1
|
Schmidtner N, Utrata A, Mester P, Schmid S, Müller M, Pavel V, Buechler C. Reduced Plasma Bone Morphogenetic Protein 6 Levels in Sepsis and Septic Shock Patients. Biomedicines 2024; 12:1682. [PMID: 39200147 PMCID: PMC11351235 DOI: 10.3390/biomedicines12081682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Infectious diseases are associated with low iron levels and the induction of hepcidin, the primary protein regulating cellular iron export. Bone morphogenetic protein 6 (BMP6), a key regulator of hepcidin expression, has not yet been analyzed in the plasma of patients with systemic inflammatory response syndrome (SIRS) or sepsis. An analysis of 38 SIRS, 39 sepsis, and 78 septic shock patients revealed similar levels of BMP6 in sepsis and septic shock, which were lower compared to patients with SIRS and healthy controls. Plasma BMP6 levels did not correlate with procalcitonin and C-reactive protein levels in patients with SIRS or sepsis/septic shock. Neither bacterial nor SARS-CoV-2 infections affected plasma BMP6 levels. There was no difference in BMP6 levels between ventilated and non-ventilated patients, or between patients with and without dialysis. Vasopressor therapy did not alter BMP6 levels. Survivors had plasma BMP6 levels similar to non-survivors. Due to the high variability of plasma BMP6 levels, these analyses have limited clinical relevance. Iron, ferritin, and transferrin levels were known in at least 50% of patients but did not correlate with plasma BMP6 levels. In conclusion, this study showed normal BMP6 plasma levels in SIRS, which are reduced in patients with sepsis and septic shock. This suggests that the commonly observed increase in hepcidin levels and the decline in iron levels in SIRS, sepsis, and septic shock are not due to higher BMP6.
Collapse
|
2
|
Hong H, Dill-McFarland KA, Simmons JD, Peterson GJ, Benchek P, Mayanja-Kizza H, Boom WH, Stein CM, Hawn TR. Mycobacterium tuberculosis-dependent monocyte expression quantitative trait loci, cytokine production, and TB pathogenesis. Front Immunol 2024; 15:1359178. [PMID: 38515745 PMCID: PMC10954790 DOI: 10.3389/fimmu.2024.1359178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction The heterogeneity of outcomes after Mycobacterium tuberculosis (Mtb) exposure is a conundrum associated with millennia of host-pathogen co-evolution. We hypothesized that human myeloid cells contain genetically encoded, Mtb-specific responses that regulate critical steps in tuberculosis (TB) pathogenesis. Methods We mapped genome-wide expression quantitative trait loci (eQTLs) in Mtb-infected monocytes with RNAseq from 80 Ugandan household contacts of pulmonary TB cases to identify monocyte-specific, Mtb-dependent eQTLs and their association with cytokine expression and clinical resistance to tuberculin skin test (TST) and interferon-γ release assay (IGRA) conversion. Results cis-eQTLs (n=1,567) were identified in Mtb-infected monocytes (FDR<0.01), including 29 eQTLs in 16 genes which were Mtb-dependent (significant for Mtb:genotype interaction [FDR<0.1], but not classified as eQTL in uninfected condition [FDR≥0.01]). A subset of eQTLs were associated with Mtb-induced cytokine expression (n=8) and/or clinical resistance to TST/IGRA conversion (n=1). Expression of BMP6, an Mtb-dependent eQTL gene, was associated with IFNB1 induction in Mtb-infected and DNA ligand-induced cells. Network and enrichment analyses identified fatty acid metabolism as a pathway associated with eQTL genes. Discussion These findings suggest that monocyte genes contain Mtb-dependent eQTLs, including a subset associated with cytokine expression and/or clinical resistance to TST/IGRA conversion, providing insight into immunogenetic pathways regulating susceptibility to Mtb infection and TB pathogenesis.
Collapse
Affiliation(s)
- Hyejeong Hong
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Jason D. Simmons
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Glenna J. Peterson
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Penelope Benchek
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | | | - W. Henry Boom
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Catherine M. Stein
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas R. Hawn
- Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
3
|
Hong H, Dill-McFarland KA, Simmons JD, Peterson GJ, Benchek P, Mayanja-Kizza H, Boom WH, Stein CM, Hawn TR. Mycobacterium tuberculosis-dependent Monocyte Expression Quantitative Trait Loci and Tuberculosis Pathogenesis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.28.23294698. [PMID: 37693490 PMCID: PMC10491362 DOI: 10.1101/2023.08.28.23294698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The heterogeneity of outcomes after Mycobacterium tuberculosis (Mtb) exposure is a conundrum associated with millennia of host-pathogen co-evolution. We hypothesized that human myeloid cells contain genetically encoded, Mtb-specific responses that regulate critical steps in tuberculosis (TB) pathogenesis. We mapped genome-wide expression quantitative trait loci (eQTLs) in Mtb-infected monocytes with RNAseq from 80 Ugandan household contacts of pulmonary TB cases to identify monocyte-specific, Mtb-dependent eQTLs and their association with cytokine expression and clinical resistance to tuberculin skin test (TST) and interferon-γ release assay (IGRA) conversion. cis-eQTLs (n=1,567) were identified in Mtb-infected monocytes (FDR<0.01), including 29 eQTLs in 16 genes which were Mtb-dependent (significant for Mtb:genotype interaction [FDR<0.1], but not classified as eQTL in media condition [FDR≥0.01]). A subset of eQTLs were associated with Mtb-induced cytokine expression (n=8) and/or clinical resistance to TST/IGRA conversion (n=1). Expression of BMP6, an Mtb-dependent eQTL gene, was associated with IFNB1 induction in Mtb-infected and DNA ligand-induced cells. Network and enrichment analyses identified fatty acid metabolism as a pathway associated with eQTL genes. These findings suggest that monocyte genes contain Mtb-dependent eQTLs, including a subset associated with cytokine expression and/or clinical resistance to TST/IGRA conversion, providing insight into immunogenetic pathways regulating susceptibility to Mtb infection and TB pathogenesis.
Collapse
Affiliation(s)
- Hyejeong Hong
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jason D. Simmons
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Penelope Benchek
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | | | - W. Henry Boom
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Catherine M. Stein
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Thomas R. Hawn
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Wu J, Guo J, Fang Q, Liu Y, Li C, Xie W, Zhang Y. Identification of biomarkers associated with the invasion of nonfunctional pituitary neuroendocrine tumors based on the immune microenvironment. Front Endocrinol (Lausanne) 2023; 14:1131693. [PMID: 37522128 PMCID: PMC10376796 DOI: 10.3389/fendo.2023.1131693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The invasive behavior of nonfunctioning pituitary neuroendocrine tumors (NF-PitNEts) affects complete resection and indicates a poor prognosis. Cancer immunotherapy has been experimentally used for the treatment of many tumors, including pituitary tumors. The current study aimed to screen the key immune-related genes in NF-PitNEts with invasion. Methods We used two cohorts to explore novel biomarkers in NF-PitNEts. The immune infiltration-associated differentially expressed genes (DEGs) were obtained based on high/low immune scores, which were calculated through the ESTIMATE algorithm. The abundance of immune cells was predicted using the ImmuCellAI database. WGCNA was used to construct a coexpression network of immune cell-related genes. Random forest analysis was used to select the candidate genes associated with invasion. The expression of key genes was verified in external validation set using quantitative real-time polymerase chain reaction (qRT‒PCR). Results The immune and invasion related DEGs was obtained based on the first dataset of NF-PitNEts (n=112). The immune cell-associated modules in NF-PitNEts were calculate by WGCNA. Random forest analysis was performed on 81 common genes intersected by immune-related genes, invasion-related genes, and module genes. Then, 20 of these genes with the highest RF score were selected to construct the invasion and immune-associated classification model. We found that this model had high prediction accuracy for tumor invasion, which had the largest area under the receiver operating characteristic curve (AUC) value in the training dataset from the first dataset (n=78), the self-test dataset from the first dataset (n=34), and the independent test dataset (n=73) (AUC=0.732/0.653/0.619). Functional enrichment analysis revealed that 8 out of the 20 genes were enriched in multiple signaling pathways. Subsequently, the 8-gene (BMP6, CIB2, FABP5, HOMER2, MAML3, NIN, PRKG2 and SIDT2) classification model was constructed and showed good efficiency in the first dataset (AUC=0.671). In addition, the expression levels of these 8 genes were verified by qRT‒PCR. Conclusion We identified eight key genes associated with invasion and immunity in NF-PitNEts that may play a fundamental role in invasive progression and may provide novel potential immunotherapy targets for NF-PitNEts.
Collapse
Affiliation(s)
- Jiangping Wu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tongren Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jing Guo
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Qiuyue Fang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yulou Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Weiyan Xie
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
5
|
McColl LF, Chen X, Solga MD, Schlegel K, Haughey SP, Lobo PI, Fread K, Zunder E, Cha R, Park S, Christophel JJ, Cui Q, Dighe AS. BMP-6 promotes type 2 immune response during enhancement of rat mandibular bone defect healing. Front Immunol 2023; 14:1064238. [PMID: 36845161 PMCID: PMC9950738 DOI: 10.3389/fimmu.2023.1064238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Bone morphogenetic proteins (BMPs) are used as key therapeutic agents for the treatment of difficult fractures. While their effects on osteoprogenitors are known, little is known about their effects on the immune system. Methods We used permutations of BMP-6 (B), vascular endothelial growth factor (V), and Hedgehog signaling pathway activator smoothened agonist (S), to treat a rat mandibular defect and investigated healing outcomes at week 8, in correlation with the cellular landscape of the immune cells in the fracture callus at week 2. Results Maximum recruitment of immune cells to the fracture callus is known to occur at week 2. While the control, S, V, and VS groups remained as nonunions at week 8; all BMP-6 containing groups - B, BV, BS and BVS, showed near-complete to complete healing. This healing pattern was strongly associated with significantly higher ratios of CD4 T (CD45+CD3+CD4+) to putative CD8 T cells (CD45+CD3+CD4-), in groups treated with any permutation of BMP-6. Although, the numbers of putative M1 macrophages (CD45+CD3-CD11b/c+CD38high) were significantly lower in BMP-6 containing groups in comparison with S and VS groups, percentages of putative - Th1 cells or M1 macrophages (CD45+CD4+IFN-γ+) and putative - NK, NKT or cytotoxic CD8T cells (CD45+CD4-IFN-γ+) were similar in control and all treatment groups. Further interrogation revealed that the BMP-6 treatment promoted type 2 immune response by significantly increasing the numbers of CD45+CD3-CD11b/c+CD38low putative M2 macrophages, putative - Th2 cells or M2 macrophages (CD45+CD4+IL-4+) cells and putative - mast cells, eosinophils or basophils (CD45+CD4-IL-4+ cells). CD45- non-haematopoietic fractions of cells which encompass all known osteoprogenitor stem cells populations, were similar in control and treatment groups. Discussion This study uncovers previously unidentified regulatory functions of BMP-6 and shows that BMP-6 enhances fracture healing by not only acting on osteoprogenitor stem cells but also by promoting type 2 immune response.
Collapse
Affiliation(s)
- Logan F. McColl
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Xizhao Chen
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Michael D. Solga
- Flow Cytometry Core Facility, University of Virginia, Charlottesville, VA, United States
| | - Kailo Schlegel
- Department of Nephrology, University of Virginia Health System, Charlottesville, VA, United States
| | - Sean P. Haughey
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Peter I. Lobo
- Department of Nephrology, University of Virginia Health System, Charlottesville, VA, United States
| | - Kristen Fread
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Eli Zunder
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Ryan Cha
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Stephen Park
- Department of Otolaryngology–Head and Neck Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - J. Jared Christophel
- Department of Otolaryngology–Head and Neck Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Quanjun Cui
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Abhijit S. Dighe
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States,*Correspondence: Abhijit S. Dighe,
| |
Collapse
|
6
|
Feldbauer R, Heinzl MW, Klammer C, Resl M, Pohlhammer J, Rosenberger K, Almesberger V, Obendorf F, Schinagl L, Wagner T, Egger M, Dieplinger B, Clodi M. Effect of repeated bolus and continuous glucose infusion on a panel of circulating biomarkers in healthy volunteers. PLoS One 2022; 17:e0279308. [PMID: 36574434 PMCID: PMC9794098 DOI: 10.1371/journal.pone.0279308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022] Open
Abstract
HYPOTHESIS Glycaemic variability (GV) refers to fluctuations in the blood glucose level and may contribute to complications in patients suffering from Diabetes. Several studies show negative effects of GV on the cardiovascular system, however there is still a lack of conclusive evidence. Using an explorative cardiovascular panel, it is possible to simultaneously measure the effects on proteins relevant for cardiovascular processes. The aim of this study was to investigate the effects of rapid glucose excursions on cardiovascular and metabolic parameters in healthy individuals. METHODS An explorative single-blinded cross-over study was performed in ten healthy men. Subjects received 3 times 20 grams of glucose i.v. over 5 minutes or 60 grams of glucose continuously over 3 hours. Blood was taken for repeated measurements of the cardiovascular panel over the following 6 hours and again after 24 and 48 hours. RESULTS We observed a significant elevation of 7 cardiovascular biomarkers (BMP6, SLAMF7, LOX-1, ADAMTS13, IL-1RA, IL-4RA, PTX3) at t = 360min after rapid glucose infusion compared to a continuous glucose infusion. CONCLUSIONS Intraday GV seems to have acute effects on cardiovascular proteins in healthy test persons. Rapid glucose administration compared to continuous administration showed significant changes in BMP6, SLAMF7, ADAMTS13, IL1RA, PTX3, IL-4RA and LOX-1. CLINICAL TRIAL REGISTRATION NCT04488848.
Collapse
Affiliation(s)
- Roland Feldbauer
- Department of Internal Medicine, St. John of God Hospital Linz, Linz, Austria
| | - Matthias Wolfgang Heinzl
- Department of Internal Medicine, St. John of God Hospital Linz, Linz, Austria
- ICMR–Institute for Cardiovascular and Metabolic Research, Johannes Kepler Universität Linz (JKU Linz), Linz, Austria
| | - Carmen Klammer
- Department of Internal Medicine, St. John of God Hospital Linz, Linz, Austria
- ICMR–Institute for Cardiovascular and Metabolic Research, Johannes Kepler Universität Linz (JKU Linz), Linz, Austria
| | - Michael Resl
- Department of Internal Medicine, St. John of God Hospital Linz, Linz, Austria
- ICMR–Institute for Cardiovascular and Metabolic Research, Johannes Kepler Universität Linz (JKU Linz), Linz, Austria
| | - Johannes Pohlhammer
- Department of Internal Medicine, St. John of God Hospital Linz, Linz, Austria
| | | | - Verena Almesberger
- Department of Internal Medicine, St. John of God Hospital Linz, Linz, Austria
| | - Florian Obendorf
- Department of Internal Medicine, St. John of God Hospital Linz, Linz, Austria
| | - Lukas Schinagl
- Department of Internal Medicine, St. John of God Hospital Linz, Linz, Austria
| | - Thomas Wagner
- Department of Internal Medicine, St. John of God Hospital Linz, Linz, Austria
| | - Margot Egger
- Department of Laboratory Medicine, Ordensklinikum Linz, Linz, Austria
| | | | - Martin Clodi
- Department of Internal Medicine, St. John of God Hospital Linz, Linz, Austria
- ICMR–Institute for Cardiovascular and Metabolic Research, Johannes Kepler Universität Linz (JKU Linz), Linz, Austria
- * E-mail:
| |
Collapse
|
7
|
Ganjoo S, Puebla-Osorio N, Nanez S, Hsu E, Voss T, Barsoumian H, Duong LK, Welsh JW, Cortez MA. Bone morphogenetic proteins, activins, and growth and differentiation factors in tumor immunology and immunotherapy resistance. Front Immunol 2022; 13:1033642. [PMID: 36353620 PMCID: PMC9638036 DOI: 10.3389/fimmu.2022.1033642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2024] Open
Abstract
The TGF-β superfamily is a group of secreted polypeptides with key roles in exerting and regulating a variety of physiologic effects, especially those related to cell signaling, growth, development, and differentiation. Although its central member, TGF-β, has been extensively reviewed, other members of the family-namely bone morphogenetic proteins (BMPs), activins, and growth and differentiation factors (GDFs)-have not been as thoroughly investigated. Moreover, although the specific roles of TGF-β signaling in cancer immunology and immunotherapy resistance have been extensively reported, little is known of the roles of BMPs, activins, and GDFs in these domains. This review focuses on how these superfamily members influence key immune cells in cancer progression and resistance to treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
8
|
de Rooij LPMH, Becker LM, Teuwen LA, Boeckx B, Jansen S, Feys S, Verleden S, Liesenborghs L, Stalder AK, Libbrecht S, Van Buyten T, Philips G, Subramanian A, Dumas SJ, Meta E, Borri M, Sokol L, Dendooven A, Truong ACK, Gunst J, Van Mol P, Haslbauer JD, Rohlenova K, Menter T, Boudewijns R, Geldhof V, Vinckier S, Amersfoort J, Wuyts W, Van Raemdonck D, Jacobs W, Ceulemans LJ, Weynand B, Thienpont B, Lammens M, Kuehnel M, Eelen G, Dewerchin M, Schoonjans L, Jonigk D, van Dorpe J, Tzankov A, Wauters E, Mazzone M, Neyts J, Wauters J, Lambrechts D, Carmeliet P. The pulmonary vasculature in lethal COVID-19 and idiopathic pulmonary fibrosis at single cell resolution. Cardiovasc Res 2022; 119:520-535. [PMID: 35998078 PMCID: PMC9452154 DOI: 10.1093/cvr/cvac139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Aims SARS-CoV-2 infection causes COVID-19, which in severe cases evokes life-threatening acute respiratory distress syndrome (ARDS). Transcriptome signatures and the functional relevance of non-vascular cell types (e.g. immune and epithelial cells) in COVID-19 are becoming increasingly evident. However, despite its known contribution to vascular inflammation, recruitment/invasion of immune cells, vascular leakage and perturbed hemostasis in the lungs of severe COVID-19 patients, an in-depth interrogation of the endothelial cell (EC) compartment in lethal COVID-19 is lacking. Moreover, progressive fibrotic lung disease represents one of the complications of COVID-19 pneumonia and ARDS. Analogous features between idiopathic pulmonary fibrosis (IPF) and COVID-19 suggest partial similarities in their pathophysiology, yet, a head-to-head comparison of pulmonary cell transcriptomes between both conditions has not been implemented to date. Methods and Results We performed single nucleus RNA-seq (snRNA-seq) on frozen lungs from 7 deceased COVID-19 patients, 6 IPF explant lungs and 12 controls. The vascular fraction, comprising 38,794 nuclei, could be subclustered into 14 distinct EC subtypes. Non-vascular cell types, comprising 137,746 nuclei, were subclustered and used for EC-interactome analyses. Pulmonary ECs of deceased COVID-19 patients showed an enrichment of genes involved in cellular stress, as well as signatures suggestive of dampened immunomodulation and impaired vessel wall integrity. In addition, increased abundance of a population of systemic capillary and venous ECs was identified in COVID-19 and IPF. COVID-19 systemic ECs closely resembled their IPF counterparts, and a set of 30 genes was found congruently enriched in systemic ECs across studies. Receptor-ligand interaction analysis of ECs with non-vascular cell types in the pulmonary micro-environment revealed numerous previously unknown interactions specifically enriched/depleted in COVID-19 and/or IPF. Conclusions This study uncovered novel insights into the abundance, expression patterns and interactomes of EC subtypes in COVID-19 and IPF, relevant for future investigations into the progression and treatment of both lethal conditions. Translational perspective While assessing clinical and molecular characteristics of severe and lethal COVID-19 cases, the vasculature’s undeniable role in disease progression has been widely acknowledged. COVID-19 lung pathology moreover shares certain clinical features with late-stage IPF – yet an in-depth interrogation and direct comparison of the endothelium at single-cell level in both conditions is still lacking. By comparing the transcriptomes of ECs from lungs of deceased COVID-19 patients to those from IPF explant and control lungs, we gathered key insights the heterogeneous composition and potential roles of ECs in both lethal diseases, which may serve as a foundation for development of novel therapeutics.
Collapse
Affiliation(s)
| | | | - Laure-Anne Teuwen
- Present address: Department of Oncology, Antwerp University Hospital (UZA), Edegem 2650, Belgium
| | - Bram Boeckx
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB & Department of Genetics, KU Leuven, Leuven 3000, Belgium
| | - Sander Jansen
- Laboratory of Virology & Chemotherapy, KU Leuven, Leuven 3000, Belgium
| | - Simon Feys
- Medical Intensive Care Unit, UZ Gasthuisberg & Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven 3000, Belgium
| | - Stijn Verleden
- Present address: Department of Antwerp Surgical Training, Anatomy and Research Centre, Division of Thoracic and Vascular Surgery, University of Antwerp, Wilrijk, Belgium
| | | | - Anna K Stalder
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland
| | - Sasha Libbrecht
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Tina Van Buyten
- Laboratory of Virology & Chemotherapy, KU Leuven, Leuven 3000, Belgium
| | - Gino Philips
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB & Department of Genetics, KU Leuven, Leuven 3000, Belgium
| | - Abhishek Subramanian
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Sébastien J Dumas
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Elda Meta
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Mila Borri
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Liliana Sokol
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Amélie Dendooven
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
- University of Antwerp, Faculty of Medicine, Wilrijk 2610, Belgium
| | - Anh-Co K Truong
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Jan Gunst
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Pierre Van Mol
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB & Department of Genetics, KU Leuven, Leuven 3000, Belgium
| | - Jasmin D Haslbauer
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Katerina Rohlenova
- Present address: Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec 252 50, Czech Republic
| | - Thomas Menter
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland
| | | | - Vincent Geldhof
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Jacob Amersfoort
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Wim Wuyts
- Department of Respiratory Medicine, Unit for Interstitial Lung Diseases, UZ Gasthuisberg, Leuven 3000, Belgium
| | - Dirk Van Raemdonck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven 3000, Belgium
| | - Werner Jacobs
- Medical CBRNe unit, Queen Astrid Military Hospital, Belgian Defense, Neder-Over-Heembeek 1120, Belgium
- Department of Forensic Pathology, ASTARC Antwerp University Hospital and University of Antwerp, Antwerp 2610, Belgium
| | - Laurens J Ceulemans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven 3000, Belgium
| | - Birgit Weynand
- Translational Cell & Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven 3000, Belgium
| | - Bernard Thienpont
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Martin Lammens
- Department of Pathology Antwerp University Hospital, Edegem 2560, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp 2000, Belgium
| | - Mark Kuehnel
- Medizinische Hochschule Hannover (MHH), Institut für Pathologie, D-30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Member of the German Centre for Lung research (DZL), Hannover 30625, Germany
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB & Department of Genetics, KU Leuven, Leuven 3000, Belgium
| | - Danny Jonigk
- Medizinische Hochschule Hannover (MHH), Institut für Pathologie, D-30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Member of the German Centre for Lung research (DZL), Hannover 30625, Germany
| | - Jo van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland
| | - Els Wauters
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven 3000, Belgium
- Respiratory Oncology Unit, University Hospital KU Leuven, Leuven 3000, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven 3000, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Johan Neyts
- Laboratory of Virology & Chemotherapy, KU Leuven, Leuven 3000, Belgium
| | - Joost Wauters
- Medical Intensive Care Unit, UZ Gasthuisberg & Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven 3000, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB & Department of Genetics, KU Leuven, Leuven 3000, Belgium
| | | |
Collapse
|
9
|
Sconocchia T, Sconocchia G. Regulation of the Immune System in Health and Disease by Members of the Bone Morphogenetic Protein Family. Front Immunol 2021; 12:802346. [PMID: 34925388 PMCID: PMC8674571 DOI: 10.3389/fimmu.2021.802346] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are potent signaling molecules initially described as osteopromoting proteins. BMPs represent one of the members of the larger TGFβ family and today are recognized for their important role in numerous processes. Among the wide array of functions recently attributed to them, BMPs were also described to be involved in the regulation of components of the innate and adaptive immune response. This review focuses on the signaling pathway of BMPs and highlights the effects of BMP signaling on the differentiation, activation, and function of the main cell types of the immune system.
Collapse
Affiliation(s)
| | - Giuseppe Sconocchia
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy
| |
Collapse
|
10
|
Gender-Related Differences in BMP Expression and Adult Hippocampal Neurogenesis within Joint-Hippocampal Axis in a Rat Model of Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms222212163. [PMID: 34830044 PMCID: PMC8620092 DOI: 10.3390/ijms222212163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
BMPs regulate synovial quiescence and adult neurogenesis in the hippocampus in non-stress conditions. However, changes in BMP expression that are induced by inflammation during rheumatoid arthritis (RA) have not yet been reported. Here, we show that signalling with synovial BMPs (BMP-4 and -7) mediates the effect of systemic inflammation on adult neurogenesis in the hippocampus during pristane-induced arthritis (PIA) in Dark Agouti (DA) rats, an animal model of RA. Moreover, we show gender differences in BMP expressions and their antagonists (Noggin and Gremlin) during PIA and their correlations with the clinical course and IL-17A and TNF-α levels in serum. Our results indicate gender differences in the clinical course, where male rats showed earlier onset and earlier recovery but a worse clinical course in the first two phases of the disease (onset and peak), which correlates with the initial increase of serum IL-17A level. The clinical course of the female rats worsened in remission. Their prolonged symptoms could be a reflection of an increased TNF-α level in serum during remission. Synovial inflammation was greater in females in PIA-remission with greater synovial BMP and antagonist expressions. More significant correlations between serum cytokines (IL-17A and TNF-α), and synovial BMPs and their antagonists were found in females than in males. On the other hand, males showed an increase in hippocampal BMP-4 expression during the acute phase, but both genders showed a decrease in antagonist expressions during PIA in general. Both genders showed a decrease in the number of Ki-67+ and SOX-2+ and DCX+ cells and in the ratio of DCX+ to Ki67+ cells in the dentate gyrus during PIA. However, in PIA remission, females showed a faster increase in the number of Ki67+, SOX-2+, and DCX+ cells and a faster increase in the DCX/Ki67 ratio than males. Both genders showed an increase of hippocampal BMP-7 expression during remission, although males constantly showed greater BMP-7 expression at all time points. Our data show that gender differences exist in the BMP expressions in the periphery-hippocampus axis and in the IL-17A and TNF-α levels in serum, which could imply differences in the mechanisms for the onset and progression of the disease, the clinical course severity, and adult neurogenesis with subsequent neurological complications between genders.
Collapse
|
11
|
Mausner-Fainberg K, Benhamou M, Golan M, Kimelman NB, Danon U, Marom E, Karni A. Specific Blockade of Bone Morphogenetic Protein-2/4 Induces Oligodendrogenesis and Remyelination in Demyelinating Disorders. Neurotherapeutics 2021; 18:1798-1814. [PMID: 34159538 PMCID: PMC8608985 DOI: 10.1007/s13311-021-01068-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are present in demyelinated lesions of multiple sclerosis (MS) patients. However, their differentiation into functional oligodendrocytes is insufficient, and most lesions evolve into nonfunctional astroglial scars. Blockade of bone morphogenetic protein (BMP) signaling induces differentiation of OPCs into myelin-producing oligodendrocytes. We studied the effect of specific blockade of BMP-2/4 signaling, by intravenous (IV) treatment with anti-BMP-2/4 neutralizing mAb in both the inflammatory model of relapsing experimental autoimmune encephalomyelitis (R-EAE) and the cuprizone-toxic model of demyelination in mice. Administration of anti-BMP-2/4 to R-EAE-induced mice, on day 9 post-immunization (p.i.), ameliorated R-EAE signs, diminished the expression of phospho-SMAD1/5/8, primarily within the astrocytic lineage, increased the numbers of de novo immature and mature oligodendrocytes, and reduced the numbers of newly generated astrocytes within the spinal cord as early as day 18 p.i. This effect was accompanied with elevated remyelination, manifested by increased density of remyelinating axons (0.8 < g-ratios < 1), and reduced fully demyelinated and demyelinating axons, in the anti-BMP-2/4-treated R-EAE mice, studied by electron microscopy. No significant immunosuppressive effect was observed in the CNS and in the periphery, during the peak of the first attack, or at the end of the experiment. Moreover, IV treatment with anti-BMP-2/4 mAb in the cuprizone-challenged mice augmented the numbers of mature oligodendrocytes and remyelination in the corpus callosum during the recovery phase of the disease. Based on our findings, the specific blockade of BMP-2/4 has a therapeutic potential in demyelinating disorders such as MS, by inducing early oligodendrogenesis-mediated remyelination in the affected tissue.
Collapse
Affiliation(s)
- Karin Mausner-Fainberg
- Neuroimmunology Laboratory, Neuroimmunology and Multiple Sclerosis Unit, Neurology Division, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel
| | - Moshe Benhamou
- Neuroimmunology Laboratory, Neuroimmunology and Multiple Sclerosis Unit, Neurology Division, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel
- Sackler's Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Golan
- Neuroimmunology Laboratory, Neuroimmunology and Multiple Sclerosis Unit, Neurology Division, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel
| | | | - Uri Danon
- Stem Cell Medicine Ltd, Jerusalem, Israel
| | - Ehud Marom
- Stem Cell Medicine Ltd, Jerusalem, Israel
| | - Arnon Karni
- Neuroimmunology Laboratory, Neuroimmunology and Multiple Sclerosis Unit, Neurology Division, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel.
- Sackler's Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
12
|
García Muro AM, García Ruvalcaba A, Rizo de la Torre LDC, Sánchez López JY. Role of the BMP6 protein in breast cancer and other types of cancer. Growth Factors 2021; 39:1-13. [PMID: 34706618 DOI: 10.1080/08977194.2021.1994964] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The BMP6 protein (Bone Morphogenetic Protein 6) is part of the superfamily of transforming growth factor-beta (TGF-β) ligands, participates in iron homeostasis, inhibits invasion by increasing adhesions and cell-cell type interactions and induces angiogenesis directly on vascular endothelial cells. BMP6 is coded by a tumor suppressor gene whose subexpression is related to the development and cancer progression; during neoplastic processes, methylation is the main mechanism by which gene silencing occurs. This work presents a review on the role of BMP6 protein in breast cancer (BC) and other types of cancer. The studies carried out to date suggest the participation of the BMP6 protein in the epithelial-mesenchymal transition (EMT) phenotype, cell growth and proliferation; however, these processes are affected in a variable way in the different types of cancer, the methylated CpG sites in BMP6 gene promoter, as well as the interaction with other proteins could be the cause of such variation.
Collapse
Affiliation(s)
- Andrea Marlene García Muro
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Azaria García Ruvalcaba
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | | | - Josefina Yoaly Sánchez López
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| |
Collapse
|
13
|
Cartilage Targets of Knee Osteoarthritis Shared by Both Genders. Int J Mol Sci 2021; 22:ijms22020569. [PMID: 33430025 PMCID: PMC7827374 DOI: 10.3390/ijms22020569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
As the leading cause of disability, osteoarthritis (OA) affects people of all ages, sexes, and races. With the increasing understanding of OA, the sex differences have attracted specific attention as the burden of OA is greater in women. There is no doubt that gender-specific OA management has great potential for precision treatment. On the other hand, from the marketing aspect, a medication targeting the OA-responsive biomarker(s) shared by both genders is more favorable for drug development. Thus, in the current study, a published transcriptome dataset of knee articular cartilage was used to compare OA and healthy samples for identifying the genes with the same significantly different expression trend in both males and females. With 128 genes upregulated and 143 genes downregulated in both OA males and females, 9 KEGG pathways have been enriched based on the current knowledge, including 'renal cell carcinoma,' 'ECM-receptor interaction,' 'HIF-1 signaling pathway,' 'MicroRNAs in cancer,' 'focal adhesion,' 'Relaxin signaling pathway,' 'breast cancer,' 'PI3K-Akt signaling pathway,' and 'human papillomavirus infection.' Here, we explore the potential impacts of these clusters in OA. We also analyze the identified 'cell plasma membrane related genes' in-depth to identify the potential chondrocyte cell surface target(s) of OA management.
Collapse
|
14
|
Qian S, Tang Y, Tang QQ. Adipose tissue plasticity and the pleiotropic roles of BMP signaling. J Biol Chem 2021; 296:100678. [PMID: 33872596 PMCID: PMC8131923 DOI: 10.1016/j.jbc.2021.100678] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Adipose tissues, including white, beige, and brown adipose tissue, have evolved to be highly dynamic organs. Adipose tissues undergo profound changes during development and regeneration and readily undergo remodeling to meet the demands of an everchanging metabolic landscape. The dynamics are determined by the high plasticity of adipose tissues, which contain various cell types: adipocytes, immune cells, endothelial cells, nerves, and fibroblasts. There are numerous proteins that participate in regulating the plasticity of adipose tissues. Among these, bone morphogenetic proteins (BMPs) were initially found to regulate the differentiation of adipocytes, and they are being reported to have pleiotropic functions by emerging studies. Here, in the first half of the article, we summarize the plasticity of adipocytes and macrophages, which are two groups of cells targeted by BMP signaling in adipose tissues. We then review how BMPs regulate the differentiation, death, and lipid metabolism of adipocytes. In addition, the potential role of BMPs in regulating adipose tissue macrophages is considered. Finally, the expression of BMPs in adipose tissues and their metabolic relevance are discussed.
Collapse
Affiliation(s)
- Shuwen Qian
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Tang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi-Qun Tang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Xiao Y, Chen PP, Zhou RL, Zhang Y, Tian Z, Zhang SY. Pathological Mechanisms and Potential Therapeutic Targets of Pulmonary Arterial Hypertension: A Review. Aging Dis 2020; 11:1623-1639. [PMID: 33269111 PMCID: PMC7673851 DOI: 10.14336/ad.2020.0111] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/11/2020] [Indexed: 12/22/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive cardiovascular disease characterized by pulmonary vasculature reconstruction and right ventricular dysfunction. The mortality rate of PAH remains high, although multiple therapeutic strategies have been implemented in clinical practice. These drugs mainly target the endothelin-1, prostacyclin and nitric oxide pathways. Management for PAH treatment includes improving symptoms, enhancing quality of life, and extending survival rate. Existing drugs developed to treat the disease have resulted in enormous economic and healthcare liabilities. The estimated cost for advanced PAH has exceeded $200,000 per year. The pathogenesis of PAH is associated with numerous molecular processes. It mainly includes germline mutation, inflammation, dysfunction of pulmonary arterial endothelial cells, epigenetic modifications, DNA damage, metabolic dysfunction, sex hormone imbalance, and oxidative stress, among others. Findings based on the pathobiology of PAH may have promising therapeutic outcomes. Hence, faced with the challenges of increasing healthcare demands, in this review, we attempted to explore the pathological mechanisms and alternative therapeutic targets, including other auxiliary devices or interventional therapies, in PAH. The article will discuss the potential therapies of PAH in detail, which may require further investigation before implementation.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei-Pei Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui-Lin Zhou
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuang Tian
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Yang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Sotiropoulos MG, Chitnis T. Opposing and potentially antagonistic effects of BMP and TGF-β in multiple sclerosis: The "Yin and Yang" of neuro-immune Signaling. J Neuroimmunol 2020; 347:577358. [PMID: 32795734 DOI: 10.1016/j.jneuroim.2020.577358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
Bone Morphogenetic Proteins (BMP) and Transforming Growth Factor-beta (TGF-β) are cytokines with similar receptors and messengers. They are important for immune cell function, with BMPs exerting mainly proinflammatory but also anti-inflammatory effects, and TGF-β suppressing inflammation. Patients with Multiple Sclerosis exhibit BMP overactivity and suppressed TGF-β signaling. This dysregulated signaling participates in the crosstalk between infiltrating immune cells and glia, where BMP inhibits remyelination. Reciprocal antagonism between the two pathways takes place via a variety of mechanisms. Although this antagonism has not been studied in the setting of Multiple Sclerosis, it could inform further research and treatment discovery.
Collapse
Affiliation(s)
- Marinos G Sotiropoulos
- Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Tanuja Chitnis
- Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Eixarch H, Calvo-Barreiro L, Costa C, Reverter-Vives G, Castillo M, Gil V, Del Río JA, Montalban X, Espejo C. Inhibition of the BMP Signaling Pathway Ameliorated Established Clinical Symptoms of Experimental Autoimmune Encephalomyelitis. Neurotherapeutics 2020; 17:1988-2003. [PMID: 32681355 PMCID: PMC7851289 DOI: 10.1007/s13311-020-00885-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are secreted growth factors that belong to the transforming growth factor beta superfamily. BMPs have been implicated in physiological processes, but they are also involved in many pathological conditions. Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system (CNS); however, its etiology remains elusive. Some evidence points to BMPs as important players in the pathogenesis of inflammatory and autoimmune disorders. In the present work, we studied the expression of BMP2, BMP4, BMP5, BMP6, BMP7, BMP type II receptor, and noggin in the immune system during different phases of experimental autoimmune encephalomyelitis (EAE). Major changes in the expression of BMPs took place in the initial phases of EAE. Indeed, those changes mainly affected BMP6 (whose expression was abrogated), BMP2, and BMP7 (whose expression was increased). In addition, we showed that in vivo inhibition of the BMP signaling pathway with small molecules ameliorated the already established clinical symptoms of EAE, as well as the CNS histopathological features. At the immune level, we observed an expansion of plasmacytoid dendritic cells (pDCs) in mice treated with small molecules that inhibit the BMP signaling pathway. pDCs could play an important role in promoting the expansion of antigen-specific regulatory T cells. Altogether, our data suggest a role for BMPs in early immune events that take place in myelin oligodendrocyte glycoprotein (MOG)-induced EAE. In addition, the clinical outcome of the disease was improved when the BMP signaling pathway was inhibited in mice that presented established EAE symptoms.
Collapse
Affiliation(s)
- Herena Eixarch
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| | - Laura Calvo-Barreiro
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| | - Carme Costa
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| | - Gemma Reverter-Vives
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| | - Mireia Castillo
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
| | - Vanessa Gil
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain
- Division of Neurology, St Michael's Hospital, University of Toronto, Toronto, Canada
| | - Carmen Espejo
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Spain.
| |
Collapse
|
18
|
Cortez MA, Masrorpour F, Ivan C, Zhang J, Younes AI, Lu Y, Estecio MR, Barsoumian HB, Menon H, Caetano MDS, Ramapriyan R, Schoenhals JE, Wang X, Skoulidis F, Wasley MD, Calin G, Hwu P, Welsh JW. Bone morphogenetic protein 7 promotes resistance to immunotherapy. Nat Commun 2020; 11:4840. [PMID: 32973129 PMCID: PMC7519103 DOI: 10.1038/s41467-020-18617-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/26/2020] [Indexed: 11/24/2022] Open
Abstract
Immunotherapies revolutionized cancer treatment by harnessing the immune system to target cancer cells. However, most patients are resistant to immunotherapies and the mechanisms underlying this resistant is still poorly understood. Here, we report that overexpression of BMP7, a member of the TGFB superfamily, represents a mechanism for resistance to anti-PD1 therapy in preclinical models and in patients with disease progression while on immunotherapies. BMP7 secreted by tumor cells acts on macrophages and CD4+ T cells in the tumor microenvironment, inhibiting MAPK14 expression and impairing pro-inflammatory responses. Knockdown of BMP7 or its neutralization via follistatin in combination with anti-PD1 re-sensitizes resistant tumors to immunotherapies. Thus, we identify the BMP7 signaling pathway as a potential immunotherapeutic target in cancer. The mechanisms underlying resistance to immunotherapy are still poorly understood. Here, the authors show that BMP7, a molecule part of the TGF-beta superfamily, suppresses proinflammatory antitumor responses and may represent a target for overcoming resistance to PD1 inhibitors.
Collapse
Affiliation(s)
- Maria Angelica Cortez
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Fatemeh Masrorpour
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristina Ivan
- Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jie Zhang
- Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmed I Younes
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yue Lu
- Epigenetic and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcos R Estecio
- Epigenetic and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hampartsoum B Barsoumian
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hari Menon
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mauricio da Silva Caetano
- Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rishab Ramapriyan
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan E Schoenhals
- Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaohong Wang
- Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ferdinandos Skoulidis
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark D Wasley
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Calin
- Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Hwu
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James W Welsh
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Meng L, Teng X, Liu Y, Yang C, Wang S, Yuan W, Meng J, Chi H, Duan L, Liu X. Vital Roles of Gremlin-1 in Pulmonary Arterial Hypertension Induced by Systemic-to-Pulmonary Shunts. J Am Heart Assoc 2020; 9:e016586. [PMID: 32750294 PMCID: PMC7792280 DOI: 10.1161/jaha.120.016586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Heterozygous mutation in BMP (bone morphogenetic protein) receptor 2 is rare, but BMP cascade suppression is common in congenital heart disease-associated pulmonary arterial hypertension (CHD-PAH); however, the underling mechanism of BMP cascade suppression independent of BMP receptor 2 mutation is unknown. Methods and Results Pulmonary hypertensive status observed in CHD-PAH was surgically reproduced in rats. Gremlin-1 expression was increased, but BMP cascade was suppressed, in lungs from CHD-PAH patients and shunted rats, whereas shunt correction retarded these trends in rats. Immunostaining demonstrated increased gremlin-1 was mainly in the endothelium and media of remodeled pulmonary arteries. However, mechanical stretch time- and amplitude-dependently stimulated gremlin-1 secretion and suppressed BMP cascade in distal pulmonary arterial smooth muscle cells from healthy rats. Under static condition, gremlin-1 significantly promoted the proliferation and inhibited the apoptosis of distal pulmonary arterial smooth muscle cells from healthy rats via BMP cascade. Furthermore, plasma gremlin-1 closely correlated with hemodynamic parameters in CHD-PAH patients and shunted rats. Conclusions Serving as an endogenous antagonist of BMP cascade, the increase of gremlin-1 in CHD-PAH may present a reasonable mechanism explanation for BMP cascade suppression independent of BMP receptor 2 mutation.
Collapse
Affiliation(s)
- Liukun Meng
- State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Disease Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Xiao Teng
- State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Disease Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Yao Liu
- State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Disease Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Chao Yang
- Department of Organ Transplantation and Thoracic Surgery The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Shengwei Wang
- Department of Cardiovascular Surgery Center Beijing Anzhen HospitalCapital Medical UniversityBeijing Institute of Heart, Lung and Blood Vascular Diseases Beijing China
| | - Wen Yuan
- Medical Research Center Beijing Chao-Yang HospitalCapital Medical University Beijing China
| | - Jian Meng
- State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Disease Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Hongjie Chi
- Heart Center and Beijing Key Laboratory of Hypertension Research Beijing Chao-Yang HospitalCapital Medical University Beijing China
| | - Lihua Duan
- Department of Rheumatology and Immunology Jiangxi Provincial People's Hospital Affiliated to Nanchang University Nanchang Jiangxi China
| | - Xiaoyan Liu
- Medical Research Center Beijing Chao-Yang HospitalCapital Medical University Beijing China.,Heart Center and Beijing Key Laboratory of Hypertension Research Beijing Chao-Yang HospitalCapital Medical University Beijing China
| |
Collapse
|
20
|
Guder C, Gravius S, Burger C, Wirtz DC, Schildberg FA. Osteoimmunology: A Current Update of the Interplay Between Bone and the Immune System. Front Immunol 2020; 11:58. [PMID: 32082321 PMCID: PMC7004969 DOI: 10.3389/fimmu.2020.00058] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Immunology, already a discipline in its own right, has become a major part of many different medical fields. However, its relationship to orthopedics and trauma surgery has unfortunately, and perhaps unjustly, been developing rather slowly. Discoveries in recent years have emphasized the immense breadth of communication and connection between both systems and, importantly, the highly promising therapeutic opportunities. Recent discoveries of factors originally assigned to the immune system have now also been shown to have a significant impact on bone health and disease, which has greatly changed how we approach treatment of bone pathologies. In case of bone fracture, immune cells, especially macrophages, are present throughout the whole healing process, assure defense against pathogens and discharge a complex variety of effectors to regulate bone modeling. In rheumatoid arthritis and osteoporosis, the immune system contributes to the formation of the pathological and chronic conditions. Fascinatingly, prosthesis failure is not at all solely a mechanical problem of improper strain but works in conjunction with an active contribution of the immune system as a reaction to irritant debris from material wear. Unraveling conjoined mechanisms of the immune and osseous systems heralds therapeutic possibilities for ailments of both. Contemplation of the bone as merely an unchanging support pillar is outdated and obsolete. Instead it is mandatory that this highly diverse network be incorporated in our understanding of the immune system and hematopoiesis.
Collapse
Affiliation(s)
- Christian Guder
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Sascha Gravius
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany.,Department of Orthopedics and Trauma Surgery, University Medical Center Mannheim of University Heidelberg, Mannheim, Germany
| | - Christof Burger
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Dieter C Wirtz
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
21
|
Li C, Ha P, Jiang W, Haveles CS, Zheng Z, Zou M. Fibromodulin - A New Target of Osteoarthritis Management? Front Pharmacol 2019; 10:1475. [PMID: 31920661 PMCID: PMC6927287 DOI: 10.3389/fphar.2019.01475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Chenshuang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Pin Ha
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Wenlu Jiang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christos S Haveles
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Zhong Zheng
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Min Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
22
|
Li C, Zheng Z, Ha P, Jiang W, Berthiaume EA, Lee S, Mills Z, Pan H, Chen EC, Jiang J, Culiat CT, Zhang X, Ting K, Soo C. Neural EGFL like 1 as a potential pro-chondrogenic, anti-inflammatory dual-functional disease-modifying osteoarthritis drug. Biomaterials 2019; 226:119541. [PMID: 31634652 DOI: 10.1016/j.biomaterials.2019.119541] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/09/2019] [Accepted: 10/08/2019] [Indexed: 01/06/2023]
Abstract
Arthritis, an inflammatory condition that causes pain and cartilage destruction in joints, affects over 54.4 million people in the US alone. Here, for the first time, we demonstrated the emerging role of neural EGFL like 1 (NELL-1) in arthritis pathogenesis by showing that Nell-1-haploinsufficient (Nell-1+/6R) mice had accelerated and aggravated osteoarthritis (OA) progression with elevated inflammatory markers in both spontaneous primary OA and chemical-induced secondary OA models. In the chemical-induced OA model, intra-articular injection of interleukin (IL)1β induced more severe inflammation and cartilage degradation in the knee joints of Nell-1+/6R mice than in wildtype animals. Mechanistically, in addition to its pro-chondrogenic potency, NELL-1 also effectively suppressed the expression of inflammatory cytokines and their downstream cartilage catabolic enzymes by upregulating runt-related transcription factor (RUNX)1 in mouse and human articular cartilage chondrocytes. Notably, NELL-1 significantly reduced IL1β-stimulated inflammation and damage to articular cartilage in vivo. In particular, NELL-1 administration markedly reduced the symptoms of antalgic gait observed in IL1β-challenged Nell-1+/6R mice. Therefore, NELL-1 is a promising pro-chondrogenic, anti-inflammatory dual-functional disease-modifying osteoarthritis drug (DMOAD) candidate for preventing and suppressing arthritis-related cartilage damage.
Collapse
Affiliation(s)
- Chenshuang Li
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Zhong Zheng
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Pin Ha
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Wenlu Jiang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Emily A Berthiaume
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Seungjun Lee
- Department of Chemistry and Biochemistry, School of Letters and Science, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Zane Mills
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Hsinchuan Pan
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Eric C Chen
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Jie Jiang
- Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | | | - Xinli Zhang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Kang Ting
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
23
|
Cohen A, Polak D, Nir-Paz R, Westreich N, Casap N. Indirect Bactericidal Properties of Recombinant Human Bone Morphogenetic Protein 2 In Vitro. J Oral Maxillofac Surg 2019; 77:1611-1616. [PMID: 30928318 DOI: 10.1016/j.joms.2019.02.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/11/2019] [Accepted: 02/18/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Bone morphogenetic proteins (BMPs) are secreted cytokines and are involved in various metabolic functions and inflammatory processes in different organs. The purpose of this study was to investigate whether BMPs also possess antimicrobial properties in direct or indirect ways. MATERIALS AND METHODS Antibacterial properties of recombinant human BMP2 (rhBMP2) were tested on 4 bacteria species (Staphylococcus aureus, Escherichia coli, Streptococcus mitis, Streptococcus constellatus) to examine the potential synergism of rhBMP2 with antibiotics. Indirect antibacterial properties were tested by infecting neutrophils with rhBMP2 and bacteria to investigate bacterial survival. Reactive oxidative species (ROS) production in neutrophils in the presence of rhBMP2 also was tested. RESULTS RhBMP2 in cardboard disks or sponge collagen as carriers did not show antibacterial activity against all tested bacteria. Further, synergism of rhBMP2 with antibiotics was not evident. Survival of bacteria inoculated with neutrophils and rhBMP2 led to a marked decrease in bacterial survival compared with neutrophils without rhBMP2. Although rhBMP2 inoculation of neutrophils alone did not induce ROS, its presence with the bacterial infection showed augmented ROS production for all tested bacteria. CONCLUSIONS RhBMP2 did not show direct antibacterial properties but did exhibit an indirect bactericidal effect in the presence of neutrophils. ROS production indicated that rhBMP2 has a role as a priming agent for neutrophils by augmenting their bactericidal capabilities and suggests the importance of its presence in contaminated surgical bone augmentation sites.
Collapse
Affiliation(s)
- Adir Cohen
- Visiting (Attending), Department of Oral and Maxillofacial Surgery, Hebrew University-Hadassah, Jerusalem, Israel
| | - David Polak
- Visiting (Attending), Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| | - Ran Nir-Paz
- Professor of Microbiology and Visiting (Attending), Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Neetzan Westreich
- Student, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| | - Nardy Casap
- Professor and Head, Department of Oral and Maxillofacial Surgery, Hebrew University-Hadassah, Jerusalem, Israel.
| |
Collapse
|
24
|
Bone morphogenetic protein 6 (BMP-6) modulates lung function, pulmonary iron levels and cigarette smoke-induced inflammation. Mucosal Immunol 2019; 12:340-351. [PMID: 30542109 DOI: 10.1038/s41385-018-0116-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 10/16/2018] [Accepted: 11/20/2018] [Indexed: 02/04/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with abnormal inflammatory responses and airway wall remodeling, leading to reduced lung function. An association between the bone morphogenetic protein (BMP-6) locus and forced vital capacity has been found in a genome-wide association study. However, the role of BMP-6 in the pathogenesis of COPD remains unknown. The pulmonary expression of BMP-6 was analyzed in patients with COPD and in cigarette smoke (CS)-exposed mice. We evaluated lung function and histology in BMP-6 KO mice at baseline. We exposed BMP-6 KO mice to CS for 4 weeks and measured pulmonary inflammation and iron levels. Pulmonary mRNA levels of BMP-6 were decreased in smokers with and without COPD and in CS-exposed mice. Importantly, BMP-6 expression was lowest in severe COPD. Accordingly, protein levels of BMP-6 were decreased in patients with COPD. Lung function measurements demonstrated a decreased compliance and total lung capacity in BMP-6 KO mice, whereas lung histology was normal. Furthermore, BMP-6 KO mice displayed elevated iron levels and an aggravated CS-induced inflammatory response. These results suggest that BMP-6 is important for normal lung function and that downregulation of BMP-6-as observed in patients with COPD-contributes to pulmonary inflammation after CS exposure.
Collapse
|
25
|
TGFβ Superfamily Members as Regulators of B Cell Development and Function-Implications for Autoimmunity. Int J Mol Sci 2018; 19:ijms19123928. [PMID: 30544541 PMCID: PMC6321615 DOI: 10.3390/ijms19123928] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022] Open
Abstract
The TGFβ superfamily is composed of more than 33 growth and differentiation factors, including TGFβ1, β2, β3, BMPs, GDFs, nodal-related proteins, and activins. These members usually exert pleiotropic actions on several tissues and control multiple cellular processes, such as cell growth, cell survival, cell migration, cell fate specification, and differentiation, both during embryonic development and postnatal life. Although the effects of these factors on immune responses were elucidated long ago, most studies have been focused on the actions of TGFβs on T cells, as major regulators of adaptive immunity. In this review, we discuss new findings about the involvement of TGFβ superfamily members in the control of B cell development and function. Moreover, the potential contribution of TGFβ signaling to control B cell-mediated autoimmune diseases and its utility in the design of new therapies are also discussed.
Collapse
|
26
|
Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, Kaplan FS, Shore EM. Depletion of Mast Cells and Macrophages Impairs Heterotopic Ossification in an Acvr1 R206H Mouse Model of Fibrodysplasia Ossificans Progressiva. J Bone Miner Res 2018; 33:269-282. [PMID: 28986986 PMCID: PMC7737844 DOI: 10.1002/jbmr.3304] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 09/27/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Heterotopic ossification (HO) is a clinical condition that often reduces mobility and diminishes quality of life for affected individuals. The most severe form of progressive HO occurs in those with fibrodysplasia ossificans progressiva (FOP; OMIM #135100), a genetic disorder caused by a recurrent heterozygous gain-of-function mutation (R206H) in the bone morphogenetic protein (BMP) type I receptor ACVR1/ALK2. In individuals with FOP, episodes of HO frequently follow injury. The first sign of active disease is commonly an inflammatory "flare-up" that precedes connective tissue degradation, progenitor cell recruitment, and endochondral HO. We used a conditional-on global knock-in mouse model expressing Acvr1R206H (referred to as Acvr1cR206H/+ ) to investigate the cellular and molecular inflammatory response in FOP lesions following injury. We found that the Acvr1 R206H mutation caused increased BMP signaling in posttraumatic FOP lesions and early divergence from the normal skeletal muscle repair program with elevated and prolonged immune cell infiltration. The proinflammatory cytokine response of TNFα, IL-1β, and IL-6 was elevated and prolonged in Acvr1cR206H/+ lesions and in Acvr1cR206H/+ mast cells. Importantly, depletion of mast cells and macrophages significantly impaired injury-induced HO in Acvr1cR206H/+ mice, reducing injury-induced HO volume by ∼50% with depletion of each cell population independently, and ∼75% with combined depletion of both cell populations. Together, our data show that the immune system contributes to the initiation and development of HO in FOP. Further, the expression of Acvr1R206H in immune cells alters cytokine expression and cellular response to injury and unveils novel therapeutic targets for treatment of FOP and nongenetic forms of HO. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Michael R Convente
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Salin A Chakkalakal
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - EnJun Yang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Caron
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Deyu Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Abstract
Fanconi anemia is an inherited disease characterized by genomic instability, hypersensitivity to DNA cross-linking agents, bone marrow failure, short stature, skeletal abnormalities, and a high relative risk of myeloid leukemia and epithelial malignancies. The 21 Fanconi anemia genes encode proteins involved in multiple nuclear biochemical pathways that effect DNA interstrand crosslink repair. In the past, bone marrow failure was attributed solely to the failure of stem cells to repair DNA. Recently, non-canonical functions of many of the Fanconi anemia proteins have been described, including modulating responses to oxidative stress, viral infection, and inflammation as well as facilitating mitophagic responses and enhancing signals that promote stem cell function and survival. Some of these functions take place in non-nuclear sites and do not depend on the DNA damage response functions of the proteins. Dysfunctions of the canonical and non-canonical pathways that drive stem cell exhaustion and neoplastic clonal selection are reviewed, and the potential therapeutic importance of fully investigating the scope and interdependences of the canonical and non-canonical pathways is emphasized.
Collapse
Affiliation(s)
- Grover Bagby
- Departments of Medicine and Molecular and Medical Genetics, Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
28
|
MicroRNA-145-5p and microRNA-320a encapsulated in endothelial microparticles contribute to the progression of vasculitis in acute Kawasaki Disease. Sci Rep 2018; 8:1016. [PMID: 29343815 PMCID: PMC5772486 DOI: 10.1038/s41598-018-19310-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/28/2017] [Indexed: 12/12/2022] Open
Abstract
Kawasaki Disease (KD) is an acute inflammatory disease that takes the form of systemic vasculitis. Endothelial microparticles (EMPs) have been recognized as an important transcellular delivery system. We hypothesized whether EMPs are involved in vasculitis in acute KD. Fifty patients with acute KD were enrolled, divided into two subgroups: those with coronary artery lesions (CAL) (n = 5) and those without CAL (NCAL) (n = 45). EMPs were measured using flow cytometry, and microRNA (miR) expression profiling was performed by microRNA array. The percentage of EMPs in acute KD was significantly higher than in controls (P < 0.0001). EMPs in patients with CAL rapidly increased after the initial treatment, and was significantly higher than those in NCAL (P < 0.001). In patients with CAL, we identified 2 specific miRs encapsulated in EMPs, hsa-miR-145-5p and hsa-miR-320a, which are predicted to affect monocyte function using in silico analysis, and were demonstrated to upregulate inflammatory cytokine mRNAs in THP-1 monocytes. In situ hybridization confirmed that hsa-miR-145-5p was preferentially expressed in CAL. EMPs may serve as a sensitive marker for the severity of vasculitis in acute KD. Moreover, these 2 specific miRs encapsulated in EMPs might be involved in inflammatory cytokine regulation and the pathogenesis of vasculitis in acute KD.
Collapse
|
29
|
Reprogramming of pro-inflammatory human macrophages to an anti-inflammatory phenotype by bile acids. Sci Rep 2018; 8:255. [PMID: 29321478 PMCID: PMC5762890 DOI: 10.1038/s41598-017-18305-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022] Open
Abstract
Cholestasis is caused by autoimmune reactions, drug-induced hepatotoxicity, viral infections of the liver and the obstruction of bile ducts by tumours or gallstones. Cholestatic conditions are associated with impaired innate and adaptive immunity, including alterations of the cellular functions of monocytes, macrophages, NK cells and T-cells. Bile acids act as signalling molecules, affecting lipopolysaccharide (LPS)-induced cytokine expression in primary human macrophages. The present manuscript investigates the impact of bile acids, such as taurolithocholic acid (TLC), on the transcriptome of human macrophages in the presence or absence of LPS. While TLC itself has almost no effect on gene expression under control conditions, this compound modulates the expression of 202 out of 865 transcripts in the presence of LPS. Interestingly, pathway analysis revealed that TLC specifically supressed the expression of genes involved in mediating pro-inflammatory effects, phagocytosis, interactions with pathogens and autophagy as well as the recruitment of immune cells, such as NK cells, neutrophils and T cells. These data indicate a broad influence of bile acids on inflammatory responses and immune functions in macrophages. These findings may contribute to the clinical observation that patients with cholestasis present a lack of response to bacterial or viral infections.
Collapse
|
30
|
Weber A, Chan PMB, Wen C. Do immune cells lead the way in subchondral bone disturbance in osteoarthritis? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 148:21-31. [PMID: 29277342 DOI: 10.1016/j.pbiomolbio.2017.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 01/06/2023]
Abstract
Osteoarthritis (OA) is a whole-joint disorder, and non-cartilage articular pathologies, e.g. subchondral bone disturbance, contribute substantially to the onset and progression of the disease. In the early stage of OA, abnormal mechanical loading leads to micro-cracks or micro-fractures that trigger a reparative process with angiogenesis and inflammatory response. With the progression of disease, cystic lesion, sclerosis and osteophytosis occur at tissue level, and osteoblast dysfunction at cellular level. Osteoblasts derived from OA sclerotic bone produce increased amount of type I collagen with aberrant Col1A1/A2 ratio and poor mineralization capability. The coupling mechanism of bone resorption with formation is also impaired with elevated osteoclastic activities. All these suggest a view that OA subchondral bone presents a defective fracture repair process in a chronic course. It has been found that T and B cells, the major effectors in the adaptive immunity, take part in the hard callus formation at fracture site in addition to the initial phase of haematoma and inflammation. Infiltration of lymphocytes could interplay with osteoclasts and osteoblasts via a direct physical cell-to-cell contact. Several lines of evidence have consistently shown the involvement of T and B cells in osteoclastogenesis and bone erosion in arthritic joints. Yet the biological link between immune cells and osteoblastic function remains ambiguous. This review will discuss the current knowledge regarding the role of immune cells in bone remodelling, and address its implications in emerging basic and clinical investigations into the pathogenesis and management of subchondral bone pathologies in OA.
Collapse
Affiliation(s)
- Adrian Weber
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Pok Man Boris Chan
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| |
Collapse
|
31
|
Del Zotto G, Antonini F, Azzari I, Ortolani C, Tripodi G, Giacopelli F, Cappato S, Moretta L, Ravazzolo R, Bocciardi R. Peripheral Blood Mononuclear Cell Immunophenotyping in Fibrodysplasia Ossificans Progressiva Patients: Evidence for Monocyte DNAM1 Up-regulation. CYTOMETRY PART B-CLINICAL CYTOMETRY 2017; 94:613-622. [PMID: 28985649 DOI: 10.1002/cyto.b.21594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/10/2017] [Accepted: 10/02/2017] [Indexed: 11/09/2022]
Abstract
BACKGROUND Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder caused by sporadic heterozygous mutations in ACVR1 gene which progressively leads to severe heterotopic ossification. FOP is characterized by episodic flare-ups triggered by different factors such as viral infections, tissue injuries, vaccinations, or occurring without a recognizable cause. The sporadic course of the disease, the documented presence of an important inflammatory reaction in early lesions and the partial response to corticosteroids support the idea that the immune system, and in particular the innate component, may play a role in FOP pathogenesis. However, an extensive expression profile of the peripheral blood mononuclear cells (PBMC) of FOP patients has never been done. METHODS In this study, we carried out a wide PBMC immunophenotyping on a cohort of FOP patients and matching controls by multiparametric analysis of the expression of a panel of 37 markers associated with migration, adhesion, inhibition, activation, and cell death of circulating immune cells. RESULTS We observed a statistically significant increase of the expression of DNAM1 receptor in patients' monocytes as compared to controls, and little but significant differences in the expression profile of CXCR1 (CD181), CD62L, CXCR4 (CD184), and HLA-DR molecules. CONCLUSIONS DNAM1 had been previously shown to play a pivotal role in monocyte migration through the endothelial barrier and the increased expression detected in patients' monocytes might suggest a role of this surface receptor during the early phases of FOP flare-ups in which the activation of the immune response is believed to represent a crucial event. © 2017 International Clinical Cytometry Society.
Collapse
Affiliation(s)
| | | | - Irma Azzari
- IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino, Pesaro-Urbino, Italy
| | | | - Francesca Giacopelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health and CEBR, Università degli Studi di Genova, Genova, Italy
| | - Serena Cappato
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health and CEBR, Università degli Studi di Genova, Genova, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Roberto Ravazzolo
- IRCCS Istituto Giannina Gaslini, Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health and CEBR, Università degli Studi di Genova, Genova, Italy
| | - Renata Bocciardi
- IRCCS Istituto Giannina Gaslini, Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health and CEBR, Università degli Studi di Genova, Genova, Italy
| |
Collapse
|
32
|
Martínez VG, Rubio C, Martínez-Fernández M, Segovia C, López-Calderón F, Garín MI, Teijeira A, Munera-Maravilla E, Varas A, Sacedón R, Guerrero F, Villacampa F, de la Rosa F, Castellano D, López-Collazo E, Paramio JM, Vicente Á, Dueñas M. BMP4 Induces M2 Macrophage Polarization and Favors Tumor Progression in Bladder Cancer. Clin Cancer Res 2017; 23:7388-7399. [DOI: 10.1158/1078-0432.ccr-17-1004] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/21/2017] [Accepted: 09/12/2017] [Indexed: 11/16/2022]
|
33
|
Nicolls MR, Voelkel NF. The Roles of Immunity in the Prevention and Evolution of Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2017; 195:1292-1299. [PMID: 27786553 PMCID: PMC5443903 DOI: 10.1164/rccm.201608-1630pp] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/21/2016] [Indexed: 12/31/2022] Open
Affiliation(s)
- Mark R. Nicolls
- Division of Pulmonary and Critical Care Medicine, Veterans Affairs Palo Alto/Stanford University, Palo Alto, California; and
| | - Norbert F. Voelkel
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
34
|
Dharmarajan S, Fisk DL, Sorenson CM, Sheibani N, Belecky-Adams TL. Microglia activation is essential for BMP7-mediated retinal reactive gliosis. J Neuroinflammation 2017; 14:76. [PMID: 28381236 PMCID: PMC5382432 DOI: 10.1186/s12974-017-0855-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/27/2017] [Indexed: 02/08/2023] Open
Abstract
Background Our previous studies have shown that BMP7 is able to trigger activation of retinal macroglia. However, these studies showed the responsiveness of Müller glial cells and retinal astrocytes in vitro was attenuated in comparison to those in vivo, indicating other retinal cell types may be mediating the response of the macroglial cells to BMP7. In this study, we test the hypothesis that BMP7-mediated gliosis is the result of inflammatory signaling from retinal microglia. Methods Adult mice were injected intravitreally with BMP7 and eyes harvested 1, 3, or 7 days postinjection. Some mice were treated with PLX5622 (PLX) to ablate microglia and were subsequently injected with control or BMP7. Processed tissue was analyzed via immunofluorescence, RT-qPCR, or ELISA. In addition, cultures of retinal microglia were treated with vehicle, lipopolysaccharide, or BMP7 to determine the effects of BMP7-isolated cells. Results Mice injected with BMP7 showed regulation of various inflammatory markers at the RNA level, as well as changes in microglial morphology. Isolated retinal microglia also showed an upregulation of BMP-signaling components following treatment. In vitro treatment of retinal astrocytes with conditioned media from activated microglia upregulated RNA levels of gliosis markers. In the absence of microglia, the mouse retina showed a subdued gliosis and inflammatory response when exposed to BMP7. Conclusions Gliosis resulting from BMP7 is mediated through an inflammatory response from retinal microglia. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0855-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Subramanian Dharmarajan
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, SL306, Indianapolis, IN, 46202, USA.,Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA
| | - Debra L Fisk
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 9453 WIMR, Madison, WI, 53705, USA
| | - Christine M Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 9453 WIMR, Madison, WI, 53705, USA
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 9453 WIMR, Madison, WI, 53705, USA
| | - Teri L Belecky-Adams
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, SL306, Indianapolis, IN, 46202, USA. .,Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
35
|
TSG-6 secreted by mesenchymal stem cells suppresses immune reactions influenced by BMP-2 through p38 and MEK mitogen-activated protein kinase pathway. Cell Tissue Res 2017; 368:551-561. [PMID: 28247086 DOI: 10.1007/s00441-017-2581-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/26/2016] [Indexed: 12/31/2022]
Abstract
Bone morphogenetic protein 2 (BMP-2) has a critical function in bone and cartilage development and in repairing damaged organs and tissue. However, clinical use of BMP-2 at doses of 0.5-1 mg/ml for orthopedics has been associated with severe postoperative swelling requiring emergency surgical intervention. We determined whether a high concentration of BMP-2 induces inflammatory responses in macrophages and the suppression of osteogenesis in hMSCs. We obtained human periodontal ligament stem cells and bone marrow stem cells from the maxilla, i.e., human mesenchymal stem cells (hMSCs), from the periodontal ligament of extracted third molar teeth and from the bone marrow of the maxilla, respectively. Osteogenic differentiation was measured by alkaline phosphatase activity and alizarin red S staining. Proteins were assessed by flow cytometry, enzyme-linked immunosorbent assay, Western blot and immunocytochemistry. Changes of gene expression were measured by reverse transcription plus the polymerase chain reaction (RT-PCR) and real-time PCR. A high BMP-2 concentration inhibited the early stages of osteogenesis in hMSCs. Co-culturing THP-1 cells (human monocytic cells) with hMSCs reduced the late stages of osteogenesis compared with those seen in hMSCs alone. In addition, high-dose BMP-2 induced the expression of inflammatory cytokines in THP-1 cells and the expression of the anti-inflammatory cytokine tumor-necrosis-factor-α-inducible gene 6 protein (TSG-6) in hMSCs. Consistent with the anti-inflammatory effects of hMSCs when co-cultured with THP-1 cells, interleukin-1β expression was downregulated by TSG-6 treatment of THP-1 cells. Our findings suggest that a high BMP-2 concentration triggers inflammation that causes inflammatory cytokine release from THP-1 cells, leading to the suppression of osteogenesis, whereas TSG-6 secreted by hMSCs suppresses inflammatory reactions through p38 and ERK in the mitogen-activated protein kinase pathway.
Collapse
|
36
|
|
37
|
Gratchev A. TGF-β signalling in tumour associated macrophages. Immunobiology 2016; 222:75-81. [PMID: 26876591 DOI: 10.1016/j.imbio.2015.11.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022]
Abstract
Tumour associated macrophages (TAM) represent an important component of tumour stroma. They develop under the influence of tumour microenvironment where transforming growth factor (TGF)β is frequently present. Activities of TAM regulated by TGFβ stimulate proliferation of tumour cells and lead to tumour immune escape. Despite high importance of TGFβ-induction of TAM activities till now our understanding of the mechanism of this induction is limited. We have previously developed a model of type 2 macrophages (M2) resembling certain properties of TAM. We established that in M2 TGFβRII is regulated on the level of subcellular sorting by glucocorticoids. Further studies revealed that in M2 with high levels of TGFβRII on the surface TGFβ activates not only its canonical Smad2/3-mediated signaling, but also Smad1/5-mediated signaling, what is rather typical for bone morphogenetic protein (BMP) stimulation. Complexity of macrophage populations, however, allows assumption that TGFβ signalling may function in different ways depending on the functional state of the cell. To understand the peculiarities of TGFβ signalling in human TAMs experimental systems using primary cells have to be developed and used together with the modern mathematical modelling approaches.
Collapse
Affiliation(s)
- Alexei Gratchev
- Blokhin Cancer Research Center, Moscow, Russia; Laboratory for translational cellular and molecular biomedicine, Tomsk State University, Tomsk, Russia.
| |
Collapse
|
38
|
Kaplan FS, Pignolo RJ, Shore EM. Granting immunity to FOP and catching heterotopic ossification in the Act. Semin Cell Dev Biol 2016; 49:30-6. [PMID: 26706149 PMCID: PMC4898187 DOI: 10.1016/j.semcdb.2015.12.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 01/02/2023]
Abstract
The progressive transformation of one organ system into another is a fundamental signature of fibrodysplasia ossificans progressiva (FOP), the most catastrophic form of extraskeletal bone formation in humans. In all affected individuals, FOP is caused by heterozygous missense gain-of-function mutations in Activin receptor A type I (ACVR1), a bone morphogenetic protein (BMP) type I receptor. Loss of autoinhibition of the mutant receptor (mACVR1) results in dysregulated BMP pathway signaling, and is necessary for the myriad developmental features of FOP, but does not appear sufficient to induce the episodic flare-ups that lead to disabling post-natal heterotopic endochondral ossification (HEO) and that are a hallmark of the disease. Post-natal FOP flare-ups strongly implicate an underlying immunological trigger involving inflammation and the innate immune system. Recent studies implicate canonical and non-canonical TGFβ/BMP family ligands in the amplification of mACVR1 signaling leading to the formation of FOP lesions and resultant HEO. BMP and Activin ligands that stimulate mACVR1 signaling also have critical regulatory functions in the immune system. Cross-talk between the morphogenetic and immunological pathways that regulate tissue maintenance and wound healing identifies potential robust therapeutic targets for FOP. Here we review current evidence for an immunological trigger for flare-ups and HEO in FOP, propose a working schema for the pathophysiology of observed phenomena, and highlight outstanding questions under investigation.
Collapse
Affiliation(s)
- Frederick S Kaplan
- The Department of Orthopaedic Surgery, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA 19104, USA; The Department of Medicine, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA 19104, USA; The Center for Research in FOP & Related Disorders, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Robert J Pignolo
- The Department of Orthopaedic Surgery, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA 19104, USA; The Department of Medicine, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA 19104, USA; The Center for Research in FOP & Related Disorders, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Eileen M Shore
- The Department of Orthopaedic Surgery, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA 19104, USA; The Department of Genetics, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA 19104, USA; The Center for Research in FOP & Related Disorders, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
39
|
Yadin D, Knaus P, Mueller TD. Structural insights into BMP receptors: Specificity, activation and inhibition. Cytokine Growth Factor Rev 2015; 27:13-34. [PMID: 26690041 DOI: 10.1016/j.cytogfr.2015.11.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 11/13/2015] [Indexed: 12/29/2022]
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β family (TGFβ), which signal through hetero-tetrameric complexes of type I and type II receptors. In humans there are many more TGFβ ligands than receptors, leading to the question of how particular ligands can initiate specific signaling responses. Here we review structural features of the ligands and receptors that contribute to this specificity. Ligand activity is determined by receptor-ligand interactions, growth factor prodomains, extracellular modulator proteins, receptor assembly and phosphorylation of intracellular signaling proteins, including Smad transcription factors. Detailed knowledge about the receptors has enabled the development of BMP-specific type I receptor kinase inhibitors. In future these may help to treat human diseases such as fibrodysplasia ossificans progressiva.
Collapse
Affiliation(s)
- David Yadin
- Institute for Chemistry and Biochemistry, Free University Berlin, Institute of Chemistry and Biochemistry, D-14195 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Campus Virchow Klinikum, Augustenburger Platz 1, D-13351 Berlin, Germany.
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Free University Berlin, Institute of Chemistry and Biochemistry, D-14195 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Campus Virchow Klinikum, Augustenburger Platz 1, D-13351 Berlin, Germany.
| | - Thomas D Mueller
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute of the University Wuerzburg, Julius-von-Sachs-Platz 2, D-97082 Wuerzburg, Germany.
| |
Collapse
|
40
|
Varas A, Valencia J, Lavocat F, Martínez VG, Thiam NN, Hidalgo L, Fernández-Sevilla LM, Sacedón R, Vicente A, Miossec P. Blockade of bone morphogenetic protein signaling potentiates the pro-inflammatory phenotype induced by interleukin-17 and tumor necrosis factor-α combination in rheumatoid synoviocytes. Arthritis Res Ther 2015. [PMID: 26215036 PMCID: PMC4517404 DOI: 10.1186/s13075-015-0710-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Introduction Bone morphogenetic proteins (BMPs) are multifunctional secreted growth factors regulating a broad spectrum of functions in numerous systems. An increased expression and production of specific BMPs have been described in the rheumatoid arthritis (RA) synovium. The aim of this study was to analyze the involvement of the BMP signaling pathway in RA synoviocytes in response to interleukin-17 (IL-17) and tumor necrosis factor-alpha (TNF-α). Methods The expression of components of the BMP signaling pathway (BMP receptors, BMP ligands, BMP signal transducers, and BMP antagonists) was analyzed by quantitative polymerase chain reaction before and after treatment of RA synoviocytes with TNF-α or IL-17 or both. Regulation was studied in the presence of the specific BMP inhibitor DMH1 (dorsomorphin homologue 1) or an exogenous BMP ligand, BMP6. Expression and production of pro-inflammatory cytokines (IL-6 and granulocyte-macrophage colony-stimulating factor), chemokines (IL-8, CCL2, CCL5, and CXCL10), and matrix metalloproteinases (MMP-1, −2, −3, −9, and −13) were analyzed. Results RA synoviocytes express BMP receptors (mainly BMPRIA, ACTRIA, and BMPRII), signal transducers of the Smad family (Smad1 and 5 and co-Smad4), and different BMP antagonists. The modulation of the expression of the BMP target genes—Id (inhibitor of DNA-binding/differentiation) proteins and Runx (Runt-related transcription factor) transcription factors—after the addition of exogenous BMP shows that the BMP signaling pathway is active. RA synoviocytes also express BMP ligands (BMP2, BMP6, and BMP7) which are highly upregulated after activation with TNF-α and IL-17. Autocrine BMP signaling pathway can be blocked by treatment with the inhibitor DMH1, leading to an increase in the upregulated expression of pro-inflammatory cytokines, chemokines, and MMPs induced by the activation of RA synoviocytes with TNF-α and IL-17. Conversely, the additional stimulation of the BMP pathway with the exogenous addition of the BMP6 ligand decreases the expression of those pro-inflammatory and pro-destructive factors. Conclusion The results indicate that the canonical BMP pathway is functionally active in human RA synoviocytes and that the inhibition of autocrine BMP signaling exacerbates the pro-inflammatory phenotype induced in RA synoviocytes by the stimulation with IL-17 and TNF-α.
Collapse
Affiliation(s)
- Alberto Varas
- Department of Cell Biology, Faculty of Medicine, Complutense University, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain.
| | - Jaris Valencia
- Department of Cell Biology, Faculty of Medicine, Complutense University, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain.
| | - Fabien Lavocat
- Immunogenomics and Inflammation Research Unit and Department of Clinical Immunology and Rheumatology, Hospices Civils de Lyon, EA 4130 University of Lyon 1, Hôpital Edouard Herriot, Lyon, 69437, France.
| | - Víctor G Martínez
- Department of Cell Biology, Faculty of Medicine, Complutense University, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain.
| | - Ndiémé Ndongo Thiam
- Immunogenomics and Inflammation Research Unit and Department of Clinical Immunology and Rheumatology, Hospices Civils de Lyon, EA 4130 University of Lyon 1, Hôpital Edouard Herriot, Lyon, 69437, France.
| | - Laura Hidalgo
- Department of Cell Biology, Faculty of Medicine, Complutense University, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain.
| | - Lidia M Fernández-Sevilla
- Department of Cell Biology, Faculty of Medicine, Complutense University, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain.
| | - Rosa Sacedón
- Department of Cell Biology, Faculty of Medicine, Complutense University, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain.
| | - Angeles Vicente
- Department of Cell Biology, Faculty of Medicine, Complutense University, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain.
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit and Department of Clinical Immunology and Rheumatology, Hospices Civils de Lyon, EA 4130 University of Lyon 1, Hôpital Edouard Herriot, Lyon, 69437, France.
| |
Collapse
|
41
|
Owens P, Pickup MW, Novitskiy SV, Giltnane JM, Gorska AE, Hopkins CR, Hong CC, Moses HL. Inhibition of BMP signaling suppresses metastasis in mammary cancer. Oncogene 2015; 34:2437-49. [PMID: 24998846 PMCID: PMC4689138 DOI: 10.1038/onc.2014.189] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 12/12/2022]
Abstract
Bone morphogenetic proteins (BMPs) are secreted cytokines/growth factors that have differing roles in cancer. BMPs are overexpressed in human breast cancers, but loss of BMP signaling in mammary carcinomas can accelerate metastasis. We show that human breast cancers display active BMP signaling, which is rarely downregulated or homozygously deleted. We hypothesized that systemic inhibition of BMP signaling in both the tumor and the surrounding microenvironment could prevent tumor progression and metastasis. To test this hypothesis, we used DMH1, a BMP antagonist, in MMTV.PyVmT expressing mice. Treatment with DMH1 reduced lung metastasis and the tumors were less proliferative and more apoptotic. In the surrounding tumor microenvironment, treatment with DMH1 altered fibroblasts, lymphatic vessels and macrophages to be less tumor promoting. These results indicate that inhibition of BMP signaling may successfully target both the tumor and the surrounding microenvironment to reduce tumor burden and metastasis.
Collapse
Affiliation(s)
- P Owens
- Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M W Pickup
- Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - S V Novitskiy
- Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J M Giltnane
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - A E Gorska
- Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - C R Hopkins
- 1] Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN, USA [2] Department of Chemistry, Vanderbilt University College of Arts and Science, Nashville, TN, USA
| | - C C Hong
- 1] Research Medicine, Veterans Affairs TVHS, Nashville, TN, USA [2] Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - H L Moses
- 1] Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA [2] Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
42
|
Dzik JM. Evolutionary roots of arginase expression and regulation. Front Immunol 2014; 5:544. [PMID: 25426114 PMCID: PMC4224125 DOI: 10.3389/fimmu.2014.00544] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/13/2014] [Indexed: 12/11/2022] Open
Abstract
Two main types of macrophage functions are known: classical (M1), producing nitric oxide, NO, and M2, in which arginase activity is primarily expressed. Ornithine, the product of arginase, is a substrate for synthesis of polyamines and collagen, important for growth and ontogeny of animals. M2 macrophages, expressing high level of mitochondrial arginase, have been implicated in promoting cell division and deposition of collagen during ontogeny and wound repair. Arginase expression is the default mode of tissue macrophages, but can also be amplified by signals, such as IL-4/13 or transforming growth factor-β (TGF-β) that accelerates wound healing and tissue repair. In worms, the induction of collagen gene is coupled with induction of immune response genes, both depending on the same TGF-β-like pathway. This suggests that the main function of M2 “heal” type macrophages is originally connected with the TGF-β superfamily of proteins, which are involved in regulation of tissue and organ differentiation in embryogenesis. Excretory–secretory products of metazoan parasites are able to induce M2-type of macrophage responses promoting wound healing without participation of Th2 cytokines IL-4/IL-13. The expression of arginase in lower animals can be induced by the presence of parasite antigens and TGF-β signals leading to collagen synthesis. This also means that the main proteins, which, in primitive metazoans, are involved in regulation of tissue and organ differentiation in embryogenesis are produced by innate immunity. The signaling function of NO is known already from the sponge stage of animal evolution. The cytotoxic role of NO molecule appeared later, as documented in immunity of marine mollusks and some insects. This implies that the M2-wound healing promoting function predates the defensive role of NO, a characteristic of M1 macrophages. Understanding when and how the M1 and M2 activities came to be in animals is useful for understanding how macrophage immunity, and immune responses operate.
Collapse
Affiliation(s)
- Jolanta Maria Dzik
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW , Warszawa , Poland
| |
Collapse
|
43
|
Sun SX, Guo HH, Zhang J, Yu B, Sun KN, Jin QH. BMP-2 and titanium particles synergistically activate osteoclast formation. ACTA ACUST UNITED AC 2014; 47:461-9. [PMID: 24820069 PMCID: PMC4086172 DOI: 10.1590/1414-431x20132966] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 11/25/2013] [Indexed: 02/06/2023]
Abstract
A previous study showed that BMP-2 (bone morphogenetic protein-2) and wear debris can
separately support osteoclast formation induced by the receptor activator of NF-κB
ligand (RANKL). However, the effect of BMP-2 on wear debris-induced osteoclast
formation is unclear. In this study, we show that neither titanium particles nor
BMP-2 can induce osteoclast formation in RAW 264.7 mouse leukemic monocyte macrophage
cells but that BMP-2 synergizes with titanium particles to enhance osteoclast
formation in the presence of RANKL, and that at a low concentration, BMP-2 has an
optimal effect to stimulate the size and number of multinuclear osteoclasts,
expression of osteoclast genes, and resorption area. Our data also clarify that the
effects caused by the increase in BMP-2 on phosphorylated SMAD levels such as c-Fos
expression increased throughout the early stages of osteoclastogenesis. BMP-2 and
titanium particles stimulate the expression of p-JNK, p-P38, p-IkB, and P50 compared
with the titanium group. These data suggested that BMP-2 may be a crucial factor in
titanium particle-mediated osteoclast formation.
Collapse
Affiliation(s)
- S X Sun
- Department of Orthopedics, Affiliated Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - H H Guo
- Ningxia Medical University, Ningxia Hui Autonomous Region, China
| | - J Zhang
- Institute of Pathology, Xi'an Jiaotong University, Xi'an Shaanxi, China
| | - B Yu
- Ningxia Medical University, Ningxia Hui Autonomous Region, China
| | - K N Sun
- Department of Orthopedics, Affiliated Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Q H Jin
- Department of Orthopedics, Affiliated Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
44
|
Martínez VG, Hidalgo L, Valencia J, Hernández-López C, Entrena A, del Amo BG, Zapata AG, Vicente A, Sacedón R, Varas A. Autocrine activation of canonical BMP signaling regulates PD-L1 and PD-L2 expression in human dendritic cells. Eur J Immunol 2014; 44:1031-8. [PMID: 24532425 DOI: 10.1002/eji.201343693] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 12/16/2013] [Accepted: 01/14/2014] [Indexed: 12/30/2022]
Abstract
Bone morphogenetic proteins (BMPs) are multifunctional growth factors regulating differentiation and proliferation in numerous systems including the immune system. Previously, we described that the BMP signaling pathway is functional in human monocyte-derived dendritic cells (MoDCs), which were found to express both the specific receptors and the Smad proteins required for signal transduction. In this study, we provide evidence that human MoDCs produce BMP-4 and that this production is increased over the maturation process as is BMP signal transduction. When DCs are matured in the presence of an inhibitor of the BMP pathway, the expression of the maturation markers PD-L1 and PD-L2 is reduced, while cytokine production is not affected. As a result, these mature DCs present an augmented ability to stimulate both T cells and NK cells. Eventually, the inhibition of BMP signaling during maturation causes a reduced expression of IRF-1, a transcription factor that positively regulates the expression of PD-L1 and PD-L2. The present study indicates that the BMP signaling pathway regulates PD-L1 and PD-L2 expression in human MoDCs during the maturation process, probably through the IRF-1 transcription factor, and also points out that the manipulation of BMP signaling might considerably improve the immunogenicity of MoDCs used in immunotherapy.
Collapse
Affiliation(s)
- Víctor G Martínez
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kwon SJ, Lee GT, Lee JH, Iwakura Y, Kim WJ, Kim IY. Mechanism of pro-tumorigenic effect of BMP-6: neovascularization involving tumor-associated macrophages and IL-1a. Prostate 2014; 74:121-33. [PMID: 24185914 DOI: 10.1002/pros.22734] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/05/2013] [Indexed: 12/13/2022]
Abstract
INTRODUCTION. Overexpression of bone morphogenetic protein-6 (BMP-6) has been reported in human prostate cancer tissues. Previously we have demonstrated that BMP-6 enhances prostate cancer growth in mice and not in tissue culture. Herein, we have investigated the mechanism of BMP-6’s pro-tumorigenic effect in prostate cancer. METHODS. Tramp C2 murine and LNCaP human prostate cancer cell lines were co-cultured with RAW 264.7 and THP-1 cells, respectively. IL-1a knockout mice were used to confirm the role of BMP-6/IL-1a loop in vivo. Lastly, conditional macrophage null mice cd11b-DTR was used. RESULTS. The results demonstrated that BMP-6 induced the expression of IL-1a in macrophages via a cross-talk between NF-kB1 p50 and Smad1. When endothelial cells were treated with conditioned media harvested from macrophages incubated with BMP-6, tube formation was detected. In the presence of IL-1a neutralizing antibody, endothelial tube formation was blocked. In vivo, tumor growth and neovascularization decreased significantly when BMP-6 was expressed in IL-1a knockout and conditional macrophage-null mice. CONCLUSIONS. Prostate cancer-derived BMP-6 stimulates tumor-associated macrophages to produce IL-1a through a crosstalk between Smad1 and NF-kB1; IL-1a, in turn, promotes angiogenesis and prostate cancer growth.
Collapse
|
46
|
Santoni M, Massari F, Amantini C, Nabissi M, Maines F, Burattini L, Berardi R, Santoni G, Montironi R, Tortora G, Cascinu S. Emerging role of tumor-associated macrophages as therapeutic targets in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 2013; 62:1757-68. [PMID: 24132754 PMCID: PMC11029754 DOI: 10.1007/s00262-013-1487-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/07/2013] [Indexed: 01/08/2023]
Abstract
Tumor-associated macrophages (TAMs) derived from peripheral blood monocytes recruited into the renal cell carcinoma (RCC) microenvironment. In response to inflammatory stimuli, macrophages undergo M1 (classical) or M2 (alternative) activation. M1 cells produce high levels of inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-12, IL-23 and IL-6, while M2 cells produce anti-inflammatory cytokines, such as IL-10, thus contributing to RCC-related immune dysfunction. The presence of extensive TAM infiltration in RCC microenvironment contributes to cancer progression and metastasis by stimulating angiogenesis, tumor growth, and cellular migration and invasion. Moreover, TAMs are involved in epithelial-mesenchymal transition of RCC cancer cells and in the development of tumor resistance to targeted agents. Interestingly, macrophage autophagy seems to play an important role in RCC. Based on this scenario, TAMs represent a promising and effective target for cancer therapy in RCC. Several strategies have been proposed to suppress TAM recruitment, to deplete their number, to switch M2 TAMs into antitumor M1 phenotype and to inhibit TAM-associated molecules. In this review, we summarize current data on the essential role of TAMs in RCC angiogenesis, invasion, impaired anti-tumor immune response and development of drug resistance, thus describing the emerging TAM-centered therapies for RCC patients.
Collapse
Affiliation(s)
- Matteo Santoni
- Medical Oncology, AOU Ospedali Riuniti, Polytechnic University of the Marche Region, via Conca 71, 60126, Ancona, Italy,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lee GT, Jung YS, Ha YS, Kim JH, Kim WJ, Kim IY. Bone morphogenetic protein-6 induces castration resistance in prostate cancer cells through tumor infiltrating macrophages. Cancer Sci 2013; 104:1027-32. [PMID: 23710822 DOI: 10.1111/cas.12206] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/23/2013] [Accepted: 04/29/2013] [Indexed: 01/16/2023] Open
Abstract
Bone morphogenetic protein (BMP) is a pleiotropic growth factor that has been implicated in inflammation and prostate cancer (CaP) progression. We investigated the potential role of BMP-6 in the context of macrophages and castration-resistant prostate cancer. When the androgen-responsive murine (Tramp-C1 and PTENCaP8) and human (LNCaP) CaP cell lines were cocultured with macrophages in the presence of dihydrotestosterone, BMP-6 increased androgen-responsive promoter activity and cell count significantly. Subsequent studies revealed that BMP-6 increased the expression level of androgen receptor (AR) mRNA and protein in CaP cell lines only in the presence of macrophages. Simultaneously, the AR antagonists bicalutamide and MDV3100 partially or completely blocked BMP-6-induced macrophage-mediated androgen hypersensitivity in CaP cells. Abolishing interleukin-6 signaling with neutralizing antibody in CaP/macrophage cocultures inhibited the BMP-6-mediated AR upregulation in CaP cells. Using Tramp-C1 and PTENCaP8 cells with a tetracycline-inducible expression of BMP-6, the induction of BMP-6 in vivo resulted in a significant resistance to castration. However, this resistance was blocked after the removal of macrophages with clodronate liposomes. Taken together, these results show that BMP-6 induces castration resistance by increasing the expression of AR through macrophage-derived interleukin-6.
Collapse
Affiliation(s)
- Geun Taek Lee
- Section of Urologic Oncology and Dean and Betty Gallo Prostate Cancer Center, The Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | | | | | | | | |
Collapse
|
48
|
Moura J, da Silva L, Cruz MT, Carvalho E. Molecular and cellular mechanisms of bone morphogenetic proteins and activins in the skin: potential benefits for wound healing. Arch Dermatol Res 2013; 305:557-69. [PMID: 23800970 DOI: 10.1007/s00403-013-1381-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/05/2013] [Accepted: 06/14/2013] [Indexed: 01/13/2023]
Abstract
Bone morphogenetic proteins (BMPs) and activins are phylogenetically conserved proteins, belonging to the transforming growth factor-β superfamily, that signal through the phosphorylation of receptor-regulated Smad proteins, activating different cell responses. They are involved in various steps of skin morphogenesis and wound repair, as can be evidenced by the fact that their expression is increased in skin injuries. BMPs play not only a role in bone regeneration but are also involved in cartilage, tendon-like tissue and epithelial regeneration, maintain vascular integrity, capillary sprouting, proliferation/migration of endothelial cells and angiogenesis, promote neuron and dendrite formation, alter neuropeptide levels and are involved in immune response modulation, at least in animal models. On the other hand, activins are involved in wound repair through the regulation of skin and immune cell migration and differentiation, re-epithelialization and granulation tissue formation, and also promote the expression of collagens by fibroblasts and modulate scar formation. This review aims at enunciating the effects of BMPs and activins in the skin, namely in skin development, as well as in crucial phases of skin wound healing, such as inflammation, angiogenesis and repair, and will focus on the effects of these proteins on skin cells and their signaling pathways, exploring the potential therapeutic approach of the application of BMP-2, BMP-6 and activin A in chronic wounds, particularly diabetic foot ulcerations.
Collapse
Affiliation(s)
- J Moura
- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | |
Collapse
|
49
|
Lee JH, Lee GT, Woo SH, Ha YS, Kwon SJ, Kim WJ, Kim IY. BMP-6 in renal cell carcinoma promotes tumor proliferation through IL-10-dependent M2 polarization of tumor-associated macrophages. Cancer Res 2013; 73:3604-14. [PMID: 23633487 DOI: 10.1158/0008-5472.can-12-4563] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dysregulated bone morphogenetic proteins (BMP) may contribute to the development and progression of renal cell carcinoma (RCC). Herein, we report that BMP-6 promotes the growth of RCC by interleukin (IL)-10-mediated M2 polarization of tumor-associated macrophages (TAM). BMP-6-mediated IL-10 expression in macrophages required Smad5 and STAT3. In human RCC specimens, the three-marker signature BMP-6/IL-10/CD68 was associated with a poor prognosis. Furthermore, patients with elevated IL-10 serum levels had worse outcome after surgery. Together, our results suggest that BMP-6/macrophage/IL-10 regulates M2 polarization of TAMs in RCC.
Collapse
Affiliation(s)
- Jae-Ho Lee
- Section of Urologic Oncology, The Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Wei Y, Nazari-Jahantigh M, Chan L, Zhu M, Heyll K, Corbalán-Campos J, Hartmann P, Thiemann A, Weber C, Schober A. The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1- and microRNA-155-dependent pathway during atherosclerosis. Circulation 2013; 127:1609-19. [PMID: 23513069 DOI: 10.1161/circulationaha.112.000736] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory vascular disease driven by the subendothelial accumulation of macrophages. The mechanism regulating the inflammatory response in macrophages during atherogenesis remains unclear. Because microRNAs (miRNAs) play a crucial role in cellular signaling by posttranscriptional regulation of gene expression, we studied the miRNA expression profiles during the progression of atherosclerosis. METHODS AND RESULTS Using an miRNA real-time polymerase chain reaction array, we found that macrophage-derived miR-342-5p and miR-155 are selectively upregulated in early atherosclerotic lesions in Apoe(-/-) mice. miR-342-5p directly targets Akt1 through its 3'-untranslated region. Akt1 suppression by miR-342-5p induces proinflammatory mediators such as Nos2 and II6 in macrophages via the upregulation of miR-155. The local application of an miR-342-5p antagomir inhibits the development of atherosclerosis in partially ligated carotid arteries. In atherosclerotic lesions, the miR-342-5p antagomir upregulated Akt1 expression and suppressed the expression of miR-155 and Nos2. This reduced Nos2 expression was associated with a diminished generation of nitrotyrosine in the plaques. Furthermore, systemic treatment with an inhibitor of miR-342-5p reduced the progression of atherosclerosis in the aorta of Apoe(-/-) mice. CONCLUSIONS Macrophage-derived miR-342-5p promotes atherosclerosis and enhances the inflammatory stimulation of macrophages by suppressing the Akt1-mediated inhibition of miR-155 expression. Therefore, targeting miR-342-5p may offer a promising strategy to treat atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 9, 80336 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|