1
|
Aljumaah MR, Roach J, Hu Y, Gunstad J, Azcarate-Peril MA. Microbial dipeptidyl peptidases of the S9B family as host-microbe isozymes. SCIENCE ADVANCES 2025; 11:eads5721. [PMID: 40173242 PMCID: PMC11964003 DOI: 10.1126/sciadv.ads5721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
Human dipeptidyl peptidase 4 (hDPP-4) has been a pharmacological target for metabolic diseases, particularly diabetes, since the early 2000s. As a ubiquitous enzyme found in both prokaryotic and eukaryotic organisms, hDPP-4 plays crucial roles in host homeostasis and disease progression. While many studies have explored hDPP-4's properties, research on gut microbially derived DPP-4 (mDPP-4) remains limited. This review discusses the significance of mDPP-4 and its health implications, analyzing crystal structures of mDPP-4 in comparison to human counterparts. We examine how hDPP-4 inhibitors could influence gut microbiome composition and mDPP-4 activity. Additionally, this review connects ongoing discussions regarding DPP-4 substrate specificity and potential access routes for mDPP-4, emphasizing the urgent need for further research on mDPP-4's role in health and improve the precision of DPP-4 inhibitor therapies.
Collapse
Affiliation(s)
- Mashael R. Aljumaah
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jeffery Roach
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| | - Yunan Hu
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| | - John Gunstad
- Department of Psychological Sciences, Kent State University, Kent, OH, USA
| | - M. Andrea Azcarate-Peril
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Holst JJ, Rosenkilde MM. Oxyntomodulin - past, present and future. Peptides 2025; 188:171393. [PMID: 40187415 DOI: 10.1016/j.peptides.2025.171393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025]
Abstract
Almost since its discovery, glucagon was suspected to be formed in the gastrointestinal tract, and the L-cells were shown to contain glucagon-like immunoreactivity. This was due to the presence of two peptides that both contained the full glucagon sequence:glicentin of 69 amino acids and oxyntomodulin of 37 amino acids. While glicentin is a part of the glucagon precursor, proglucagon, and probably is inactive, oxyntomodulin, a fragment of glicentin, interacts although weakly with the glucagon as well as the GLP-1 receptor. However, in agreement with these activities, oxyntomodulin inhibited appetite and food intake in humans and inspired development of long acting, potent glucagon-GLP-1 co-agonists. Several such co-agonists are currently in clinical development and show promise because they combine GLP-1 like activities with those of glucagon agonism: additive weight loss and a stimulation of hepatic lipid metabolism with unique effectiveness on hepatic steatosis. They may therefore be effective in the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD).
Collapse
Affiliation(s)
- Jens Juul Holst
- The NovoNordisk Foundation Center for Basic Metabolic Research, Denmark; Department of Biomedical Sciences, the Panum institute, University of Copenhagen, Denmark.
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, the Panum institute, University of Copenhagen, Denmark.
| |
Collapse
|
3
|
Valdecantos MP, Ruiz L, Folgueira C, Rada P, Gomez-Santos B, Solas M, Hitos AB, Field J, Francisco V, Escalona-Garrido C, Zagmutt S, Calderon-Dominguez M, Mera P, Garcia-Martinez I, Maymó-Masip E, Grajales D, Alen R, Mora A, Sáinz N, Vides-Urrestarazu I, Vilarrasa N, Arbones-Mainar JM, Zaragoza C, Moreno-Aliaga MJ, Aspichueta P, Fernández-Veledo S, Vendrell J, Serra D, Herrero L, Schreiber R, Zechner R, Sabio G, Hornigold D, Rondinone CM, Jermutus L, Grimsby J, Valverde ÁM. The dual GLP-1/glucagon receptor agonist G49 mimics bariatric surgery effects by inducing metabolic rewiring and inter-organ crosstalk. Nat Commun 2024; 15:10342. [PMID: 39609390 PMCID: PMC11605122 DOI: 10.1038/s41467-024-54080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Bariatric surgery is effective for the treatment and remission of obesity and type 2 diabetes, but pharmacological approaches which exert similar metabolic adaptations are needed to avoid post-surgical complications. Here we show how G49, an oxyntomodulin (OXM) analog and dual glucagon/glucagon-like peptide-1 receptor (GCGR/GLP-1R) agonist, triggers an inter-organ crosstalk between adipose tissue, pancreas, and liver which is initiated by a rapid release of free fatty acids (FFAs) by white adipose tissue (WAT) in a GCGR-dependent manner. This interactome leads to elevations in adiponectin and fibroblast growth factor 21 (FGF21), causing WAT beiging, brown adipose tissue (BAT) activation, increased energy expenditure (EE) and weight loss. Elevation of OXM, under basal and postprandial conditions, and similar metabolic adaptations after G49 treatment were found in plasma from patients with obesity early after metabolic bariatric surgery. These results identify G49 as a potential pharmacological alternative sharing with bariatric surgery hormonal and metabolic pathways.
Collapse
Affiliation(s)
- M Pilar Valdecantos
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain.
- Faculty of Experimental Science, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain.
| | - Laura Ruiz
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Instituto de Salud Carlos III, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Gomez-Santos
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- BioBizkaia Health Research Institute, Barakaldo, Spain
| | - Maite Solas
- Department of Pharmaceutical Sciences, Division of Pharmacology, University of Navarra, Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Ana B Hitos
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Joss Field
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Vera Francisco
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Escalona-Garrido
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Sebastián Zagmutt
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - María Calderon-Dominguez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Paula Mera
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Irma Garcia-Martinez
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Elsa Maymó-Masip
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Diana Grajales
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Alen
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Instituto de Salud Carlos III, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Neira Sáinz
- University of Navarra, Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, 31008, Pamplona, Spain
| | - Irene Vides-Urrestarazu
- University of Navarra, Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, 31008, Pamplona, Spain
| | - Nuria Vilarrasa
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
- Obesity Unit and Endocrinology and Nutrition Departments, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - José M Arbones-Mainar
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Instituto Aragonés de Ciencias de la Salud (IACS), Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Carlos Zaragoza
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERcv), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Investigación Cardiovascular, Universidad Francisco de Vitoria/Servicio de Cardiología, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - María J Moreno-Aliaga
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- IdISNA, Navarra Institute for Health Research, Pamplona, Spain
- University of Navarra, Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, 31008, Pamplona, Spain
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- BioBizkaia Health Research Institute, Barakaldo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Sonia Fernández-Veledo
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Rovira I Virgili University (URV), Tarragona, Spain
| | - Joan Vendrell
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Rovira I Virgili University (URV), Tarragona, Spain
| | - Dolors Serra
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Laura Herrero
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Instituto de Salud Carlos III, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - David Hornigold
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Cristina M Rondinone
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca Ltd, Gaithersburg, MD, USA
- Pep2Tango Therapeutics Inc., Potomac, MD, USA
| | - Lutz Jermutus
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Joseph Grimsby
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca Ltd, Gaithersburg, MD, USA
- Regeneron Pharmaceuticals, Inc., Internal Medicine, Tarrytown, NY, USA
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Kueh MTW, Chong MC, Miras AD, le Roux CW. Oxyntomodulin physiology and its therapeutic development in obesity and associated complications. J Physiol 2024. [PMID: 39495024 DOI: 10.1113/jp287407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Incretins, such as glucagon-like peptide-1 (GLP1) and glucose-dependent insulinotropic polypeptide (GIP), have advanced the treatment landscape of obesity to a new pinnacle. As opposed to singular incretin effects, oxyntomodulin (OXM) activates glucagon receptors (GCGR) and glucagon-like peptide-1 receptors (GLP1R), demonstrating a more dynamic range of effects that are more likely to align with evolving 'health gains' goals in obesity care. Here, we will review the molecular insights from their inception to recent developments and challenges. This review will discuss the physiological actions of OXM, primarily appetite regulation, energy expenditure, and glucose homeostasis. Finally, we will shed light on the development of OXM-based therapies for obesity and associated complications, and outline important considerations for more translational efforts.
Collapse
Affiliation(s)
- Martin T W Kueh
- UCD School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Royal College of Surgeons in Ireland and University College Dublin Malaysia Campus, Malaysia
| | | | | | - Carel W le Roux
- Diabetes Complications Research Centre, University College Dublin, Ireland
| |
Collapse
|
5
|
Liu Y, Kimita W, Bharmal SH, Petrov MS. Response to lowering plasma glucose is characterised by decreased oxyntomodulin: Results from a randomised controlled trial. Diabetes Metab Syndr 2024; 18:103052. [PMID: 38901179 DOI: 10.1016/j.dsx.2024.103052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND With the prevalence of diabetes reaching an epidemic level, there is a growing interest in the investigation of its remission. Proglucagon-derived peptides (PGDP) have been shown to have a glucose-regulating effect. However, whether they play a role in diabetes remission remains poorly understood. AIM To investigate changes in plasma levels of PGDP in glycaemic responders versus non-responders. METHODS The study was a randomised placebo-controlled trial comprising 18 adults with prediabetes (registered at www. CLINICALTRIALS gov as NCT03889210). Following an overnight fast, participants consumed ketone β-hydroxybutyrate (KEβHB)-supplemented beverage and placebo beverage in crossover manner. Serial blood samples were collected from baseline to 150 min at 30-min intervals. The endpoints were changes in glucagon-like peptide-1 (GLP-1), glicentin, oxyntomodulin, glucagon, and major proglucagon fragment (MPGF). Participants were stratified into the 'responders' and 'non-responders' subgroups based on their glycaemic changes following the ingestion of KEβHB. The area under the curve (AUC) was calculated to estimate the accumulated changes in the studied PGDP and compared using paired-t test between the KEβHB and placebo beverages. RESULTS Responders had a significantly greater reduction in plasma glucose compared with non-responders following acute ketosis (p < 0.001). The AUC0-150 for oxyntomodulin was significantly lower following the KEβHB beverage compared with the placebo (p = 0.045) in responders, but not in non-responders (p = 0.512). No significant differences in AUCs0-150 were found for GLP-1, glicentin, glucagon, and MPGF in either responders or non-responders. CONCLUSION Oxyntomodulin is involved in lowering plasma glucose and may play an important role in diabetes remission.
Collapse
Affiliation(s)
- Yutong Liu
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Wandia Kimita
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Sakina H Bharmal
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
6
|
Lee J, Kim WK. Applications of Enteroendocrine Cells (EECs) Hormone: Applicability on Feed Intake and Nutrient Absorption in Chickens. Animals (Basel) 2023; 13:2975. [PMID: 37760373 PMCID: PMC10525316 DOI: 10.3390/ani13182975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
This review focuses on the role of hormones derived from enteroendocrine cells (EECs) on appetite and nutrient absorption in chickens. In response to nutrient intake, EECs release hormones that act on many organs and body systems, including the brain, gallbladder, and pancreas. Gut hormones released from EECs play a critical role in the regulation of feed intake and the absorption of nutrients such as glucose, protein, and fat following feed ingestion. We could hypothesize that EECs are essential for the regulation of appetite and nutrient absorption because the malfunction of EECs causes severe diarrhea and digestion problems. The importance of EEC hormones has been recognized, and many studies have been carried out to elucidate their mechanisms for many years in other species. However, there is a lack of research on the regulation of appetite and nutrient absorption by EEC hormones in chickens. This review suggests the potential significance of EEC hormones on growth and health in chickens under stress conditions induced by diseases and high temperature, etc., by providing in-depth knowledge of EEC hormones and mechanisms on how these hormones regulate appetite and nutrient absorption in other species.
Collapse
Affiliation(s)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
7
|
Liu FS, Wang S, Guo XS, Ye ZX, Zhang HY, Li Z. State of art on the mechanisms of laparoscopic sleeve gastrectomy in treating type 2 diabetes mellitus. World J Diabetes 2023; 14:632-655. [PMID: 37383590 PMCID: PMC10294061 DOI: 10.4239/wjd.v14.i6.632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/01/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023] Open
Abstract
Obesity and type-2 diabetes mellitus (T2DM) are metabolic disorders. Obesity increases the risk of T2DM, and as obesity is becoming increasingly common, more individuals suffer from T2DM, which poses a considerable burden on health systems. Traditionally, pharmaceutical therapy together with lifestyle changes is used to treat obesity and T2DM to decrease the incidence of comorbidities and all-cause mortality and to increase life expectancy. Bariatric surgery is increasingly replacing other forms of treatment of morbid obesity, especially in patients with refractory obesity, owing to its many benefits including good long-term outcomes and almost no weight regain. The bariatric surgery options have markedly changed recently, and laparoscopic sleeve gastrectomy (LSG) is gradually gaining popularity. LSG has become an effective and safe treatment for type-2 diabetes and morbid obesity, with a high cost-benefit ratio. Here, we review the me-chanism associated with LSG treatment of T2DM, and we discuss clinical studies and animal experiments with regard to gastrointestinal hormones, gut microbiota, bile acids, and adipokines to clarify current treatment modalities for patients with obesity and T2DM.
Collapse
Affiliation(s)
- Fa-Shun Liu
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Song Wang
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Xian-Shan Guo
- Department of Endocrinology, Xinxiang Central Hospital, Xinxiang 453000, Henan Province, China
| | - Zhen-Xiong Ye
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Hong-Ya Zhang
- Central Laboratory, Yangpu District Control and Prevention Center, Shanghai 200090, China
| | - Zhen Li
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| |
Collapse
|
8
|
Zhihong Y, Chen W, Qianqian Z, Lidan S, Qiang Z, Jing H, Wenxi W, Bhawal R. Emerging roles of oxyntomodulin-based glucagon-like peptide-1/glucagon co-agonist analogs in diabetes and obesity. Peptides 2023; 162:170955. [PMID: 36669563 DOI: 10.1016/j.peptides.2023.170955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Oxyntomodulin (OXM) is an endogenous peptide hormone secreted from the intestines following nutrient ingestion that activates both glucagon-like peptide-1 (GLP-1) and glucagon receptors. OXM is known to exert various effects, including improvement in glucose tolerance, promotion of energy expenditure, acceleration of liver lipolysis, inhibition of food intake, delay of gastric emptying, neuroprotection, and pain relief. The antidiabetic and antiobesity properties have led to the development of biologically active and enzymatically stable OXM-based analogs with proposed therapeutic promise for metabolic diseases. Structural modification of OXM was ongoing to enhance its potency and prolong half-life, and several GLP-1/glucagon dual receptor agonist-based therapies are being explored in clinical trials for the treatment of type 2 diabetes mellitus and its complications. In the present article, we provide a brief overview of the physiology of OXM, focusing on its structural-activity relationship and ongoing clinical development.
Collapse
Affiliation(s)
- Yao Zhihong
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, China
| | - Wang Chen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Zhu Qianqian
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Sun Lidan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China.
| | - Zhou Qiang
- The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China.
| | - Han Jing
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Wang Wenxi
- The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, China
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
9
|
de Laat MA, Fitzgerald DM. Equine metabolic syndrome: Role of the enteroinsular axis in the insulin response to oral carbohydrate. Vet J 2023; 294:105967. [PMID: 36858344 DOI: 10.1016/j.tvjl.2023.105967] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/17/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
Equine insulin dysregulation (ID) comprises amplified insulin responses to oral carbohydrates or insulin resistance, or both, which leads to sustained or periodic hyperinsulinaemia. Hyperinsulinaemia is important in horses because of its clear association with laminitis risk, and the gravity of this common sequela justifies the need for a better understanding of insulin and glucose homoeostasis in this species. Post-prandial hyperinsulinaemia is the more commonly identified component of ID and is diagnosed using tests that include an assessment of the gastrointestinal tract (GIT). There are several factors present in the GIT that either directly, or indirectly, enhance insulin secretion from the endocrine pancreas, and these factors are collectively referred to as the enteroinsular axis (EIA). A role for key components of the EIA, such as the incretin peptides glucagon-like peptide-1 and 2, in the pathophysiology of ID has been investigated in horses. By comparison, the function (and even existence) of many EIA peptides of potential importance, such as glicentin and oxyntomodulin, remains unexplored. The incretins that have been examined all increase insulin responses to oral carbohydrate through one or more mechanisms. This review presents what is known about the EIA in horses, and discusses how it might contribute to ID, then compares this to current understanding derived from the extensive studies undertaken in other species. Future directions for research are discussed and knowledge gaps that should be prioritised are suggested.
Collapse
Affiliation(s)
- Melody A de Laat
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia.
| | - Danielle M Fitzgerald
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|
10
|
Inceu AI, Neag MA, Craciun AE, Buzoianu AD. Gut Molecules in Cardiometabolic Diseases: The Mechanisms behind the Story. Int J Mol Sci 2023; 24:3385. [PMID: 36834796 PMCID: PMC9965280 DOI: 10.3390/ijms24043385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the most common cause of morbidity and mortality worldwide. Diabetes mellitus increases cardiovascular risk. Heart failure and atrial fibrillation are associated comorbidities that share the main cardiovascular risk factors. The use of incretin-based therapies promoted the idea that activation of alternative signaling pathways is effective in reducing the risk of atherosclerosis and heart failure. Gut-derived molecules, gut hormones, and gut microbiota metabolites showed both positive and detrimental effects in cardiometabolic disorders. Although inflammation plays a key role in cardiometabolic disorders, additional intracellular signaling pathways are involved and could explain the observed effects. Revealing the involved molecular mechanisms could provide novel therapeutic strategies and a better understanding of the relationship between the gut, metabolic syndrome, and cardiovascular diseases.
Collapse
Affiliation(s)
- Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca-Elena Craciun
- Department of Diabetes, and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
11
|
Development of a selective, sensitive and robust oxyntomodulin dual monoclonal antibody immunoassay. Bioanalysis 2022; 14:1229-1239. [DOI: 10.4155/bio-2022-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background & Aim: Oxyntomodulin (Oxm) is a proglucagon-derived peptide agonist of both the GLP-1 and glucagon receptors and is a key regulator of gastric acid secretion and energy expenditure. Differential processing from proglucagon hinders assay immunoassay selectivity. Method & results: Antibody engineering was used to develop a sandwich immunoassay that selectively measures endogenous Oxm. The pre- and postprandial levels of Oxm from 19 healthy individuals over the course of 2 h were measured. Postprandial increases in Oxm occurred within minutes and levels significantly correlated with those obtained using previously published mass spectrometry assays. Conclusion: This sandwich immunoassay is appropriately sensitive and selective and is also amenable to high-throughput application for the reliable determination of endogenous levels of intact Oxm from human samples.
Collapse
|
12
|
Population Pharmacokinetics of Cotadutide in Subjects with Type 2 Diabetes. Clin Pharmacokinet 2022; 61:833-845. [PMID: 35235191 DOI: 10.1007/s40262-021-01094-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVES Cotadutide is a balanced dual glucagon-like peptide-1/glucagon receptor agonist under development for the treatment of nonalcoholic steatohepatitis and chronic kidney disease with type 2 diabetes. The objectives of the analysis were to characterize the population pharmacokinetics of cotadutide following daily subcutaneous injection in subjects with type 2 diabetes and to evaluate the effect of demographic and clinical variables of interest on cotadutide pharmacokinetics. METHODS This study analyzed 8834 plasma concentrations of cotadutide from 759 subjects with type 2 diabetes who received daily subcutaneous doses from 20 to 600 μg from six clinical studies. The impact of covariates on cotadutide pharmacokinetics was quantified, and body weight effect on cotadutide exposure was further evaluated using a simulation approach. The model performance was evaluated through prediction-corrected visual predictive checks. RESULTS A one-compartment model with first-order absorption and elimination described cotadutide pharmacokinetic data well. The mean values for cotadutide apparent clearance, apparent distribution volume, absorption rate constant, and half-life were 1.04 L/h (interindividual variability [IIV]: 26.5%), 18.7 L (IIV: 28.7%), 0.343 h-1 (IIV: 38.6%), and 12.9 h, respectively. Higher body weight, lower albumin, and higher alanine aminotransferase were associated with an increase in cotadutide clearance, while an increase in anti-drug antibody titers was associated with a decrease in cotadutide clearance. These statistically significant effects were not considered clinically significant and did not warrant dose adjustment. Effects of other tested baseline covariates (age, sex, body mass index, hemoglobin A1c, renal function, duration of diabetes) were not found to statistically significantly affect cotadutide pharmacokinetics. CONCLUSIONS Cotadutide pharmacokinetics was adequately described by a one-compartment linear model with first-order absorption and elimination. Body weight-based dosing is not necessary for cotadutide based on the simulation using the final population pharmacokinetic modeling. This model will be used to evaluate exposure-response relationships for efficacy and safety in different indications that are being studied for cotadutide.
Collapse
|
13
|
Park BG, Kim GM, Lee HJ, Ryu JH, Kim DH, Seong JY, Kim S, Park ZY, Kim YJ, Lee J, Kim JI. Antiobesity therapeutics with complementary dual-agonist activities at glucagon and glucagon-like peptide 1 receptors. Diabetes Obes Metab 2022; 24:50-60. [PMID: 34491605 DOI: 10.1111/dom.14546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/17/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022]
Abstract
AIM To develop more effective and long-lasting antiobesity and antidiabetic therapeutics by employing novel chemical modifications of glucagon-like peptide-1 receptor (GLP-1R) agonists. METHODS We constructed novel unimolecular dual agonists of GLP-1R and glucagon receptor prepared by linking sEx-4 and native glucagon (GCG) via lysine or triazole [sEx4-GCG(K) and sEx4-GCG(T), respectively] and evaluated their antiobesity and antidiabetic efficacy in the diabetic and obese mouse model. RESULTS Both sEx4-GCG(K) and sEx4-GCG(T) showed the beneficial metabolic effects of GLP-1 and glucagon: they promoted weight loss and ameliorated insulin resistance and hepatic steatosis. They also increased thermogenesis in brown adipose tissue, and lipolysis and β-oxidation in white adipose tissue, with concomitant suppression of lipogenesis. Furthermore, both dual agonists activated the 5'-AMP-activated protein kinase signalling pathway and prevented palmitate-induced oxidative stress in skeletal muscle cells. CONCLUSION Through their complementary dual agonism, sEx4-GCG(T) and sEx4-GCG(K) induce more marked weight loss and metabolic improvements than conventional agonists, and could be developed as novel therapeutic agents for the treatment of obesity and associated metabolic disorders in humans.
Collapse
Affiliation(s)
- Bong Gyu Park
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Gyeong Min Kim
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hye-Jin Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Ha Ryu
- Pilot Plant, Anygen, Gwangju, Republic of Korea
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae-Young Seong
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Soojeong Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Zee-Yong Park
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Young-Joon Kim
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jae Il Kim
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Pilot Plant, Anygen, Gwangju, Republic of Korea
| |
Collapse
|
14
|
Petrov MS. Post-pancreatitis diabetes mellitus: investigational drugs in preclinical and clinical development and therapeutic implications. Expert Opin Investig Drugs 2021; 30:737-747. [PMID: 33993813 DOI: 10.1080/13543784.2021.1931118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Post-pancreatitis diabetes mellitus is one of the most common types of secondary diabetes. The pharmaceutical armamentarium in the field of diabetology can be broadened if the design of novel drugs is informed by pathogenetic insights from studies on post-pancreatitis diabetes mellitus.Areas covered: The article provides an overview of preclinical and clinical studies of compounds selectively antagonizing the gastric inhibitory peptide receptor, simultaneously stimulating both the glucagon-like peptide-1 and glucagon receptors, and activating ketogenesis.Expert opinion: The current pharmacotherapy for post-pancreatitis diabetes mellitus is relatively ineffective. This type of diabetes represents a unique platform for rigorous, efficient, and practical search for glucose-lowering therapeutic candidates. Various methods of gastric inhibitory peptide receptor (expressed in the pancreas) antagonism have undergone extensive preclinical testing in diabetes, with promising compounds being trialed in man. Molecular mimicry with oxyntomodulin ─ an extra-pancreatic hormone homologous with pancreatic hormone glucagon and involved in the regulation of exocrine pancreatic function ─ could be harnessed. The emerging findings of a salutary effect of ketosis mimetics in people with prediabetes set the stage for a novel approach to preventing diabetes.
Collapse
Affiliation(s)
- Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Kinna S, Ouberaï MM, Sonzini S, Gomes Dos Santos AL, Welland ME. Thermo-Responsive self-assembly of a dual glucagon-like peptide and glucagon receptor agonist. Int J Pharm 2021; 604:120719. [PMID: 34015379 DOI: 10.1016/j.ijpharm.2021.120719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 01/02/2023]
Abstract
The human peptide hormone Oxyntomodulin (Oxm) is known to induce satiety, increase energy expenditure, and control blood glucose in humans, making it a promising candidate for treatment of obesity and/or type 2 diabetes mellitus. However, a pharmaceutical exploitation has thus far been impeded by fast in vivo clearance and the molecule's sensitivity to half-life extending structural modifications. We recently showed that Oxm self-assembles into amyloid-like nanofibrils that continuously release active, soluble Oxm in a peptide-deprived environment. S.c. injected Oxm nanofibrils extended plasma exposure from a few hours to five days in rodents, compared to s.c. applied soluble Oxm. Here we show that Oxm fibril elongation kinetics and thermodynamics display a uniquely low temperature optimum compared to previously reported amyloid-like peptide and protein assemblies. Elongation rate is optimal at room temperature, with association rates 2-3 times higher at 25 °C than at ≥37 °C or ≤20 °C. We deduce from a combination of Cryo electron microscopy and spectroscopic methods that Oxm fibrils have a double-layered, triangular cross-section composed of arch-shaped monomers. We suggest a thermodynamic model that links the necessary molecular rearrangements during fibrillation and peptide release to the unique temperature effects in Oxm self-assembly and disassembly.
Collapse
Affiliation(s)
- Sonja Kinna
- Nanoscience Centre, Department of Engineering, University of Cambridge, Cambridge CB30FF, UK
| | - Myriam M Ouberaï
- Nanoscience Centre, Department of Engineering, University of Cambridge, Cambridge CB30FF, UK.
| | - Silvia Sonzini
- Pharmaceutical Sciences, R&D BioPharmaceuticals, AstraZeneca, Granta Park, Cambridge CB21 6GH, UK
| | - Ana L Gomes Dos Santos
- Pharmaceutical Sciences, R&D BioPharmaceuticals, AstraZeneca, Granta Park, Cambridge CB21 6GH, UK.
| | - Mark E Welland
- Pharmaceutical Sciences, R&D BioPharmaceuticals, AstraZeneca, Granta Park, Cambridge CB21 6GH, UK
| |
Collapse
|
16
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Li W, Kirchner T, Ho G, Bonilla F, D'Aquino K, Littrell J, Zhang R, Jian W, Qiu X, Zheng S, Gao B, Wong P, Leonard JN, Camacho RC. Amino acids are sensitive glucagon receptor-specific biomarkers for glucagon-like peptide-1 receptor/glucagon receptor dual agonists. Diabetes Obes Metab 2020; 22:2437-2450. [PMID: 33463043 DOI: 10.1111/dom.14173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/31/2022]
Abstract
AIM The aim of this study was to evaluate amino acids as glucagon receptor (GCGR)-specific biomarkers in rodents and cynomolgus monkeys in the presence of agonism of both glucagon-like peptide-1 receptor (GLP1R) and GCGR with a variety of dual agonist compounds. MATERIALS AND METHODS Primary hepatocytes, rodents (normal, diet-induced obese and GLP1R knockout) and cynomolgus monkeys were treated with insulin (hepatocytes only), glucagon (hepatocytes and cynomolgus monkeys), the GLP1R agonist, dulaglutide, or a variety of dual agonists with varying GCGR potencies. RESULTS A long-acting dual agonist, Compound 2, significantly decreased amino acids in both wild-type and GLP1R knockout mice in the absence of changes in food intake, body weight, glucose or insulin, and increased expression of hepatic amino acid transporters. Dulaglutide, or a variant of Compound 2 lacking GCGR agonism, had no effect on amino acids. A third variant with ~31-fold less GCGR potency than Compound 2 significantly decreased amino acids, albeit to a significantly lesser extent than Compound 2. Dulaglutide (with saline infusion) had no effect on amino acids, but an infusion of glucagon dose-dependently decreased amino acids on the background of GLP1R engagement (dulaglutide) in cynomolgus monkeys, as did Compound 2. CONCLUSIONS These results show that amino acids are sensitive and translatable GCGR-specific biomarkers.
Collapse
Affiliation(s)
- Wenyu Li
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Thomas Kirchner
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - George Ho
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Fany Bonilla
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Katharine D'Aquino
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - James Littrell
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Rui Zhang
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Wenying Jian
- Pharmacokinetics, Dynamics, and Metabolism, Janssen R&D, Spring House, Pennsylvania, USA
| | - Xi Qiu
- Pharmacokinetics, Dynamics, and Metabolism, Janssen R&D, Spring House, Pennsylvania, USA
| | - Songmao Zheng
- Janssen Biotherapeutics, Janssen R&D, Spring House, Pennsylvania, USA
| | - Bin Gao
- Translational Medicine and Early Development Statistics, Janssen R&D, Spring House, Pennsylvania, USA
| | - Peggy Wong
- Quantitative Sciences, Janssen R&D, Raritan, New Jersey, USA
| | - James N Leonard
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Raul C Camacho
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| |
Collapse
|
18
|
Pei Z, Zhou D, Yan J, Wang S, Yang X, Pei Z. Design and characterization of novel oxyntomodulin derivatives with potent dual GLP-1/glucagon receptor activation and prolonged antidiabetic effects. Life Sci 2020; 253:117651. [PMID: 32304764 DOI: 10.1016/j.lfs.2020.117651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 11/18/2022]
Abstract
AIMS To investigate the combination of dimerization and PEGylation to enhance the receptor activation and in vivo stability of Oxyntomodulin (OXM). MAIN METHODS All LDM peptides were produced by using standard method of solid phase synthesis. The in vitro effects of LDM peptides were assessed by glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GcgR) binding test and Proteolytic stability test. Subsequently, saline, Liraglutide and three doses of LDM-3 treated groups were subjected to the evaluation of aute and long-term efficacy. KEY FINDINGS Five long-acting OXM conjugates, termed LDM-1 to LDM-5, were designed using cysteine (Cys)-specific modification reaction including the activated PEG, bisMal-NH2, and OXM-Cys, and all prepared with high purity. LDM-3 exhibited greater GLP-1R and GcgR activation and ameliorative serum stability. In addition, LDM-3 was identified with enhanced insulinotropic and glycemic abilities in the gene knockout mice. The prolonged glucose-lowering effects of the LDM-3 were proved by hypoglycemic duration test and multiple oral glucose tolerance tests (OGTTs) in the diet-induced obesity (DIO) mice. Furthermore, the pharmacokinetic tests in Sprague Dawley (SD) rat and cynomolgus monkey exhibited the lifespans of LDM-3 at 90 nmol·kg-1 were 101.5 h and 119.4 h, respectively. Nevertheless, consecutive 8-week administration of LDM-3 improved the cumulative body weight gain, food intake, % HbA1c, glucose tolerance and the pancreatic of the obese mice. SIGNIFICANCE LDM-3, as a dual GLP-1R and GcgR agonist, holds potential to be developed as a promising therapeutic candidate for both diabetes and obesity.
Collapse
Affiliation(s)
- Zengyang Pei
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Hangzhou RunChongGuiMei Bio-tech Co., Ltd., Xiao Shan, Hangzhou 310058, PR China.
| | - Degang Zhou
- National Research Center for Veterinary Medicine, Road Cuiwei, High-Tech District, Luoyang 471003, PR China
| | - Jie Yan
- Suzhou Xishan Zhongke Drug R&D Co., Ltd., Wuzhong Avenue, Suzhou 215000, PR China
| | - Shenghao Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xu Yang
- Hangzhou RunChongGuiMei Bio-tech Co., Ltd., Xiao Shan, Hangzhou 310058, PR China
| | - Zengju Pei
- Hangzhou RunChongGuiMei Bio-tech Co., Ltd., Xiao Shan, Hangzhou 310058, PR China
| |
Collapse
|
19
|
El-Salhy M. Possible role of intestinal stem cells in the pathophysiology of irritable bowel syndrome. World J Gastroenterol 2020; 26:1427-1438. [PMID: 32308344 PMCID: PMC7152517 DOI: 10.3748/wjg.v26.i13.1427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
The pathophysiology of irritable bowel syndrome (IBS) is not completely understood. However, several factors are known to play a role in pathophysiology of IBS such as genetics, diet, gut microbiota, gut endocrine cells, stress and low-grade inflammation. Understanding the pathophysiology of IBS may open the way for new treatment approaches. Low density of intestinal stem cells and low differentiation toward enteroendocrine cells has been reported recently in patients with IBS. These abnormalities are believed to be the cause of the low density of enteroendocrine cells seen in patients with IBS. Enteroendocrine cells regulate gastrointestinal motility, secretion, absorption and visceral sensitivity. Gastrointestinal dysmotility, abnormal absorption/secretion and visceral hypersensitivity are all seen in patients with IBS and haven been attributed to the low density the intestinal enteroendocrine cells in these patients. The present review conducted a literature search in Medline (PubMed) covering the last ten years until November 2019, where articles in English were included. Articles about the intestinal stem cells and their possible role in the pathophysiology of IBS are discussed in the present review. The present review discusses the assumption that intestinal stem cells play a central role in the pathophysiology of IBS and that the other factors known to contribute to the pathophysiology of IBS such as genetics, diet gut microbiota, stress, and low-grade inflammation exert their effects through affecting the intestinal stem cells. It reports further the data that support this assumption on genetics, diet, gut microbiota, stress with depletion of glutamine, and inflammation.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Hospital, Stord 54 09, Norway
- Department of Clinical Medicine, University of Bergen, Bergen 50 21, Norway
| |
Collapse
|
20
|
Yang PY, Zou H, Amso Z, Lee C, Huang D, Woods AK, Nguyen-Tran VTB, Schultz PG, Shen W. New Generation Oxyntomodulin Peptides with Improved Pharmacokinetic Profiles Exhibit Weight Reducing and Anti-Steatotic Properties in Mice. Bioconjug Chem 2020; 31:1167-1176. [DOI: 10.1021/acs.bioconjchem.0c00093] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Peng-Yu Yang
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Huafei Zou
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
| | - Zaid Amso
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
| | - Candy Lee
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
| | - David Huang
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ashley K. Woods
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
| | | | - Peter G. Schultz
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Weijun Shen
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
21
|
Nielsen MS, Ritz C, Wewer Albrechtsen NJ, Holst JJ, le Roux CW, Sjödin A. Oxyntomodulin and Glicentin May Predict the Effect of Bariatric Surgery on Food Preferences and Weight Loss. J Clin Endocrinol Metab 2020; 105:5722168. [PMID: 32016415 DOI: 10.1210/clinem/dgaa061] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/03/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Alterations in several gastrointestinal hormones are implicated in the postoperative suppression of food intake leading to weight loss after Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG). The aim was to evaluate changes in responses of gastrointestinal hormones after RYGB and SG and the associations of these changes with weight loss, energy intake, and food preferences. METHODS Forty-two subjects with severe obesity were included (32 RYGB; 10 SG). Postprandial responses of glicentin, oxyntomodulin, glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and ghrelin were measured before and 6 months after surgery. Energy intake and energy density were assessed before and 6 months after surgery using a buffet meal test and weight loss was assessed 18 months after surgery. RESULTS Postprandial concentrations of glicentin, oxyntomodulin, GLP-1, and ghrelin differed between RYGB and SG (all P ≤ .02). Enhanced responses of glicentin and oxyntomodulin predicted a greater weight loss (both P < .01) and were associated with a larger decrease in energy density (P ≤ .04). No associations were found for GLP-1, PYY, and ghrelin, and changes were not associated with changes in energy intake. When combing all hormones, 60%, 19%, and 33% of the variations in weight loss, energy intake, and energy density, respectively, could be explained. CONCLUSION Postprandial responses of gastrointestinal hormones differed between RYGB and SG. Enhanced responses of glicentin and oxyntomodulin predicted a better weight loss and were associated with a decreased preference for energy-dense foods. Replication of these results could imply an opportunity to identify patients in need of additional support after surgical treatments of obesity.
Collapse
Affiliation(s)
- Mette S Nielsen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- The Danish Diabetes Academy, Odense, Denmark
| | - Christian Ritz
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carel W le Roux
- Investigative Science, Imperial College London, London, UK
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | - Anders Sjödin
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Diet in Irritable Bowel Syndrome (IBS): Interaction with Gut Microbiota and Gut Hormones. Nutrients 2019; 11:nu11081824. [PMID: 31394793 PMCID: PMC6723613 DOI: 10.3390/nu11081824] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/05/2019] [Indexed: 12/15/2022] Open
Abstract
Diet plays an important role not only in the pathophysiology of irritable bowel syndrome (IBS), but also as a tool that improves symptoms and quality of life. The effects of diet seem to be a result of an interaction with the gut bacteria and the gut endocrine cells. The density of gut endocrine cells is low in IBS patients, and it is believed that this abnormality is the direct cause of the symptoms seen in IBS patients. The low density of gut endocrine cells is probably caused by a low number of stem cells and low differentiation progeny toward endocrine cells. A low fermentable oligo-, di-, monosaccharide, and polyol (FODMAP) diet and fecal microbiota transplantation (FMT) restore the gut endocrine cells to the level of healthy subjects. It has been suggested that our diet acts as a prebiotic that favors the growth of a certain types of bacteria. Diet also acts as a substrate for gut bacteria fermentation, which results in several by-products. These by-products might act on the stem cells in such a way that the gut stem cells decrease, and consequently, endocrine cell numbers decrease. Changing to a low-FODMAP diet or changing the gut bacteria through FMT improves IBS symptoms and restores the density of endocrine cells.
Collapse
|
23
|
Abstract
The organs require oxygen and other types of nutrients (amino acids, sugars, and lipids) to function, the heart consuming large amounts of fatty acids for oxidation and adenosine triphosphate (ATP) generation.
Collapse
|
24
|
Fothergill LJ, Furness JB. Diversity of enteroendocrine cells investigated at cellular and subcellular levels: the need for a new classification scheme. Histochem Cell Biol 2018; 150:693-702. [PMID: 30357510 DOI: 10.1007/s00418-018-1746-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 02/07/2023]
Abstract
Enteroendocrine cells were historically classified by a letter code, each linked to a single hormone, deduced to be the only hormone produced by the cell. One type, the L cell, was recognised to store and secrete two products, peptide YY (PYY) and glucagon-related peptides. Many other exceptions to the one-cell one-hormone classifications have been reported over the last 40 years or so, and yet the one-hormone dogma has persisted. In the last 6 years, a plethora of data has appeared that makes the concept unviable. Here, we describe the evidence that multiple hormone transcripts and their products reside in single cells and evidence that the hormones are often, but not always, processed into separate storage vesicles. It has become clear that most enteroendocrine cells contain multiple hormones. For example, most secretin cells contain 5-hydroxytryptamine (5-HT), and in mouse many of these also contain cholecystokinin (CCK). Furthermore, CCK cells also commonly store ghrelin, glucose-dependent insulinotropic peptide (GIP), glucagon-like peptide-1 (GLP-1), neurotensin, and PYY. Several hormones, for example, secretin and 5-HT, are in separate storage vesicles at a subcellular level. Hormone patterns can differ considerably between species. Another complication is that relative levels of expression vary substantially. This means that data are significantly influenced by the sensitivities of detection techniques. For example, a hormone that can be detected in storage vesicles by super-resolution microscopy may not be above threshold for detection by conventional fluorescence microscopy. New nomenclature for cell clusters with common attributes will need to be devised and old classifications abandoned.
Collapse
Affiliation(s)
- Linda J Fothergill
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - John B Furness
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia. .,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia.
| |
Collapse
|
25
|
Hope DCD, Tan TMM, Bloom SR. No Guts, No Loss: Toward the Ideal Treatment for Obesity in the Twenty-First Century. Front Endocrinol (Lausanne) 2018; 9:442. [PMID: 30158899 PMCID: PMC6104129 DOI: 10.3389/fendo.2018.00442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/17/2018] [Indexed: 12/25/2022] Open
Abstract
Over the last century, our knowledge of the processes which control appetite and weight regulation has developed significantly. The understanding of where gut hormones fit into the control of energy homeostasis in addition to the rapid advancement of pharmacotherapeutics has paved the way for the development of novel gut hormone analogs to target weight loss. Currently, bariatric surgery remains the most efficacious treatment for obesity. The emergence of gut hormone analogs may provide a useful non-surgical addition to the armamentarium in treating obesity. Simply targeting single gut hormone pathways may be insufficiently efficacious, and combination/multiple-agonist approaches may be necessary to obtain the results required for clear clinical impact.
Collapse
Affiliation(s)
- David C D Hope
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, United Kingdom
| | - Tricia M M Tan
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, United Kingdom
| | - Stephen R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, United Kingdom
| |
Collapse
|
26
|
Cheang JY, Moyle PM. Glucagon-Like Peptide-1 (GLP-1)-Based Therapeutics: Current Status and Future Opportunities beyond Type 2 Diabetes. ChemMedChem 2018; 13:662-671. [PMID: 29430842 DOI: 10.1002/cmdc.201700781] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/07/2018] [Indexed: 12/21/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is secreted by intestinal L-cells following food intake, and plays an important role in glucose homeostasis due to its stimulation of glucose-dependent insulin secretion. Further, GLP-1 is also associated with protective effects on pancreatic β-cells and the cardiovascular system, decreased appetite, and weight loss, making GLP-1 derivatives an exciting treatment for type 2 diabetes and obesity. Despite these benefits, wild-type GLP-1 exhibits a short circulation time due to its poor metabolic stability and rapid renal clearance, and must be administered by injection, making it a poor therapeutic agent. Many strategies have been used to improve the circulation time of GLP-1 (e.g., mutations, unnatural amino acids, depot formulations, use of exendin-4 sequences, and fusions with high-molecular-weight proteins or polymers), with its therapeutic utility further improved by adding agonist activity for gastric inhibitory peptide and glucagon receptors. This minireview focuses on strategies that have been used to improve the pharmacokinetics of GLP-1 and provides an overview of GLP-1-based therapeutics in the pipeline.
Collapse
Affiliation(s)
- Jia Ying Cheang
- School of Pharmacy, The University of Queensland, Woolloongabba, 4102, QLD, Australia
| | - Peter M Moyle
- School of Pharmacy, The University of Queensland, Woolloongabba, 4102, QLD, Australia
| |
Collapse
|
27
|
Holst JJ, Albrechtsen NJW, Gabe MBN, Rosenkilde MM. Oxyntomodulin: Actions and role in diabetes. Peptides 2018; 100:48-53. [PMID: 29412831 DOI: 10.1016/j.peptides.2017.09.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/19/2022]
Abstract
Oxyntomodulin is a product of the glucagon precursor, proglucagon, produced and released from the endocrine L-cells of the gut after enzymatic processing by the precursor prohormone convertase 1/3. It corresponds to the proglucagon sequence 33-69 and thus contains the entire glucagon sequence plus a C-terminal octapeptide, comprising in total 37 amino acids. As might have been expected, it has glucagon-like bioactivity, but also and more surprisingly also activates the receptor for GLP-1. This has given the molecule an interesting status as a glucagon-GLP-1 co-agonist, which is currently attracting considerable interest for its potential in the treatment of diabetes and obesity. Here, we provide an update on oxyntomodulin with a focus on its potential role in metabolic diseases.
Collapse
Affiliation(s)
- Jens J Holst
- Department of Biomedical Sciences & Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences & Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Buur Nordskov Gabe
- Department of Biomedical Sciences & Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences & Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Chen X, Mietlicki-Baase EG, Barrett TM, McGrath LE, Koch-Laskowski K, Ferrie JJ, Hayes MR, Petersson EJ. Thioamide Substitution Selectively Modulates Proteolysis and Receptor Activity of Therapeutic Peptide Hormones. J Am Chem Soc 2017; 139:16688-16695. [PMID: 29130686 PMCID: PMC7744120 DOI: 10.1021/jacs.7b08417] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Peptide hormones are attractive as injectable therapeutics and imaging agents, but they often require extensive modification by mutagenesis and/or chemical synthesis to prevent rapid in vivo degradation. Alternatively, the single-atom, O-to-S modification of peptide backbone thioamidation has the potential to selectively perturb interactions with proteases while preserving interactions with other proteins, such as target receptors. Here, we use the validated diabetes therapeutic, glucagon-like peptide-1 (GLP-1), and the target of clinical investigation, gastric inhibitory polypeptide (GIP), as proof-of-principle peptides to demonstrate the value of thioamide substitution. In GLP-1 and GIP, a single thioamide near the scissile bond renders these peptides up to 750-fold more stable than the corresponding oxopeptides toward cleavage by dipeptidyl peptidase 4, the principal regulator of their in vivo stability. These stabilized analogues are nearly equipotent with their parent peptide in cyclic AMP activation assays, but the GLP-1 thiopeptides have much lower β-arrestin potency, making them novel agonists with altered signaling bias. Initial tests show that a thioamide GLP-1 analogue is biologically active in rats, with an in vivo potency for glycemic control surpassing that of native GLP-1. Taken together, these experiments demonstrate the potential for thioamides to modulate specific protein interactions to increase proteolytic stability or tune activation of different signaling pathways.
Collapse
Affiliation(s)
- Xing Chen
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104
| | - Elizabeth G. Mietlicki-Baase
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, Philadelphia, PA 19104
- Current Address: Department of Exercise and Nutrition Sciences, State University of New York at Buffalo, Buffalo, G10G Farber Hall, NY 14214
| | - Taylor M. Barrett
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104
| | - Lauren E. McGrath
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, Philadelphia, PA 19104
| | - Kieran Koch-Laskowski
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, Philadelphia, PA 19104
| | - John J. Ferrie
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104
| | - Matthew R. Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, Philadelphia, PA 19104
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104
| |
Collapse
|
29
|
Controlling the bioactivity of a peptide hormone in vivo by reversible self-assembly. Nat Commun 2017; 8:1026. [PMID: 29044101 PMCID: PMC5647335 DOI: 10.1038/s41467-017-01114-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/18/2017] [Indexed: 01/17/2023] Open
Abstract
The use of peptides as therapeutic agents is undergoing a renaissance with the expectation of new drugs with enhanced levels of efficacy and safety. Their clinical potential will be only fully realised once their physicochemical and pharmacokinetic properties have been precisely controlled. Here we demonstrate a reversible peptide self-assembly strategy to control and prolong the bioactivity of a native peptide hormone in vivo. We show that oxyntomodulin, a peptide with potential to treat obesity and diabetes, self-assembles into a stable nanofibril formulation which subsequently dissociates to release active peptide and produces a pharmacological effect in vivo. The subcutaneous administration of the nanofibrils in rats results in greatly prolonged exposure, with a constant oxyntomodulin bioactivity detectable in serum for at least 5 days as compared to free oxyntomodulin which is undetectable after only 4 h. Such an approach is simple, cost-efficient and generic in addressing the limitations of peptide therapeutics. The clinical potential of peptide therapeutic agents can only be fully realised once their physicochemical and pharmacokinetic properties are precisely controlled. Here the authors show a reversible peptide self-assembly strategy to control and prolong the bioactivity of a native peptide hormone in vivo.
Collapse
|
30
|
Mulla CM, Middelbeek RJW, Patti ME. Mechanisms of weight loss and improved metabolism following bariatric surgery. Ann N Y Acad Sci 2017; 1411:53-64. [PMID: 28868615 DOI: 10.1111/nyas.13409] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 12/13/2022]
Abstract
Bariatric surgery is increasingly recognized as one of the most effective interventions to help patients achieve significant and sustained weight loss, as well as improved metabolic and overall health. Unfortunately, the cellular and physiological mechanisms by which bariatric surgery achieves weight loss have not been fully elucidated, yet are critical to understanding the central role of the intestinal tract in whole-body metabolism and to developing novel strategies for the treatment of obesity. In this review, we provide an overview of potential mechanisms contributing to weight loss, including effects on regulation of energy balance and both central and peripheral nervous system regulation of appetite and metabolism. Moreover, we highlight the importance of the gastrointestinal tract, including alterations in bile acid physiology, secretion of intestinally derived hormones, and the microbiome, as a potent mediator of improved metabolism in postbariatric patients.
Collapse
Affiliation(s)
- Christopher M Mulla
- Research and Clinic Divisions, Joslin Diabetes Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Roeland J W Middelbeek
- Research and Clinic Divisions, Joslin Diabetes Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Mary-Elizabeth Patti
- Research and Clinic Divisions, Joslin Diabetes Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
31
|
Zhou J, Cai X, Huang X, Dai Y, Sun L, Zhang B, Yang B, Lin H, Huang W, Qian H. A novel glucagon-like peptide-1/glucagon receptor dual agonist exhibits weight-lowering and diabetes-protective effects. Eur J Med Chem 2017; 138:1158-1169. [PMID: 28772236 DOI: 10.1016/j.ejmech.2017.07.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/19/2017] [Accepted: 07/22/2017] [Indexed: 10/19/2022]
Abstract
Glucagon has plenty of effects via a specific glucagon receptor(GCGR) like elevating the blood glucose, improving fatty acids metabolism, energy expenditure and increasing lipolysis in adipose tissue. The most important role of glucagon is to regulate the blood glucose, but the emergent possibilities of hyperglycaemia is exist. Glucagon could also slightly activate glucagon-like peptide-1 receptor(GLP-1R), which lead to blood glucose lowering effect. This study aims to erase the likelihood of hyperglycaemia and to remain the inherent catabolic effects through improving GLP-1R activation and deteriorating GCGR activation so as to lower the bodyweight and show diabetes-protective effects. Firstly, twelve cysteine modified GLP-1/GCGR dual agonists were synthesized (1-12). Then, the GLP-1R/GCGR mediated activation and biological activity in normal ICR mice were comprehensively performed. Compounds substituted by cysteine at positions 22, 23 and 25 in glucagon were observed to be better regulators of the body weight and blood glucose. To prolong the half-lives of derivatives, various fatty side chain maleimides were modified to optimal glucagon analogues. Laurate maleimide conjugate 4d was the most potent. Administration of 1000 nmol/kg 4d once every two days for a month normalized adiposity and glucose tolerance in diet-induced obese (DIO) mice. Improvements in plasma metabolic parameters including insulin, leptin, and adiponectin were observed. These studies suggest that compound 4d behaves well in lowering body weight and maintaining energy expenditure without a chance of hyperglycaemia, 4d has strong clinical potential as an efficient GLP-1/GCGR agonist in the prevention and treatment of obesity and dyslipidemia.
Collapse
Affiliation(s)
- Jie Zhou
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Structural Biology Center, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Xingguang Cai
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xun Huang
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Yuxuan Dai
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lidan Sun
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Bo Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Bo Yang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Haiyan Lin
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, PR China.
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| |
Collapse
|
32
|
Valdecantos MP, Pardo V, Ruiz L, Castro-Sánchez L, Lanzón B, Fernández-Millán E, García-Monzón C, Arroba AI, González-Rodríguez Á, Escrivá F, Álvarez C, Rupérez FJ, Barbas C, Konkar A, Naylor J, Hornigold D, Santos AD, Bednarek M, Grimsby J, Rondinone CM, Valverde ÁM. A novel glucagon-like peptide 1/glucagon receptor dual agonist improves steatohepatitis and liver regeneration in mice. Hepatology 2017; 65:950-968. [PMID: 27880981 DOI: 10.1002/hep.28962] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/11/2016] [Accepted: 11/20/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED Because nonalcoholic steatohepatitis (NASH) is associated with impaired liver regeneration, we investigated the effects of G49, a dual glucagon-like peptide-1/glucagon receptor agonist, on NASH and hepatic regeneration. C57Bl/6 mice fed chow or a methionine and choline-deficient (MCD) diet for 1 week were divided into 4 groups: control (chow diet), MCD diet, chow diet plus G49, and M+G49 (MCD diet plus G49). Mice fed a high-fat diet (HFD) for 10 weeks were divided into groups: HFD and H+G49 (HFD plus G49). Following 2 (MCD groups) or 3 (HFD groups) weeks of treatment with G49, partial hepatectomy (PH) was performed, and all mice were maintained on the same treatment schedule for 2 additional weeks. Analysis of liver function, hepatic regeneration, and comprehensive genomic and metabolic profiling were conducted. NASH was ameliorated in the M+G49 group, manifested by reduced inflammation, steatosis, oxidative stress, and apoptosis and increased mitochondrial biogenesis. G49 treatment was also associated with replenishment of intrahepatic glucose due to enhanced gluconeogenesis and reduced glucose use through the pentose phosphate cycle and oxidative metabolism. Following PH, G49 treatment increased survival, restored the cytokine-mediated priming phase, and enhanced the proliferative capacity and hepatic regeneration ratio in mice on the MCD diet. NASH markers remained decreased in M+G49 mice after PH, and glucose use was shifted to the pentose phosphate cycle and oxidative metabolism. G49 administered immediately after PH was also effective at alleviating the pathological changes induced by the MCD diet. Benefits in terms of liver regeneration were also found in mice fed HFD and treated with G49. CONCLUSION Dual-acting glucagon-like peptide-1/glucagon receptor agonists such as G49 represent a novel therapeutic approach for patients with NASH and particularly those requiring PH. (Hepatology 2017;65:950-968).
Collapse
Affiliation(s)
- M Pilar Valdecantos
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Virginia Pardo
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Ruiz
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Borja Lanzón
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, Campus Monteprincipe, Madrid, Spain
| | - Elisa Fernández-Millán
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Instituto de Investigación Sanitaria Princesa, University Hospital Santa Cristina, CIBERehd, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana I Arroba
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Águeda González-Rodríguez
- Liver Research Unit, Instituto de Investigación Sanitaria Princesa, University Hospital Santa Cristina, CIBERehd, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Escrivá
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Carmen Álvarez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Francisco J Rupérez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, Campus Monteprincipe, Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, Campus Monteprincipe, Madrid, Spain
| | | | | | | | | | | | | | | | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
33
|
El-Salhy M, Umezawa K, Hatlebakk JG, Gilja OH. Abnormal differentiation of stem cells into enteroendocrine cells in rats with DSS-induced colitis. Mol Med Rep 2017; 15:2106-2112. [PMID: 28259987 PMCID: PMC5364957 DOI: 10.3892/mmr.2017.6266] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to determine whether there is an association between abnormalities in enteroendocrine cells in dextran sulfate sodium (DSS)-induced colitis and the clonogenic and/or proliferative activities of stem cells. A total of 48 male Wistar rats were divided into four groups. Animals in the control group were provided with normal drinking water, whereas DSS colitis was induced in the remaining three groups. The rats with DSS-induced colitis were randomized into the following three groups: i) DSS group, which received 0.5 ml 0.5% carboxymethyl cellulose (CMC; vehicle); ii) DSS-G group, which was treated with 3-[(dodecylthiocarbonyl)-methyl]-glutarimide at 20 mg/kg body weight in 0.5% CMC; and iii) DSS-Q group, which was treated with dehydroxymethylepoxyquinomicin at 15 mg/kg body weight in 0.5% CMC. Treatments were administered intraperitoneally twice daily for 5 days in all groups. Subsequently, tissue samples from the colon were stained with hematoxylin-eosin, or immunostained for chromogranin A (CgA), Musashi 1 (Msi1), Math-1, neurogenin 3 (Neurog3) and neurogenic differentiation D1 (NeuroD1). The densities of CgA, Msi1-, Math-1-, Neurog3- and NeuroD1-immunoreactive cells were determined. DTCM-G, and DHMEQ ameliorated the inflammation in DSS-induced colitis. The density of CgA-, Neurog3- and NeuroD1-immunoreactive cells was significantly higher in the DSS group compared with in the control group, and the density of CgA cells was correlated with the densities of Neurog3- and NeuroD1-immunoreactive cells. There were no significant differences in the densities of Msi1- and Math-1-immunoreactive cells among the four experimental groups. The elevated densities of enteroendocrine cells detected in DSS-induced colitis may be due to the increased differentiation of early enteroendocrine progenitors during secretory lineage. It is probable that the DSS-induced inflammatory processes trigger certain signaling pathways, which control differentiation of the stem-cell secretory lineage into mature enteroendocrine cells.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Division of Gastroenterology, Department of Medicine, Stord Hospital, 5409 Stord, Norway
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical University, School of Medicine, Nagakute, Aichi 480‑1195, Japan
| | - Jan Gunnar Hatlebakk
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
| | - Odd Helge Gilja
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
| |
Collapse
|
34
|
Henderson SJ, Konkar A, Hornigold DC, Trevaskis JL, Jackson R, Fritsch Fredin M, Jansson‐Löfmark R, Naylor J, Rossi A, Bednarek MA, Bhagroo N, Salari H, Will S, Oldham S, Hansen G, Feigh M, Klein T, Grimsby J, Maguire S, Jermutus L, Rondinone CM, Coghlan MP. Robust anti-obesity and metabolic effects of a dual GLP-1/glucagon receptor peptide agonist in rodents and non-human primates. Diabetes Obes Metab 2016; 18:1176-1190. [PMID: 27377054 PMCID: PMC5129521 DOI: 10.1111/dom.12735] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 06/20/2016] [Accepted: 06/29/2016] [Indexed: 01/11/2023]
Abstract
AIMS To characterize the pharmacology of MEDI0382, a peptide dual agonist of glucagon-like peptide-1 (GLP-1) and glucagon receptors. MATERIALS AND METHODS MEDI0382 was evaluated in vitro for its ability to stimulate cAMP accumulation in cell lines expressing transfected recombinant or endogenous GLP-1 or glucagon receptors, to potentiate glucose-stimulated insulin secretion (GSIS) in pancreatic β-cell lines and stimulate hepatic glucose output (HGO) by primary hepatocytes. The ability of MEDI0382 to reduce body weight and improve energy balance (i.e. food intake and energy expenditure), as well as control blood glucose, was evaluated in mouse models of obesity and healthy cynomolgus monkeys following single and repeated daily subcutaneous administration for up to 2 months. RESULTS MEDI0382 potently activated rodent, cynomolgus and human GLP-1 and glucagon receptors and exhibited a fivefold bias for activation of GLP-1 receptor versus the glucagon receptor. MEDI0382 produced superior weight loss and comparable glucose lowering to the GLP-1 peptide analogue liraglutide when administered daily at comparable doses in DIO mice. The additional fat mass reduction elicited by MEDI0382 probably results from a glucagon receptor-mediated increase in energy expenditure, whereas food intake suppression results from activation of the GLP-1 receptor. Notably, the significant weight loss elicited by MEDI0382 in DIO mice was recapitulated in cynomolgus monkeys. CONCLUSIONS Repeated administration of MEDI0382 elicits profound weight loss in DIO mice and non-human primates, produces robust glucose control and reduces hepatic fat content and fasting insulin and glucose levels. The balance of activities at the GLP-1 and glucagon receptors is considered to be optimal for achieving weight and glucose control in overweight or obese Type 2 diabetic patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - S. Will
- MedImmune LLCGaithersburgMDUSA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Li Y, Wu KJ, Yu SJ, Tamargo IA, Wang Y, Greig NH. Neurotrophic and neuroprotective effects of oxyntomodulin in neuronal cells and a rat model of stroke. Exp Neurol 2016; 288:104-113. [PMID: 27856285 DOI: 10.1016/j.expneurol.2016.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 12/16/2022]
Abstract
Proglucagon-derived peptides, especially glucagon-like peptide-1 (GLP-1) and its long-acting mimetics, have exhibited neuroprotective effects in animal models of stroke. Several of these peptides are in clinical trials for stroke. Oxyntomodulin (OXM) is a proglucagon-derived peptide that co-activates the GLP-1 receptor (GLP-1R) and the glucagon receptor (GCGR). The neuroprotective action of OXM, however, has not been thoroughly investigated. In this study, the neuroprotective effect of OXM was first examined in human neuroblastoma (SH-SY5Y) cells and rat primary cortical neurons. GLP-1R and GCGR antagonists, and inhibitors of various signaling pathways were used in cell culture to characterize the mechanisms of action of OXM. To evaluate translation in vivo, OXM-mediated neuroprotection was assessed in a 60-min, transient middle cerebral artery occlusion (MCAo) rat model of stroke. We found that OXM dose- and time-dependently increased cell viability and protected cells from glutamate toxicity and oxidative stress. These neuroprotective actions of OXM were mainly mediated through the GLP-1R. OXM induced intracellular cAMP production and activated cAMP-response element-binding protein (CREB). Furthermore, inhibition of the PKA and MAPK pathways, but not inhibition of the PI3K pathway, significantly attenuated the OXM neuroprotective actions. Intracerebroventricular administration of OXM significantly reduced cerebral infarct size and improved locomotor activities in MCAo stroke rats. Therefore, we conclude that OXM is neuroprotective against ischemic brain injury. The mechanisms of action involve induction of intracellular cAMP, activation of PKA and MAPK pathways and phosphorylation of CREB.
Collapse
Affiliation(s)
- Yazhou Li
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - Kou-Jen Wu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Seong-Jin Yu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ian A Tamargo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
36
|
Mansur SA, Mieczkowska A, Flatt PR, Bouvard B, Chappard D, Irwin N, Mabilleau G. A new stable GIP-Oxyntomodulin hybrid peptide improved bone strength both at the organ and tissue levels in genetically-inherited type 2 diabetes mellitus. Bone 2016; 87:102-13. [PMID: 27062994 DOI: 10.1016/j.bone.2016.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 12/25/2022]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) progress worldwide with detrimental effects on several physiological systems including bone tissue mainly by affecting bone quality. Several gut hormones analogues have been proven potent in ameliorating bone quality. In the present study, we used the leptin receptor-deficient db/db mice as a model of obesity and severe T2DM to assess the extent of bone quality alterations at the organ and tissue levels. We also examined the beneficial effects of gut hormone therapy in this model by using a new triple agonist ([d-Ala(2)]GIP-Oxm) active at the GIP, GLP-1 and glucagon receptors. As expected, db/db mice presented with dramatic alterations of bone strength at the organ level associated with deterioration of trabecular and cortical microarchitectures and an augmentation in osteoclast numbers. At the tissue level, these animals presented also with alterations of bone strength (reduced hardness, indentation modulus and dissipated energy) with modifications of tissue mineral distribution, collagen glycation and collagen maturity. The use of [d-Ala(2)]GIP-Oxm considerably improved bone strength at the organ level with modest effects on trabecular microarchitecture. At the tissue level, [d-Ala(2)]GIP-Oxm ameliorated bone strength reductions with positive effects on collagen glycation and collagen maturity. This study provides support for including gut hormone analogues as possible new therapeutic strategies for improving bone quality in bone complications associated to T2DM.
Collapse
Affiliation(s)
- Sity Aishah Mansur
- Universiti Tun Hussein Onn Malaysia, Johor, Malaysia; School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Aleksandra Mieczkowska
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux - LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, LUNAM Université, 49933 ANGERS Cedex, France
| | - Peter R Flatt
- Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
| | - Beatrice Bouvard
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux - LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, LUNAM Université, 49933 ANGERS Cedex, France
| | - Daniel Chappard
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux - LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, LUNAM Université, 49933 ANGERS Cedex, France; SCIAM, Service Commun d'Imagerie et Analyses Microscopiques, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, LUNAM Université, 49933 ANGERS Cedex, France
| | - Nigel Irwin
- Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
| | - Guillaume Mabilleau
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux - LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, LUNAM Université, 49933 ANGERS Cedex, France; SCIAM, Service Commun d'Imagerie et Analyses Microscopiques, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, LUNAM Université, 49933 ANGERS Cedex, France.
| |
Collapse
|
37
|
Abstract
The symptom-based diagnosis of irritable bowel syndrome (IBS) has not been established in everyday clinical practice, and the diagnosis of this disorder remains one of exclusion. It has been demonstrated that the densities of duodenal chromogranin A, rectal peptide YY and somatostatin cells are good biomarkers for the diagnosis of sporadic IBS, and low-grade mucosal inflammation is a promising biomarker for the diagnosis of postinfectious IBS. Genetic markers are not useful as biomarkers for IBS since the potential risk genes have yet to be validated, and the intestinal microbiota cannot be used because of the lack of an association between a specific bacterial species and IBS. Furthermore, gastrointestinal dysmotility and visceral hypersensitivity tests produce results that are too nonconsistent and noncharacteristic to be used in the diagnosis of IBS. A combination of symptom-based assessment, exclusion of overlapping gastrointestinal diseases and positive biomarkers appears to be the best way to diagnose IBS.
Collapse
Affiliation(s)
- Magdy El-Salhy
- a Department of Medicine, Section for Gastroenterology, Stord Hospital, Stord, Norway
| |
Collapse
|
38
|
Wewer Albrechtsen NJ, Hornburg D, Albrechtsen R, Svendsen B, Toräng S, Jepsen SL, Kuhre RE, Hansen M, Janus C, Floyd A, Lund A, Vilsbøll T, Knop FK, Vestergaard H, Deacon CF, Meissner F, Mann M, Holst JJ, Hartmann B. Oxyntomodulin Identified as a Marker of Type 2 Diabetes and Gastric Bypass Surgery by Mass-spectrometry Based Profiling of Human Plasma. EBioMedicine 2016; 7:112-20. [PMID: 27322465 PMCID: PMC4909640 DOI: 10.1016/j.ebiom.2016.03.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/02/2016] [Accepted: 03/21/2016] [Indexed: 02/03/2023] Open
Abstract
Low-abundance regulatory peptides, including metabolically important gut hormones, have shown promising therapeutic potential. Here, we present a streamlined mass spectrometry-based platform for identifying and characterizing low-abundance regulatory peptides in humans. We demonstrate the clinical applicability of this platform by studying a hitherto neglected glucose- and appetite-regulating gut hormone, namely, oxyntomodulin. Our results show that the secretion of oxyntomodulin in patients with type 2 diabetes is significantly impaired, and that its level is increased by more than 10-fold after gastric bypass surgery. Furthermore, we report that oxyntomodulin is co-distributed and co-secreted with the insulin-stimulating and appetite-regulating gut hormone glucagon-like peptide-1 (GLP-1), is inactivated by the same protease (dipeptidyl peptidase-4) as GLP-1 and acts through its receptor. Thus, oxyntomodulin may participate with GLP-1 in the regulation of glucose metabolism and appetite in humans. In conclusion, this mass spectrometry-based platform is a powerful resource for identifying and characterizing metabolically active low-abundance peptides.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Hornburg
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Reidar Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Berit Svendsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe Toräng
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara L Jepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune E Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Hansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Janus
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Floyd
- Department of Surgery, Division of Bariatric Surgery, Køge Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Asger Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Tina Vilsbøll
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Filip K Knop
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
El-Salhy M, Mazzawi T, Hausken T, Hatlebakk JG. Interaction between diet and gastrointestinal endocrine cells. Biomed Rep 2016; 4:651-656. [PMID: 27284402 PMCID: PMC4887949 DOI: 10.3892/br.2016.649] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/01/2016] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal endocrine cells are essential for life. They regulate the gastrointestinal motility, secretion, visceral sensitivity, absorption, local immune defense, cell proliferation and appetite. These cells act as sensory cells with specialized microvilli that project into the lumen that sense the gut contents (mostly nutrients and/or bacteria byproducts), and respond to luminal stimuli by releasing hormones into the lamina propria. These released hormones exert their actions by entering the circulating blood and reaching distant targets (endocrine mode), nearby structures (paracrine mode) or via afferent and efferent synaptic transmission. The mature intestinal endocrine cells are capable of expressing several hormones. A change in diet not only affects the release of gastrointestinal hormones, but also alters the densities of the gut endocrine cells. The interaction between ingested foodstuffs and the gastrointestinal endocrine cells can be utilized for the clinical management of gastrointestinal and metabolic diseases, such as irritable bowel syndrome, obesity and diabetes.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Helse-Fonna Hospital, 5409 Stord, Norway; Section for Gastroenterology, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway; Department of Medicine, National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital, 5021 Bergen, Norway
| | - Tarek Mazzawi
- Section for Gastroenterology, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway; Department of Medicine, National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital, 5021 Bergen, Norway
| | - Trygve Hausken
- Section for Gastroenterology, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway; Department of Medicine, National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jan Gunnar Hatlebakk
- Section for Gastroenterology, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway; Department of Medicine, National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
40
|
Holst JJ, Madsbad S. Mechanisms of surgical control of type 2 diabetes: GLP-1 is key factor. Surg Obes Relat Dis 2016; 12:1236-42. [PMID: 27313194 DOI: 10.1016/j.soard.2016.02.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/23/2016] [Indexed: 01/07/2023]
Abstract
GLP-1 secretion in response to meals is dramatically increased after gastric bypass operations. GLP-1 is a powerful insulinotropic and anorectic hormone, and analogs of GLP-1 are widely used for the treatment of diabetes and recently approved also for obesity treatment. It is, therefore, reasonable to assume that the exaggerated GLP-1 secretion contributes to the antidiabetic and anorectic effects of gastric bypass. Indeed, human experiments with the GLP-1 receptor antagonist, Exendin 9-39, have shown that the improved insulin secretion, which is responsible for part of the antidiabetic effect of the operation, is reduced and or abolished after GLP-1 receptor blockade. Also the postoperative improvement of glucose tolerance is eliminated and or reduced by the antagonist, pointing to a key role for the exaggerated GLP-1 secretion. Indeed, there is evidence that the exaggerated GLP-1 secretion is also responsible for postprandial hypoglycemia sometimes observed after bypass. Other operations (biliopancreatic-diversion and or sleeve gastrectomy) appear to involve different and/or additional mechanisms, and so does experimental bariatric surgery in rodents. However, unlike bypass surgery in humans, the rodent operations are generally associated with increased energy metabolism pointing to an entirely different mechanism of action in the animals.
Collapse
Affiliation(s)
- Jens Juul Holst
- NNF Center for Basic Metabolic Research and Department of Biomedical Research, the Panum Institute, Copenhagen, Denmark.
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Wewer Albrechtsen NJ, Challis BG, Damjanov I, Holst JJ. Do glucagonomas always produce glucagon? Bosn J Basic Med Sci 2016; 16:1-7. [PMID: 26773171 PMCID: PMC4765933 DOI: 10.17305/bjbms.2015.794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 12/14/2022] Open
Abstract
Pancreatic islet α-cell tumours that overexpress proglucagon are typically associated with the glucagonoma syndrome, a rare disease entity characterised by necrolytic migratory erythema, impaired glucose tolerance, thromboembolic complications and psychiatric disturbances. Paraneoplastic phenomena associated with enteric overexpression of proglucagon-derived peptides are less well recognized and include gastrointestinal dysfunction and hyperinsulinaemic hypoglycaemia. The diverse clinical manifestations associated with glucagon-expressing tumours can be explained, in part, by the repertoire of tumorally secreted peptides liberated through differential post-translational processing of tumour-derived proglucagon. Proglucagon-expressing tumours may be divided into two broad biochemical subtypes defined by either secretion of glucagon or GLP-1, GLP-2 and the glucagon-containing peptides, glicentin and oxyntomodulin, due to an islet α-cell or enteroendocrine L-cell pattern of proglucagon processing, respectively. In the current review we provide an updated overview of the clinical presentation of proglucagon-expressing tumours in relation to known physiological actions of proglucagon-derived peptides and suggest that detailed biochemical characterisation of the peptide repertoire secreted from these tumours may provide new opportunities for diagnosis and clinical management.
Collapse
Affiliation(s)
- Nicolai Jacob Wewer Albrechtsen
- 1: Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark 2: Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
42
|
Bagger JI, Holst JJ, Hartmann B, Andersen B, Knop FK, Vilsbøll T. Effect of Oxyntomodulin, Glucagon, GLP-1, and Combined Glucagon +GLP-1 Infusion on Food Intake, Appetite, and Resting Energy Expenditure. J Clin Endocrinol Metab 2015; 100:4541-52. [PMID: 26445112 DOI: 10.1210/jc.2015-2335] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT The gut hormone, oxyntomodulin, is a proglucagon product with body weight-lowering potential. It binds to both the glucagon-like peptide-1 (GLP-1) receptor and the glucagon receptor; however, the mechanism behind the body weight-lowering effect remains elusive. OBJECTIVE We wanted to delineate the contributions of separate and combined GLP-1 receptor and glucagon receptor activation to the body weight-reducing mechanisms of oxyntomodulin. DESIGN This was a double-blinded, randomized, crossover study. SETTING The study was conducted at a specialized research unit. PARTICIPANTS Fifteen young healthy male volunteers (aged 22 [range 18-32] y; body mass index 23 [21-26] kg/m(2); fasting plasma glucose 5.1 [4.4-5.4] mmol/L; and glycated hemoglobin A1c 40 (37-42) mmol/mol). INTERVENTIONS Five 4-hour liquid meal tests during the infusion of saline, GLP-1 (1 pmol × kg(-1) × min(-1)), glucagon (0.86 pmol × kg(-1) × min(-1)), oxyntomodulin (3 pmol × kg(-1) × min(-1)), or glucagon+GLP-1 (same doses). MAIN OUTCOME MEASURES We evaluated resting energy expenditure (measured as oxygen uptake, gastric emptying (GE), composite appetite scores (CAS), and food intake. RESULTS Oxyntomodulin, GLP-1, and GLP-1+glucagon slowed GE and reduced CAS, whereas glucagon did not affect GE and CAS. All infusions caused a similar decrease in food intake compared with saline (total intake (g [95% confidence interval]), saline 811 [729, 892], GLP-1 669 [586, 750], glucagon 686 [604, 768], oxyntomodulin 689 [608, 771], and glucagon+GLP-1 688 [606, 769]). Oxygen uptake did not change significantly from baseline in response to any peptide infusion compared with saline. CONCLUSIONS Oxyntomodulin, GLP-1, and glucagon decreased food intake but with no additional effect of combining GLP-1 and glucagon.
Collapse
Affiliation(s)
- Jonatan Ising Bagger
- Center for Diabetes Research (J.I.B., F.K.K., T.V.), Gentofte Hospital, and NNF Center for Basic Metabolic Research and Department of Biomedical Sciences (J.I.B., J.J.H., B.H., F.K.K.), Faculty of Health Sciences, University of Copenhagen, DK-2900 Hellerup, Denmark; and Diabetes Research Unit (B.A.), Novo Nordisk A/S, DK-2760 Måløv, Denmark
| | - Jens Juul Holst
- Center for Diabetes Research (J.I.B., F.K.K., T.V.), Gentofte Hospital, and NNF Center for Basic Metabolic Research and Department of Biomedical Sciences (J.I.B., J.J.H., B.H., F.K.K.), Faculty of Health Sciences, University of Copenhagen, DK-2900 Hellerup, Denmark; and Diabetes Research Unit (B.A.), Novo Nordisk A/S, DK-2760 Måløv, Denmark
| | - Bolette Hartmann
- Center for Diabetes Research (J.I.B., F.K.K., T.V.), Gentofte Hospital, and NNF Center for Basic Metabolic Research and Department of Biomedical Sciences (J.I.B., J.J.H., B.H., F.K.K.), Faculty of Health Sciences, University of Copenhagen, DK-2900 Hellerup, Denmark; and Diabetes Research Unit (B.A.), Novo Nordisk A/S, DK-2760 Måløv, Denmark
| | - Birgitte Andersen
- Center for Diabetes Research (J.I.B., F.K.K., T.V.), Gentofte Hospital, and NNF Center for Basic Metabolic Research and Department of Biomedical Sciences (J.I.B., J.J.H., B.H., F.K.K.), Faculty of Health Sciences, University of Copenhagen, DK-2900 Hellerup, Denmark; and Diabetes Research Unit (B.A.), Novo Nordisk A/S, DK-2760 Måløv, Denmark
| | - Filip Krag Knop
- Center for Diabetes Research (J.I.B., F.K.K., T.V.), Gentofte Hospital, and NNF Center for Basic Metabolic Research and Department of Biomedical Sciences (J.I.B., J.J.H., B.H., F.K.K.), Faculty of Health Sciences, University of Copenhagen, DK-2900 Hellerup, Denmark; and Diabetes Research Unit (B.A.), Novo Nordisk A/S, DK-2760 Måløv, Denmark
| | - Tina Vilsbøll
- Center for Diabetes Research (J.I.B., F.K.K., T.V.), Gentofte Hospital, and NNF Center for Basic Metabolic Research and Department of Biomedical Sciences (J.I.B., J.J.H., B.H., F.K.K.), Faculty of Health Sciences, University of Copenhagen, DK-2900 Hellerup, Denmark; and Diabetes Research Unit (B.A.), Novo Nordisk A/S, DK-2760 Måløv, Denmark
| |
Collapse
|
43
|
Liu W, Li Y, Jalewa J, Saunders-Wood T, Li L, Hölscher C. Neuroprotective effects of an oxyntomodulin analogue in the MPTP mouse model of Parkinson's disease. Eur J Pharmacol 2015; 765:284-90. [DOI: 10.1016/j.ejphar.2015.08.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 11/26/2022]
|
44
|
Abstract
Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disorder that is characterized by intermittent abdominal pain/discomfort, altered bowel habits and abdominal bloating/distension. This review aimed at presenting the recent developments concerning the role of diet in the pathophysiology and management of IBS. There is no convincing evidence that IBS patients suffer from food allergy/intolerance, and there is no evidence that gluten causes the debated new diagnosis of non-coeliac gluten sensitivity (NCGS). The component in wheat that triggers symptoms in NCGS appears to be the carbohydrates. Patients with NCGS appear to be IBS patients who are self-diagnosed and self-treated with a gluten-free diet. IBS symptoms are triggered by the consumption of the poorly absorbed fermentable oligo-, di-, monosaccharides and polyols (FODMAPs) and insoluble fibre. On reaching the distal small intestine and colon, FODMAPS and insoluble fibre increase the osmotic pressure in the large-intestine lumen and provide a substrate for bacterial fermentation, with consequent gas production, abdominal distension and abdominal pain or discomfort. Poor FODMAPS and insoluble fibres diet reduces the symptom and improve the quality of life in IBS patients. Moreover, it changes favourably the intestinal microbiota and restores the abnormalities in the gastrointestinal endocrine cells. Five gastrointestinal endocrine cell types that produce hormones regulating appetite and food intake are abnormal in IBS patients. Based on these hormonal abnormalities, one would expect that IBS patients to have increased food intake and body weight gain. However, the link between obesity and IBS is not fully studied. Individual dietary guidance for intake of poor FODMAPs and insoluble fibres diet in combination with probiotics intake and regular exercise is to be recommended for IBS patients.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Department of Medicine, Section for Gastroenterology, Stord Hospital, Stord, Norway. .,Department of Clinical Medicine, Section for Gastroenterology, University of Bergen, Box 4000, 54 09, Stord, Norway. .,Department of Medicine, National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital, Bergen, Norway.
| | - Doris Gundersen
- Department of Research, Helse-Fonna, Haugesund Hospital, Haugesund, Norway.
| |
Collapse
|
45
|
Scott RV, Tan TM, Bloom SR. Can Bayliss and Starling gut hormones cure a worldwide pandemic? J Physiol 2014; 592:5153-67. [PMID: 25217372 PMCID: PMC4262331 DOI: 10.1113/jphysiol.2014.272955] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/04/2014] [Indexed: 12/17/2022] Open
Abstract
Bayliss and Starling first coined the term 'hormone' with reference to secretin, a substance they found that was produced by the gut, but released into the blood stream to act at a distance. The intestine is now known as the largest endocrine organ in the body, and it produces numerous hormones with a wide range of functions. These include controlling appetite and energy homeostasis. Obesity is one of the greatest health threats facing the world today. At present, the only successful treatment is surgery. Bariatric procedures such as the Roux-en-Y bypass work by elevating gut hormones that induce satiety. Significant research has gone into producing versions of these hormones that can be delivered therapeutically to treat obesity. This review looks at the role of gut hormones in obesity, and the development of gut hormone-derived obesity treatments.
Collapse
Affiliation(s)
- R V Scott
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - T M Tan
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - S R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
46
|
EL-SALHY MAGDY, GILJA ODDHELGE, GUNDERSEN DORIS, HATLEBAKK JANG, HAUSKEN TRYGVE. Interaction between ingested nutrients and gut endocrine cells in patients with irritable bowel syndrome (review). Int J Mol Med 2014; 34:363-71. [PMID: 24939595 PMCID: PMC4094590 DOI: 10.3892/ijmm.2014.1811] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/10/2014] [Indexed: 12/15/2022] Open
Abstract
Several endocrine cell abnormalities have been reported in different segments of the gastrointestinal tract of patients with irritable bowel syndrome (IBS). These cells have specialized microvilli that project into the lumen; they function as sensors for the gut contents and respond to luminal stimuli (mostly ingested nutrients) by releasing hormones into the lamina propria, where they exert their effects via a paracrine/endocrine mode of action. Certain food items trigger the symptoms experienced by IBS patients, including those rich in fermentable oligo-, di- and monosaccharides, and polyols (FODMAPs). In this review, we present the argument that the effects of both FODMAPs and the proportional intake of proteins, fats and carbohydrates on IBS symptoms may be caused by an interaction with the gut endocrine cells. Since the gut hormones control and regulate gastrointestinal motility and sensation, this interaction may be responsible for abnormal gastrointestinal motility and the visceral hypersensitivity observed in these patients. There is no consistent evidence that IBS patients suffer from food allergy. The role of gluten intolerance in the development of IBS symptoms in these patients remains a matter of controversy. Individual guidance on food management, which includes restrictions in the intake of FODMAP-rich foods and testing diets with different proportions of proteins, fats and carbohydrates has been found to reduce the symptoms, improve the quality of life, and make the habitual diet of IBS patients more healthy.
Collapse
Affiliation(s)
- MAGDY EL-SALHY
- Section of Gastroenterology, Department of Medicine, Stord Helse-Fonna Hospital, University of Bergen, Bergen, Norway
- Section of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - ODD HELGE GILJA
- Section of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- National Centre for Ultrasound in Gastroenterology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | - JAN G. HATLEBAKK
- Section of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - TRYGVE HAUSKEN
- Section of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
47
|
Abstract
Oxyntomodulin (OXM) is a peptide hormone released from the gut in post-prandial state that activates both the glucagon-like peptide-1 receptor (GLP1R) and the glucagon receptor (GCGR) resulting in superior body weight lowering to selective GLP1R agonists. OXM reduces food intake and increases energy expenditure in humans. While activation of the GCGR increases glucose production posing a hyperglycemic risk, the simultaneous activation of the GLP1R counteracts this effect. Acute OXM infusion improves glucose tolerance in T2DM patients making dual agonists of the GCGR and GLP1R new promising treatments for diabetes and obesity with the potential for weight loss and glucose lowering superior to that of GLP1R agonists.
Collapse
Affiliation(s)
- Alessandro Pocai
- Janssen Research and Devolopment, Cardiovascular and Metabolic Disease, 1516 Welsh and McKean Roads, Spring House, PA 19477, USA
| |
Collapse
|
48
|
The role of gastrointestinal hormones in the pathogenesis of obesity and type 2 diabetes. GASTROENTEROLOGY REVIEW 2014; 9:69-76. [PMID: 25061485 PMCID: PMC4108747 DOI: 10.5114/pg.2014.42498] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/05/2012] [Accepted: 04/10/2012] [Indexed: 12/25/2022]
Abstract
Obesity, influencing the increase of incidence of type 2 diabetes, cardiovascular complications and cancer is a growing medical problem worldwide. The feelings of hunger and satiety are stimulated by the “gut-brain axis”, where a crucial role is played by gastrointestinal hormones: glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide, pancreatic polypeptide, peptide YY, oxyntomodulin, cholecystokinin and ghrelin. These hormones affect not only the functioning of the digestive tract, but also might have effects on insulin secretion and are mediators which affect brain areas involved in the regulation of food intake. The effect of their actions can be antagonistic as well as an additive or synergistic, and their secretion is dependent on many factors, such as dietary nutrients or the energy state of the body. Changes in circulating gut hormones concentrations result in activation of various pathways primarily within the hypothalamus and brain stem areas, which modulate feeding behaviour and a number of metabolic processes.
Collapse
|
49
|
El-Salhy M, Gundersen D, Hatlebakk JG, Gilja OH, Hausken T. Abnormal rectal endocrine cells in patients with irritable bowel syndrome. REGULATORY PEPTIDES 2014; 188:60-5. [PMID: 24316398 DOI: 10.1016/j.regpep.2013.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/23/2013] [Accepted: 11/29/2013] [Indexed: 12/11/2022]
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder. In a previous study the total number of endocrine cells in the rectum of IBS patients, as detected by chromogranin A, did not differ from that of healthy controls. While the total endocrine cell content of the rectum appears to be unchanged in IBS patients, changes in particular endocrine cells cannot be excluded. This study was undertaken, therefore, to investigate the cell density of different rectal endocrine cell types in (IBS) patients. Fifty patients with IBS (41 females and 9 males) were included in the study. Thirty patients had diarrhoea (IBS-D) and 20 had constipation (IBS-C) as the predominant symptom. Twenty-seven subjects were included as controls (19 females and 8 males). Rectal biopsy specimens were immunostained using the avidin-biotin-complex method for serotonin, peptide YY (PYY), pancreatic polypeptide (PP), and oxyntomodulin and somatostatin cells. The cell densities were quantified by computerised image analysis. The serotonin cell density did not differ significantly, although a type II statistical error cannot be excluded, due to the small size of the sample. The densities of PYY and Oxyntomodulin cells were significantly lower and that of somatostatin were significantly higher in IBS patients than controls. These abnormalities were observed in both IBS-D and IBS-C patients. The abnormalities in the endocrine cells observed in this study in the rectum differed considerably from those seen in the colon of IBS patients. This indicates that caution in using the rectum to represent the large intestine in these patients. These abnormalities could be primary (genetic) or secondary to changes in the gut hormones found in other segments of the gut and/or other pathological processes. Although the-cause-and effect relationship of the abnormalities found in rectal endocrine cells is difficult to elucidate, they might contribute to the symptoms associated with IBS. The densities of PYY and somatostatin cells are potential biomarkers with good sensitivity and specificity for the diagnosis of IBS.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Helse-Fonna Hospital, Norway; Section for Gastroenterology, Medicine, University of Bergen, Norway.
| | | | - Jan G Hatlebakk
- Section for Gastroenterology, Medicine, University of Bergen, Norway
| | - Odd Helge Gilja
- Section for Gastroenterology, Medicine, University of Bergen, Norway; National Centre for Ultrasound in Gastroenterology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Trygve Hausken
- Section for Gastroenterology, Medicine, University of Bergen, Norway
| |
Collapse
|
50
|
Abstract
Over the past 30 years, it has been established that hormones produced by the gut, pancreas, and adipose tissue are key players in the control of body weight. These hormones act through a complex neuroendocrine system, including the hypothalamus, to regulate metabolism and energy homeostasis. In obesity, this homeostatic balance is disrupted, either through alterations in the levels of these hormones or through resistance to their actions. Alterations in gut hormone secretion following gastric bypass surgery are likely to underlie the dramatic and persistent loss of weight following this procedure, as well as the observed amelioration in type 2 diabetes mellitus. Medications based on the gut hormone GLP-1 are currently in clinical use to treat type 2 diabetes mellitus and have been shown to produce weight loss. Further therapies for obesity based on other gut hormones are currently in development.
Collapse
Affiliation(s)
- Rebecca Scott
- Division of Diabetes, Endocrinology, Metabolism, Hammersmith Hospital, Imperial College London, London, United Kingdom.
| | | | | |
Collapse
|