1
|
Hunzeker ZE, Zhao L, Kim AM, Parker JM, Zhu Z, Xiao H, Bai Q, Wakefield MR, Fang Y. The role of IL-22 in cancer. Med Oncol 2024; 41:240. [PMID: 39231878 DOI: 10.1007/s12032-024-02481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Interleukin-22, discovered in the year of 2000, is a pleiotropic Th17 cytokine from the IL-10 family of cytokines. IL-22 signals through the type 2 cytokine receptor complex IL-22R and predominantly activates STAT3. This pathway leads to the transcription of several different types of genes, giving IL-22 context-specific functions ranging from inducing antimicrobial peptide expression to target cell proliferation. In recent years, it has been shown that IL-22 is involved in the pathogenesis of neoplasia in some cancers through its pro-proliferative and anti-apoptotic effects. This review highlights studies with recent discoveries and conclusions drawn on IL-22 and its involvement and function in various cancers. Such a study may be helpful to better understand the role of IL-22 in cancer so that new treatment could be developed targeting IL-22.
Collapse
Affiliation(s)
- Zachary E Hunzeker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Department of Internal Medicine, University of Texas Houston Health Science Center, Houston, TX, USA
| | - Lei Zhao
- Department of Respiratory Medicine, the 2nd People's Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Austin M Kim
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Jacob M Parker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Huaping Xiao
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
2
|
Li H, Liu D, Li K, Wang Y, Zhang G, Qi L, Xie K. Pancreatic stellate cells and the interleukin family: Linking fibrosis and immunity to pancreatic ductal adenocarcinoma (Review). Mol Med Rep 2024; 30:159. [PMID: 38994764 PMCID: PMC11258612 DOI: 10.3892/mmr.2024.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive form of cancer with a low survival rate. A successful treatment strategy should not be limited to targeting cancer cells alone, but should adopt a more comprehensive approach, taking into account other influential factors. These include the extracellular matrix (ECM) and immune microenvironment, both of which are integral components of the tumor microenvironment. The present review describes the roles of pancreatic stellate cells, differentiated cancer‑associated fibroblasts and the interleukin family, either independently or in combination, in the progression of precursor lesions in pancreatic intraepithelial neoplasia and PDAC. These elements contribute to ECM deposition and immunosuppression in PDAC. Therapeutic strategies that integrate interleukin and/or stromal blockade for PDAC immunomodulation and fibrogenesis have yielded inconsistent results. A deeper comprehension of the intricate interplay between fibrosis, and immune responses could pave the way for more effective treatment targets, by elucidating the mechanisms and causes of ECM fibrosis during PDAC progression.
Collapse
Affiliation(s)
- Haichao Li
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Donglian Liu
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Kaishu Li
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Yichen Wang
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Gengqiang Zhang
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Ling Qi
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Keping Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
3
|
Zhang T, Wahib R, Zazara DE, Lücke J, Shiri AM, Kempski J, Zhao L, Agalioti T, Machicote AP, Giannou O, Belios I, Jia R, Zhang S, Tintelnot J, Seese H, Grass JK, Mercanoglu B, Stern L, Scognamiglio P, Fard-Aghaie M, Seeger P, Wakker J, Kemper M, Brunswig B, Duprée A, Lykoudis PM, Pikouli A, Giorgakis E, Stringa P, Lausada N, Gentilini MV, Gondolesi GE, Bachmann K, Busch P, Grotelüschen R, Maroulis IC, Arck PC, Nakano R, Thomson AW, Ghadban T, Tachezy M, Melling N, Achilles EG, Puelles VG, Nickel F, Hackert T, Mann O, Izbicki JR, Li J, Gagliani N, Huber S, Giannou AD. CD4+ T cell-derived IL-22 enhances liver metastasis by promoting angiogenesis. Oncoimmunology 2023; 12:2269634. [PMID: 37876835 PMCID: PMC10591777 DOI: 10.1080/2162402x.2023.2269634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Metastasis is a cancer-related systemic disease and is responsible for the greatest mortality rate among cancer patients. Interestingly, the interaction between the immune system and cancer cells seems to play a key role in metastasis formation in the target organ. However, this complex network is only partially understood. We previously found that IL-22 produced by tissue resident iNKT17 cells promotes cancer cell extravasation, the early step of metastasis. Based on these data, we aimed here to decipher the role of IL-22 in the last step of metastasis formation. We found that IL-22 levels were increased in established metastatic sites in both human and mouse. We also found that Th22 cells were the key source of IL-22 in established metastasis sites, and that deletion of IL-22 in CD4+ T cells was protective in liver metastasis formation. Accordingly, the administration of a murine IL-22 neutralizing antibody in the establishment of metastasis formation significantly reduced the metastatic burden in a mouse model. Mechanistically, IL-22-producing Th22 cells promoted angiogenesis in established metastasis sites. In conclusion, our findings highlight that IL-22 is equally as important in contributing to metastasis formation at late metastatic stages, and thus, identify it as a novel therapeutic target in established metastasis.
Collapse
Affiliation(s)
- Tao Zhang
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ramez Wahib
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dimitra E. Zazara
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatrics, University Children’s Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jöran Lücke
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ahmad Mustafa Shiri
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Kempski
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lilan Zhao
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Theodora Agalioti
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andres Pablo Machicote
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Olympia Giannou
- Computer Engineering & Informatics Dept, University of Patras, Patras, Greece
| | - Ioannis Belios
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rongrong Jia
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Siwen Zhang
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joseph Tintelnot
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- ll. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannes Seese
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Kristin Grass
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Baris Mercanoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Louisa Stern
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pasquale Scognamiglio
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mohammad Fard-Aghaie
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Seeger
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Wakker
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marius Kemper
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Brunswig
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Duprée
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Panagis M. Lykoudis
- 3rd Department of Surgery, National & Kapodistrian University of Athens, Athens, Greece
- Division of Surgery & Interventional Science, University College London (UCL), London, UK
| | - Anastasia Pikouli
- 3rd Department of Surgery, National & Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Giorgakis
- Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Division of Transplantation, Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Pablo Stringa
- Department General Surgery, Liver, Pancreas and Intestinal Transplantation, Hospital Universitario, Fundacion Favaloro, Buenos Aires, Argentina
| | - Natalia Lausada
- Department General Surgery, Liver, Pancreas and Intestinal Transplantation, Hospital Universitario, Fundacion Favaloro, Buenos Aires, Argentina
| | - Maria Virginia Gentilini
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTyB, CONICET, Universidad Favaloro), Laboratorio de Inmunología asociada al Trasplante, Buenos Aires, Argentina
| | - Gabriel E. Gondolesi
- Department General Surgery, Liver, Pancreas and Intestinal Transplantation, Hospital Universitario, Fundacion Favaloro, Buenos Aires, Argentina
| | - Kai Bachmann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Busch
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Grotelüschen
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Petra C. Arck
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ryosuke Nakano
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angus W. Thomson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tarik Ghadban
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Tachezy
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathaniel Melling
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike-Gert Achilles
- Department of Visceral Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victor G. Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Felix Nickel
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jun Li
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasios D. Giannou
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Wang ZN, Xu T, Liu KS. Research progress on Th22 cells and related cytokines in tumors: current status and future perspectives. Am J Cancer Res 2023; 13:3315-3323. [PMID: 37693133 PMCID: PMC10492103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/06/2023] [Indexed: 09/12/2023] Open
Abstract
Th22 cells are a newly identified subpopulation of CD4+ T lymphocytes distinct from Th1, Th2, and Th17 cells, which secretes mainly interleukin-22 (IL-22), in addition to a variety of other cytokines. The function of Th22 cells in tumors is mainly realized through IL-22, which can activate JAK/STAT and MAPK cell signaling pathways, thereby regulating the anti-tumor immune response of the body. The main function of Th22 cells is to participate in mucosal defense, tissue repair, and wound healing. However, controversial data have shown that overexpression of IL-22 can lead to pathological changes under inflammatory conditions and tumor progression. In this review, we searched the PubMed and Web of Science databases for articles and reviews published before May 6, 2022, using the keywords "Th22 cells, T helper 22 cells, cancer, tumor", and conducted a comprehensive review of the relevant literature. In addition, this article offers an overview of the relevant findings on the function of Th22 cells in tumors published in recent years, along with a more comprehensive analysis of the functions and mechanisms of Th22 cells in tumors. This article will hopefully inspire new future directions in the research on cancer therapy.
Collapse
Affiliation(s)
- Zhi-Ning Wang
- Department of Oncology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical UniversityNanjing, Jiangsu Province, China
| | - Tao Xu
- Xi’an Jiaotong University Global Health InstituteXi’an 710049, Shaanxi, China
| | - Kang-Sheng Liu
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjing 210029, Jiangsu, China
| |
Collapse
|
5
|
Saeidi V, Doudican N, Carucci JA. Understanding the squamous cell carcinoma immune microenvironment. Front Immunol 2023; 14:1084873. [PMID: 36793738 PMCID: PMC9922717 DOI: 10.3389/fimmu.2023.1084873] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Primary cutaneous squamous cell carcinoma (cSCC) is the second most common human cancer with a rising incidence of about 1.8 million in the United States annually. Primary cSCC is usually curable by surgery; however, in some cases, cSCC eventuates in nodal metastasis and death from disease specific death. cSCC results in up to 15,000 deaths each year in the United States. Until recently, non-surgical options for treatment of locally advanced or metastatic cSCC were largely ineffective. With the advent of checkpoint inhibitor immunotherapy, including cemiplimab and pembrolizumab, response rates climbed to 50%, representing a vast improvement over chemotherapeutic agents used previously. Herein, we discuss the phenotype and function of SCC associated Langerhans cells, dendritic cells, macrophages, myeloid derived suppressor cells and T cells as well as SCC-associated lymphatics and blood vessels. Possible role(s) of SCC-associated cytokines in progression and invasion are reviewed. We also discuss the SCC immune microenvironment in the context of currently available and pipeline therapeutics.
Collapse
Affiliation(s)
- Vahide Saeidi
- Section of Dermatologic Surgery, Ronald O. Perelman Department of Dermatology, New York University Langone Medical Center, New York, NY, United States
| | - Nicole Doudican
- Section of Dermatologic Surgery, Ronald O. Perelman Department of Dermatology, New York University Langone Medical Center, New York, NY, United States
| | - John A Carucci
- Section of Dermatologic Surgery, Ronald O. Perelman Department of Dermatology, New York University Langone Medical Center, New York, NY, United States
| |
Collapse
|
6
|
Lücke J, Shiri AM, Zhang T, Kempski J, Giannou AD, Huber S. Rationalizing heptadecaphobia: T H 17 cells and associated cytokines in cancer and metastasis. FEBS J 2021; 288:6942-6971. [PMID: 33448148 DOI: 10.1111/febs.15711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/13/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022]
Abstract
Cancer is one of the leading causes of death worldwide. When cancer patients are diagnosed with metastasis, meaning that the primary tumor has spread to at least one different site, their life expectancy decreases dramatically. In the past decade, the immune system´s role in fighting cancer and metastasis has been studied extensively. Importantly, immune cells and inflammatory reactions generate potent antitumor responses but also contribute to tumor development. However, the molecular and cellular mechanisms underlying this dichotomic interaction between the immune system and cancer are still poorly understood. Recently, a spotlight has been cast on the distinct subsets of immune cells and their derived cytokines since evidence has implicated their crucial impact on cancer development. T helper 17 cell (TH 17) cells, which express the master transcriptional factor Retinoic acid-receptor-related orphan receptor gamma t, are among these critical cell subsets and are defined by their production of type 3 cytokines, such as IL-17A, IL-17F, and IL-22. Depending on the tumor microenvironment, these cytokines can also be produced by other immune cell sources, such as T cytotoxic 17 cell, innate lymphoid cells, NKT cells, or γδ T cells. To date, a lot of data have been collected describing the divergent functions of IL-17A, IL-17F, and IL-22 in malignancies. In this comprehensive review, we discuss the role of these TH 17- and non-TH 17-derived type 3 cytokines in different tumor entities. Furthermore, we will provide a structured insight into the strict regulation and subsequent downstream mechanisms of these cytokines in cancer and metastasis.
Collapse
Affiliation(s)
- Jöran Lücke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Ahmad Mustafa Shiri
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Tao Zhang
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Jan Kempski
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Anastasios D Giannou
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Germany
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
7
|
Jiang R, Sun B. IL-22 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1290:81-88. [PMID: 33559856 DOI: 10.1007/978-3-030-55617-4_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interleukin (IL)-22 belongs to the IL-10 cytokine family which performs biological functions by binding to heterodimer receptors comprising a type 1 receptor chain (R1) and a type 2 receptor chain (R2). IL-22 is mainly derived from CD4+ helper T cells, CD8+ cytotoxic T cells, innate lymphocytes, and natural killer T cells. It can activate downstream signaling pathways such as signal transducer and activator of transcription (STAT)1/3/5, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT)-mammalian target of rapamycin (mTOR) through these heterodimer receptors. Although IL-22 is produced by immune cells, its specific receptor IL-22R1 is selectively expressed in nonimmune cells, such as hepatocytes, colonic epithelial cells, and pancreatic epithelial cells (Jiang et al. Hepatology 54(3):900-9, 2011; Jiang et al. BMC Cancer 13:59, 2013; Curd et al. Clin Exp Immunol 168(2):192-9, 2012). Immune cells do not respond to IL-22 stimulation directly within tumors, reports from different groups have revealed that IL-22 can indirectly regulate the tumor microenvironment (TME). In the present chapter, we discuss the roles of IL-22 in malignant cells and immunocytes within the TME, meanwhile, the potential roles of IL-22 as a target for drug discovery will be discussed.
Collapse
Affiliation(s)
- Runqiu Jiang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
- Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China.
| |
Collapse
|
8
|
Marcon F, Zuo J, Pearce H, Nicol S, Margielewska-Davies S, Farhat M, Mahon B, Middleton G, Brown R, Roberts KJ, Moss P. NK cells in pancreatic cancer demonstrate impaired cytotoxicity and a regulatory IL-10 phenotype. Oncoimmunology 2020; 9:1845424. [PMID: 33299656 PMCID: PMC7714501 DOI: 10.1080/2162402x.2020.1845424] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most common tumor subtypes and remains associated with very poor survival. T cell infiltration into tumor tissue is associated with improved clinical outcome but little is known regarding the potential role of NK cells in disease control. Here we analyze the phenotype and function of NK cells in the blood and tumor tissue from patients with PDAC. Peripheral NK cells are present in normal numbers but display a CD16hiCD57hi phenotype with marked downregulation of NKG2D. Importantly, these cells demonstrate reduced cytotoxic activity and low levels of IFN-γ expression but instead produce high levels of intracellular IL-10, an immunoregulatory cytokine found at increased levels in the blood of PDAC patients. In contrast, NK cells are largely excluded from tumor tissue where they display strong downregulation of both CD16 and CD57, a phenotype that was recapitulated in primary NK cells following co-culture with PDAC organoids. Moreover, expression of activatory proteins, including DNAM-1 and NKP30, was markedly suppressed and the DNAM-1 ligand PVR was strongly expressed on tumor cells. As such, in situ and peripheral NK cells display differential features in patients with PDAC and indicate local and systemic mechanisms by which the tumor can evade immune control. These findings offer a number of potential options for NK-based immunotherapy in the management of patients with PDAC.
Collapse
Affiliation(s)
- Francesca Marcon
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham;UK
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Samantha Nicol
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sandra Margielewska-Davies
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Mustafa Farhat
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Brinder Mahon
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham;UK
| | - Gary Middleton
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rachel Brown
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham;UK
| | - Keith J. Roberts
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham;UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
9
|
Arshad T, Mansur F, Palek R, Manzoor S, Liska V. A Double Edged Sword Role of Interleukin-22 in Wound Healing and Tissue Regeneration. Front Immunol 2020; 11:2148. [PMID: 33042126 PMCID: PMC7527413 DOI: 10.3389/fimmu.2020.02148] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
Wound healing and tissue regeneration is an intricate biological process that involves repair of cellular damage and maintenance of tissue integrity. Cascades involved in wound healing and tissue regeneration highly overlap with cancer causing pathways. Usually, subsequent tissue damage events include release of a number of cytokines to accomplish post-trauma restoration. IL-22 is one of the cytokines that are immediately produced to initiate immune response against several tissue impairments. IL-22 is a fundamental mediator in inflammation, mucous production, protective role against pathogens, wound healing, and tissue regeneration. However, accumulating evidence suggests pivotal role of IL-22 in instigation of various cancers due to its pro-inflammatory and tissue repairing activity. In this review, we summarize how healing effects of IL-22, when executed in an uncontrollable fashion can lead to carcinogenesis.
Collapse
Affiliation(s)
- Tanzeela Arshad
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Fizzah Mansur
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Richard Palek
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Sobia Manzoor
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Vaclav Liska
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| |
Collapse
|
10
|
Principe DR, Rana A. Updated risk factors to inform early pancreatic cancer screening and identify high risk patients. Cancer Lett 2020; 485:56-65. [PMID: 32389710 DOI: 10.1016/j.canlet.2020.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/06/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic adenocarcinoma (PDAC) is associated with poor clinical outcomes and incomplete responses to conventional therapy. Therefore, there is an unmet clinical need to better understand the predisposing factors for pancreatic cancer in hopes of providing early screening to high-risk patients. While select risk factors such as age, race, and family history, or predisposing syndromes are unavoidable, there are several new and established risk factors that allow for intervention, namely by counseling patients to make the appropriate lifestyle modifications. Here, we discuss the best-studied risk factors for PDAC such as tobacco use and chronic pancreatitis, as well as newly emerging risk factors including select nutritional deficits, bacterial infections, and psychosocial factors. As several of these risk factors appear to be additive or synergistic, by understanding their relationships and offering coordinated, multidisciplinary care to high-risk patients, it may be possible to reduce pancreatic cancer incidence and improve clinical outcomes through early detection.
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, USA; Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
11
|
Xuan X, Zhou J, Tian Z, Lin Y, Song J, Ruan Z, Ni B, Zhao H, Yang W. ILC3 cells promote the proliferation and invasion of pancreatic cancer cells through IL-22/AKT signaling. Clin Transl Oncol 2020; 22:563-575. [PMID: 31203574 DOI: 10.1007/s12094-019-02160-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/08/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Type 3 innate lymphocytes (ILC3s) are reported to be involved in lung cancer, possibly by producing interleukin-22 (IL-22). However, whether ILC3s and their secreted IL-22 molecules contribute to the pathogenesis of pancreatic cancer (PC) remains unclear. To this end, in this study, we investigated the effects and possible mechanisms of ILC3s on PC pathogenesis. METHOD The IL-22 and IL-2i2R levels and the ILC3s' frequency in cancer tissues from PC patients and in peripheral blood from PC patients and healthy controls were analyzed by flow cytometry, immunochemistry, or immunofluorescence. The effects of IL-22-induced AKT signaling on the proliferation, invasion, and migration of PC cells were examined by co-culturing PC cell lines with ILC3s isolated from PC tissues, with or without the addition of neutralizing IL-22 antibody, IL-22R antibody or AKT inhibitor. RESULTS Our results showed that IL-22 and ILC3s were significantly upregulated in the PBMCs and cancer tissues of PC patients, and the IL-22R level was increased in PC cells. The increased frequency of ILC3s was positively correlated with the clinical features of PC patients. Co-culture experiments indicated that ILC3s promoted the proliferation, invasion, and migration of PC cell lines by secreting IL-22 to activate AKT signaling because IL-22/IL-22R or AKT blockage markedly counteracted such effects on PC cells. CONCLUSION Our data demonstrated that ILC3s may promote PC pathogenesis through IL-22/IL-22R-AKT signaling, suggesting a potential intervention target for PC treatment in the future.
Collapse
Affiliation(s)
- X Xuan
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, 400038, China
- Department of Kidney, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan Street, District Shapingba, Chongqing, 400038, China
| | - J Zhou
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China
| | - Z Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China
| | - Y Lin
- Bellevue Christian High School, 1601 98th Ave NE, Bellevue, WA, 98004, USA
| | - J Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, TX, 77843, USA
| | - Z Ruan
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - B Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - H Zhao
- Department of Kidney, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan Street, District Shapingba, Chongqing, 400038, China.
| | - W Yang
- Department of Dermatology, The 181th Hospital of PLA, No. 1 Xinqiaoyuan Road, Guilin, 541002, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
12
|
Shahid A, Bharadwaj M. The connection between the Th17 cell related cytokines and cancer stem cells in cancer: Novel therapeutic targets. Immunol Lett 2019; 213:9-20. [PMID: 31278971 DOI: 10.1016/j.imlet.2019.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023]
Abstract
Cancer Stem Cells (CSCs) are the subpopulation of cells present in the different types of cancers with capabilities of self-renewal, differentiation, and tumorigenicity when transplanted into an animal host. The research work on the CSC has been providing a promising approach for the improvement of cancer therapies in the future. The CSCs have a close connection with the cytokines related with the T helper 17 (Th17) cell and other factors present in the tumor microenvironment, and these play a pivotal role in tumor progression and metastasis. The properties of CSCs are well defined in various type of tumor which is mainly developed by chemically and spontaneously in murine cancer model but in human defined primarily on acute myeloid leukemia, glioma, and breast cancer. The role of Th1, Th2, Natural Killer cells are well described in the cancer biology, but the Th17 cells are the subset which is recently exploited, and lots of research are going on. In this Review, we summarize current findings of the characteristics and functions of the Th17 cell and its signature cytokines in different cancers and their interconnections with cancer stem cells and with their markers. We have also discussed the functional properties of CSCs and how the CSCs markers can be distinguished from normal stem cells markers. We have also talked about the strategies that are efficiently targeting of CSCs and Th17 cells in different cancers.
Collapse
Affiliation(s)
- Ayaz Shahid
- Molecular Biology Group, National Institute of Cancer Prevention and Research, Indian Council of Medical Research (ICMR), Department of Health Research, Noida, 201301, India
| | - Mausumi Bharadwaj
- Molecular Biology Group, National Institute of Cancer Prevention and Research, Indian Council of Medical Research (ICMR), Department of Health Research, Noida, 201301, India.
| |
Collapse
|
13
|
Abstract
Pancreatic cancer is among the three deadliest cancers worldwide with the lowest 5-year survival of all cancers. Despite all efforts, therapeutic improvements have barely been made over the last decade. Even recent highly promising targeted and immunotherapeutic approaches did not live up to their expectations. Therefore, other horizons have to be explored. Natural Killer (NK) cells are gaining more and more interest as a highly attractive target for cancer immunotherapies, both as pharmaceutical target and for cell therapies. In this systematic review we summarise the pathophysiological adaptions of NK cells in pancreatic cancer and highlight possible (future) therapeutic NK cell-related targets. Furthermore, an extensive overview of recent therapeutic approaches with an effect on NK cells is given, including cytokine-based, viro- and bacteriotherapy and cell therapy. We also discuss ongoing clinical trials that might influence NK cells. In conclusion, although several issues regarding NK cells in pancreatic cancer remain unsolved and need further investigation, extensive evidence is already provided that support NK cell oriented approaches in pancreatic cancer.
Collapse
|
14
|
Xuan X, Tian Z, Zhang M, Zhou J, Gao W, Zhang Y, Zhang Y, Lei B, Ni B, Wu Y, Fan W. Diverse effects of interleukin-22 on pancreatic diseases. Pancreatology 2018; 18:231-237. [PMID: 29502986 DOI: 10.1016/j.pan.2018.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 02/20/2018] [Accepted: 02/23/2018] [Indexed: 12/11/2022]
Abstract
Interleukin-22 (IL-22) is involved in the development of lymphocytes and serves as a rapid and early source of the effector cytokines that are released in response to pathogen-induced changes in the microenvironment. Recent research has implicated IL-22 as a potential contributing factor to the spectrum of inflammation-related pancreatic diseases, particularly pancreatitis, fibrosis, carcinoma and diabetes. In this review, we summarize the current knowledge on the roles of IL-22 in the various pancreatic pathogenesis, providing insights into the underlying cellular and signaling mechanisms that will help guide future research into promising interventional targets with therapeutic potential.
Collapse
Affiliation(s)
- Xiuyun Xuan
- Department of Pathophysiology, Third Military Medical University, Chongqing, 400038, China; Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030200, China
| | - Zhiqiang Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China
| | - Mengjie Zhang
- Department of Pathophysiology, Third Military Medical University, Chongqing, 400038, China
| | - Jian Zhou
- Department of Pathophysiology, Third Military Medical University, Chongqing, 400038, China
| | - Weiwu Gao
- Department of Pathophysiology, Third Military Medical University, Chongqing, 400038, China
| | - Yi Zhang
- Department of Pathophysiology, Third Military Medical University, Chongqing, 400038, China
| | - Yue Zhang
- Department of Dermatology, 105th Hospital of PLA, Bengbu Medical College, Hefei, 230001, China
| | - Bo Lei
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030200, China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University, Chongqing, 400038, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China.
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030200, China.
| |
Collapse
|
15
|
Hernandez P, Gronke K, Diefenbach A. A catch-22: Interleukin-22 and cancer. Eur J Immunol 2018; 48:15-31. [PMID: 29178520 DOI: 10.1002/eji.201747183] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/31/2017] [Accepted: 11/23/2017] [Indexed: 12/17/2022]
Abstract
Barrier surfaces of multicellular organisms are in constant contact with the environment and infractions to the integrity of epithelial surfaces is likely a frequent event. Interestingly, components of the immune system, that can be activated by environmental compounds such as the microbiota or nutrients, are interspersed among epithelial cells or directly underlie the epithelium. It is now appreciated that immune cells continuously receive and integrate signals from the environment. Curiously, such continuous reception of stimulation does not normally trigger an inflammatory response but mediators produced by immune cells in response to such signals seem to rather promote barrier integrity and repair. The molecular mediators involved in this process are poorly understood. In recent years, the cytokine interleukin-22, produced mainly by group 3 innate lymphoid cells (ILCs), has been studied as a paradigm for how immune cells can control various aspects of epithelial cell function because expression of its receptor is restricted to non-hematopoietic cells. We will summarize here the diverse roles of IL-22 for the malignant transformation of epithelial cells, for tumor growth, wound healing and tissue repair. Furthermore, we will discuss IL-22 as a potential therapeutic target.
Collapse
Affiliation(s)
- Pedro Hernandez
- Institute of Microbiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Macrophages et Développement de l'Immunité, Institut Pasteur, Paris Cedex 15, France
- Max-Planck-Institute for Immunobiology und Epigenetics, Freiburg, Germany
| | - Konrad Gronke
- Institute of Microbiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Max-Planck-Institute for Immunobiology und Epigenetics, Freiburg, Germany
- Institute of Medical Microbiology and Hygiene and Research Centre Immunology, University of Mainz Medical Centre, Mainz, Germany
| | - Andreas Diefenbach
- Institute of Microbiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
16
|
Liu Y, Xiang F, Huang Y, Shi L, Hu C, Yang Y, Wang D, He N, Tao K, Wu K, Wang G. Interleukin-22 promotes aerobic glycolysis associated with tumor progression via targeting hexokinase-2 in human colon cancer cells. Oncotarget 2017; 8:25372-25383. [PMID: 28445985 PMCID: PMC5421937 DOI: 10.18632/oncotarget.15913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 02/15/2017] [Indexed: 12/16/2022] Open
Abstract
Interleukin-22 has been explored extensively in human cancer, but its functions and underlying mechanisms are incompletely understood. Here, we show that aberrant interleukin-22 expression facilitates aerobic glycolysis in colon cancer cells. Elevated interleukin-22 mRNA expression was observed and positively correlated with hexokinase-2 in colon cancer tissues. In vitro, interleukin-22 enhanced glucose consumption and lactate production via targeting hexokinase-2 in colon cancer cells. Moreover, the transcriptional factor c-Myc and signal transducer and activator of transcription 3 were involved in interleukin-22-induced up-regulation of hexokinase-2. We further demonstrated that hexokinase-2 partly accounted for interleukin-22-mediated cellular proliferation in DLD-1 cells. In vivo, our data demonstrated that interleukin-22 significantly promoted tumor growth along with elevated expression of c-Myc and hexokinase-2 in mice. In summary, our findings provide a new perspective on the pro-inflammatory cytokine interleukin-22 in promoting aerobic glycolysis associated with tumor progression in human colon cancer cells.
Collapse
Affiliation(s)
- Yulin Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fan Xiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongming Huang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Shi
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chaojie Hu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yiming Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nan He
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ke Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
17
|
Zhao M, Li Y, Xiao W. Anti-apoptotic effect of interleukin-22 on fibroblast-like synoviocytes in patients with rheumatoid arthritis is mediated via the signal transducer and activator of transcription 3 signaling pathway. Int J Rheum Dis 2017; 20:214-224. [PMID: 27493089 DOI: 10.1111/1756-185x.12939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM Inadequate apoptosis of fibroblast-like synoviocytes (FLS) plays a crucial role in the immunopathogenesis of rheumatoid arthritis (RA). Interleukin-22 (IL-22) is a novel member of the cytokine network that has been found to be involved in the immunological process underlying RA. In this study, we investigated the effect of IL-22 on the survival of RA-FLS from RA patients and examined the possible mechanism to determine new therapeutic strategies for RA. METHODS FLS obtained from patients with RA were cultured in vitro and treated with sodium nitroprussiate (SNP) to induce apoptosis in the presence or absence of IL-22. RA-FLS viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RA-FLS apoptosis was analyzed by annexin V/propidium iodide staining (AV/PI). The levels of IL-22R1, pSTAT3-Y705, pSTAT3-S727, total STAT3, Bcl-xL and Bcl-2 were detected by Western blot analysis. RESULTS IL-22R1 was expressed on RA-FLS. IL-22 pretreatment at concentrations ranging from 10 to 100 ng/mL increased RA-FLS viability and prevented SNP-induced apoptosis. Treatment with the STAT3 inhibitors, HO3867 or STA21, reversed the protective effect of IL-22 on SNP-induced apoptosis of RA-FLS. IL-22-induced phosphorylation of STAT3 (pSTAT3-Y705 and pSTAT3-S727) was increased in RA-FLS. Also IL-22 increased Bcl-2 expression in SNP-treated RA-FLS, and the effect was reversed by treatment with HO3867 or STA21. CONCLUSION IL-22 protects against SNP-induced apoptosis in RA-FLS by activating the STAT3 pathway and the downstream target gene, Bcl-2. Therefore, therapeutic strategies that target the IL-22/STAT3 pathway are implicated as candidates for RA treatment.
Collapse
Affiliation(s)
- Min Zhao
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Rheumatology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yishuo Li
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Weiguo Xiao
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Perusina Lanfranca M, Lin Y, Fang J, Zou W, Frankel T. Biological and pathological activities of interleukin-22. J Mol Med (Berl) 2016; 94:523-34. [PMID: 26923718 PMCID: PMC4860114 DOI: 10.1007/s00109-016-1391-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/17/2015] [Accepted: 01/21/2016] [Indexed: 12/16/2022]
Abstract
Interleukin (IL)-22, a member of the IL-10 family, is a cytokine secreted by several types of immune cells including IL-22(+)CD4(+) T cells (Th22) and IL-22 expressing innate leukocytes (ILC22). Recent studies have demonstrated that IL-22 is a key component in mucosal barrier defense, tissue repair, epithelial cell survival, and proliferation. Furthermore, accumulating evidence has defined both protective and pathogenic properties of IL-22 in a number of conditions including autoimmune disease, infection, and malignancy. In this review, we summarize the expression and signaling pathway and functional characteristics of the IL-22 and IL-22 receptor axis in physiological and pathological scenarios and discuss the potential to target IL-22 signaling to treat human diseases.
Collapse
Affiliation(s)
- Mirna Perusina Lanfranca
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Yanwei Lin
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai, 200001, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai, 200001, China
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
- The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
- Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Timothy Frankel
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
- The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
19
|
Niccolai E, Taddei A, Ricci F, Rolla S, D'Elios MM, Benagiano M, Bechi P, Bencini L, Ringressi MN, Pini A, Castiglione F, Giordano D, Satolli MA, Coratti A, Cianchi F, Bani D, Prisco D, Novelli F, Amedei A. Intra-tumoral IFN-γ-producing Th22 cells correlate with TNM staging and the worst outcomes in pancreatic cancer. Clin Sci (Lond) 2016; 130:247-58. [PMID: 26590104 DOI: 10.1042/cs20150437] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/20/2015] [Indexed: 12/11/2022]
Abstract
PDAC (pancreatic ductal adenocarcinoma) is the fifth leading cause of cancer-related death. The causes of this cancer remain unknown, but increasing evidence indicates a key role of the host immune response and cytokines in human carcinogenesis. Intra-tumoral IL (interleukin)-22 levels have been shown to be elevated in PDAC patients. However, little is known regarding the expression and clinical relevance of Th22 cells in human PDAC and, furthermore, which TILs (tumour-infiltrating lymphocytes) are the main producers of IL-22 is unknown. In the present study, we characterized the functional proprieties of the different subsets of IL-22-producing TILs and analysed their relationship with the TNM staging system and patient survival. We have demonstrated for the first time that, in PDAC patients, the T-cells co-producing IFN-γ (interferon γ) and exerting perforin-mediated cytotoxicity are the major intra-tumoral source of IL-22. In addition, isolated Th22 cells were able to induce apoptosis, which was antagonized by IL-22. Finally, we observed that the IL-22-producing T-cells were significantly increased in tumour tissue and that this increase was positively correlated with TNM staging of PDAC and poorer patient survival. These novel findings support the dual role of the anti-tumour immune system and that IL-22-producing cells may participate in PDAC pathogenesis. Therefore monitoring Th22 levels could be a good diagnostic parameter, and blocking IL-22 signalling may represent a viable method for anti-PDAC therapies.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Apoptosis
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Coculture Techniques
- Cytotoxicity, Immunologic
- Female
- Granzymes/metabolism
- Humans
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukins/immunology
- Interleukins/metabolism
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Male
- Middle Aged
- Neoplasm Staging
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Paracrine Communication
- Perforin/metabolism
- Phenotype
- Signal Transduction
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- T-Lymphocytes, Helper-Inducer/pathology
- Interleukin-22
Collapse
Affiliation(s)
- Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Antonio Taddei
- Immunogenetics and Transplant Biology Service, Azienda Ospedaliera Città della Salute e della Scienza di Torino, via Santena 19, 10126 Turin, Italy
| | - Federica Ricci
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Simona Rolla
- Centre for Experimental Research and Medical Studies (CERMS), Azienda Ospedaliera Città della Salute e della Scienza di Torino, via Cherasco 15, 10126 Turin, Italy Molecular Biology Center and Department of Molecular Biotechnology and Health Sciences, University of Turin, via Nizza 52, 10126 Turin, Italy
| | - Mario Milco D'Elios
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy Department of Neuro-Skeletal Muscle and Sensory Organs, Interdisciplinary Internal Medicine Unit, Azienda Ospedaliero Universitaria Careggi, 50134 Florence, Italy
| | - Marisa Benagiano
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Paolo Bechi
- Department of Surgery and Translational Medicine, University of Florence, Viale Michelangiolo 41, 50125 Florence, Italy Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Largo Brambilla 3, 50134 Florence, Italy
| | - Lapo Bencini
- Department of Oncology, Division of General and Oncologic Surgery, Azienda Ospedaliera Universitaria Careggi (AOUC), Largo Brambilla 3, 50134 Florence, Italy
| | - Maria Novella Ringressi
- Department of Surgery and Translational Medicine, University of Florence, Viale Michelangiolo 41, 50125 Florence, Italy Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Largo Brambilla 3, 50134 Florence, Italy
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Francesca Castiglione
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Daniele Giordano
- Centre for Experimental Research and Medical Studies (CERMS), Azienda Ospedaliera Città della Salute e della Scienza di Torino, via Cherasco 15, 10126 Turin, Italy Molecular Biology Center and Department of Molecular Biotechnology and Health Sciences, University of Turin, via Nizza 52, 10126 Turin, Italy
| | - Maria Antonietta Satolli
- Centro Oncologico Ematologico Subalpino (COES), AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Andrea Coratti
- Department of Oncology, Division of General and Oncologic Surgery, Azienda Ospedaliera Universitaria Careggi (AOUC), Largo Brambilla 3, 50134 Florence, Italy
| | - Fabio Cianchi
- Department of Surgery and Translational Medicine, University of Florence, Viale Michelangiolo 41, 50125 Florence, Italy Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Largo Brambilla 3, 50134 Florence, Italy
| | - Daniele Bani
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy Department of Neuro-Skeletal Muscle and Sensory Organs, Interdisciplinary Internal Medicine Unit, Azienda Ospedaliero Universitaria Careggi, 50134 Florence, Italy
| | - Francesco Novelli
- Immunogenetics and Transplant Biology Service, Azienda Ospedaliera Città della Salute e della Scienza di Torino, via Santena 19, 10126 Turin, Italy Centre for Experimental Research and Medical Studies (CERMS), Azienda Ospedaliera Città della Salute e della Scienza di Torino, via Cherasco 15, 10126 Turin, Italy Molecular Biology Center and Department of Molecular Biotechnology and Health Sciences, University of Turin, via Nizza 52, 10126 Turin, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy Department of Neuro-Skeletal Muscle and Sensory Organs, Interdisciplinary Internal Medicine Unit, Azienda Ospedaliero Universitaria Careggi, 50134 Florence, Italy
| |
Collapse
|
20
|
Physiological and Pathological Properties of Interleukin-22 in Liver Diseases. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Ciccia F, Guggino G, Rizzo A, Bombardieri M, Raimondo S, Carubbi F, Cannizzaro A, Sireci G, Dieli F, Campisi G, Giacomelli R, Cipriani P, De Leo G, Alessandro R, Triolo G. Interleukin (IL)-22 receptor 1 is over-expressed in primary Sjogren's syndrome and Sjögren-associated non-Hodgkin lymphomas and is regulated by IL-18. Clin Exp Immunol 2015; 181:219-29. [PMID: 25880879 PMCID: PMC4516437 DOI: 10.1111/cei.12643] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 04/11/2015] [Accepted: 04/11/2015] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to elucidate more clearly the role of interleukin (IL)-18 in modulating the IL-22 pathway in primary Sjögren's syndrome (pSS) patients and in pSS-associated lymphomas. Minor salivary glands (MSGs) from patients with pSS and non-specific chronic sialoadenitis (nSCS), parotid glands biopsies from non-Hodgkin lymphomas (NHL) developed in pSS patients, were evaluated for IL-18, IL-22, IL-22 receptor 1 (IL-22R1), IL-22 binding protein (IL-22BP) and signal transducer and activator of transcription-3 (STAT-3) expression. MSGs IL-22R1-expressing cells were characterized by confocal microscopy and flow cytometry in pSS, nSCS and healthy controls . The effect of recombinant IL-18 and IL-22 on peripheral blood mononuclear cells (PBMCs) from pSS and nSCS was studied by flow cytometry and reverse transcription-polymerase chain reaction (RT-PCR). MSGs of pSS and NHL were characterized by an imbalance between IL-22 and IL-22BP protein expression, with IL-18 and IL-22BP being expressed in a mutually exclusive manner and IL-18 and IL-22R1 being correlated directly. Aberrant expression of IL-22R1, induced by IL-18, was observed only among tissue and circulating myeloid cells of pSS patients and macrophages of NHL tissues of pSS patients, but not nSCS. IL-22R1 expression on PBMC of pSS was functional, as its stimulation with recombinant IL-22 significantly up-regulated the expression of STAT-3, IL-17 and IL-22. An IL-18-dependent aberrant expression of IL-22R1 on cells of haematopoietic origin seems to be a specific immunological signature of patients with pSS and pSS-associated lymphomas.
Collapse
Affiliation(s)
- F Ciccia
- Dipartimento Biomedico di Medicina Interna e Specialistica, Sezione di ReumatologiaPalermo, Italy
| | - G Guggino
- Dipartimento Biomedico di Medicina Interna e Specialistica, Sezione di ReumatologiaPalermo, Italy
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di PalermoPalermo, Italy
| | - A Rizzo
- Azienda Ospedaliera Ospedali riuniti Villa Sofia-Cervello, Anatomia PatologicaPalermo, Italy
| | - M Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University LondonUK
| | - S Raimondo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di PalermoPalermo, Italy
| | - F Carubbi
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Sezione di Reumatologia, Università di L’AquilaItaly
| | - A Cannizzaro
- Azienda Ospedaliera Ospedali riuniti Villa Sofia-Cervello, Anatomia PatologicaPalermo, Italy
| | - G Sireci
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di PalermoPalermo, Italy
| | - F Dieli
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di PalermoPalermo, Italy
| | - G Campisi
- Dipartimento di discipline Chirurgiche, Università di PalermoItaly
| | - R Giacomelli
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Sezione di Reumatologia, Università di L’AquilaItaly
| | - Paola Cipriani
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Sezione di Reumatologia, Università di L’AquilaItaly
| | - G De Leo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di PalermoPalermo, Italy
| | - R Alessandro
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di PalermoPalermo, Italy
| | - G Triolo
- Dipartimento Biomedico di Medicina Interna e Specialistica, Sezione di ReumatologiaPalermo, Italy
| |
Collapse
|
22
|
Luo Y, Chen X, Xu XS, Han GC, Zhang XD, Jiang XW, Xing C, Yu JH, Zhou P. Association between expression of inflammatory factors and gastric and duodenal mucosa injury induced by radiotherapy in patients with pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2015; 23:3374-3383. [DOI: 10.11569/wcjd.v23.i21.3374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship between the expression of interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), interleukin-22 (IL-22) and radiation induced gastric and duodenal injury in pancreatic cancer patients.
METHODS: Twenty healthy adults and 30 pancreatic cancer patients were enrolled in the study. Peripheral blood samples were collected from these subjects before, in the middle of and after radiotherapy. Real-time quantitative PCR (QPCR) and enzyme linked immunosorbent assay (ELISA) were used to detect the mRNA and protein levels of IL-6, TNF-α and IL-22, respectively.
RESULTS: Expression of IL-6, TNF-α, and IL-22 mRNAs was significantly higher in the experimental group than in the normal control group (t = 4.404, P = 0.000; t = 2.250, P = 0.030; t = 2.178, P = 0.038). At the protein level, the expression of IL-6 was significantly higher in the experimental group than in the control group (t = 3.766, P = 0.001). The expression of IL-6 and TNF-α mRNAs showed a descending trend along with the accumulation of radiation dose. The expression level of IL-6 mRNA had a significant difference between before and after radiotherapy (t = 2.800, P = 0.007). The expression level of IL-22 was slightly higher in the experimental group than in the control group, though the difference was not statistically significant (P > 0.05). The incidence of mucosal injury was 40% (12 cases) in the study. The expression of IL-6 and TNF-α mRNAs in patients without mucosal injury group showed a gradually declining trend. The expression of IL-6 in patients differed between after and before radiotherapy (t = 2.439, P = 0.021). The expression of IL-6 in patients with mucosal injury was maintained at a relatively high level after radiotherapy. The mRNA expression of IL-22 in patients without mucosal injury decreased in the middle of radiotherapy. The expression of inflammatory factors in patients with mucosa injury was significantly lower than that in patients without mucosa injury (P > 0.05). Similarly, although protein expression of IL-6 in patients without mucosa injury seemed lower than that in patients with mucosa injury groups, and the expression of IL-22 seemed higher than that in the injury group, the differences were not statistically significant (P > 0.05).
CONCLUSION: IL-6, TNF-α and IL-22 are associated with the pathogenesis of radiation induced gastric and duodenal injury in patients with pancreatic cancer. These inflammatory factors may be used as predictors of radiation induced gastric and duodenal injury in pancreatic cancer patients.
Collapse
|
23
|
Akil H, Abbaci A, Lalloué F, Bessette B, Costes LMM, Domballe L, Charreau S, Guilloteau K, Karayan-Tapon L, Bernard FX, Morel F, Jauberteau MO, Lecron JC. IL22/IL-22R pathway induces cell survival in human glioblastoma cells. PLoS One 2015; 10:e0119872. [PMID: 25793261 PMCID: PMC4368808 DOI: 10.1371/journal.pone.0119872] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/02/2015] [Indexed: 12/31/2022] Open
Abstract
Interleukin-22 (IL-22) is a member of the IL-10 cytokine family that binds to a heterodimeric receptor consisting of IL-22 receptor 1 (IL-22R1) and IL-10R2. IL-22R expression was initially characterized on epithelial cells, and plays an essential role in a number of inflammatory diseases. Recently, a functional receptor was detected on cancer cells such as hepatocarcinoma and lung carcinoma, but its presence was not reported in glioblastoma (GBM). Two GBM cell lines and 10 primary cell lines established from patients undergoing surgery for malignant GBM were used to investigate the expression of IL-22 and IL-22R by using quantitative RT-PCR, western blotting and confocal microscopy studies. The role of IL-22 in proliferation and survival of GBM cell lines was investigated in vitro by BrdU and ELISA cell death assays. We report herein that the two subunits of the IL-22R complex are expressed on human GBM cells. Their activation, depending on exogenous IL-22, induced antiapoptotic effect and cell proliferation. IL-22 treatment of GBM cells resulted in increased levels of phosphorylated Akt, STAT3 signaling protein and its downstream antiapoptotic protein Bcl-xL and decreased level of phosphorylated ERK1/2. In addition, IL-22R subunits were expressed in all the 10 tested primary cell lines established from GBM tumors. Our results showed that IL-22R is expressed on GBM established and primary cell lines. Depending on STAT3, ERK1/2 and PI3K/Akt pathways, IL-22 induced GBM cell survival. These data are consistent with a potential role of IL-22R in tumorigenesis of GBM. Since endogenous IL-22 was not detected in all studied GBM cells, we hypothesize that IL-22R could be activated by immune microenvironmental IL-22 producing cells.
Collapse
Affiliation(s)
- Hussein Akil
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Amazigh Abbaci
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Fabrice Lalloué
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Barbara Bessette
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Léa M. M. Costes
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Linda Domballe
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Sandrine Charreau
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC-EA 4331), Université de Poitiers, Poitiers, France
| | - Karline Guilloteau
- INSERM U1084, Université de Poitiers, Poitiers, France
- Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Lucie Karayan-Tapon
- INSERM U1084, Université de Poitiers, Poitiers, France
- Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - François-Xavier Bernard
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC-EA 4331), Université de Poitiers, Poitiers, France
- BIOalternatives, Gençay, France
| | - Franck Morel
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC-EA 4331), Université de Poitiers, Poitiers, France
| | - Marie-Odile Jauberteau
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Jean-Claude Lecron
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC-EA 4331), Université de Poitiers, Poitiers, France
- Service Immunologie et inflammation, CHU de Poitiers, Poitiers, France
| |
Collapse
|
24
|
Di Lullo G, Marcatti M, Heltai S, Brunetto E, Tresoldi C, Bondanza A, Bonini C, Ponzoni M, Tonon G, Ciceri F, Bordignon C, Protti MP. Th22 cells increase in poor prognosis multiple myeloma and promote tumor cell growth and survival. Oncoimmunology 2015; 4:e1005460. [PMID: 26155400 PMCID: PMC4485827 DOI: 10.1080/2162402x.2015.1005460] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/30/2014] [Accepted: 12/30/2014] [Indexed: 12/19/2022] Open
Abstract
There is increased production of plasmacytoid dendritic cells (pDCs) in the bone marrow (BM) of multiple myeloma (MM) patients and these favor Th22 cell differentiation. Here, we found that the frequency of interleukin (IL)-22+IL-17-IL-13+ T cells is significantly increased in peripheral blood (PB) and BM of stage III and relapsed/refractory MM patients compared with healthy donors and patients with asymptomatic or stage I/II disease. Th22 cells cloned from the BM of MM patients were CCR6+CXCR4+CCR4+CCR10- and produced IL-22 and IL-13 but not IL-17. Furthermore, polyfunctional Th22-Th2 and Th22-Th1 clones were identified based on the co-expression of additional chemokine receptors and cytokines (CRTh2 or CXCR3 and IL-5 or interferon gamma [IFNγ], respectively). A fraction of MM cell lines and primary tumors aberrantly expressed the IL-22RA1 and IL-22 induced STAT-3 phosphorylation, cell growth, and resistance to drug-induced cell death in MM cells. IL-13 treatment of normal BM mesenchymal stromal cells (MSCs) induced STAT-6 phosphorylation, adhesion molecule upregulation, and increased IL-6 production and significantly favored MM cell growth compared with untreated BM MSCs. Collectively, our data show that increased frequency of IL-22+IL-17-IL-13+ T cells correlates with poor prognosis in MM through IL-22 and IL-13 protumor activity and suggest that interference with IL-22 and IL-13 signaling pathways could be exploited for therapeutic intervention.
Collapse
Key Words
- Ab, antibody; BM, bone marrow; BMMCs, bone marrow mononuclear cells; DCs, dendritic cells; Dx, dexamethasone; ICS, intracellular cytokine staining; IFN, interferon; IL, interleukin; ISS, International Staging System; LCL, Epstein–Barr virus-transformed B lymphoblastoid cell line; Ln, lenalidomide; MGUS, monoclonal gammopathy of undetermined clinical significance; MM, multiple myeloma; MSC, mesenchymal stromal cell; PB, peripheral blood; PBMCs, peripheral blood mononuclear cells; pDCs, plasmacytoid dendritic cells; SMM, smoldering multiple myeloma; Th, T helper; TNF, tumor necrosis factor; Treg, regulatory T cells; WB, Western blot
- CD4+ T helper lymphocytes
- IL-22RA1
- Th22 cells
- bone marrow mesenchymal stromal cells
- bone marrow microenvironment
- interleukin-13
- interleukin-22
- multiple myeloma
Collapse
Affiliation(s)
- Giulia Di Lullo
- Tumor Immunology Unit; IRCCS San Raffaele Scientific Institute ; Milan, Italy ; Division of Immunology, Transplantation and Infectious Diseases; IRCCS San Raffaele Scientific Institute ; Milan, Italy
| | - Magda Marcatti
- Hematology and Bone Marrow Transplantation Unit; IRCCS San Raffaele Scientific Institute ; Milan, Italy
| | - Silvia Heltai
- Tumor Immunology Unit; IRCCS San Raffaele Scientific Institute ; Milan, Italy ; Division of Immunology, Transplantation and Infectious Diseases; IRCCS San Raffaele Scientific Institute ; Milan, Italy
| | - Emanuela Brunetto
- Tumor Immunology Unit; IRCCS San Raffaele Scientific Institute ; Milan, Italy ; Division of Immunology, Transplantation and Infectious Diseases; IRCCS San Raffaele Scientific Institute ; Milan, Italy
| | - Cristina Tresoldi
- Hematology and Bone Marrow Transplantation Unit; IRCCS San Raffaele Scientific Institute ; Milan, Italy
| | - Attilio Bondanza
- Division of Immunology, Transplantation and Infectious Diseases; IRCCS San Raffaele Scientific Institute ; Milan, Italy ; Leukenia Immunotherapy Group; IRCCS San Raffaele Scientific Institute ; Milan, Italy
| | - Chiara Bonini
- Division of Immunology, Transplantation and Infectious Diseases; IRCCS San Raffaele Scientific Institute ; Milan, Italy ; Experimental Hematology Unit; IRCCS San Raffaele Scientific Institute ; Milan, Italy
| | - Maurilio Ponzoni
- Pathology Unit; IRCCS San Raffaele Scientific Institute ; Milan, Italy ; Division of Molecular Oncology; IRCCS San Raffaele Scientific Institute ; Milan, Italy
| | - Giovanni Tonon
- Division of Molecular Oncology; IRCCS San Raffaele Scientific Institute ; Milan, Italy ; Functional Genomics of Cancer Unit; IRCCS San Raffaele Scientific Institute ; Milan, Italy
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit; IRCCS San Raffaele Scientific Institute ; Milan, Italy
| | - Claudio Bordignon
- MolMed SpA ; Milan, Italy ; Vita-Salute San Raffaele University ; Milan, Italy
| | - Maria Pia Protti
- Tumor Immunology Unit; IRCCS San Raffaele Scientific Institute ; Milan, Italy ; Division of Immunology, Transplantation and Infectious Diseases; IRCCS San Raffaele Scientific Institute ; Milan, Italy
| |
Collapse
|
25
|
Liu F, Pan X, Zhou L, Zhou J, Chen B, Shi J, Gao W, Lu L. Genetic polymorphisms and plasma levels of interleukin-22 contribute to the development of nonsmall cell lung cancer. DNA Cell Biol 2014; 33:705-14. [PMID: 24956177 DOI: 10.1089/dna.2014.2432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Interleukin (IL)-22, a relatively new member of the IL-10 family, has been implicated in inflammation and tumorigenesis. The aim of this study was to identify genetic polymorphisms in IL-22 and to measure plasma levels of IL-22 in patients with nonsmall cell lung cancer (NSCLC). Patients with NSCLC had a significantly higher frequency of IL-22 rs2227484 CT genotype (odds ratio [OR]=1.917, 95% confidence interval [CI] 1.001-3.670, p=0.038) and T allele (OR=1.878, 95% CI 1.010-3.491, p=0.049) as compared with controls. The rs2227484 genotype was associated with a 2.263-fold increased risk for advanced NSCLC (p=0.041). Among different subtypes of NSCLC, these associations were more obvious in the adenocarcinoma. Moreover, patients with high frequencies of genotypic polymorphisms had high plasma levels of IL-22. IL-22 polymorphisms and corresponding high levels of IL-22 in plasma may contribute to the development of NSCLC, especially adenocarcinoma.
Collapse
Affiliation(s)
- Fei Liu
- 1 Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Siupka P, Hamming OJ, Frétaud M, Luftalla G, Levraud JP, Hartmann R. The crystal structure of zebrafish IL-22 reveals an evolutionary, conserved structure highly similar to that of human IL-22. Genes Immun 2014; 15:293-302. [PMID: 24833303 DOI: 10.1038/gene.2014.18] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 12/19/2022]
Abstract
The class II cytokine family consists of small α-helical signaling proteins including the interleukin-10 (IL-10)/IL-22 family, as well as interferons (IFNs). They regulate the innate immune response and in addition have an important role in protecting epithelial tissues. Teleost fish possess a class II cytokine system surprisingly similar to that of humans, and thus zebrafish offers an attractive model organism for investigating the role of class II cytokines in inflammation. However, the evolution of class II cytokines is critical to understand if we are to take full advantage of zebrafish as a model system. The small size and fast evolution of these cytokines obscure phylogenetic analyses based purely on sequences, but one can overcome this obstacle by using information contained within the structure of those molecules. Here we present the crystal structure of IL-22 from zebrafish (zIL-22) solved at 2.1 Å, which displays a typical class II cytokine architecture. We generated a structure-guided alignment of vertebrate class II cytokines and used it for phylogenetic analysis. Our analysis suggests that IL-22 and IL-26 arose early during the evolution of the IL-10-like cytokines. Thus, we propose an evolutionary scenario of class II cytokines in vertebrates, based on genomic and structural data.
Collapse
Affiliation(s)
- P Siupka
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - O J Hamming
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - M Frétaud
- 1] Macrophages et Développement de l'Immunité, Institut Pasteur, Paris, France [2] CNRS URA2578, Paris, France
| | - G Luftalla
- UM2, Dynamique des Interactions Membranaires Normales et Pathologiques, Montpellier, France
| | - J-P Levraud
- 1] Macrophages et Développement de l'Immunité, Institut Pasteur, Paris, France [2] CNRS URA2578, Paris, France
| | - R Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
27
|
Ji Y, Yang X, Li J, Lu Z, Li X, Yu J, Li N. IL-22 promotes the migration and invasion of gastric cancer cells via IL-22R1/AKT/MMP-9 signaling. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:3694-703. [PMID: 25120745 PMCID: PMC4128980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
IL-22, one important inflammatory cytokine of the IL-10 family, exerts its functions via IL-22 receptor that is composed of IL-22R1 and IL-10R2 subunits. Although IL-22 expression is reported to be elevated in many cancers, and increased IL-22 expression correlates with tumor progression and poor prognosis, little is known about the role of IL-22 in gastric cancer. In our study, we found that IL-22 stimulation promoted the migration and invasion of SGC-7901 cells. Furthermore, IL-22 increased AKT activation and MMP-9 production in a time- and dose-dependent manner, while knockdown of IL-22R1 attenuated the effect of IL-22 on gastric cancer cells. In addition, blocking of AKT activation suppressed the expression and secretion of MMP-9. Taken together, this present study suggests that IL-22 stimulation enhances the migration and invasion of gastric cancer cells by regulating IL-22R1/AKT/MMP-9 signaling axis.
Collapse
Affiliation(s)
- Yinghua Ji
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical UniversityXinxiang, 453000, China
| | - Xiaoyu Yang
- Department of Pathology, Xinxiang Medical UniversityXinxiang, 453003, China
| | - Jinsong Li
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical UniversityXinxiang, 453000, China
| | - Zhihong Lu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical UniversityXinxiang, 453000, China
| | - Xiaorui Li
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical UniversityXinxiang, 453000, China
| | - Jian Yu
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical UniversityXinxiang, 453000, China
| | - Na Li
- Department of Pathology, Xinxiang Medical UniversityXinxiang, 453003, China
| |
Collapse
|
28
|
Lim C, Savan R. The role of the IL-22/IL-22R1 axis in cancer. Cytokine Growth Factor Rev 2014; 25:257-71. [PMID: 24856143 DOI: 10.1016/j.cytogfr.2014.04.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/29/2014] [Indexed: 12/18/2022]
Abstract
Interleukin-22 (IL-22) is an IL-10 family cytokine produced by T cells and innate lymphoid cells. The IL-22 signaling pathway orchestrates mucosal immune defense and tissue regeneration through pleiotropic effects including pro-survival signaling, cell migration, dysplasia and angiogenesis. While these functions can prevent initial establishment of tumors, they can also be hijacked by aggressive cancers to enhance tumor growth and metastasis. Thus, the role of the IL-22/IL-22R1 axis in cancer is complex and context-specific. Evidence of IL-22 involvement manifests as dysregulation of IL-22 expression and signaling in patients with many common cancers including those of the gut, skin, lung and liver. Unlike other cancer-associated cytokines, IL-22 has restricted tissue specificity as its unique receptor IL-22R1 is exclusively expressed on epithelial and tissue cells, but not immune cells. This makes it an attractive target for therapy as there is potential achieve anti-tumor immunity with fewer side effects. This review summarizes current findings on functions of IL-22 in association with general mechanisms for tumorigenesis as well as specific contributions to particular cancers, and ponders how best to approach further research in the field.
Collapse
Affiliation(s)
- Chrissie Lim
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Ram Savan
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
29
|
Xu X, Tang Y, Guo S, Zhang Y, Tian Y, Ni B, Wang H. Increased intratumoral interleukin 22 levels and frequencies of interleukin 22-producing CD4+ T cells correlate with pancreatic cancer progression. Pancreas 2014; 43:470-7. [PMID: 24622082 DOI: 10.1097/mpa.0000000000000055] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The objective of this study was to investigate the expression and clinical relevance of interleukin 22 (IL-22) and IL-22-producing CD4 T cells (IL-22CD4 T cells) in pancreatic cancer (PC) tissues. METHODS Interleukin 22 protein levels in PC tissues were measured by Western blot analysis and immunohistochemistry. The frequencies of IL-22CD4 T cells in tumors and peripheral blood from PC patients and control subjects were analyzed by flow cytometry. The association between IL-22 and phosphorylation of STAT-3 was investigated in in vitro model. RESULTS Interleukin 22 protein was more highly expressed in PC tissues than in peritumoral and normal pancreatic tissues. The frequencies of all IL-22CD4 T cells and T helper 22 (TH22) cells (IL-22IFN-γIL-17CD4) were significantly higher in PC tissues than in the peripheral blood of PC patients and control subjects. It was observed that up-regulation pSTAT-3 and its downstream genes such as Bcl-2 and cyclin D1 in vitro. Finally, we found that increased intratumoral IL-22 expression and frequencies of TH22 and IL-22CD4 T cells were positively correlated with PC tumor-node-metastasis staging. CONCLUSIONS Increased intratumoral IL-22 levels, IL-22CD4 T cells, and TH22 cells are correlated with PC tumor-node-metastasis staging, suggesting that IL-22 and IL-22CD4 T cells may be related to tumor progression and are potential therapeutic targets in patients with PC.
Collapse
Affiliation(s)
- Xuejun Xu
- From the *Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, and †Institute of Immunology PLA, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
30
|
Wen Z, Liao Q, Zhao J, Hu Y, You L, Lu Z, Jia C, Wei Y, Zhao Y. High expression of interleukin-22 and its receptor predicts poor prognosis in pancreatic ductal adenocarcinoma. Ann Surg Oncol 2014; 21:125-32. [PMID: 24132627 DOI: 10.1245/s10434-013-3322-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND The cytokine interleukin-22 (IL-22) and its receptor are present in the tumor microenvironment. Their function in pancreatic ductal adenocarcinoma (PDAC) remains largely unknown. The goal of the present study was to measure the expression of IL-22 and IL-22R in PDAC and assess their relationship with clinicopathological features and prognosis. METHODS The expression of IL-22 and IL-22R was evaluated by immunohistochemistry in PDAC tissues from 57 patients and by Western blotting in six tumors and adjacent nontumor tissues. A statistical analysis was conducted to assess the relationship between levels of expression, clinicopathological factors, and overall survival. In addition, the relationship between the expression of IL-22 and IL-22R and invasion was assessed by Western blotting and transwell assay with the PDAC cell lines PANC1 and BxPC3. RESULTS Positive IL-22 staining was detected in PDAC tissues and adjacent nontumor tissues. Positive IL-22R staining was detected in PDAC cells. High expression of IL-22 and IL-22R correlated significantly with lymph node involvement. IL-22 increased the phosphorylation of signal transducer and activator of transcription3, the expression of matrix metalloproteinase 9, and the invasion in PANC1 and BxPC3 cells in vitro while silencing of IL-22R RNA caused opposite effects. Most importantly, overall survival was significantly poorer in patients with high expression of IL-22 and IL-22R than in those with low expression. CONCLUSIONS These findings reveal the positive role of IL-22 and IL-22R in invasion and metastasis in human PDAC. IL-22 and IL-22R may be suitable independent prognostic markers in PDAC.
Collapse
Affiliation(s)
- Zhang Wen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
The multifaceted role of Th17 lymphocytes and their associated cytokines in cancer. Clin Dev Immunol 2013; 2013:957878. [PMID: 24454480 PMCID: PMC3888704 DOI: 10.1155/2013/957878] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 12/11/2013] [Indexed: 12/14/2022]
Abstract
While the role of T helper 17 lymphocytes (Th17) in the pathogenesis of autoimmune diseases and in infectious immunity has been relatively well defined, the impact of these cells and their associated cytokines on cancer development is still under debate. Although multiple reports have indicated that Th17 can promote anticancer immunity, others have argued that these cells may exhibit tumor-promoting properties. This dichotomy in the function of Th17 lymphocytes in cancer may be related to the versatile nature of these cells, being capable of differentiating into either proinflammatory Th1 or suppressive FoxP3-expressing Treg cells or hybrid T cell subsets depending on the underlying environmental conditions. In the current review, we examine the role of Th17 lymphocytes and Th17-associated cytokines in cancer and discuss how factors that control their final lineage commitment decision may influence the balance between their tumor-promoting versus tumor-suppressing properties.
Collapse
|
32
|
Chung AS, Wu X, Zhuang G, Ngu H, Kasman I, Zhang J, Vernes JM, Jiang Z, Meng YG, Peale FV, Ouyang W, Ferrara N. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med 2013; 19:1114-23. [PMID: 23913124 DOI: 10.1038/nm.3291] [Citation(s) in RCA: 345] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/01/2013] [Indexed: 02/08/2023]
Abstract
Although angiogenesis inhibitors have provided substantial clinical benefit as cancer therapeutics, their use is limited by resistance to their therapeutic effects. While ample evidence indicates that such resistance can be influenced by the tumor microenvironment, the underlying mechanisms remain incompletely understood. Here, we have uncovered a paracrine signaling network between the adaptive and innate immune systems that is associated with resistance in multiple tumor models: lymphoma, lung and colon. Tumor-infiltrating T helper type 17 (T(H)17) cells and interleukin-17 (IL-17) induced the expression of granulocyte colony-stimulating factor (G-CSF) through nuclear factor κB (NF-κB) and extracellular-related kinase (ERK) signaling, leading to immature myeloid-cell mobilization and recruitment into the tumor microenvironment. The occurrence of T(H)17 cells and Bv8-positive granulocytes was also observed in clinical tumor specimens. Tumors resistant to treatment with antibodies to VEGF were rendered sensitive in IL-17 receptor (IL-17R)-knockout hosts deficient in T(H)17 effector function. Furthermore, pharmacological blockade of T(H)17 cell function sensitized resistant tumors to therapy with antibodies to VEGF. These findings indicate that IL-17 promotes tumor resistance to VEGF inhibition, suggesting that immunomodulatory strategies could improve the efficacy of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Alicia S Chung
- Department of Research Drug Discovery, Genentech, Inc., South San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kobold S, Völk S, Clauditz T, Küpper NJ, Minner S, Tufman A, Düwell P, Lindner M, Koch I, Heidegger S, Rothenfuer S, Schnurr M, Huber RM, Wilczak W, Endres S. Interleukin-22 is frequently expressed in small- and large-cell lung cancer and promotes growth in chemotherapy-resistant cancer cells. J Thorac Oncol 2013; 8:1032-42. [PMID: 23774470 DOI: 10.1097/jto.0b013e31829923c8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION In lung cancer, interleukin-22 (IL-22) expression within primary tissue has been demonstrated, but the frequency and the functional consequence of IL-22 signaling have not been addressed. This study aims at analyzing the cellular effects of IL-22 on lung carcinoma cell lines and the prognostic impact of IL-22 tissue expression in lung cancer patients. METHODS Biological effects of IL-22 signaling were investigated in seven lung cancer cell lines by Western blot, flow cytometry, real-time polymerase chain reaction, and proliferation assays. Tumor tissue specimens of two cohorts with a total of 2300 lung cancer patients were tested for IL-22 expression by immunohistochemistry. IL-22 serum concentrations were analyzed in 103 additional patients by enzyme-linked immunosorbent assay. RESULTS We found the IL-22 receptor 1 (IL-22-R1) to be expressed in six of seven lung cancer cell lines. However IL-22 signaling was functional in only four cell lines, where IL-22 induced signal transducer activator of transcription 3 phosphorylation and increased cell proliferation. Furthermore, IL-22 induced the expression of antiapoptotic B-cell lymphoma 2, but did not rescue tumor cells from carboplatin-induced apoptosis. Cisplatin-resistant cell lines showed a significant up-regulation of IL-22-R1 along with a stronger proliferative response to IL-22 stimulation. IL-22 was preferentially expressed in small- and large-cell lung carcinoma (58% and 46% of cases, respectively). However, no correlation between IL-22 expression by immunohistochemistry and prognosis was observed. CONCLUSION IL-22 is frequently expressed in lung cancer tissue. Enhanced IL-22-R1 expression and signaling in chemotherapy-refractory cell lines are indicative of a protumorigenic function of IL-22 and may contribute to a more aggressive phenotype.
Collapse
Affiliation(s)
- Sebastian Kobold
- Department of Internal Medicine IV, Division of Clinical Pharmacology and Center of Integrated Protein Science, Ludwig-Maximilians Universität München, Member of the German Center for Lung Research, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mühl H, Scheiermann P, Bachmann M, Härdle L, Heinrichs A, Pfeilschifter J. IL-22 in tissue-protective therapy. Br J Pharmacol 2013; 169:761-71. [PMID: 23530726 PMCID: PMC3687657 DOI: 10.1111/bph.12196] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/13/2013] [Accepted: 02/12/2013] [Indexed: 12/14/2022] Open
Abstract
IL-22, a member of the IL-10 cytokine family, has recently gained significant attention as a protective agent in murine models of diseases driven by epithelial injury. Like its biochemical and functional sibling IL-10, IL-22 elicits cellular activation primarily by engaging the STAT3 signalling pathway. Exclusively produced by leukocytes, but targeting mostly cells of epithelial origin, IL-22 has been proposed as a specialized cytokine messenger acting between leukocytic and non-leukocytic cell compartments. A lack of response in leukocytes to IL-22 mirrors tightly controlled IL-22 receptor expression and probably explains the apparent lack of instant adverse effects after systemic IL-22 administration to mice. Anti-apoptotic, pro-proliferative and pro-regenerative characteristics the major biological properties of this cytokine. Specifically, application of IL-22 is associated with tissue protection and/or regeneration in murine models of infection/microbe-driven inflammation at host/environment interfaces, ventilator-induced lung injury, pancreatitis and liver damage. Overall, preclinical studies would support therapeutic administration of seemingly well-tolerated recombinant IL-22 for treatment of an array of acute diseases manifested in epithelial tissues. However, the feasibility of prolonged administration of this cytokine is expected to be restricted by the tumourigenic potential of the IL-22/STAT3 axis. IL-22, moreover, apparently displays an inherent context-specific capacity to amplify distinct aspects of autoimmune inflammation. Here, the prospects, expectations and restrictions of IL-22 administration in tissue-protective therapy are discussed.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/adverse effects
- Anti-Inflammatory Agents, Non-Steroidal/metabolism
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Disease Models, Animal
- Drugs, Investigational/adverse effects
- Drugs, Investigational/metabolism
- Drugs, Investigational/pharmacology
- Drugs, Investigational/therapeutic use
- Hepatic Stellate Cells/drug effects
- Hepatic Stellate Cells/immunology
- Hepatic Stellate Cells/metabolism
- Humans
- Interleukins/adverse effects
- Interleukins/genetics
- Interleukins/metabolism
- Interleukins/therapeutic use
- MAP Kinase Signaling System/drug effects
- Mucous Membrane/drug effects
- Mucous Membrane/immunology
- Mucous Membrane/metabolism
- Protective Agents/adverse effects
- Protective Agents/metabolism
- Protective Agents/pharmacology
- Protective Agents/therapeutic use
- Receptors, Interleukin/agonists
- Receptors, Interleukin/metabolism
- Recombinant Proteins/adverse effects
- Recombinant Proteins/metabolism
- Recombinant Proteins/pharmacology
- Recombinant Proteins/therapeutic use
- Regeneration/drug effects
- STAT3 Transcription Factor/agonists
- STAT3 Transcription Factor/metabolism
- Interleukin-22
Collapse
Affiliation(s)
- Heiko Mühl
- pharmazentrum frankfurt/ZAFES, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Zhang S, Fujita H, Mitsui H, Yanofsky VR, Fuentes-Duculan J, Pettersen JS, Suárez-Fariñas M, Gonzalez J, Wang CQF, Krueger JG, Felsen D, Carucci JA. Increased Tc22 and Treg/CD8 ratio contribute to aggressive growth of transplant associated squamous cell carcinoma. PLoS One 2013; 8:e62154. [PMID: 23667456 PMCID: PMC3646982 DOI: 10.1371/journal.pone.0062154] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/18/2013] [Indexed: 12/25/2022] Open
Abstract
Immune suppressed organ transplant recipients suffer increased morbidity and mortality from primary cutaneous SCC. We studied tumor microenvironment in transplant-associated SCC (TSCC), immune-competent SCC and normal skin by IHC, IF and RT-PCR on surgical discard. We determined T cell polarization in TSCC and SCC by intracellular cytokine staining of T cell crawl outs from human skin explants. We studied the effects of IL-22, an inducer of keratinocyte proliferation, on SCC proliferation in vitro. SCC and TSCC are both associated with significantly higher numbers of CD3(+) and CD8(+) T cells compared to normal skin. TSCC showed a higher proportion of Foxp3(+) T regs to CD8(+) T cells compared to SCC and a lower percentage of IFN-γ producing CD4(+) T cells. TSCC, however, had a higher percentage of IL-22 producing CD8(+) T cells compared to SCC. TSCC showed more diffuse Ki67 and IL-22 receptor (IL-22R) expression by IHC. IL-22 induced SCC proliferation in vitro despite serum starvation. Diminished cytotoxic T cell function in TSCC due to decreased CD8/T-reg ratio may permit tumor progression. Increased IL-22 and IL-22R expression could accelerate tumor growth in transplant patients. IL-22 may be an attractive candidate for targeted therapy of SCC without endangering allograft survival.
Collapse
MESH Headings
- CD3 Complex/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- Carcinoma, Squamous Cell/etiology
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Count
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunocompetence/immunology
- Interleukins/pharmacology
- Organ Transplantation/adverse effects
- Phosphoproteins/metabolism
- Receptors, Interleukin/metabolism
- STAT3 Transcription Factor/metabolism
- Skin/cytology
- Skin/immunology
- Skin/pathology
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Th1 Cells/cytology
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Up-Regulation/drug effects
- Up-Regulation/immunology
- Interleukin-22
Collapse
Affiliation(s)
- Shali Zhang
- Ronald O. Perelman Department of Dermatology, New York University Langone Medical Center, New York, New York, United States of America
| | - Hideki Fujita
- Laboratory for Investigative Dermatology, Rockefeller University, New York, New York, United States of America
| | - Hiroshi Mitsui
- Laboratory for Investigative Dermatology, Rockefeller University, New York, New York, United States of America
| | - Valerie R. Yanofsky
- Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Judilyn Fuentes-Duculan
- Laboratory for Investigative Dermatology, Rockefeller University, New York, New York, United States of America
| | - Julia S. Pettersen
- Department of Dermatology, Weill Cornell Medical College, New York, New York, United States of America
| | - Mayte Suárez-Fariñas
- Laboratory for Investigative Dermatology, Rockefeller University, New York, New York, United States of America
| | - Juana Gonzalez
- Translational Immunomonitoring Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Claire Q. F. Wang
- Laboratory for Investigative Dermatology, Rockefeller University, New York, New York, United States of America
| | - James G. Krueger
- Laboratory for Investigative Dermatology, Rockefeller University, New York, New York, United States of America
| | - Diane Felsen
- Institute for Pediatric Urology, Weill Cornell Medical College, New York, New York, United States of America
| | - John A. Carucci
- Ronald O. Perelman Department of Dermatology, New York University Langone Medical Center, New York, New York, United States of America
| |
Collapse
|
36
|
Danielsson K, Ansari D, Andersson R. Personalizing pancreatic cancer medicine: what are the challenges? Per Med 2013; 10:45-59. [DOI: 10.2217/pme.12.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The P4 paradigm for future medicine promises changes in cancer management with improved Prediction of treatment response, Prevention of disease, Personalization of therapy, and Participation by patients. Significant challenges remain for the implementation of the P4 principles for pancreatic cancer, but many strides have been made in the past several years that should facilitate a future in which the disease can be detected at earlier stages and treatments can be customized to target features of a particular patient’s disease. This article summarizes the basic molecular biology of pancreatic tumors and the current state of pancreatic cancer treatment, as well as targeted treatments in the pipeline that might enable future personalized pancreatic cancer treatment and prediction of response to treatment. It also discusses possible directions for screening patients at high risk of developing the disease, detecting tumors at earlier stages, and increasing patient involvement in designing treatment.
Collapse
Affiliation(s)
- Krissi Danielsson
- Department of Surgery, Clinical Sciences Lund, Skåne University Hospital, Lund University, SE-221 85, Lund, Sweden
| | - Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Skåne University Hospital, Lund University, SE-221 85, Lund, Sweden
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Skåne University Hospital, Lund University, SE-221 85, Lund, Sweden
| |
Collapse
|
37
|
Anti-cancer versus cancer-promoting effects of the interleukin-17-producing T helper cells. Immunol Lett 2012; 149:123-33. [PMID: 23159638 DOI: 10.1016/j.imlet.2012.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/15/2012] [Accepted: 11/05/2012] [Indexed: 12/18/2022]
Abstract
Research on T helper 17 (Th17) cells with regard to immunoediting has revealed elusive results. Whereas enhanced Th17 response and related molecules such as interleukin (IL)-17, IL-21, IL-22, IL-23 and STAT3 accompanied tumor induction and progression, finding that tumor growth/stage was negatively correlated with increased infiltration of Th17 cells in the tumor mass has prompted elucidation of various antitumor mechanisms elicited by Th17 and their related molecules. The pro-tumor efficacy of Th17 response included promotion of neutrophilia and induction of angiogenic (e.g. VEGF, MMP2 and MMP9) and anti-apoptotic factors (e.g. Bcl-XL), as well as expansion and activation of myeloid-derived suppressor cells, which facilitate generation of tumor-specific regulatory T cells. Other tumor immunogenic settings revealed anti-tumor pathways including induction of cytotoxic activity, expression of MHC antigens, the ability Th17 cells to reside within the tumor, and to convert into IFN-γ producers. Notably, Th17 cell related molecules exert indirect pro- or anti-tumor effects via inducing viral persistence or mediating protective mechanisms against bacterial and viral infection. Herein, the recent literature revealing such immunoediting events mediated by Th17 cells and their associated molecules as delivered by various experimental regimens and observed in cancer patient are revised, with a focus on some proposed anti-cancer therapies.
Collapse
|
38
|
Regulation of T helper 17 by bacteria: an approach for the treatment of hepatocellular carcinoma. Int J Hepatol 2012; 2012:439024. [PMID: 23316374 PMCID: PMC3534210 DOI: 10.1155/2012/439024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/26/2012] [Indexed: 02/07/2023] Open
Abstract
T helper 17 (T(H)17) is a novel subset of T helper cells that has recently been identified in the hepatocellular carcinoma (HCC) tumor environment. Its presence seems to be linked with HCC progression, possibly via facilitating angiogenesis. The origin of tumor-associated T(H)17 may be related to the gut, in which the differentiation of T cells, especially T(H)17 cells, is affected by microbiota. As T(H)17 may appear to be a new therapeutic target against tumor-promoting inflammation, strategies such as using probiotics to polarize the response away from T(H)17 may be beneficial to slow down tumor progression. This paper will attempt to discuss the potential linkage between HCC progression, T(H)17, and gut microbiota and the possible therapeutic implications of probiotics to modulate T(H)17-mediated response for tumor growth.
Collapse
|