1
|
Prickler L, Baranyi U, Mengrelis K, Weijler AM, Kainz V, Kratzer B, Steiner R, Mucha J, Rudoph E, Pilat N, Bohle B, Strobl H, Pickl WF, Valenta R, Linhart B, Wekerle T. Adoptive transfer of allergen-expressing B cells prevents IgE-mediated allergy. Front Immunol 2023; 14:1286638. [PMID: 38077381 PMCID: PMC10703460 DOI: 10.3389/fimmu.2023.1286638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Prophylactic strategies to prevent the development of allergies by establishing tolerance remain an unmet medical need. We previously reported that the transfer of autologous hematopoietic stem cells (HSC) expressing the major timothy grass pollen allergen, Phl p 5, on their cell surface induced allergen-specific tolerance in mice. In this study, we investigated the ability of allergen-expressing immune cells (dendritic cells, CD4+ T cells, CD8+ T cells, and CD19+ B cells) to induce allergen-specific tolerance in naive mice and identified CD19+ B cells as promising candidates for allergen-specific cell therapy. Methods For this purpose, CD19+ B cells were isolated from Phl p 5-transgenic BALB/c mice and transferred to naive BALB/c mice, pre-treated with a short course of rapamycin and an anti-CD40L antibody. Subsequently, the mice were subcutaneously sensitized three times at 4-week intervals to Phl p 5 and Bet v 1 as an unrelated control allergen. Allergen-expressing cells were followed in the blood to monitor molecular chimerism, and sera were analyzed for Phl p 5- and Bet v 1-specific IgE and IgG1 levels by RBL assay and ELISA, respectively. In vivo allergen-induced lung inflammation was measured by whole-body plethysmography, and mast cell degranulation was determined by skin testing. Results The transfer of purified Phl p 5-expressing CD19+ B cells to naive BALB/c mice induced B cell chimerism for up to three months and prevented the development of Phl p 5-specific IgE and IgG1 antibody responses for a follow-up period of 26 weeks. Since Bet v 1 but not Phl p 5-specific antibodies were detected, the induction of tolerance was specific for Phl p 5. Whole-body plethysmography revealed preserved lung function in CD19+ B cell-treated mice in contrast to sensitized mice, and there was no Phl p 5-induced mast cell degranulation in treated mice. Discussion Thus, we demonstrated that the transfer of Phl p 5-expressing CD19+ B cells induces allergen-specific tolerance in a mouse model of grass pollen allergy. This approach could be further translated into a prophylactic regimen for the prevention of IgE-mediated allergy in humans.
Collapse
Affiliation(s)
- Lisa Prickler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Ulrike Baranyi
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Konstantinos Mengrelis
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Marianne Weijler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Verena Kainz
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Romy Steiner
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Jasmin Mucha
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Elisa Rudoph
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Nina Pilat
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Herbert Strobl
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Winfried Franz Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, National Research Center (NRC), Moscow, Russia
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Birgit Linhart
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Dorofeeva Y, Shilovskiy I, Tulaeva I, Focke‐Tejkl M, Flicker S, Kudlay D, Khaitov M, Karsonova A, Riabova K, Karaulov A, Khanferyan R, Pickl WF, Wekerle T, Valenta R. Past, present, and future of allergen immunotherapy vaccines. Allergy 2021; 76:131-149. [PMID: 32249442 PMCID: PMC7818275 DOI: 10.1111/all.14300] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/25/2020] [Accepted: 03/15/2020] [Indexed: 12/21/2022]
Abstract
Allergen-specific immunotherapy (AIT) is an allergen-specific form of treatment for patients suffering from immunoglobulin E (IgE)-associated allergy; the most common and important immunologically mediated hypersensitivity disease. AIT is based on the administration of the disease-causing allergen with the goal to induce a protective immunity consisting of allergen-specific blocking IgG antibodies and alterations of the cellular immune response so that the patient can tolerate allergen contact. Major advantages of AIT over all other existing treatments for allergy are that AIT induces a long-lasting protection and prevents the progression of disease to severe manifestations. AIT is cost effective because it uses the patient´s own immune system for protection and potentially can be used as a preventive treatment. However, broad application of AIT is limited by mainly technical issues such as the quality of allergen preparations and the risk of inducing side effects which results in extremely cumbersome treatment schedules reducing patient´s compliance. In this article we review progress in AIT made from its beginning and provide an overview of the state of the art, the needs for further development, and possible technical solutions available through molecular allergology. Finally, we consider visions for AIT development towards prophylactic application.
Collapse
Affiliation(s)
- Yulia Dorofeeva
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Igor Shilovskiy
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
| | - Inna Tulaeva
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Margarete Focke‐Tejkl
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Sabine Flicker
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Dmitriy Kudlay
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
| | - Musa Khaitov
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
| | - Antonina Karsonova
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Ksenja Riabova
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Alexander Karaulov
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Roman Khanferyan
- Department of Immunology and AllergyRussian People’s Friendship UniversityMoscowRussian Federation
| | - Winfried F. Pickl
- Institute of ImmunologyCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Thomas Wekerle
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Rudolf Valenta
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| |
Collapse
|
3
|
Patel SR, Lundgren TS, Spencer HT, Doering CB. The Immune Response to the fVIII Gene Therapy in Preclinical Models. Front Immunol 2020; 11:494. [PMID: 32351497 PMCID: PMC7174743 DOI: 10.3389/fimmu.2020.00494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Neutralizing antibodies to factor VIII (fVIII), referred to as "inhibitors," remain the most challenging complication post-fVIII replacement therapy. Preclinical development of novel fVIII products involves studies incorporating hemophilia A (HA) and wild-type animal models. Though immunogenicity is a critical aspect of preclinical pharmacology studies, gene therapy studies tend to focus on fVIII expression levels without major consideration for immunogenicity. Therefore, little clarity exists on whether preclinical testing can be predictive of clinical immunogenicity risk. Despite this, but perhaps due to the potential for transformative benefits, clinical gene therapy trials have progressed rapidly. In more than two decades, no inhibitors have been observed. However, all trials are conducted in previously treated patients without a history of inhibitors. The current review thus focuses on our understanding of preclinical immunogenicity for HA gene therapy candidates and the potential indication for inhibitor treatment, with a focus on product- and platform-specific determinants, including fVIII transgene sequence composition and tissue/vector biodistribution. Currently, the two leading clinical gene therapy vectors are adeno-associated viral (AAV) and lentiviral (LV) vectors. For HA applications, AAV vectors are liver-tropic and employ synthetic, high-expressing, liver-specific promoters. Factors including vector serotype and biodistribution, transcriptional regulatory elements, transgene sequence, dosing, liver immunoprivilege, and host immune status may contribute to tipping the scale between immunogenicity and tolerance. Many of these factors can also be important in delivery of LV-fVIII gene therapy, especially when delivered intravenously for liver-directed fVIII expression. However, ex vivo LV-fVIII targeting and transplantation of hematopoietic stem and progenitor cells (HSPC) has been demonstrated to achieve durable and curative fVIII production without inhibitor development in preclinical models. A critical variable appears to be pre-transplantation conditioning regimens that suppress and/or ablate T cells. Additionally, we and others have demonstrated the potential of LV-fVIII HSPC and liver-directed AAV-fVIII gene therapy to eradicate pre-existing inhibitors in murine and canine models of HA, respectively. Future preclinical studies will be essential to elucidate immune mechanism(s) at play in the context of gene therapy for HA, as well as strategies for preventing adverse immune responses and promoting immune tolerance even in the setting of pre-existing inhibitors.
Collapse
Affiliation(s)
- Seema R. Patel
- Hemostasis and Thrombosis Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Taran S. Lundgren
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - H. Trent Spencer
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Christopher B. Doering
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| |
Collapse
|
4
|
Valenta R, Karaulov A, Niederberger V, Gattinger P, van Hage M, Flicker S, Linhart B, Campana R, Focke-Tejkl M, Curin M, Eckl-Dorna J, Lupinek C, Resch-Marat Y, Vrtala S, Mittermann I, Garib V, Khaitov M, Valent P, Pickl WF. Molecular Aspects of Allergens and Allergy. Adv Immunol 2018; 138:195-256. [PMID: 29731005 DOI: 10.1016/bs.ai.2018.03.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunoglobulin E (IgE)-associated allergy is the most common immune disorder. More than 30% of the population suffer from symptoms of allergy which are often severe, disabling, and life threatening such as asthma and anaphylaxis. Population-based birth cohort studies show that up to 60% of the world population exhibit IgE sensitization to allergens, of which most are protein antigens. Thirty years ago the first allergen-encoding cDNAs have been isolated. In the meantime, the structures of most of the allergens relevant for disease in humans have been solved. Here we provide an update regarding what has been learned through the use of defined allergen molecules (i.e., molecular allergology) and about mechanisms of allergic disease in humans. We focus on new insights gained regarding the process of sensitization to allergens, allergen-specific secondary immune responses, and mechanisms underlying allergic inflammation and discuss open questions. We then show how molecular forms of diagnosis and specific immunotherapy are currently revolutionizing diagnosis and treatment of allergic patients and how allergen-specific approaches may be used for the preventive eradication of allergy.
Collapse
Affiliation(s)
- Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; NRC Institute of Immunology FMBA of Russia, Moscow, Russia.
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Verena Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Pia Gattinger
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marianne van Hage
- Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Sabine Flicker
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Birgit Linhart
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Raffaela Campana
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Julia Eckl-Dorna
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Christian Lupinek
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Yvonne Resch-Marat
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Susanne Vrtala
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Irene Mittermann
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Victoria Garib
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; International Network of Universities for Molecular Allergology and Immunology, Vienna, Austria
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Al-Kouba J, Wilkinson AN, Starkey MR, Rudraraju R, Werder RB, Liu X, Law SC, Horvat JC, Brooks JF, Hill GR, Davies JM, Phipps S, Hansbro PM, Steptoe RJ. Allergen-encoding bone marrow transfer inactivates allergic T cell responses, alleviating airway inflammation. JCI Insight 2017; 2:85742. [PMID: 28570267 DOI: 10.1172/jci.insight.85742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/25/2017] [Indexed: 01/09/2023] Open
Abstract
Memory Th2 cell responses underlie the development and perpetuation of allergic diseases. Because these states result from immune dysregulation, established Th2 cell responses represent a significant challenge for conventional immunotherapies. New approaches that overcome the detrimental effects of immune dysregulation are required. We tested whether memory Th2 cell responses were silenced using a therapeutic approach where allergen expression in DCs is transferred to sensitized recipients using BM cells as a vector for therapeutic gene transfer. Development of allergen-specific Th2 responses and allergen-induced airway inflammation was blocked by expression of allergen in DCs. Adoptive transfer studies showed that Th2 responses were inactivated by a combination of deletion and induction of T cell unresponsiveness. Transfer of BM encoding allergen expression targeted to DCs terminated, in an allergen-specific manner, Th2 responses in sensitized recipients. Importantly, when preexisting airway inflammation was present, there was effective silencing of Th2 cell responses, airway inflammation was alleviated, and airway hyperreactivity was reversed. The effectiveness of DC-targeted allergen expression to terminate established Th2 responses in sensitized animals indicates that exploiting cell-intrinsic T cell tolerance pathways could lead to development of highly effective immunotherapies.
Collapse
Affiliation(s)
- Jane Al-Kouba
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Andrew N Wilkinson
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Malcolm R Starkey
- Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Rajeev Rudraraju
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Rhiannon B Werder
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Xiao Liu
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Soi-Cheng Law
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Jay C Horvat
- Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Jeremy F Brooks
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Janet M Davies
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Simon Phipps
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Philip M Hansbro
- Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Raymond J Steptoe
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| |
Collapse
|
6
|
Baranyi U, Farkas AM, Hock K, Mahr B, Linhart B, Gattringer M, Focke-Tejkl M, Petersen A, Wrba F, Rülicke T, Valenta R, Wekerle T. Cell Therapy for Prophylactic Tolerance in Immunoglobulin E-mediated Allergy. EBioMedicine 2016; 7:230-9. [PMID: 27322476 PMCID: PMC4909362 DOI: 10.1016/j.ebiom.2016.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 12/20/2022] Open
Abstract
Background Therapeutic strategies for the prophylaxis of IgE-mediated allergy remain an unmet medical need. Cell therapy is an emerging approach with high potential for preventing and treating immunological diseases. We aimed to develop a cell-based therapy inducing permanent allergen-specific immunological tolerance for preventing IgE-mediated allergy. Methods Wild-type mice were treated with allergen-expressing bone marrow cells under a short course of tolerogenic immunosuppression (mTOR inhibition and costimulation blockade). Bone marrow was retrieved from a novel transgenic mouse ubiquitously expressing the major grass pollen allergen Phl p 5 as a membrane-anchored protein (BALB/c-Tg[Phlp5-GFP], here mPhl p 5). After transplantation recipients were IgE-sensitized at multiple time points with Phl p 5 and control allergen. Results Mice treated with mPhl p 5 bone marrow did not develop Phl p 5-specific IgE (or other isotypes) despite repeated administration of the allergen, while mounting and maintaining a strong humoral response towards the control allergen. Notably, Phl p 5-specific T cell responses and allergic airway inflammation were also completely prevented. Interestingly allergen-specific B cell tolerance was maintained independent of Treg functions indicating deletional tolerance as underlying mechanism. Conclusion This proof-of-concept study demonstrates that allergen-specific immunological tolerance preventing occurrence of allergy can be established through a cell-based therapy employing allergen-expressing leukocytes. Avoidance of IgE-mediated allergy is established by development of a tolerogenic cell-based protocol. Transplantation of syngeneic allergen-bearing bone marrow cells into recipients leads to tolerance towards the introduced allergen. Prevention of T-and B-cell responses and allergic asthma is induced by cell transfer with non-toxic pretreatment.
IgE-mediated allergy affects about 30% of the population in industrialized countries. To prevent allergy we developed a cell-based protocol with the concept to modify body's own cells to express an allergen and to reinfuse those modified cells. This concept leads to avoidance of allergic reactions after allergen contact such as specific IgE production and the development of allergic asthma. This is demonstrated in a syngeneic model in mice (i.e. autologous in human) by transplanting bone marrow cells of a unique allergen-expressing transgenic mouse into pretreated recipients.
Collapse
Affiliation(s)
- Ulrike Baranyi
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Andreas M Farkas
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Karin Hock
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Benedikt Mahr
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Birgit Linhart
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center of Physiology and Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martina Gattringer
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Margit Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center of Physiology and Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Arnd Petersen
- Research Center Borstel, Clinical and Molecular Allergology, Borstel, Germany
| | - Fritz Wrba
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center of Physiology and Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Lu L, Zhang G, Li R, Zhao Z, Li W, Liu T, Fu W. Molecular Chimeric Recipient Precursor T Cells Promote Cardiac Allograft Survival in Mice. Transplant Proc 2015; 47:2978-84. [PMID: 26707325 DOI: 10.1016/j.transproceed.2015.09.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/31/2015] [Accepted: 09/17/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Molecular chimerism has become a potential method to induce donor-specific transplant tolerance. We researched the prolongation of cardiac allograft survival by recipient mouse molecular chimeric precursor T cells (pre-T cells) or hematopoietic stem cells (HSCs) infusion in vivo. METHODS The donor C57BL/6 mouse MHC-I gene (H-2K(b) and H-2D(b) gene) were amplified by RT-PCR. The identified recipient BALB/c mouse pre-T cells and HSCs were transduced by the pMSCVneo retroviral vector of C57BL/6 mouse MHC-I gene (pMSCVneo-H-2D(b)/H-2K(b)). Then the molecular chimeric cells were transfused back to the BALB/c mice. Allogeneic T-lymphocyte proliferation was assessed in mixed lymphocyte reactions (MLR). A mouse model of heterotopic abdominal heart transplantation was performed to evaluate survival times and histological grade of acute rejection at 7 days after transplantation. RESULTS BALB/c mice molecular chimeric pre-T cells and HSCs were cultured successfully after pMSCV-H-2D(b)/H-2K(b) transduction. After the molecular chimeric pre-T cell treatment, the result of MLR showed that the stimulating index of allogeneic T lymphocyte had a statistically significant decrease, which also exhibited a significant reduction after molecular chimeric HSC treatment. The survival time of cardiac allograft was prolonged after chimeric pre-T cell or HSC infusion; meanwhile, pathologic rejection grade decreased significantly. Nevertheless, molecular chimeric pre-T cells exhibited a longer median survival time. CONCLUSION The molecular chimeric recipient mouse pre-T cell or HSC infusion reduced spleen T cells' response to allogeneic T cells in vitro and delayed cardiac allograft rejection in vivo. Pre-T cells have more advantages than HSCs on the prolongation of mouse cardiac allograft survival.
Collapse
Affiliation(s)
- L Lu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - G Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - R Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Z Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - W Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - T Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - W Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
8
|
Mari A, Antonietta Ciardiello M, Passalacqua G, Vliagoftis H, Wardlaw AJ, Wickman M. Developments in the field of allergy in 2012 through the eyes of Clinical & Experimental Allergy. Clin Exp Allergy 2014; 43:1309-32. [PMID: 24118214 DOI: 10.1111/cea.12212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In 2012, we received 683 submissions and published 20 editorials, 38 reviews, 11 letters and 128 original articles. This represents an acceptance rate for original papers in the range of 20%. About 30% of original papers were triaged not to go out to review, either because the editors did not feel they had sufficient priority for publication or because the topic did not feel right for the readers of the journal. We place great emphasis on obtaining sufficient high-quality reviews to make our decisions on publication fair and consistent. Inevitably, however, there is a degree of luck about what gets published and which papers miss out, and we are always happy to receive an appeal on our decisions either at the triage stage or after review. This gives us the opportunity to revisit the decision and revise it or explain in more detail to the authors the basis for the decision. Once again in 2012, we were delighted by the quality of the papers submitted and the breadth and depth of research into allergic disease that it revealed. The pattern of papers submitted was similar in previous years with considerable emphasis on all aspects of asthma and rhinitis. We were particularly pleased with our special issue on severe asthma. Elucidating mechanisms using either animal models or patients has always been a major theme of the journal, and the excellent work in these areas has been summarized by Harissios Vliagoftis with a particularly interesting section on early-life events guiding the development of allergic disease, which understandably continue to be a major theme of research. Magnus Wickman summarized the papers looking at the epidemiology of allergic disease including work from birth cohorts, which are an increasingly rich source of data on risk factors for allergic disease, and two papers on the epidemiology of anaphylaxis. Giovanni Passalacqua discussed the papers in the clinical allergy section of the journal, and Adriano Mari who runs the excellent Allergome website discussed the papers looking at allergens including characterization and the relative usefulness of allergen arrays versus single extracts in diagnosis and management.
Collapse
Affiliation(s)
- A Mari
- Allergome, Allergy Data Laboratories s.c., Latina, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Sack BK, Herzog RW, Terhorst C, Markusic DM. Development of Gene Transfer for Induction of Antigen-specific Tolerance. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14013. [PMID: 25558460 PMCID: PMC4280786 DOI: 10.1038/mtm.2014.13] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gene replacement therapies, like organ and cell transplantation are likely to introduce neo-antigens that elicit rejection via humoral and/or effector T cell immune responses. Nonetheless, thanks to an ever growing body of pre-clinical studies it is now well accepted that gene transfer protocols can be specifically designed and optimized for induction of antigen-specific immune tolerance. One approach is to specifically express a gene in a tissue with a tolerogenic microenvironment such as the liver or thymus. Another strategy is to transfer a particular gene into hematopoietic stem cells or immunological precursor cells thus educating the immune system to recognize the therapeutic protein as "self". In addition, expression of the therapeutic protein in pro-tolerogenic antigen presenting cells such as immature dendritic cells and B cells has proven to be promising. All three approaches have successfully prevented unwanted immune responses in pre-clinical studies aimed at the treatment of inherited protein deficiencies, e.g. lysosomal storage disorders and hemophilia, and of type I diabetes and multiple sclerosis. In this review we focus on current gene transfer protocols that induce tolerance, including gene delivery vehicles and target tissues, and discuss successes and obstacles in different disease models.
Collapse
Affiliation(s)
- Brandon K Sack
- Seattle Biomedical Research Institute, Seattle, Washington, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA 02115. USA
| | - David M Markusic
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Baranyi U, Gattringer M, Farkas AM, Hock K, Pilat N, Iacomini J, Valenta R, Wekerle T. The site of allergen expression in hematopoietic cells determines the degree and quality of tolerance induced through molecular chimerism. Eur J Immunol 2013; 43:2451-60. [PMID: 23765421 PMCID: PMC3816328 DOI: 10.1002/eji.201243277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/15/2013] [Accepted: 06/10/2013] [Indexed: 12/28/2022]
Abstract
The transplantation of allergens (e.g. Phl p 5 or Bet v 1) expressed on BM cells as membrane-anchored full-length proteins leads to permanent tolerance at the T-cell, B-cell, and effector-cell levels. Since the exposure of complete allergens bears the risk of inducing anaphylaxis, we investigated here whether expression of Phl p 5 in the cytoplasm (rather than on the cell surface) is sufficient for tolerance induction. Transplantation of BALB/c BM retrovirally transduced to express Phl p 5 in the cytoplasm led to stable and durable molecular chimerism in syngeneic recipients (∼20% chimerism at 6 months). Chimeras showed allergen-specific T-cell hyporesponsiveness. Further, Phl p 5-specific TH 1-dependent humoral responses were tolerized in several chimeras. Surprisingly, Phl p 5-specific IgE and IgG1 levels were significantly reduced but still detectable in sera of chimeric mice, indicating incomplete B-cell tolerance. No Phl p 5-specific sIgM developed in cytoplasmic chimeras, which is in marked contrast to mice transplanted with BM expressing membrane-anchored Phl p 5. Thus, the expression site of the allergen substantially influences the degree and quality of tolerance achieved with molecular chimerism in IgE-mediated allergy.
Collapse
Affiliation(s)
- Ulrike Baranyi
- Division of Transplantation, Department of Surgery, Medical University of ViennaVienna, Austria
| | - Martina Gattringer
- Division of Transplantation, Department of Surgery, Medical University of ViennaVienna, Austria
| | - Andreas M Farkas
- Division of Transplantation, Department of Surgery, Medical University of ViennaVienna, Austria
| | - Karin Hock
- Division of Transplantation, Department of Surgery, Medical University of ViennaVienna, Austria
| | - Nina Pilat
- Division of Transplantation, Department of Surgery, Medical University of ViennaVienna, Austria
| | - John Iacomini
- Renal Division, Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center of Physiology and Pathophysiology, Infectiology and Immunology, Medical University of ViennaVienna, Austria
| | - Thomas Wekerle
- Division of Transplantation, Department of Surgery, Medical University of ViennaVienna, Austria
| |
Collapse
|
11
|
George D, Czech J, John B, Yu M, Jennings LJ. Detection and quantification of chimerism by droplet digital PCR. CHIMERISM 2013; 4:102-8. [PMID: 23974275 DOI: 10.4161/chim.25400] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Accurate quantification of chimerism and microchimerism is proving to be increasingly valuable for hematopoietic cell transplantation as well as non-transplant conditions. However, methods that are available to quantify low-level chimerism lack accuracy. Therefore, we developed and validated a method for quantifying chimerism based on digital PCR technology. We demonstrate accurate quantification that far exceeds what is possible with analog qPCR down to 0.01% with the potential to go even lower. Also, this method is inherently more informative than qPCR. We expect the advantages of digital PCR will make it the preferred method for chimerism analysis.
Collapse
Affiliation(s)
- David George
- Department of Pathology and Laboratory Medicine; Ann & Robert H. Lurie Children's Hospital of Chicago; Chicago, IL USA
| | | | | | | | | |
Collapse
|