy 2019; 48:104-120. [PMID: 29290104 DOI: 10.1111/cea.13080] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diagnosis of asthma is currently based on clinical history, physical examination and lung function, and to date, there are no accurate objective tests either to confirm the diagnosis or to discriminate between different types of asthma. This consensus exercise reviews the state of the art in asthma diagnosis to identify opportunities for future investment based on the likelihood of their successful development, potential for widespread adoption and their perceived impact on asthma patients. Using a two-stage e-Delphi process and a summarizing workshop, a group of European asthma experts including health professionals, researchers, people with asthma and industry representatives ranked the potential impact of research investment in each technique or tool for asthma diagnosis and monitoring. After a systematic review of the literature, 21 statements were extracted and were subject of the two-stage Delphi process. Eleven statements were scored 3 or more and were further discussed and ranked in a face-to-face workshop. The three most important diagnostic/predictive tools ranked were as follows: "New biological markers of asthma (eg genomics, proteomics and metabolomics) as a tool for diagnosis and/or monitoring," "Prediction of future asthma in preschool children with reasonable accuracy" and "Tools to measure volatile organic compounds (VOCs) in exhaled breath."
Collapse
Affiliation(s)
- L Garcia-Marcos
- Respiratory and Allergy Units, Arrixaca University Children's Hospital, University of Murcia & IMIB Research Institute, Murcia, Spain
| | | | | | - P Aurora
- Department of Paediatric Respiratory Medicine, Great Ormond Street Hospital for Children, London, UK.,Department of Respiratory, Critical Care and Anaesthesia Unit, University College London (UCL) Great Ormond Street Institute of Child Health, London, UK
| | - E Baraldi
- Women's and Children's Health Department, University of Padua, Padova, Italy
| | - S Carraro
- Women's and Children's Health Department, University of Padua, Padova, Italy
| | - M Gappa
- Children's Hospital & Research Institute, Marienhospital Wesel, Wesel, Germany
| | - R Louis
- Department of Respiratory Medicine, University of Liege, Liege, Belgium
| | - A Moreno-Galdo
- Paediatric Pulmonology Unit, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - D G Peroni
- Department of Clinical and Experimental Medicine, Section of Paediatrics, University of Pisa, Pisa, Italy
| | - M Pijnenburg
- Paediatrics/Paediatric Respiratory Medicine, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - K N Priftis
- Department of Paediatrics, Athens University Medical School, Attikon General Hospital, Athens, Greece
| | - M Sanchez-Solis
- Respiratory and Allergy Units, Arrixaca University Children's Hospital, University of Murcia & IMIB Research Institute, Murcia, Spain
| | - A Schuster
- Department of Paediatrics, University Hospital, Düsseldorf, Germany
| | | | | |
Collapse
|
5
|
Núñez-Naveira L, Mariñas-Pardo LA, Montero-Martínez C. Mass Spectrometry Analysis of the Exhaled Breath Condensate and Proposal of Dermcidin and S100A9 as Possible Markers for Lung Cancer Prognosis. Lung 2019; 197:523-531. [PMID: 31115649 DOI: 10.1007/s00408-019-00238-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/11/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION New sampling techniques to analyse lung diseases, such as exhaled breath condensate (EBC), are a breakthrough in research field since they are less invasive and less traumatic for the patients compared to lung biopsies. Nevertheless, there is an increasing need to optimize not only the sampling protocols but the storage and processing of specimens to get accurate results. METHODS Exhaled breath condensate was sampled employing the ECoScreen device. Concentrated protein was obtained after ultracentrifugation, lyophilization and reversed-phase chromatography. MALDI-time of flight (TOF)/TOF mass spectrometry (MS) was applied to determine the protein profile in EBC. Commercially available ELISA kits were used to detect the selected biomarker in the EBC after MALDI-MS proteins identification. RESULTS The obtained EBC volume after two periods of 10 min doubled the amount obtained after 20 min. One hundred peptides were detected by MALDI-MS, and 18 proteins were identified after reversed-phase chromatography concentration. Dermcidin (P81605), S100A9 (P06702) and Cathepsin G (P08311) were selected to be analysed by ELISA. Dermcidin and S100A9 expression were statistically higher in lung cancer versus healthy volunteers. VEGF concentrations decreased, respectively, by 5.94 and 11.42-fold after 1 and 2 years of frozen EBC preservation in parallel with the declined number of proteins identified by MALDI-MS. CONCLUSION Exhaled breath condensate analysis combined with MS technique may become a valuable method for lung cancer screening and Dermcidin and S100A9 may serve as biomarkers for lung cancer diagnosis or prognosis.
Collapse
Affiliation(s)
- Laura Núñez-Naveira
- University Hospital Complex of A Coruña (CHUAC), As Xubias de Arriba, 84, 15006, A Coruña, Spain.,Biomedical Research Institute of A Coruña (INIBIC), As Xubias de Arriba, 84, 15006, A Coruña, Spain
| | - Luis Antonio Mariñas-Pardo
- University Hospital Complex of A Coruña (CHUAC), As Xubias de Arriba, 84, 15006, A Coruña, Spain. .,Biomedical Research Institute of A Coruña (INIBIC), As Xubias de Arriba, 84, 15006, A Coruña, Spain.
| | - Carmen Montero-Martínez
- University Hospital Complex of A Coruña (CHUAC), As Xubias de Arriba, 84, 15006, A Coruña, Spain
| |
Collapse
|
6
|
Wu CM, Adetona A, Song C(C, Naeher L, Adetona O. Measuring acute pulmonary responses to occupational wildland fire smoke exposure using exhaled breath condensate. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2019; 75:65-69. [PMID: 30668286 PMCID: PMC6646110 DOI: 10.1080/19338244.2018.1562413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Wildland firefighters are directly exposed to elevated levels of wildland fire (WF) smoke. Although studies demonstrate WF smoke exposure is associated with lung function changes, few studies that use invasive sample collection methods have been conducted to investigate underlying biochemical changes. These methods are also either unrepresentative of the deeper airways or capable of inducing inflammation. In the present study, levels of biomarkers of oxidative stress (8-isoprostane) and pro-inflammatory response (interleukin-6 [IL-6], interleukin-8 [IL-8], C-reactive protein [CRP], and soluble intercellular adhesion molecule-1 [sICAM-1]) were determined in exhaled breath condensate (EBC) samples that were collected from firefighters before, after, and next morning following prescribed burn and regular work shifts. Results show only a marginal cross-shift increase in 8-isoprostane on burn days (.05 < p value < .1), suggesting WF smoke exposure causes mild pulmonary responses.
Collapse
Affiliation(s)
- Chieh-Ming Wu
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH
| | | | - Chi (Chuck) Song
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH
| | - Luke Naeher
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA
| | - Olorunfemi Adetona
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH
| |
Collapse
|
7
|
Lewis TC, Metitiri EE, Mentz GB, Ren X, Carpenter AR, Goldsmith AM, Wicklund KE, Eder BN, Comstock AT, Ricci JM, Brennan SR, Washington GL, Owens KB, Mukherjee B, Robins TG, Batterman SA, Hershenson MB. Influence of viral infection on the relationships between airway cytokines and lung function in asthmatic children. Respir Res 2018; 19:228. [PMID: 30463560 PMCID: PMC6249926 DOI: 10.1186/s12931-018-0922-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Few longitudinal studies examine inflammation and lung function in asthma. We sought to determine the cytokines that reduce airflow, and the influence of respiratory viral infections on these relationships. METHODS Children underwent home collections of nasal lavage during scheduled surveillance periods and self-reported respiratory illnesses. We studied 53 children for one year, analyzing 392 surveillance samples and 203 samples from 85 respiratory illnesses. Generalized estimated equations were used to evaluate associations between nasal lavage biomarkers (7 mRNAs, 10 proteins), lung function and viral infection. RESULTS As anticipated, viral infection was associated with increased cytokines and reduced FVC and FEV1. However, we found frequent and strong interactions between biomarkers and virus on lung function. For example, in the absence of viral infection, CXCL10 mRNA, MDA5 mRNA, CXCL10, IL-4, IL-13, CCL4, CCL5, CCL20 and CCL24 were negatively associated with FVC. In contrast, during infection, the opposite relationship was frequently found, with IL-4, IL-13, CCL5, CCL20 and CCL24 levels associated with less severe reductions in both FVC and FEV1. CONCLUSIONS In asthmatic children, airflow obstruction is driven by specific pro-inflammatory cytokines. In the absence of viral infection, higher cytokine levels are associated with decreasing lung function. However, with infection, there is a reversal in this relationship, with cytokine abundance associated with reduced lung function decline. While nasal samples may not reflect lower airway responses, these data suggest that some aspects of the inflammatory response may be protective against viral infection. This study may have ramifications for the treatment of viral-induced asthma exacerbations.
Collapse
Affiliation(s)
- Toby C. Lewis
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
- Environmental Health Sciences, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
- Health Behavior/Health Education, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
| | - Ediri E. Metitiri
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
| | - Graciela B. Mentz
- Health Behavior/Health Education, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
| | - Xiaodan Ren
- Environmental Health Sciences, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
| | - Ashley R. Carpenter
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
| | - Adam M. Goldsmith
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
| | - Kyra E. Wicklund
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
- Epidemiology, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
| | - Breanna N. Eder
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
| | - Adam T. Comstock
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
| | - Jeannette M. Ricci
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
| | - Sean R. Brennan
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
| | - Ginger L. Washington
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
| | - Kendall B. Owens
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
| | - Bhramar Mukherjee
- Departments of Biostatistics, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
| | - Thomas G. Robins
- Environmental Health Sciences, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
| | - Stuart A. Batterman
- Environmental Health Sciences, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
| | - Marc B. Hershenson
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, USA
| | - the Community Action Against Asthma Steering Committee
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, USA
- Departments of Biostatistics, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
- Environmental Health Sciences, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
- Epidemiology, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
- Health Behavior/Health Education, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
8
|
Rogers VE, Bollinger ME, Tulapurkar ME, Zhu S, Hasday JD, Pereira KD, Scharf SM. Inflammation and asthma control in children with comorbid obstructive sleep apnea. Pediatr Pulmonol 2018; 53:1200-1207. [PMID: 29862666 DOI: 10.1002/ppul.24074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/16/2018] [Indexed: 01/03/2023]
Abstract
OBJECTIVES A bi-directional relationship exists between asthma and obstructive sleep apnea (OSA) in which presence of one is associated with increased prevalence and severity of the other. Our objective was to determine whether OSA accounted for differences in airway and systemic inflammation in asthmatic children and whether inflammation was associated with asthma control. We hypothesized that greater severity of SDB would correlate with increased upper airway and systemic inflammation and result in reduced asthma control. METHODS Non-obese children aged 4-12 years with persistent asthma, with or without OSA were recruited. Asthma control was measured with the Childhood Asthma Control Test. Children underwent polysomnography and blood sampling, and children with OSA underwent clinically indicated adenotonsillectomy. Tonsils and sera were analyzed for 11 cytokines. RESULTS Twenty-seven children (20 with OSA, seven without OSA) participated, mean age 7.9 years, 55.6% female, 92.6% African American. Levels did not differ for any cytokine between children with and without OSA. Lower nadir oxygen saturation was associated with higher levels of tonsil TNF-α (P < 0.001) and IL-10 (P < 0.05). Higher REM-related apnea-hypopnea index was associated with higher levels of tonsil TNF-α (P < 0.05). Children with uncontrolled asthma had significantly higher levels of serum IL-10, IL-13, and TNF-α, and tonsil TNF-α (all P < 0.05) than well-controlled asthmatic children. There was no association between OSA, or any polysomnography variable, and asthma control. CONCLUSIONS Despite the presence of OSA-associated airway inflammation, and asthma control-associated airway and systemic inflammation, OSA was not related to level of asthma control in this non-obese, largely minority, low income sample.
Collapse
Affiliation(s)
- Valerie E Rogers
- School of Nursing, University of Maryland Baltimore, Baltimore, Maryland
| | - Mary E Bollinger
- School of Medicine, University of Maryland Baltimore, Baltimore, Maryland
| | - Mohan E Tulapurkar
- School of Medicine, University of Maryland Baltimore, Baltimore, Maryland
| | - Shijun Zhu
- School of Nursing, University of Maryland Baltimore, Baltimore, Maryland
| | - Jeffrey D Hasday
- School of Medicine, University of Maryland Baltimore, Baltimore, Maryland
| | - Kevin D Pereira
- School of Medicine, University of Maryland Baltimore, Baltimore, Maryland
| | - Steven M Scharf
- School of Medicine, University of Maryland Baltimore, Baltimore, Maryland
| |
Collapse
|
9
|
Peng HL, Huang WC, Cheng SC, Liou CJ. Fisetin inhibits the generation of inflammatory mediators in interleukin-1β-induced human lung epithelial cells by suppressing the NF-κB and ERK1/2 pathways. Int Immunopharmacol 2018; 60:202-210. [PMID: 29758489 DOI: 10.1016/j.intimp.2018.05.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/28/2022]
Abstract
Fisetin, a flavone that can be isolated from fruits and vegetables, has anti-tumor and anti-oxidative properties and ameliorates airway hyperresponsiveness in asthmatic mice. This study investigated whether fisetin can suppress the expression of inflammatory mediators and intercellular adhesion molecule 1 (ICAM-1) in A549 human lung epithelial cells that were stimulated with interleukin-1β (IL-1β) to induce inflammatory responses. A549 cells were treated with fisetin (3-30 μM) and then with IL-1β. Fisetin significantly inhibited COX-2 expression and reduced prostaglandin E2 production, and it suppressed the levels of IL-8, CCL5, monocyte chemotactic protein 1, tumor necrosis factor α, and IL-6. Fisetin also significantly attenuated the expression of chemokine and inflammatory cytokine genes and decreased the expression of ICAM-1, which mediates THP-1 monocyte adhesion to inflammatory A549 cells. Fisetin decreased the translocation of nuclear transcription factor kappa-B (NF-κB) subunit p65 into the nucleus and inhibited the phosphorylation of proteins in the ERK1/2 pathway. Co-treatment of IL-1β-stimulated A549 cells with ERK1/2 inhibitors plus fisetin reduced ICAM-1 expression. Furthermore, fisetin significantly increased the effects of the protective antioxidant pathway by promoting the expression of nuclear factor erythroid-2-related factor-2 and heme oxygenase 1. Taken together, these data suggest that fisetin has anti-inflammatory effects and that it suppresses the expression of chemokines, inflammatory cytokines, and ICAM-1 by suppressing the NF-κB and ERK1/2 signaling pathways in IL-1β-stimulated human lung epithelial A549 cells.
Collapse
Affiliation(s)
- Hui-Ling Peng
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33303, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33303, Taiwan; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan City 33303, Taiwan.
| | - Shu-Chen Cheng
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chian-Jiun Liou
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan City 33303, Taiwan; Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33303, Taiwan.
| |
Collapse
|
10
|
Chi CH, Liao JP, Zhao YN, Li XY, Wang GF. Effect of Inhaled Budesonide on Interleukin-4 and Interleukin-6 in Exhaled Breath Condensate of Asthmatic Patients. Chin Med J (Engl) 2017; 129:819-23. [PMID: 26996478 PMCID: PMC4819303 DOI: 10.4103/0366-6999.178962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Studies of interleukin (IL)-4 and IL-6 in the exhaled breath condensate (EBC) of asthmatic patients are limited. This study was to determine the effect of inhaled corticosteroid (ICS) treatment on IL-4 and IL-6 in the EBC of asthmatic patients. Methods: In a prospective, open-label study, budesonide 200 μg twice daily by dry powder inhaler was administered to 23 adult patients with uncontrolled asthma (mean age 42.7 years) for 12 weeks. Changes in asthma scores, lung function parameters (forced expiratory volume in 1 s [FEV1], peak expiratory flow [PEF], forced expiratory flow at 50% of forced vital capacity [FEF50], forced expiratory flow at 75% of forced vital capacity, maximum mid-expiratory flow rate) and the concentrations of IL-4 and IL-6 in EBC were measured. Results: Both asthma scores and lung function parameters were significantly improved by ICS treatment. The mean IL-4 concentration in the EBC was decreased gradually, from 1.92 ± 0.56 pmol/L before treatment to 1.60 ± 0.36 pmol/L after 8 weeks of treatment (P < 0.05) and 1.54 ± 0.81 pmol/L after 12 weeks of treatment (P < 0.01). However, the IL-6 concentration was not significantly decreased. The change in the IL-4 concentration was correlated with improvements in mean FEV1, PEF and FEF50 values (correlation coefficients −0.468, −0.478, and −0.426, respectively). Conclusions: The concentration of IL-4 in the EBC of asthmatic patients decreased gradually with ICS treatment. Measurement of IL-4 in EBC could be useful to monitor airway inflammation in asthmatics.
Collapse
Affiliation(s)
| | | | | | | | - Guang-Fa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
11
|
Abstract
Several topics on childhood asthma were addressed in the Paediatric Clinical Year in Review session at the 2015 European Respiratory Society International Congress. With regard to the relationship between lower respiratory tract infections and asthma, it emerges that is the number of respiratory episodes in the first years of life, but not the particular viral trigger, to be associated with later asthma development. Understanding which characteristics of individual patients are associated with an increased risk for asthma exacerbation is a critical step to implement strategies preventing these seasonal events. Recent data suggest the possibility that exhaled volatile organic compounds may qualify as biomarkers in detecting early signs of asthma. Adding information of exhaled volatile organic compounds and expression of inflammation genes to a clinical tool significantly improves asthma prediction in preschool wheezy children. Personal communication with children and adolescents is likely more important than the tools actually used for monitoring asthma. Systemic corticosteroids do not affect the long-term prognosis in children with first viral-induced wheezing episode and should be used cautiously during acute episodes. Finally, stress and a polymorphism upstream of a specific gene are both associated with reduced bronchodilator response in children with asthma.
Collapse
|
12
|
van Mastrigt E, de Jongste JC, Pijnenburg MW. The analysis of volatile organic compounds in exhaled breath and biomarkers in exhaled breath condensate in children - clinical tools or scientific toys? Clin Exp Allergy 2016; 45:1170-88. [PMID: 25394891 DOI: 10.1111/cea.12454] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Current monitoring strategies for respiratory diseases are mainly based on clinical features, lung function and imaging. As airway inflammation is the hallmark of many respiratory diseases in childhood, noninvasive methods to assess the presence and severity of airway inflammation might be helpful in both diagnosing and monitoring paediatric respiratory diseases. At present, the measurement of fractional exhaled nitric oxide is the only noninvasive method available to assess eosinophilic airway inflammation in clinical practice. We aimed to evaluate whether the analysis of volatile organic compounds (VOCs) in exhaled breath (EB) and biomarkers in exhaled breath condensate (EBC) is helpful in diagnosing and monitoring respiratory diseases in children. An extensive literature search was conducted in Medline, Embase and PubMed on the analysis and applications of VOCs in EB and EBC in children. We retrieved 1165 papers, of which nine contained original data on VOCs in EB and 84 on biomarkers in EBC. These were included in this review. We give an overview of the clinical applications in childhood and summarize the methodological issues. Several VOCs in EB and biomarkers in EBC have the potential to distinguish patients from healthy controls and to monitor treatment responses. Lack of standardization of collection methods and analysis techniques hampers the introduction in clinical practice. The measurement of metabolomic profiles may have important advantages over detecting single markers. There is a lack of longitudinal studies and external validation to reveal whether EB and EBC analysis have added value in the diagnostic process and follow-up of children with respiratory diseases. In conclusion, the use of VOCs in EB and biomarkers in EBC as markers of inflammatory airway diseases in children is still a research tool and not validated for clinical use.
Collapse
Affiliation(s)
- E van Mastrigt
- Department of Paediatric Respiratory Medicine, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - J C de Jongste
- Department of Paediatric Respiratory Medicine, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - M W Pijnenburg
- Department of Paediatric Respiratory Medicine, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Moschino L, Zanconato S, Bozzetto S, Baraldi E, Carraro S. Childhood asthma biomarkers: present knowledge and future steps. Paediatr Respir Rev 2015; 16:205-12. [PMID: 26100359 DOI: 10.1016/j.prrv.2015.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 11/28/2022]
Abstract
Asthma represents the most common chronic respiratory disease of childhood. Its current standard diagnosis relies on patient history of symptoms and confirmed expiratory airflow limitation. Nevertheless, the spectrum of asthma in clinical presentation is broad, and both symptoms and lung function may not always reflect the underlying airway inflammation, which can be determined by different pathogenetic mechanisms. For these reasons, the identification of objective biomarkers of asthma, which may guide diagnosis, phenotyping, management and treatment is of great clinical utility and might have a role in the development of personalized therapy. The availability of non-invasive methods to study and monitor disease inflammation is of relevance especially in childhood asthma. In this sense, a promising role might be played by the measurement of exhaled biomarkers, such as exhaled nitric oxide (FE(NO)) and molecules in exhaled breath condensate (EBC). Furthermore, recent studies have shown encouraging results with the application of the novel metabolomic approach to the study of exhaled biomarkers. In this paper the existing knowledge in the field of asthma biomarkers, with a special focus on exhaled biomarkers, will be highlighted.
Collapse
Affiliation(s)
- Laura Moschino
- Department of Women's and Children's Health, University of Padova, Padova Italy
| | - Stefania Zanconato
- Department of Women's and Children's Health, University of Padova, Padova Italy
| | - Sara Bozzetto
- Department of Women's and Children's Health, University of Padova, Padova Italy
| | - Eugenio Baraldi
- Department of Women's and Children's Health, University of Padova, Padova Italy
| | - Silvia Carraro
- Department of Women's and Children's Health, University of Padova, Padova Italy.
| |
Collapse
|
14
|
Clifford RL, Patel JK, John AE, Tatler AL, Mazengarb L, Brightling CE, Knox AJ. CXCL8 histone H3 acetylation is dysfunctional in airway smooth muscle in asthma: regulation by BET. Am J Physiol Lung Cell Mol Physiol 2015; 308:L962-72. [PMID: 25713319 PMCID: PMC4421784 DOI: 10.1152/ajplung.00021.2015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/13/2015] [Indexed: 01/03/2023] Open
Abstract
Asthma is characterized by airway inflammation and remodeling and CXCL8 is a CXC chemokine that drives steroid-resistant neutrophilic airway inflammation. We have shown that airway smooth muscle (ASM) cells isolated from asthmatic individuals secrete more CXCL8 than cells from nonasthmatic individuals. Here we investigated chromatin modifications at the CXCL8 promoter in ASM cells from nonasthmatic and asthmatic donors to further understand how CXCL8 is dysregulated in asthma. ASM cells from asthmatic donors had increased histone H3 acetylation, specifically histone H3K18 acetylation, and increased binding of histone acetyltransferase p300 compared with nonasthmatic donors but no differences in CXCL8 DNA methylation. The acetylation reader proteins Brd3 and Brd4 were bound to the CXCL8 promoter and Brd inhibitors inhibited CXCL8 secretion from ASM cells by disrupting Brd4 and RNA polymerase II binding to the CXCL8 promoter. Our results show a novel dysregulation of CXCL8 transcriptional regulation in asthma characterized by a promoter complex that is abnormal in ASM cells isolated from asthmatic donors and can be modulated by Brd inhibitors. Brd inhibitors may provide a new therapeutic strategy for steroid-resistant inflammation.
Collapse
Affiliation(s)
- Rachel L Clifford
- Department of Respiratory Medicine and Nottingham Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom; and
| | - Jamie K Patel
- Department of Respiratory Medicine and Nottingham Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom; and
| | - Alison E John
- Department of Respiratory Medicine and Nottingham Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom; and
| | - Amanda L Tatler
- Department of Respiratory Medicine and Nottingham Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom; and
| | - Lisa Mazengarb
- Department of Respiratory Medicine and Nottingham Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom; and
| | - Christopher E Brightling
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Alan J Knox
- Department of Respiratory Medicine and Nottingham Respiratory Research Unit, University of Nottingham, Nottingham, United Kingdom; and
| |
Collapse
|
15
|
Schedel M, Michel S, Gaertner VD, Toncheva AA, Depner M, Binia A, Schieck M, Rieger MT, Klopp N, von Berg A, Bufe A, Laub O, Rietschel E, Heinzmann A, Simma B, Vogelberg C, Genuneit J, Illig T, Kabesch M. Polymorphisms related to ORMDL3 are associated with asthma susceptibility, alterations in transcriptional regulation of ORMDL3, and changes in TH2 cytokine levels. J Allergy Clin Immunol 2015; 136:893-903.e14. [PMID: 25930191 DOI: 10.1016/j.jaci.2015.03.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 02/27/2015] [Accepted: 03/12/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Chromosome 17q21, harboring the orosomucoid 1-like 3 (ORMDL3) gene, has been consistently associated with childhood asthma in genome-wide association studies. OBJECTIVE We investigated genetic variants in and around ORMDL3 that can change the function of ORMDL3 and thus contribute to asthma susceptibility. METHODS We performed haplotype analyses and fine mapping of the ORMDL3 locus in a cross-sectional (International Study of Asthma and Allergies in Childhood Phase II, n = 3557 total subjects, n = 281 asthmatic patients) and case-control (Multicenter Asthma Genetics in Childhood Study/International Study of Asthma and Allergies in Childhood Phase II, n = 1446 total subjects, n = 763 asthmatic patients) data set to identify putative causal single nucleotide polymorphisms (SNPs) in the locus. Top asthma-associated polymorphisms were analyzed for allele-specific effects on transcription factor binding and promoter activity in vitro and gene expression in PBMCs after stimulation ex vivo. RESULTS Two haplotypes (H1 and H2) were significantly associated with asthma in the cross-sectional (P = 9.9 × 10(-5) and P = .0035, respectively) and case-control (P = 3.15 × 10(-8) and P = .0021, respectively) populations. Polymorphisms rs8076131 and rs4065275 were identified to drive these effects. For rs4065275, a quantitative difference in transcription factor binding was found, whereas for rs8076131, changes in upstream stimulatory factor 1 and 2 transcription factor binding were observed in vitro by using different cell lines and PBMCs. This might contribute to detected alterations in luciferase activity paralleled with changes in ORMDL3 gene expression and IL-4 and IL-13 cytokine levels ex vivo in response to innate and adaptive stimuli in an allele-specific manner. Both SNPs were in strong linkage disequilibrium with asthma-associated 17q21 SNPs previously related to altered ORMDL3 gene expression. CONCLUSION Polymorphisms in a putative promoter region of ORMDL3, which are associated with childhood asthma, alter transcriptional regulation of ORMDL3, correlate with changes in TH2 cytokines levels, and therefore might contribute to the childhood asthma susceptibility signal from 17q21.
Collapse
Affiliation(s)
- Michaela Schedel
- Department of Pediatrics, National Jewish Health, Denver, Colo; Department of Pediatric Pneumology, Allergy, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Sven Michel
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany; Department of Pediatric Pneumology, Allergy, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Vincent D Gaertner
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
| | - Antoaneta A Toncheva
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany; Department of Pediatric Pneumology, Allergy, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Martin Depner
- Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Aristea Binia
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany; Nestlé Research Centre, Nutrition & Health Department, Lausanne, Switzerland
| | - Maximilian Schieck
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany; Department of Pediatric Pneumology, Allergy, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Marie T Rieger
- Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Norman Klopp
- Research Group of Molecular Epidemiology, Helmholtz Centre Munich, Neuherberg, Germany; Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Andrea von Berg
- Research Institute for the Prevention of Allergic Diseases, Children's Department, Marien-Hospital, Wesel, Germany
| | - Albrecht Bufe
- Department of Experimental Pneumology, Ruhr-University, Bochum, Germany
| | - Otto Laub
- Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ernst Rietschel
- University Children's Hospital, University of Cologne, Cologne, Germany
| | - Andrea Heinzmann
- University Children's Hospital, Albert Ludwigs University, Freiburg, Germany
| | - Burkard Simma
- Children's Department, Feldkirch Hospital, Feldkirch, Austria
| | | | - Jon Genuneit
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Thomas Illig
- Research Group of Molecular Epidemiology, Helmholtz Centre Munich, Neuherberg, Germany; Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany; Department of Pediatric Pneumology, Allergy, and Neonatology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
16
|
Exhaled nitric oxide correlates with IL-2, MCP-1, PDGF-BB and TIMP-2 in exhaled breath condensate of children with refractory asthma. Postepy Dermatol Alergol 2015; 32:107-13. [PMID: 26015780 PMCID: PMC4436230 DOI: 10.5114/pdia.2014.40953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/15/2013] [Accepted: 11/23/2013] [Indexed: 12/02/2022] Open
Abstract
Introduction There is evidence that parameters obtained from exhaled breath condensate (EBC) reflect changes in the level of the airway lining fluid. The telation between exhaled nitric oxide (NO) and EBC inflammatory markers has not been analyzed in the context of the inflammatory profile in the airways in asthmatic children. Aim To show the cytokine profile in EBC of children with severe/refractory asthma as well as correlations between the fractional exhaled NO (FeNO) level and cytokine concentrations. Material and methods The study population consisted of eight children aged 8 to 17 years with IgE-dependent, severe/refractory asthma with a duration of at least 2 years. This was an observational study, the first consecutive eight patients with asthma symptoms on the day of the study visit, when EBC samples were obtained. Results The inter-subject variability of study cytokines ranged from 8.6 to 54.6. Cytokines with coefficient of variation < 20% were: interferon-γ, interleukins IL-2, IL-7, IL-15, IL-16, monokine induced by interferon γ (MIG) and tumor necrosis factor α. We showed a significant positive correlation between the FeNO level and crucial mediators in asthma development and progression (IL-2, MCP-1), and potent markers of airway remodeling (PDGFBB, TIMP-2). All correlations between two different variables were controlled for the effects of age, forced expiratory volume in 1 s and number of asthma exacerbations during last 12 months. Conclusions The profiling of cytokine expression in EBC can be reproducibly performed in children with severe/refractory asthma. When treating asthma in children, the FeNO level should be monitored as a prevention strategy of the progression of the remodeling leading to refractory/severe asthma. Exhaled breath condensate may be a useful tool to phenotype asthma via a non-invasive approach.
Collapse
|
17
|
Klaassen EMM, van de Kant KDG, Jöbsis Q, van Schayck OCP, Smolinska A, Dallinga JW, van Schooten FJ, den Hartog GJM, de Jongste JC, Rijkers GT, Dompeling E. Exhaled biomarkers and gene expression at preschool age improve asthma prediction at 6 years of age. Am J Respir Crit Care Med 2015; 191:201-7. [PMID: 25474185 DOI: 10.1164/rccm.201408-1537oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE A reliable asthma diagnosis is difficult in wheezing preschool children. OBJECTIVES To assess whether exhaled biomarkers, expression of inflammation genes, and early lung function measurements can improve a reliable asthma prediction in preschool wheezing children. METHODS Two hundred two preschool recurrent wheezers (aged 2-4 yr) were prospectively followed up until 6 years of age. At 6 years of age, a diagnosis (asthma or transient wheeze) was based on symptoms, lung function, and asthma medication use. The added predictive value (area under the receiver operating characteristic curve [AUC]) of biomarkers to clinical information (assessed with the Asthma Predictive Index [API]) assessed at preschool age in diagnosing asthma at 6 years of age was determined with a validation set. Biomarkers in exhaled breath condensate, exhaled volatile organic compounds (VOCs), gene expression, and airway resistance were measured. MEASUREMENTS AND MAIN RESULTS At 6 years of age, 198 children were diagnosed (76 with asthma, 122 with transient wheeze). Information on exhaled VOCs significantly improved asthma prediction (AUC, 89% [increase of 28%]; positive predictive value [PPV]/negative predictive value [NPV], 82/83%), which persisted in the validation set. Information on gene expression of toll-like receptor 4, catalase, and tumor necrosis factor-α significantly improved asthma prediction (AUC, 75% [increase of 17%]; PPV/NPV, 76/73%). This could not be confirmed after validation. Biomarkers in exhaled breath condensate and airway resistance (pre- and post- bronchodilator) did not improve an asthma prediction. The combined model with VOCs, gene expression, and API had an AUC of 95% (PPV/NPV, 90/89%). CONCLUSIONS Adding information on exhaled VOCs and possibly expression of inflammation genes to the API significantly improves an accurate asthma diagnosis in preschool children. Clinical trial registered with www.clinicaltrial.gov (NCT 00422747).
Collapse
|
18
|
Kanagaratham C, Kalivodová A, Najdekr L, Friedecký D, Adam T, Hajduch M, De Sanctis JB, Radzioch D. Fenretinide prevents inflammation and airway hyperresponsiveness in a mouse model of allergic asthma. Am J Respir Cell Mol Biol 2015; 51:783-92. [PMID: 24885263 DOI: 10.1165/rcmb.2014-0121oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Arachidonic acid (AA) and docosahexaenoic acid (DHA) play important roles in inflammation and disease progression, where AA is viewed as proinflammatory and DHA as antiinflammatory. We observe in our model of allergic asthma that the AA/DHA ratio is significantly skewed in a proinflammatory direction. Fenretinide, a vitamin A derivative, has been shown to correct fatty acid imbalances in other diseases. Therefore, we explored if fenretinide can have a protective effect in allergic asthma. To accomplish this, we measured the levels of AA and DHA in the lungs of nonallergic, ovalbumin-induced allergic, and fenretinide-treated allergic mice. We also investigated the effect of allergic asthma and fenretinide treatment on markers of oxidative stress, levels of metabolites, IgE production, airway hyperresponsiveness, and histological changes. Our data demonstrate that treatment of allergen-sensitized mice with fenretinide before allergen challenge prevents ovalbumin-induced changes in the AA/DHA ratio. The levels of several metabolites, such as serotonin, and markers of cellular stress, which are increased after ovalbumin challenge, are also controlled by fenretinide treatment. We observed the protective effect of fenretinide against ovalbumin-induced airway hyperresponsiveness and inflammation in the lungs, illustrated by a complete block in the infiltration of inflammatory cells to the airways and dramatically diminished goblet cell proliferation, even though IgE remained high. Our results demonstrate that fenretinide is an effective agent targeting inflammation, oxidation, and lung pathology observed in allergic asthma.
Collapse
|
19
|
Corradi M, Goldoni M, Mutti A. A review on airway biomarkers: exposure, effect and susceptibility. Expert Rev Respir Med 2015; 9:205-20. [PMID: 25561087 DOI: 10.1586/17476348.2015.1001373] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Current research in pulmonology requires the use of biomarkers to investigate airway exposure and diseases, for both diagnostic and prognostic purposes. The traditional approach based on invasive approaches (lung lavages and biopsies) can now be replaced, at least in part, through the use of non invasively collected specimens (sputum and breath), in which biomarkers of exposure, effect and susceptibility can be searched. The discovery of specific lung-related proteins, which can spill over in blood or excreted in urine, further enhanced the spectrum of airway specific biomarkers to be studied. The recent introduction of high-performance 'omic' technologies - genomics, proteomics and metabolomics, and the rate at which biomarker candidates are being discovered, will permit the use of a combination of biomarkers for a more precise selection of patient with different outcomes and responses to therapies. The aim of this review is to critically evaluate the use of airway biomarkers in the context of research and clinical practice.
Collapse
Affiliation(s)
- Massimo Corradi
- Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43123 Parma, Italy
| | | | | |
Collapse
|
20
|
Increased levels of exhaled sICAM1, sVCAM1, and sE-selectin in patients with non-small cell lung cancer. Respir Med 2014; 108:1670-6. [DOI: 10.1016/j.rmed.2014.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/07/2014] [Accepted: 08/12/2014] [Indexed: 11/19/2022]
|
21
|
Gascon M, Sunyer J, Martínez D, Guerra S, Lavi I, Torrent M, Vrijheid M. Persistent organic pollutants and children's respiratory health: the role of cytokines and inflammatory biomarkers. ENVIRONMENT INTERNATIONAL 2014; 69:133-140. [PMID: 24837163 DOI: 10.1016/j.envint.2014.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/23/2014] [Accepted: 04/29/2014] [Indexed: 06/03/2023]
Abstract
Evidence of adverse effects of persistent organic pollutants (POPs) on the developmental respiratory and immune systems in children is still limited, and the biological mechanisms behind such effects are not fully understood. The aim of the present study is to evaluate the effects of prenatal DDE, HCB and ΣPCB exposure on children's respiratory health from birth to 14 years and to evaluate the role of immune biomarkers in these associations. We measured prenatal DDE, HCB and ΣPCB levels in 405 participants of the INMA-Menorca birth cohort (Spain) and collected information on wheeze, chest infections, atopy and asthma from birth until the age of 14 years. At age 4 years, 275 children provided serum samples and IL6, IL8, IL10, TNFα and C-reactive protein were measured. We applied linear and logistic regression models and generalized estimating equations. Prenatal DDE was associated with wheeze at age 4 years [RR (95% CI) per doubling of concentration=1.35 (1.07, 1.71)], but not thereafter. Prenatal HCB was associated with wheeze [1.58 (1.04, 2.41)] and chest infections [1.89 (1.10, 3.25)] at age 10years. No associations were found with ΣPCBs. IL10 levels increased with increasing POP concentration, with HCB showing the strongest association [β (95% CI)=0.22 (0.02, 0.41)]. IL8, IL10 and TNFα were associated with wheeze and/or chest infections and IL10 was associated with asthma. Prenatal DDE and HCB exposure was associated with respiratory health of children at different ages. This study further suggests a possible role of IL10, but not of the other immune biomarkers examined, as an early marker of chronic immune-related health effects of POPs.
Collapse
Affiliation(s)
- Mireia Gascon
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Jordi Sunyer
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Catalonia, Spain.
| | - David Martínez
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Stefano Guerra
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Iris Lavi
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Maties Torrent
- Àrea de Salut de Menorca, IB-SALUT, Mallorca, Spain; Fundació Caubet-CIMERA, Mallorca, Spain.
| | - Martine Vrijheid
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
22
|
De Prins S, Marcucci F, Sensi L, Van de Mieroop E, Nelen V, Nawrot TS, Schoeters G, Koppen G. Exhaled nitric oxide and nasal tryptase are associated with wheeze, rhinitis and nasal allergy in primary school children. Biomarkers 2014; 19:481-7. [PMID: 25019424 DOI: 10.3109/1354750x.2014.937362] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Rhinitis and asthma are the most common respiratory diseases in children. We assessed whether airway inflammation markers were associated with nasal allergies and self-reported symptoms of wheeze and rhinitis in 130 children 6-12 year old in an epidemiological context. Independent of sex and age, the fraction of exhaled nitric oxide (FeNO) and nasal mast cell (MC) activation (tryptase ≥ 5 ng/mL) were positively associated with wheeze, rhinitis and with nasal allergy. Nasal eosinophil cationic protein (ECP) and exhaled breath condensate (EBC) markers (pH, 8-isoprostane, interleukin-1β) were not associated with symptoms or with nasal allergy. In conclusion, FeNO and nasal tryptase reflect allergic inflammation in the respiratory system.
Collapse
Affiliation(s)
- Sofie De Prins
- Environmental Risk and Health Unit, VITO (Flemish Institute for Technological Research) , Boeretang , Belgium
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wu D, Zhou J, Bi H, Li L, Gao W, Huang M, Adcock IM, Barnes PJ, Yao X. CCL11 as a potential diagnostic marker for asthma? J Asthma 2014; 51:847-54. [PMID: 24796647 DOI: 10.3109/02770903.2014.917659] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Asthma is an inflammatory airway disease characterized by airway eosinophilia, in which CCL11 (eotaxin) plays a crucial role. The aim of study is to determine the elevation of CCL11 levels in bronchoalveolar lavage fluid (BALF), blood, exhaled breath condensate (EBC) and sputum in asthma patients and to identify which medium yields the most significant change in CCL11 level. METHODS The databases of PubMed, Embase and Cochrane Centre Register of Controlled Trials were systematically searched from inception to September 2013. Controlled clinical trials that focused on CCL11 concentrations in asthma patients and controls, and their correlations with other asthma indicators were obtained. Data were analysed using Stata 12.0. RESULTS Thirty studies were included in this investigation. CCL11 levels in blood, EBC and sputum were significantly higher in asthma patients than in healthy subjects. Sputum CCL11 concentrations were significantly elevated in unstable asthma patients versus stable asthma patients and in uncontrolled asthma patients versus partially controlled asthma patients. CCL11 levels in sputum and blood were negatively correlated with the lung function as measured by FEV1% predicted, and were positively correlated with BALF, EBC and sputum eosinophil counts. Similarly, CCL11 concentrations were positively correlated with eosinophil cationic protein in EBC, blood and sputum as well as with interleukin-5 in sputum and fractional exhaled nitric oxide in EBC. Steroid treatment had no significant effect on CCL11 levels. CONCLUSIONS CCL11 is a potentially useful biomarker for the diagnosis and assessment of asthma severity and control, especially in sputum. CCL11 is crucial in eosinophil chemoattraction and activation in asthma pathogenesis. Further studies using anti-CCL11 approaches are needed to confirm a role for CCL11 in asthma pathogenesis particularly in patients with more severe disease.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University , Guangzhou Road, Nanjing , China and
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zagórska W, Grzela K, Kulus M, Sobczyński M, Grzela T. Nitric oxide, IL-6 and IL-13 are increased in the exhaled breath condensates of children with allergic rhinitis. Acta Paediatr 2014; 103:e148-53. [PMID: 24761460 DOI: 10.1111/apa.12547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIM To evaluate nitric oxide and interleukin (IL)-6, IL-8 and IL-13 in the exhaled breath of children with allergic rhinitis (AR), before and after intranasal allergen exposure. METHODS A total of 49 children with AR – comprising 20 who also had episodic asthma (AR+A) and 29 without asthma (AR) – were compared with 34 healthy controls. Nitric oxide concentrations in exhaled air (eNO) and IL-6, IL-8 and IL-13 in exhaled breath condensates (EBC) were measured in winter, outside the natural allergen exposure season, before and after an intranasal allergen challenge. RESULTS The mean concentrations of eNO, IL-6 and IL-13 were significantly higher in the two AR groups. The concentration of IL-8 was below the assay detection limit in all EBC samples. The intranasal allergen challenge increased IL-13/EBC levels in both AR groups, but did not influence mean concentrations of eNO, IL-6 or IL-8. No challenge-related changes in IL-13/EBC were observed in the allergen-exposed controls or placebo-exposed children. CONCLUSION Despite local application, the intranasal allergen challenge increased IL-13/EBC concentration in the AR children. As EBC reflects the status of lower airway segments, our observation may support the 'united airways' hypothesis, suggesting a functional link between the upper and lower airways.
Collapse
Affiliation(s)
- Wioletta Zagórska
- Department of Paediatrics; Pneumonology and Allergology; Medical University of Warsaw; Warsaw Poland
| | - Katarzyna Grzela
- Department of Paediatrics; Pneumonology and Allergology; Medical University of Warsaw; Warsaw Poland
| | - Marek Kulus
- Department of Paediatrics; Pneumonology and Allergology; Medical University of Warsaw; Warsaw Poland
| | - Maciej Sobczyński
- Department of Genomics; Faculty of Biotechnology; University of Wroclaw; Wroclaw Poland
| | - Tomasz Grzela
- Department of Histology and Embryology; Medical University of Warsaw; Warsaw Poland
| |
Collapse
|
25
|
Klaassen EMM, van de Kant KDG, Jöbsis Q, Penders J, van Schooten FJ, Quaak M, den Hartog GJM, Koppelman GH, van Schayck CP, van Eys G, Dompeling E. Integrative genomic analysis identifies a role for intercellular adhesion molecule 1 in childhood asthma. Pediatr Allergy Immunol 2014; 25:166-72. [PMID: 24393359 DOI: 10.1111/pai.12187] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Childhood asthma is characterized by chronic airway inflammation. Integrative genomic analysis of airway inflammation on genetic and protein level may help to unravel mechanisms of childhood asthma. We aimed to employ an integrative genomic approach investigating inflammation markers on DNA, mRNA, and protein level at preschool age in relationship to asthma development. METHODS In a prospective study, 252 preschool children (202 recurrent wheezers, 50 controls) from the Asthma DEtection and Monitoring (ADEM) study were followed until the age of six. Genetic variants, mRNA expression in peripheral blood mononuclear cells, and protein levels in exhaled breath condensate for intercellular adhesion molecule 1 (ICAM1), interleukin (IL)4, IL8, IL10, IL13, and tumor necrosis factor α were analyzed at preschool age. At six years of age, a classification (healthy, transient wheeze, or asthma) was based on symptoms, lung function, and medication use. RESULTS The ICAM1 rs5498 A allele was positively associated with asthma development (p = 0.02) and ICAM1 gene expression (p = 0.01). ICAM1 gene expression was positively associated with exhaled levels of soluble ICAM1 (p = 0.04) which in turn was positively associated with asthma development (p = 0.01). Furthermore, rs1800872 and rs1800896 in IL10 were associated with altered IL10 mRNA expression (p < 0.01). Exhaled levels of IL4, IL10, and IL13 were positively associated with asthma development (p < 0.01). CONCLUSIONS In this unique prospective study, we demonstrated that ICAM1 is associated with asthma development on DNA, mRNA, and protein level. Thus, ICAM1 is likely to be involved in the development of childhood asthma.
Collapse
Affiliation(s)
- Ester M M Klaassen
- Department of Pediatric Pulmonology, School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Centre (MUMC+), Maastricht, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wan GH, Yan DC, Tseng HY, Lee JT, Lin YW. Using high-performance liquid chromatography with UV detector to quantify exhaled leukotriene B4 level in nonatopic adults. J Formos Med Assoc 2014; 113:566-8. [PMID: 24491995 DOI: 10.1016/j.jfma.2013.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 10/20/2013] [Accepted: 12/28/2013] [Indexed: 11/15/2022] Open
Abstract
This study aimed to evaluate the feasibility of the chemical method to analyze exhaled breath condensate (EBC) leukotriene B4 (LTB4) level in humans. High-performance liquid chromatography with a UV detector was applied to quantify the inflammatory biomarker. The LTB4 concentration in the concentrated pooled EBC samples was 1.19 ng/μL, and the average LTB4 concentration of each EBC sample was 15.38 ng/μL. This analytical technique was feasible to evaluate the levels of inflammatory mediators such as LTB4 in human EBCs without any complicated sample pretreatment processes.
Collapse
Affiliation(s)
- Gwo-Hwa Wan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Dah-Chin Yan
- Division of Taipei Pediatrics, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hui-Yun Tseng
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jian-Tao Lee
- School of Nursing, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Wen Lin
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
27
|
Peripheral blood neutrophilia as a biomarker of ozone-induced pulmonary inflammation. PLoS One 2013; 8:e81816. [PMID: 24391708 PMCID: PMC3876972 DOI: 10.1371/journal.pone.0081816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 10/16/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Ozone concentrations are predicted to increase over the next 50 years due to global warming and the increased release of precursor chemicals. It is therefore urgent that good, reliable biomarkers are available to quantify the toxicity of this pollutant gas at the population level. Such a biomarker would need to be easily performed, reproducible, economically viable, and reflective of ongoing pathological processes occurring within the lung. METHODOLOGY We examined whether blood neutrophilia occurred following a controlled ozone challenge and addressed whether this could serve as a biomarker for ozone-induced airway inflammation. Three separate groups of healthy subjects were exposed to ozone (0.2 ppm, 2h) and filtered air (FA) on two separate occasions. Peripheral blood samples were collected and bronchoscopy with biopsy sampling and lavages was performed at 1.5h post exposures in group 1 (n=13), at 6h in group 2 (n=15) and at 18h in group 3 (n=15). Total and differential cell counts were assessed in blood, bronchial tissue and airway lavages. RESULTS In peripheral blood, we observed fewer neutrophils 1.5h after ozone compared with the parallel air exposure (-1.1±1.0x10(9) cells/L, p<0.01), at 6h neutrophil numbers were increased compared to FA (+1.2±1.3x10(9) cells/L, p<0.01), and at 18h this response had fully attenuated. Ozone induced a peak in neutrophil numbers at 6h post exposure in all compartments examined, with a positive correlation between the response in blood and bronchial biopsies. CONCLUSIONS These data demonstrate a systemic neutrophilia in healthy subjects following an acute ozone exposure, which mirrors the inflammatory response in the lung mucosa and lumen. This relationship suggests that blood neutrophilia could be used as a relatively simple functional biomarker for the effect of ozone on the lung.
Collapse
|
28
|
Vijverberg SJH, Hilvering B, Raaijmakers JAM, Lammers JWJ, Maitland-van der Zee AH, Koenderman L. Clinical utility of asthma biomarkers: from bench to bedside. Biologics 2013; 7:199-210. [PMID: 24009412 PMCID: PMC3762671 DOI: 10.2147/btt.s29976] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Asthma is a chronic disease characterized by airway inflammation, bronchial hyperresponsiveness, and recurrent episodes of reversible airway obstruction. The disease is very heterogeneous in onset, course, and response to treatment, and seems to encompass a broad collection of heterogeneous disease subtypes with different underlying pathophysiological mechanisms. There is a strong need for easily interpreted clinical biomarkers to assess the nature and severity of the disease. Currently available biomarkers for clinical practice - for example markers in bronchial lavage, bronchial biopsies, sputum, or fraction of exhaled nitric oxide (FeNO) - are limited due to invasiveness or lack of specificity. The assessment of markers in peripheral blood might be a good alternative to study airway inflammation more specifically, compared to FeNO, and in a less invasive manner, compared to bronchoalveolar lavage, biopsies, or sputum induction. In addition, promising novel biomarkers are discovered in the field of breath metabolomics (eg, volatile organic compounds) and (pharmaco)genomics. Biomarker research in asthma is increasingly shifting from the assessment of the value of single biomarkers to multidimensional approaches in which the clinical value of a combination of various markers is studied. This could eventually lead to the development of a clinically applicable algorithm composed of various markers and clinical features to phenotype asthma and improve diagnosis and asthma management.
Collapse
Affiliation(s)
- Susanne JH Vijverberg
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Bart Hilvering
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jan AM Raaijmakers
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jan-Willem J Lammers
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Anke-Hilse Maitland-van der Zee
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Leo Koenderman
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
29
|
Solomon R, Sandhu H, Phumeetham S, Gowda KMN, Heidemann SM. Detection of inflammation and oxidative lung injury in exhaled breath condensate of rats with acute lung injury due to Staphylococcal enterotoxin B. J Breath Res 2013; 7:026003. [DOI: 10.1088/1752-7155/7/2/026003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
Abstract
OBJECTIVE Studies of fractional exhaled NO (FeNO) or induced sputum are now well standardized and the exponential increase in publications about exhaled breath condensate reflects growing interest in a noninvasive diagnosis of pulmonary diseases in occupational medicine. METHODS This review describes current techniques (FeNO, induced sputum, and exhaled breath condensate) for the study of inflammation and oxidative stress biomarkers. RESULTS These biomarkers are FeNO, cytokines, H2O2, 8-isoprostane, malondialdehyde, and nitrogen oxides. These techniques also include the study of markers of the toxic burden in the lungs (heavy metals and mineral compounds) that are important in occupational health exposure assessment. CONCLUSIONS In occupational medicine, the study of both volatile and nonvolatile respiratory biomarkers can be useful in medical surveillance of exposed workers, the early identification of respiratory diseases, or the monitoring of their development.
Collapse
|
31
|
Bajaj P, Ishmael FT. Exhaled Breath Condensates as a Source for Biomarkers for Characterization of Inflammatory Lung Diseases. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jasmi.2013.31004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Symptoms, but not a biomarker response to inhaled corticosteroids, predict asthma in preschool children with recurrent wheeze. Mediators Inflamm 2012; 2012:162571. [PMID: 23304059 PMCID: PMC3523165 DOI: 10.1155/2012/162571] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 11/18/2022] Open
Abstract
Background. A reliable asthma diagnosis is challenging in preschool wheezing children. As inhaled corticosteroids (ICS) are more effective in asthmatics than in children with transient wheeze, an ICS response might be helpful in early asthma diagnosis. Methods. 175 children (aged two–four years) with recurrent wheeze received 200 μg Beclomethasone extra-fine daily for eight weeks. Changes in Exhaled Breath Condensate (EBC) biomarkers (pH, interleukin (IL)-1α, IL-2, IL-4, IL-5, IL-10, IFN-γ, sICAM, and CCL-11), Fractional exhaled Nitric Oxide (FeNO), airway resistance, and symptoms were assessed. At six years of age a child was diagnosed as transient wheezer or asthmatic. Adjusted logistic regression analysis was performed with multiple testing correction. Results. 106 transient wheezers and 64 asthmatics were analysed at six years of age. Neither changes in EBC biomarkers, nor FeNO, airway resistance, or symptoms during ICS trial at preschool age were related to asthma diagnosis at six years of age. However, asthmatics had more airway symptoms before the start of the ICS trial than transient wheezers (P < 0.01). Discussion. Although symptom score in preschool wheezing children at baseline was associated with asthma at six years of age, EBC biomarkers, airway resistance, or symptom response to ICS at preschool age could not predict asthma diagnosis at six years of age.
Collapse
|
33
|
Nunez-Naveira L, Marinas-Pardo LA, Amor-Carro O, Montero-Martinez C. Determination of ELISA reproducibility to detect protein markers in exhaled breath condensate. J Breath Res 2012; 6:046003. [DOI: 10.1088/1752-7155/6/4/046003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
van de Kant KDG, Klaassen EMM, van Aerde KJ, Damoiseaux J, Bruggeman CA, Stelma FF, Stobberingh EE, Muris JWM, Jöbsis Q, van Schayck OCP, Dompeling E. Impact of bacterial colonization on exhaled inflammatory markers in wheezing preschool children. J Breath Res 2012; 6:046001. [PMID: 22990010 DOI: 10.1088/1752-7155/6/4/046001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Wheeze is a common symptom in preschool children. The role of bacteria, regulatory T (T(reg)) cells and their association with airway inflammation in preschool wheeze is largely unknown. We evaluated inflammatory markers in exhaled breath condensate (EBC), bacterial colonization and circulating T(reg) cells in preschool children with and without recurrent wheeze. We recruited 252 children (aged two to four years) with (N = 202) and without (N = 50) recurrent wheeze. EBC was collected using an efficient closed glass condenser. Inflammatory markers in EBC (Interleukin(IL)-2, IL-4, IL-8, IL-10, IL-13) were assessed using multiplex immunoassay. Nasal and throat swabs were analysed for presence of Streptococcus pneumoniae, Haemophilus (para)influenzae and Staphylococcus aureus. Proportions of T(reg) cells (CD4(+)CD25(high)CD127(-)) were quantified by flow cytometry. Recurrent wheezing children had elevated EBC levels of IL-2, IL-4, IL-10 and IL-13 compared to non-wheezers (odds ratio (95% confidence interval): 1.67 (1.23-2.27): 1.58 (1.15-2.18): 1.47 (1.14-1.90): 1.55 (1.16-2.06), p <0.05, respectively). Bacteria were frequently present in children with and without wheeze, with no difference in prevalence (16-52% versus 16-50%, respectively). Moreover, the proportion of T(reg) cells did not differ between both groups. Wheezing children with bacterial colonization did not significantly differ in exhaled levels of inflammatory markers or proportion of T(reg) cells compared to wheezing children without colonization. The analysis of EBC might serve as a helpful non-invasive tool to early assess airway inflammation in wheezing children. The various elevated exhaled inflammatory markers indicate increased airway inflammation in wheezing preschool children. In the presence of wheeze, we found no evidence for bacterial induced airway inflammation.
Collapse
Affiliation(s)
- Kim D G van de Kant
- Department of Paediatric Pulmonology, School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Centre (MUMC), PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Katelaris CH, Linneberg A, Magnan A, Thomas WR, Wardlaw AJ, Wark P. Developments in the field of allergy in 2010 through the eyes of Clinical and Experimental Allergy. Clin Exp Allergy 2012; 41:1690-710. [PMID: 22107142 DOI: 10.1111/j.1365-2222.2011.03892.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In 2010 over 200 articles were published in Clinical and Experimental Allergy including editorials, reviews, opinion articles, letters, book reviews and of course at the heart of the journal, papers containing original data which have moved the field of allergy forward on a number of fronts. For the third year running the editors felt it would be of value to summarize the key messages contained in these papers as a snapshot of where the cutting edge of research into allergic disease is leading. We have broadly followed the sections of the journal, although this year the mechanistic articles are grouped together and the studies involving experimental models of disease are discussed throughout the paper. In the field of asthma and rhinitis phenotypes and biomarkers continue to a major pre-occupation of our authors. There is continued interest in mechanisms of inflammation and disordered lung function with the mouse model of asthma continuing to offer new insights. There is also a steady flow of papers investigating new therapies, including those derived from plants and herbs, although many are mechanistic with too few high quality clinical trials. The mechanisms involved in allergic disease are well covered with many strong papers using clinical material to ask relevant questions. Pro-pre and snybiotics continue to be of major interest to our authors and this remains a controversial and complicated field. The discipline of epidemiology has retained its interest in risk factors for the development of allergic disease with a view to refining and debating the reasons for the allergy epidemic. There is continued interest in the relationship between helminthic disease and allergy with a new twist in 2010 involving studies using infection with helminths as a potential treatment. The genetics of allergic disease continues to be very productive, although the field has moved on from only investigating single nucleotide polymorphisms of candidate genes to Genome Wide Association Studies and an increasing and welcome emphasis on gene-environment interactions. In the field of clinical allergy there is steady flow of papers describing patterns of drug allergy with renewed interest in reactions to contrast media, but food allergy is the major area of interest in this section of the journal. Lastly in the field of allergens there is a growing interest in the role of component resolved diagnosis in improving the diagnosis and management of allergic disease. Another excellent year, full of fascinating and high quality work, which the journal has been proud to bring to the allergy community.
Collapse
Affiliation(s)
- C H Katelaris
- University of Western Sydney, Campbelltown Hospital, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
36
|
Vijverberg SJH, Koenderman L, Koster ES, van der Ent CK, Raaijmakers JAM, Maitland-van der Zee AH. Biomarkers of therapy responsiveness in asthma: pitfalls and promises. Clin Exp Allergy 2012; 41:615-29. [PMID: 21488995 DOI: 10.1111/j.1365-2222.2011.03694.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Asthma is one of the most common chronic diseases worldwide. There is a large inter-individual variability in response to asthma treatment. Most patients respond well to standard therapy; however, a small proportion of the patients remain symptomatic despite treatment with high dosages of corticosteroids. Uncontrolled asthma leads to a decreased quality of life. Therefore, it is important to identify individuals who will respond poorly to standard asthma medication, especially to standard maintenance therapy with inhaled corticosteroids, at an early stage. Response to anti-inflammatory therapy is generally monitored by the assessment of clinical symptoms, which only partially correlates with underlying airway inflammation. The identification of specific inflammatory biomarkers might help to guide treatment or predict a corticosteroid response more accurately. Some inflammatory biomarkers are already finding their way into clinical practice (e.g. fraction of nitric oxide in exhaled breath), whereas others are predominantly used as a research tool (e.g. profiles of volatile organic compounds). Currently, there is no inflammatory biomarker used in routine clinical practice to predict a corticosteroid response. More knowledge on the underlying biological mechanism(s) of heterogeneous therapeutic responses could help to identify novel biomarkers. This review will focus on inflammatory patterns and genetic variations that may underlie differences in treatment response in patients with asthma, and will provide an overview of inflammatory biomarkers that could potentially serve as response predictors.
Collapse
Affiliation(s)
- S J H Vijverberg
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
|
38
|
van de Kant KDG, Jansen MA, Klaassen EMM, van der Grinten CP, Rijkers GT, Muris JWM, van Schayck OCP, Jöbsis Q, Dompeling E. Elevated inflammatory markers at preschool age precede persistent wheezing at school age. Pediatr Allergy Immunol 2012; 23:259-64. [PMID: 22192238 DOI: 10.1111/j.1399-3038.2011.01244.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Wheeze is a heterogeneous symptom in preschool children. At preschool age it is hard to predict whether symptoms will pass or persist and develop into asthma. Our objective is to prospectively study whether inflammatory markers in exhaled breath condensate (EBC) and pre- and post-bronchodilator interrupter resistance (Rint) assessed at preschool age, are associated with wheezing phenotypes at school age. METHODS Children (N = 230) were recruited from the Asthma DEtection and Monitoring (ADEM) study. At preschool age [mean (SE): 3.3 (0.1) yr], pre- and post-bronchodilator Rint was assessed. EBC was collected using a closed glass condenser. Inflammatory markers (IL-2, IL-4, IL-8, IL-10, sICAM) were measured using multiplex immunoassay. Wheezing phenotypes at 5 yr of age were determined based on longitudinal assessment. Children were classified as: never (N = 47), early-transient (N = 89) or persistent wheezers (N = 94). RESULTS Persistent wheezers had elevated levels of all interleukins at preschool age compared to children who never wheezed (p < 0.05). EBC markers did not differ between the persistent and transient wheezers. There was no marked difference in Rint between wheezing phenotypes. CONCLUSIONS We demonstrated that 5 yr old children with persistent wheeze already had elevated exhaled inflammatory markers at preschool age compared to never wheezers, indicating augmented airway inflammation in these children.
Collapse
Affiliation(s)
- Kim D G van de Kant
- Department of Paediatric Pulmonology, School for Public Health and Primary Care, Maastricht University Medical Centre, Maastricht, the Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cung K, Slater RL, Cui Y, Jones SE, Ahmad H, Naik RR, McAlpine MC. Rapid, multiplexed microfluidic phage display. LAB ON A CHIP 2012; 12:562-5. [PMID: 22182980 DOI: 10.1039/c2lc21129g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The development of a method for high-throughput, automated proteomic screening could impact areas ranging from fundamental molecular interactions to the discovery of novel disease markers and therapeutic targets. Surface display techniques allow for efficient handling of large molecular libraries in small volumes. In particular, phage display has emerged as a powerful technology for selecting peptides and proteins with enhanced, target-specific binding affinities. Yet, the process becomes cumbersome and time-consuming when multiple targets are involved. Here we demonstrate for the first time a microfluidic chip capable of identifying high affinity phage-displayed peptides for multiple targets in just a single round and without the need for bacterial infection. The chip is shown to be able to yield well-established control consensus sequences while simultaneously identifying new sequences for clinically important targets. Indeed, the confined parameters of the device allow not only for highly controlled assay conditions but also introduce a significant time-reduction to the phage display process. We anticipate that this easily-fabricated, disposable device has the potential to impact areas ranging from fundamental studies of protein, peptide, and molecular interactions, to applications such as fully automated proteomic screening.
Collapse
Affiliation(s)
- Kellye Cung
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Cathcart MP, Love S, Hughes KJ. The application of exhaled breath gas and exhaled breath condensate analysis in the investigation of the lower respiratory tract in veterinary medicine: A review. Vet J 2011; 191:282-91. [PMID: 21908213 DOI: 10.1016/j.tvjl.2011.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 08/12/2011] [Accepted: 08/13/2011] [Indexed: 10/17/2022]
Abstract
The analysis of biomarkers in exhaled breath (EB) and exhaled breath condensate (EBC) may allow non-invasive and repeatable assessment of respiratory health and disease in mammals. Compared to human medicine, however, research data from EB and EBC analysis in veterinary medicine are limited and more patient variables influencing concentrations of EB/EBC analytes may be present. In addition, variations in methodologies between studies may influence results. A comparison of the approaches used in veterinary research by different groups may aid in the identification of potentially reliable and repeatable biomarkers suitable for further investigation. To date, changes in acid-base status and increased concentrations of inflammatory mediators have been the main findings in studies of pulmonary disease states in animals. Whilst these biomarkers are unlikely to represent specific and sensitive diagnostic parameters, they do have potential application in monitoring disease progression and treatment response.
Collapse
Affiliation(s)
- M P Cathcart
- Weipers Centre for Equine Welfare, School of Veterinary Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G611QH, UK
| | | | | |
Collapse
|
41
|
Kheirandish-Gozal L, Dayyat EA, Eid NS, Morton RL, Gozal D. Obstructive sleep apnea in poorly controlled asthmatic children: effect of adenotonsillectomy. Pediatr Pulmonol 2011; 46:913-8. [PMID: 21465680 PMCID: PMC3156307 DOI: 10.1002/ppul.21451] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 12/12/2010] [Accepted: 12/13/2010] [Indexed: 12/18/2022]
Abstract
BACKGROUND Asthma and obstructive sleep apnea (OSA) in children share multiple epidemiological risk factors and the prevalence of snoring is higher in asthmatic children, suggesting that the latter may be at increased risk for OSA. Since both asthma and OSA are inflammatory disorders, we hypothesized that polysomnographically demonstrated OSA would be more frequent among poorly controlled asthmatics (PCA), and that treatment of OSA, if present, would ameliorate the frequency of acute asthmatic exacerbations (AAE). METHODS Children with PCA were referred for an overnight sleep study, and adenotonsillectomy (tonsillectomy and adenoidectomy, T&A) was performed if OSA was present. Frequency of asthma symptoms and exacerbations were compared. RESULTS Ninety-two PCA children, ages 3-10 years, with a mean frequency of AAE of 3.4 ± 0.4/year were prospectively referred for a sleep study. OSA (i.e., AHI > 5/hrTST) was present in 58 patients (63.0%; OR: 40.9, 12.9-144.1, P < 0.000001 compared to the prevalence of OSA in a non-asthmatic population). Information at 1-year follow-up was available for 35 PCA children after T&A. The annual frequency of AAE, rescue inhaled use, and asthma symptoms in this sub-group decreased compared to no changes in the group without OSA. CONCLUSIONS The prevalence of OSA is markedly increased among PCA children and treatment of OSA appears to be associated with substantial improvements in the severity of the underlying asthmatic condition.
Collapse
Affiliation(s)
- Leila Kheirandish-Gozal
- Sections of Pediatric Pulmonology and Pediatric Sleep Medicine, Department of Pediatrics, University of Chicago, Chicago, Illinois 60637-1470, USA.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic proinflammatory cytokine that has been implicated as playing a causative role in many disease states, including sepsis, pneumonia, diabetes, rheumatoid arthritis, inflammatory bowel disease, psoriasis and cancer. To inhibit the enzymatic and biologic activities of MIF, we and others have developed small-molecule MIF inhibitors. Most MIF inhibitors bind within the hydrophobic pocket that contains highly conserved amino acids known to be essential for MIF's proinflammatory activity. The best characterized of these small-molecule MIF inhibitors, (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) has been validated in scores of laboratories worldwide. Like neutralizing anti-MIF antibodies, ISO-1 significantly improves survival and reduces disease progression and/or severity in multiple murine models where MIF is implicated. This MIF inhibitor, its derivatives and other MIF-targeted compounds show great promise for future testing in disease states where increased MIF activity has been discovered.
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW The review discusses what is known regarding airway molecular phenotypes in pediatric asthma, specifically biomarkers that have been studied and their relation to the various clinical phenotypes of asthma. RECENT FINDINGS Pediatric asthma is a complex and heterogeneous disease that consists of several clinical phenotypes. There have been numerous studies investigating inflammatory markers that would increase our understanding of the underlying pathogenesis of asthma as well as facilitate the discovery of therapies for these patients. Some of these biomarkers, such as exhaled nitric oxide, exhaled breath condensate, urine leukotriene E4 and induced sputum are less invasive measures of inflammation than obtaining bronchoalveolar lavage fluid in children. Although recent data reveal that some of these measures may be helpful in classifying and managing pediatric asthma, further studies are critically needed before any of these biomarkers are able to be routinely used in clinical asthma care. SUMMARY The search for noninvasive biomarkers to help elucidate specific underlying molecular phenotypes in pediatric asthma should be a continued priority as we work towards improved care and management of these children.
Collapse
|
44
|
Dompeling E, Jöbsis Q. Proteomics of exhaled breath condensate: a realistic approach in children with asthma? Clin Exp Allergy 2011; 41:299-301. [PMID: 21294783 DOI: 10.1111/j.1365-2222.2010.03686.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Ahmadzai H, Wakefield D, Thomas PS. The potential of the immunological markers of sarcoidosis in exhaled breath and peripheral blood as future diagnostic and monitoring techniques. Inflammopharmacology 2011; 19:55-68. [DOI: 10.1007/s10787-011-0079-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 01/26/2011] [Indexed: 01/17/2023]
|
46
|
Kodesh E, Zaldivar F, Schwindt C, Tran P, Yu A, Camilon M, Nance DM, Leu SY, Cooper D, Adams GR. A rat model of exercise-induced asthma: a nonspecific response to a specific immunogen. Am J Physiol Regul Integr Comp Physiol 2011; 300:R917-24. [PMID: 21228339 DOI: 10.1152/ajpregu.00270.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exercise-induced bronchoconstriction (EIB) is common; however, key aspects of its pathogenesis are still unclear. We investigated the feasibility of adapting an established animal model of asthma to investigate the earliest stages of EIB. The hypothesis was that a single exposure to a normally innocuous, and brief, exercise challenge could trigger EIB symptoms in rats previously sensitized to ovalbumin (OVA) but otherwise unchallenged. Brown-Norway rats were sensitized by intraperitoneal injection of OVA at 0 and 2 wk. At week 3, animals were exposed to either aerosolized OVA (SS) or exercise (EXS). A trained, blinded, clinical observer graded EIB by respiratory sounds. Plasma and lung cytokine levels were analyzed. No control rats with or without exercise (EX, CON) showed evidence of EIB. Eighty percent of the SS group demonstrated abnormal breath sounds upon exposure to aerosolized OVA. Approximately 30% of EXS rats sensitized to OVA but exposed only to exercise had abnormal breath sounds. Lung tissue levels of TNF-α, IL-1α, growth-related oncogene/keratinocyte/chemoattractant, and IFN-γ were significantly higher (P < 0.001) in the SS group, relative to all other groups. Changes in most of these cytokines were not notable in the EXS rats, suggesting a different mechanism of EIB. Remarkably, IFN-γ, but not the other cytokines measured, was significantly elevated following brief exercise in both sensitized and unsensitized rats. Exercise led to detectable breathing sound abnormalities in sensitized rats, but less severe than those observed following classical OVA challenge. Precisely how this immune crossover occurs is not known, but this model may be useful in elucidating essential mechanisms of EIB.
Collapse
Affiliation(s)
- Einat Kodesh
- Department of Pediatrics, University of California, Irvine, Irvine, California 92697-4560, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pleil JD, Sheldon LS. Adapting concepts from systems biology to develop systems exposure event networks for exposure science research. Biomarkers 2010; 16:99-105. [DOI: 10.3109/1354750x.2010.541565] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Joachim D. Pleil
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, NC 27711
| | - Linda S. Sheldon
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, NC 27711
| |
Collapse
|
48
|
Bibliography. Genetics. Current world literature. Curr Opin Pediatr 2010; 22:833-5. [PMID: 21610333 DOI: 10.1097/mop.0b013e32834179f9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Kazani S, Israel E. Exhaled breath condensates in asthma: diagnostic and therapeutic implications. J Breath Res 2010; 4:047001. [PMID: 21383487 DOI: 10.1088/1752-7155/4/4/047001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Exhaled breath condensate (EBC) collection and analysis offers a unique non-invasive method to sample the airway lining fluid. It enables classification and quantification of airway inflammation associated with various pulmonary diseases such as asthma. Over the last decade, innumerable efforts have been made to identify biomarkers in EBC for diagnosis and management of asthma. The aim of this review is to consolidate information available to date, summarize findings from studies and identify potential biomarkers which need further refinement through translational research prior to application in clinical practice.
Collapse
Affiliation(s)
- Shamsah Kazani
- Pulmonary and Critical Care Division, PBB Clinics 3, 75 Francis Street, Boston, MA 02115, USA.
| | | |
Collapse
|