1
|
Huo R, Yang Y, Huo X, Meng D, Huang R, Yang Y, Lin J, Huang Y, Zhu X, Wei C, Huang X. Potential of resveratrol in the treatment of systemic lupus erythematosus (Review). Mol Med Rep 2024; 30:182. [PMID: 39155862 PMCID: PMC11350626 DOI: 10.3892/mmr.2024.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi‑system chronic autoimmune disease with a complex occurrence and development process, associated with immune disorders, uncertain prognosis, and treatment modalities which vary by patient and disease activity. At present, the clinical treatment of SLE mainly focuses on hormones and immunosuppressants. In recent years, the research on new treatment strategies for SLE has been booming, and strong preclinical results and clinical research have promoted the development of numerous drugs (such as rituximab and orencia), but numerous of these drugs have failed to achieve effectiveness in clinical trials, and there are some adverse reactions. Recent evidence suggests that resveratrol (RSV) has the effect of ameliorating immune disorders by inhibiting overactivation of immune cells. In the present review, advances in research on the protective effects and potential mechanisms of RSV against SLE are summarized and the potential potency of RSV and its use as a promising therapeutic option for the treatment of SLE are highlighted.
Collapse
Affiliation(s)
- Rongxiu Huo
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yanting Yang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xiaocong Huo
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Danli Meng
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Rongjun Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yang Yang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Jinying Lin
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yijia Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xia Zhu
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Chengcheng Wei
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xinxiang Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| |
Collapse
|
2
|
Batliner M, Schumacher F, Wigger D, Vivas W, Prell A, Fohmann I, Köhler T, Schempp R, Riedel A, Vaeth M, Fekete A, Kleuser B, Kurzai O, Nieuwenhuizen NE. The Candida albicans quorum-sensing molecule farnesol alters sphingolipid metabolism in human monocyte-derived dendritic cells. mBio 2024; 15:e0073224. [PMID: 38953353 PMCID: PMC11323541 DOI: 10.1128/mbio.00732-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024] Open
Abstract
Candida albicans, an opportunistic fungal pathogen, produces the quorum-sensing molecule farnesol, which we have shown alters the transcriptional response and phenotype of human monocyte-derived dendritic cells (DCs), including their cytokine secretion and ability to prime T cells. This is partially dependent on the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ), which has numerous ligands, including the sphingolipid metabolite sphingosine 1-phosphate. Sphingolipids are a vital component of membranes that affect membrane protein arrangement and phagocytosis of C. albicans by DCs. Thus, we quantified sphingolipid metabolites in monocytes differentiating into DCs by High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Farnesol increased the activity of serine palmitoyltransferase, leading to increased levels of 3-keto-dihydrosphingosine, dihydrosphingosine, and dihydrosphingosine 1-phosphate and inhibited dihydroceramide desaturase by inducing oxidative stress, leading to increased levels of dihydroceramide and dihydrosphingomyelin species and reduced ceramide levels. Accumulation of dihydroceramides can inhibit mitochondrial function; accordingly, farnesol reduced mitochondrial respiration. Dihydroceramide desaturase inhibition increases lipid droplet formation, which we observed in farnesol-treated cells, coupled with an increase in intracellular triacylglycerol species. Furthermore, inhibition of dihydroceramide desaturase with either farnesol or specific inhibitors impaired the ability of DCs to prime interferon-γ-producing T cells. The effect of farnesol on sphingolipid metabolism, triacylglycerol synthesis, and mitochondrial respiration was not dependent on PPAR-γ. In summary, our data reveal novel effects of farnesol on sphingolipid metabolism, neutral lipid synthesis, and mitochondrial function in DCs that affect their instruction of T cell cytokine secretion, indicating that C. albicans can manipulate host cell metabolism via farnesol secretion.IMPORTANCECandida albicans is a common commensal yeast, but it is also an opportunistic pathogen which is one of the leading causes of potentially lethal hospital-acquired infections. There is growing evidence that its overgrowth in the gut can influence diseases as diverse as alcohol-associated liver disease and COVID-19. Previously, we found that its quorum-sensing molecule, farnesol, alters the phenotype of dendritic cells differentiating from monocytes, impairing their ability to drive protective T cell responses. Here, we demonstrate that farnesol alters the metabolism of sphingolipids, important structural components of the membrane that also act as signaling molecules. In monocytes differentiating to dendritic cells, farnesol inhibited dihydroceramide desaturase, resulting in the accumulation of dihydroceramides and a reduction in ceramide levels. Farnesol impaired mitochondrial respiration, known to occur with an accumulation of dihydroceramides, and induced the accumulation of triacylglycerol and oil bodies. Inhibition of dihydroceramide desaturase resulted in the impaired ability of DCs to induce interferon-γ production by T cells. Thus, farnesol production by C. albicans could manipulate the function of dendritic cells by altering the sphingolipidome.
Collapse
Affiliation(s)
- Maria Batliner
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | | | - Dominik Wigger
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Wolfgang Vivas
- Institute for Infectious Diseases and Infection Control, Jena University Hospital–Friedrich Schiller University, Jena, Germany
- Associated Research Group Translational Infection Medicine, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute (HKI), Jena, Germany
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital–Friedrich Schiller University, Jena, Germany
| | - Agata Prell
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ingo Fohmann
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Tobias Köhler
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Rebekka Schempp
- Institute for Virology and Immunobiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Angela Riedel
- Mildred Scheel Early Career Center (MSNZ), University Hospital of Würzburg, Würzburg, Germany
| | - Martin Vaeth
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Agnes Fekete
- Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute, Jena, Germany
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute, Jena, Germany
| | - Natalie E. Nieuwenhuizen
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Noble J, Cabezas L, Truffot A, Dumolard L, Jouve T, Malvezzi P, Rostaing L, Dard C, Saas P, Cravedi P, Macek-Jilkova Z. Glycolysis Changes in Alloreactive Memory B Cells in Highly Sensitized Kidney Transplant Recipients Undergonig Desensitization Therapy. Transpl Int 2024; 37:13029. [PMID: 39081904 PMCID: PMC11287219 DOI: 10.3389/ti.2024.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
Despite the growing use of desensitization strategies, hyperimmune patients remain at high risk of antibody-mediated rejection suggesting that, even when donor-specific antibodies (DSA) are effectively depleted, anti-donor specific B cells persist. We included 10 highly sensitized recipients that underwent desensitization with plasmapheresis and B cell depletion prior to kidney transplantation. We quantified changes in DSA (luminex), total B-cell subsets (flow cytometry), anti-donor HLA B cells (fluorospot), and single-cell metabolism in serially collected samples before desensitization, at the time of transplant, and at 6 and 12 months thereafter. Desensitization was associated with a decrease in DSA and total memory B cell and naive B cell percentage, while plasma cells and memory anti-donor HLA circulating B cells persisted up to 12 months after transplant. At 12-month post-transplantation, memory B cells increased their glycolytic capacity, while proliferative KI67+ plasma cells modified their metabolism by increasing fatty acid and amino acid oxidation capacity and decreasing their glucose dependence. Despite effective DSA depletion, anti-donor B cells persist in kidney transplant recipients. Due to the reliance of these cells on glycolysis, glycolysis-targeting therapies might represent a valuable treatment strategy.
Collapse
Affiliation(s)
- Johan Noble
- Nephrology, Hemodialysis Apheresis and Kidney Transplantation, Department, CHU Grenoble Alpes, Grenoble, France
- University Grenoble Alpes, CNRS, Inserm, CHU Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lara Cabezas
- Nephrology, Hemodialysis Apheresis and Kidney Transplantation, Department, CHU Grenoble Alpes, Grenoble, France
- University Grenoble Alpes, CNRS, Inserm, CHU Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Aurelie Truffot
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Virology Department, University Hospital Grenoble, Grenoble, France
| | - Lucile Dumolard
- University Grenoble Alpes, CNRS, Inserm, CHU Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Thomas Jouve
- Nephrology, Hemodialysis Apheresis and Kidney Transplantation, Department, CHU Grenoble Alpes, Grenoble, France
- University Grenoble Alpes, CNRS, Inserm, CHU Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Paolo Malvezzi
- Nephrology, Hemodialysis Apheresis and Kidney Transplantation, Department, CHU Grenoble Alpes, Grenoble, France
| | - Lionel Rostaing
- Nephrology, Hemodialysis Apheresis and Kidney Transplantation, Department, CHU Grenoble Alpes, Grenoble, France
- University Grenoble Alpes, CNRS, Inserm, CHU Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Céline Dard
- EFS, Recherche et Développement, Grenoble, France
| | - Philippe Saas
- University Grenoble Alpes, CNRS, Inserm, CHU Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
- EFS, Recherche et Développement, Grenoble, France
| | - Paolo Cravedi
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Zuzana Macek-Jilkova
- University Grenoble Alpes, CNRS, Inserm, CHU Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
4
|
Yu X, Chen M, Wu J, Song R. Research progress of SIRTs activator resveratrol and its derivatives in autoimmune diseases. Front Immunol 2024; 15:1390907. [PMID: 38962006 PMCID: PMC11219927 DOI: 10.3389/fimmu.2024.1390907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Autoimmune diseases (AID) have emerged as prominent contributors to disability and mortality worldwide, characterized by intricate pathogenic mechanisms involving genetic, environmental, and autoimmune factors. In response to this challenge, a growing body of research in recent years has delved into genetic modifications, yielding valuable insights into AID prevention and treatment. Sirtuins (SIRTs) constitute a class of NAD-dependent histone deacetylases that orchestrate deacetylation processes, wielding significant regulatory influence over cellular metabolism, oxidative stress, immune response, apoptosis, and aging through epigenetic modifications. Resveratrol, the pioneering activator of the SIRTs family, and its derivatives have captured global scholarly interest. In the context of AID, these compounds hold promise for therapeutic intervention by modulating the SIRTs pathway, impacting immune cell functionality, suppressing the release of inflammatory mediators, and mitigating tissue damage. This review endeavors to explore the potential of resveratrol and its derivatives in AID treatment, elucidating their mechanisms of action and providing a comprehensive analysis of current research advancements and obstacles. Through a thorough examination of existing literature, our objective is to advocate for the utilization of resveratrol and its derivatives in AID treatment while offering crucial insights for the formulation of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Xiaolong Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Mingkai Chen
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Jiabiao Wu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Ruixiao Song
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
5
|
Farhan M, Rizvi A, Aatif M, Muteeb G, Khan K, Siddiqui FA. Dietary Polyphenols, Plant Metabolites, and Allergic Disorders: A Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:670. [PMID: 38931338 PMCID: PMC11207098 DOI: 10.3390/ph17060670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
Given the ongoing rise in the occurrence of allergic disorders, alterations in dietary patterns have been proposed as a possible factor contributing to the emergence and progression of these conditions. Currently, there is a significant focus on the development of dietary therapies that utilize natural compounds possessing anti-allergy properties. Dietary polyphenols and plant metabolites have been intensively researched due to their well-documented anti-inflammatory, antioxidant, and immunomodulatory characteristics, making them one of the most prominent natural bioactive chemicals. This study seeks to discuss the in-depth mechanisms by which these molecules may exert anti-allergic effects, namely through their capacity to diminish the allergenicity of proteins, modulate immune responses, and modify the composition of the gut microbiota. However, further investigation is required to fully understand these effects. This paper examines the existing evidence from experimental and clinical studies that supports the idea that different polyphenols, such as catechins, resveratrol, curcumin, quercetin, and others, can reduce allergic inflammation, relieve symptoms of food allergy, asthma, atopic dermatitis, and allergic rhinitis, and prevent the progression of the allergic immune response. In summary, dietary polyphenols and plant metabolites possess significant anti-allergic properties and can be utilized for developing both preventative and therapeutic strategies for targeting allergic conditions. The paper also discusses the constraints in investigating and broad usage of polyphenols, as well as potential avenues for future research.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Asim Rizvi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Kimy Khan
- Department of Dermatology, Almoosa Specialist Hospital, Dhahran Road, Al Mubarraz 36342, Al Ahsa, Saudi Arabia;
| | - Farhan Asif Siddiqui
- Department of Laboratory and Blood Bank, King Fahad Hospital, Prince Salman Street, Hofuf 36441, Saudi Arabia;
| |
Collapse
|
6
|
Ferreira C, Vieira P, Sá H, Malva J, Castelo-Branco M, Reis F, Viana S. Polyphenols: immunonutrients tipping the balance of immunometabolism in chronic diseases. Front Immunol 2024; 15:1360065. [PMID: 38558823 PMCID: PMC10978763 DOI: 10.3389/fimmu.2024.1360065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Mounting evidence progressively appreciates the vital interplay between immunity and metabolism in a wide array of immunometabolic chronic disorders, both autoimmune and non-autoimmune mediated. The immune system regulates the functioning of cellular metabolism within organs like the brain, pancreas and/or adipose tissue by sensing and adapting to fluctuations in the microenvironment's nutrients, thereby reshaping metabolic pathways that greatly impact a pro- or anti-inflammatory immunophenotype. While it is agreed that the immune system relies on an adequate nutritional status to function properly, we are only just starting to understand how the supply of single or combined nutrients, all of them termed immunonutrients, can steer immune cells towards a less inflamed, tolerogenic immunophenotype. Polyphenols, a class of secondary metabolites abundant in Mediterranean foods, are pharmacologically active natural products with outstanding immunomodulatory actions. Upon binding to a range of receptors highly expressed in immune cells (e.g. AhR, RAR, RLR), they act in immunometabolic pathways through a mitochondria-centered multi-modal approach. First, polyphenols activate nutrient sensing via stress-response pathways, essential for immune responses. Second, they regulate mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) balance in immune cells and are well-tolerated caloric restriction mimetics. Third, polyphenols interfere with the assembly of NLR family pyrin domain containing 3 (NLRP3) in endoplasmic reticulum-mitochondria contact sites, inhibiting its activation while improving mitochondrial biogenesis and autophagosome-lysosome fusion. Finally, polyphenols impact chromatin remodeling and coordinates both epigenetic and metabolic reprogramming. This work moves beyond the well-documented antioxidant properties of polyphenols, offering new insights into the multifaceted nature of these compounds. It proposes a mechanistical appraisal on the regulatory pathways through which polyphenols modulate the immune response, thereby alleviating chronic low-grade inflammation. Furthermore, it draws parallels between pharmacological interventions and polyphenol-based immunonutrition in their modes of immunomodulation across a wide spectrum of socioeconomically impactful immunometabolic diseases such as Multiple Sclerosis, Diabetes (type 1 and 2) or even Alzheimer's disease. Lastly, it discusses the existing challenges that thwart the translation of polyphenols-based immunonutritional interventions into long-term clinical studies. Overcoming these limitations will undoubtedly pave the way for improving precision nutrition protocols and provide personalized guidance on tailored polyphenol-based immunonutrition plans.
Collapse
Affiliation(s)
- Carolina Ferreira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Pedro Vieira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Helena Sá
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - João Malva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)/Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sofia Viana
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| |
Collapse
|
7
|
Nájera-Maldonado JM, Salazar R, Alvarez-Fitz P, Acevedo-Quiroz M, Flores-Alfaro E, Hernández-Sotelo D, Espinoza-Rojo M, Ramírez M. Phenolic Compounds of Therapeutic Interest in Neuroprotection. J Xenobiot 2024; 14:227-246. [PMID: 38390994 PMCID: PMC10885129 DOI: 10.3390/jox14010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
The number of elderly people is projected to double in the next 50 years worldwide, resulting in an increased prevalence of neurodegenerative diseases. Aging causes changes in brain tissue homeostasis, thus contributing to the development of neurodegenerative disorders. Current treatments are not entirely effective, so alternative treatments or adjuvant agents are being actively sought. Antioxidant properties of phenolic compounds are of particular interest for neurodegenerative diseases whose psychopathological mechanisms strongly rely on oxidative stress at the brain level. Moreover, phenolic compounds display other advantages such as the permeability of the blood-brain barrier (BBB) and the interesting molecular mechanisms that we reviewed in this work. We began by briefly outlining the physiopathology of neurodegenerative diseases to understand the mechanisms that result in irreversible brain damage, then we provided an overall classification of the phenolic compounds that would be addressed later. We reviewed in vitro and in vivo studies, as well as some clinical trials in which neuroprotective mechanisms were demonstrated in models of different neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), ischemia, and traumatic brain injury (TBI).
Collapse
Affiliation(s)
| | - Ricardo Salazar
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Patricia Alvarez-Fitz
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Macdiel Acevedo-Quiroz
- National Technological Institute of Mexico, Technological/IT Institute of Zacatepec, Zacatepec 62780, Mexico
| | - Eugenia Flores-Alfaro
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Daniel Hernández-Sotelo
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Mónica Espinoza-Rojo
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Mónica Ramírez
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| |
Collapse
|
8
|
Ye L, Zheng W, Li X, Han W, Shen J, Lin Q, Hou L, Liao L, Zeng X. The Role of Gluten in Food Products and Dietary Restriction: Exploring the Potential for Restoring Immune Tolerance. Foods 2023; 12:4179. [PMID: 38002235 PMCID: PMC10670377 DOI: 10.3390/foods12224179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Wheat is extensively utilized in various processed foods due to unique proteins forming from the gluten network. The gluten network in food undergoes morphological and molecular structural changes during food processing, affecting the final quality and digestibility of the food. The present review introduces the formation of the gluten network and the role of gluten in the key steps of the production of several typical food products such as bread, pasta, and beer. Also, it summarizes the factors that affect the digestibility of gluten, considering that different processing conditions probably affect its structure and properties, contributing to an in-depth understanding of the digestion of gluten by the human body under various circumstances. Nevertheless, consumption of gluten protein may lead to the development of celiac disease (CD). The best way is theoretically proposed to prevent and treat CD by the inducement of oral tolerance, an immune non-response system formed by the interaction of oral food antigens with the intestinal immune system. This review proposes the restoration of oral tolerance in CD patients through adjunctive dietary therapy via gluten-encapsulated/modified dietary polyphenols. It will reduce the dietary restriction of gluten and help patients achieve a comprehensive dietary intake by better understanding the interactions between gluten and food-derived active products like polyphenols.
Collapse
Affiliation(s)
- Li Ye
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Wenyu Zheng
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xue Li
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Wenmin Han
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Jialing Shen
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Qiuya Lin
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Liyan Hou
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Lan Liao
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Xin’an Zeng
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Dębińska A, Sozańska B. Dietary Polyphenols-Natural Bioactive Compounds with Potential for Preventing and Treating Some Allergic Conditions. Nutrients 2023; 15:4823. [PMID: 38004216 PMCID: PMC10674996 DOI: 10.3390/nu15224823] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In light of the constantly increasing prevalence of allergic diseases, changes in dietary patterns have been suggested as a plausible environmental explanation for the development and progression of these diseases. Nowadays, much attention has been paid to the development of dietary interventions using natural substances with anti-allergy activities. In this respect, dietary polyphenols have been studied extensively as one of the most prominent natural bioactive compounds with well-documented anti-inflammatory, antioxidant, and immunomodulatory properties. This review aims to discuss the mechanisms underlying the potential anti-allergic actions of polyphenols related to their ability to reduce protein allergenicity, regulate immune response, and gut microbiome modification; however, these issues need to be elucidated in detail. This paper reviews the current evidence from experimental and clinical studies confirming that various polyphenols such as quercetin, curcumin, resveratrol, catechins, and many others could attenuate allergic inflammation, alleviate the symptoms of food allergy, asthma, and allergic rhinitis, and prevent the development of allergic immune response. Conclusively, dietary polyphenols are endowed with great anti-allergic potential and therefore could be used either for preventive approaches or therapeutic interventions in relation to allergic diseases. Limitations in studying and widespread use of polyphenols as well as future research directions are also discussed.
Collapse
Affiliation(s)
- Anna Dębińska
- Department and Clinic of Paediatrics, Allergology and Cardiology, Wrocław Medical University, ul. Chałubińskiego 2a, 50-368 Wrocław, Poland;
| | | |
Collapse
|
10
|
Vajdi M, Sefidmooye Azar P, Mahmoodpoor A, Dashti F, Sanaie S, Kiani Chalmardi F, Karimi A. A comprehensive insight into the molecular and cellular mechanisms of action of resveratrol on complications of sepsis a systematic review. Phytother Res 2023; 37:3780-3808. [PMID: 37405908 DOI: 10.1002/ptr.7917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/08/2023] [Accepted: 05/27/2023] [Indexed: 07/07/2023]
Abstract
Sepsis and septic shock are still one of the most important medical challenges. Sepsis is an extreme and uncontrolled response of the innate immune system to invading pathogenesis. Resveratrol (3,5,4'-trihydroxytrans-stilbene), is a phenolic and non-flavonoid compound naturally produced by some plants and fruits. The object of the current study is to systematically review the impacts of resveratrol and its mechanisms of function in the management of sepsis and its related complications. The guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statements were applied to perform the study (PROSPERO: CRD42021289357). We searched Embase, Web of Science, Google Scholar, Science Direct, PubMed, ProQuest, and Scopus databases up to January 2023 by using the relevant keywords. Study criteria were met by 72 out of 1415 articles screened. The results of this systematic review depict that resveratrol can reduces the complications of sepsis by affecting inflammatory pathways, oxidative stress, and modulating immune responses. Future human randomized clinical trials are necessary due to the promising therapeutic effects of resveratrol on sepsis complications and the lack of clinical trials in this regard.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouria Sefidmooye Azar
- Department of Nutrition and Hospitality Management, School of Applied Sciences, The University of Mississippi, Oxford, Mississippi, USA
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Dashti
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Arash Karimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Zhao Y, Gao C, Liu L, Wang L, Song Z. The development and function of human monocyte-derived dendritic cells regulated by metabolic reprogramming. J Leukoc Biol 2023; 114:212-222. [PMID: 37232942 DOI: 10.1093/jleuko/qiad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/15/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Human monocyte-derived dendritic cells (moDCs) that develop from monocytes play a key role in innate inflammatory responses as well as T cell priming. Steady-state moDCs regulate immunogenicity and tolerogenicity by changing metabolic patterns to participate in the body's immune response. Increased glycolytic metabolism after danger signal induction may strengthen moDC immunogenicity, whereas high levels of mitochondrial oxidative phosphorylation were associated with the immaturity and tolerogenicity of moDCs. In this review, we discuss what is currently known about differential metabolic reprogramming of human moDC development and distinct functional properties.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Dermatology, Southwest Hospital, Army Medical University, 30 Gaotanyan Street, District Shapingba, Chongqing, 400038, China
| | - Cuie Gao
- Department of Dermatology, Southwest Hospital, Army Medical University, 30 Gaotanyan Street, District Shapingba, Chongqing, 400038, China
| | - Lu Liu
- Department of Dermatology, Southwest Hospital, Army Medical University, 30 Gaotanyan Street, District Shapingba, Chongqing, 400038, China
| | - Li Wang
- Institute of Immunology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Zhiqiang Song
- Department of Dermatology, Southwest Hospital, Army Medical University, 30 Gaotanyan Street, District Shapingba, Chongqing, 400038, China
| |
Collapse
|
12
|
Al-Khayri JM, Mascarenhas R, Harish HM, Gowda Y, Lakshmaiah VV, Nagella P, Al-Mssallem MQ, Alessa FM, Almaghasla MI, Rezk AAS. Stilbenes, a Versatile Class of Natural Metabolites for Inflammation-An Overview. Molecules 2023; 28:molecules28093786. [PMID: 37175197 PMCID: PMC10180133 DOI: 10.3390/molecules28093786] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Stilbenes are polyphenolic allelochemicals synthesized by plants, especially grapes, peanuts, rhubarb, berries, etc., to defend themselves under stressful conditions. They are now exploited in medicine for their antioxidant, anti-proliferative and anti-inflammatory properties. Inflammation is the immune system's response to invading bacteria, toxic chemicals or even nutrient-deprived conditions. It is characterized by the release of cytokines which can wreak havoc on healthy tissues, worsening the disease condition. Stilbenes modulate NF-κB, MAPK and JAK/STAT pathways, and reduce the transcription of inflammatory factors which result in maintenance of homeostatic conditions. Resveratrol, the most studied stilbene, lowers the Michaelis constant of SIRT1, and occupies the substrate binding pocket. Gigantol interferes with the complement system. Besides these, oxyresveratrol, pterostilbene, polydatin, viniferins, etc., are front runners as drug candidates due to their diverse effects from different functional groups that affect bioavailability and molecular interactions. However, they each have different thresholds for toxicity to various cells of the human body, and thus a careful review of their properties must be conducted. In animal models of autoinflammatory diseases, the mode of application of stilbenes is important to their absorption and curative effects, as seen with topical and microemulsion gel methods. This review covers the diversity seen among stilbenes in the plant kingdom and their mechanism of action on the different inflammatory pathways. In detail, macrophages' contribution to inflamed conditions in the liver, the cardiac, connective and neural tissues, in the nephrons, intestine, lungs and in myriad other body cells is explored, along with detailed explanation on how stilbenes alleviate the symptoms specific to body site. A section on the bioavailability of stilbenes is included for understanding the limitations of the natural compounds as directly used drugs due to their rapid metabolism. Current delivery mechanisms include sulphonamides, or using specially designed synthetic drugs. It is hoped that further research may be fueled by this comprehensive work that makes a compelling argument for the exploitation of these compounds in medicine.
Collapse
Affiliation(s)
- Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Roseanne Mascarenhas
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore 560029, India
| | | | - Yashwanth Gowda
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore 560029, India
| | | | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore 560029, India
| | - Muneera Qassim Al-Mssallem
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fatima Mohammed Alessa
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mustafa Ibrahim Almaghasla
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Adel Abdel-Sabour Rezk
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Virus and Phytoplasma, Plant Pathology Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
13
|
Zhu Y, Winer D, Goh C, Shrestha A. Injectable thermosensitive hydrogel to modulate tolerogenic dendritic cells under hyperglycemic condition. Biomater Sci 2023; 11:2091-2102. [PMID: 36723183 DOI: 10.1039/d2bm01881k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hyperglycemia associated with diabetes mellitus is a significant risk factor for periodontitis and it polarizes the immune cells towards an inflammatory state. Specific biomaterials can deliver therapeutic or immunomodulatory agents to regulate the excessive periodontal inflammation. Dendritic cells (DCs) bridge the innate and adaptive immune systems and are crucially involved in periodontitis. Thus, targeting DCs is an attractive treatment option for diabetic periodontitis, which, by modulating the downstream adaptive immune cells could regulate the host immune responses. In this study, a chitosan-based thermosensitive injectable self-assembled hydrogel (TISH) was developed to modulate DCs towards a tolerogenic phenotype, which can induce regulatory T-cells to attenuate inflammation and promote healing. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and resveratrol were loaded into TISH (TISH(G + R)) and were sustainably released. TISH demonstrated good biocompatibility and cell penetration in its porous structure. DCs grown in TISH(G + R) under an in vitro hyperglycemic condition showed reduced maturation and activation markers such as CD80, CD83 and CD86, while simultaneously upregulated tolerogenic genes such as FOXP3, SOCS3, TGFß and IL10. Co-culture of these tolerogenic DCs with naïve T-cells induced regulatory T-cells differentiation, evidenced by elevated gene expressions of FOXP3, TGFβ and IL-10. In vivo subcutaneous injection of TISH (G + R) into the mice showed significant infiltration of DCs and regulatory T-cells. In conclusion, TISH was developed and optimized as an injectable hydrogel to modulate DCs towards the tolerogenic phenotype and induce regulatory T-cells under hyperglycemia. TISH has promising potential to improve periodontal parameters in diabetic periodontitis.
Collapse
Affiliation(s)
- Yi Zhu
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada.
| | - Daniel Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.,Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA.,Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, M5G 1L7, Canada.,Department of Pathology, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Cynthia Goh
- Department of Chemistry, University of Toronto, 80 George Street, Toronto, ON, M5S 3H6, Canada.,Department of Materials Science and Engineering, University of Toronto, 84 College Street, Toronto, ON, M5S 3E4, Canada
| | - Annie Shrestha
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
14
|
Alba G, Dakhaoui H, Santa-Maria C, Palomares F, Cejudo-Guillen M, Geniz I, Sobrino F, Montserrat-de la Paz S, Lopez-Enriquez S. Nutraceuticals as Potential Therapeutic Modulators in Immunometabolism. Nutrients 2023; 15:411. [PMID: 36678282 PMCID: PMC9865834 DOI: 10.3390/nu15020411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Nutraceuticals act as cellular and functional modulators, contributing to the homeostasis of physiological processes. In an inflammatory microenvironment, these functional foods can interact with the immune system by modulating or balancing the exacerbated proinflammatory response. In this process, immune cells, such as antigen-presenting cells (APCs), identify danger signals and, after interacting with T lymphocytes, induce a specific effector response. Moreover, this conditions their change of state with phenotypical and functional modifications from the resting state to the activated and effector state, supposing an increase in their energy requirements that affect their intracellular metabolism, with each immune cell showing a unique metabolic signature. Thus, nutraceuticals, such as polyphenols, vitamins, fatty acids, and sulforaphane, represent an active option to use therapeutically for health or the prevention of different pathologies, including obesity, metabolic syndrome, and diabetes. To regulate the inflammation associated with these pathologies, intervention in metabolic pathways through the modulation of metabolic energy with nutraceuticals is an attractive strategy that allows inducing important changes in cellular properties. Thus, we provide an overview of the link between metabolism, immune function, and nutraceuticals in chronic inflammatory processes associated with obesity and diabetes, paying particular attention to nutritional effects on APC and T cell immunometabolism, as well as the mechanisms required in the change in energetic pathways involved after their activation.
Collapse
Affiliation(s)
- Gonzalo Alba
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Hala Dakhaoui
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Consuelo Santa-Maria
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Francisca Palomares
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Marta Cejudo-Guillen
- Department of Pharmacology, Pediatry, and Radiology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Isabel Geniz
- Distrito Sanitario Seville Norte y Aljarafe, Servicio Andaluz de Salud, 41008 Seville, Spain
| | - Francisco Sobrino
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Soledad Lopez-Enriquez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
15
|
Alesci A, Nicosia N, Fumia A, Giorgianni F, Santini A, Cicero N. Resveratrol and Immune Cells: A Link to Improve Human Health. Molecules 2022; 27:424. [PMID: 35056739 PMCID: PMC8778251 DOI: 10.3390/molecules27020424] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The use of polyphenols as adjuvants in lowering risk factors for various debilitating diseases has been investigated in recent years due to their possible antioxidant action. Polyphenols represent a fascinating and relatively new subject of research in nutraceuticals and nutrition, with interest rapidly expanding since they can help maintain health by controlling metabolism, weight, chronic diseases, and cell proliferation. Resveratrol is a phenolic compound found mostly in the pulp, peels, seeds, and stems of red grapes. It has a wide variety of biological actions that can be used to prevent the beginning of various diseases or manage their symptoms. Resveratrol can influence multiple inflammatory and non-inflammatory responses, protecting organs and tissues, thanks to its interaction with immune cells and its activity on SIRT1. This compound has anti-inflammatory, antioxidant, anti-apoptotic, neuroprotective, cardioprotective, anticancer, and antiviral properties, making it a potential adjunct to traditional pharmaceutical therapy in public health. This review aims to provide a comprehensive analysis of resveratrol in terms of active biological effects and mechanism of action in modifying the immune cellular response to promote human psychophysical health.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (A.A.); (N.N.)
| | - Noemi Nicosia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (A.A.); (N.N.)
- Foundation “Prof. Antonio Imbesi”, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
- Department of Pharmacological Screening, Medical College, Jagiellonian University, Medyczna 9, PL 30-688 Cracow, Poland
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico “G. Martino”, Viale Gazzi, 98147 Messina, Italy;
| | - Federica Giorgianni
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (F.G.); (N.C.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (F.G.); (N.C.)
- Science4life Spin-off Company, University of Messina, 98168 Messina, Italy
- Consorzio di Ricerca sul Rischio Biologico in Agricoltura (Co.Ri.Bi.A), 90129 Palermo, Italy
| |
Collapse
|
16
|
Hicks KC, Tyurina YY, Kagan VE, Gabrilovich DI. Myeloid-cell derived oxidized lipids and regulation of the tumor microenvironment. Cancer Res 2021; 82:187-194. [PMID: 34764204 DOI: 10.1158/0008-5472.can-21-3054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/04/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
Immune suppressive myeloid cells play a major role in cancer by negatively regulating immune responses, promoting tumor progression, and limiting the efficacy of cancer immunotherapy. Immune suppression is mediated by various mechanisms dependent upon the type of myeloid cell involved. In recent years, a more universal mechanism of immune suppressive activity of myeloid cells has emerged: generation of oxidized lipids. Oxidized lipids accumulate in all types of myeloid cells and are often transferred between cells. In this review, we discuss mechanisms involved in the generation and biological role of myeloid cell-derived oxidized lipids in cancer.
Collapse
|
17
|
Guo B, Peng Y, Gu Y, Zhong Y, Su C, Liu L, Chai D, Song T, Zhao N, Yan X, Xu T. Resveratrol pretreatment mitigates LPS-induced acute lung injury by regulating conventional dendritic cells' maturation and function. Open Life Sci 2021; 16:1064-1081. [PMID: 34676301 PMCID: PMC8483064 DOI: 10.1515/biol-2021-0110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 11/20/2022] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a severe syndrome lacking efficient therapy and resulting in high morbidity and mortality. Although resveratrol (RES), a natural phytoalexin, has been reported to protect the ALI by suppressing the inflammatory response, the detailed mechanism of how RES affected the immune system is poorly studied. Pulmonary conventional dendritic cells (cDCs) are critically involved in the pathogenesis of inflammatory lung diseases including ALI. In this study, we aimed to investigate the protective role of RES via pulmonary cDCs in lipopolysaccharide (LPS)-induced ALI mice. Murine ALI model was established by intratracheally challenging with 5 mg/kg LPS. We found that RES pretreatment could mitigate LPS-induced ALI. Additionally, proinflammatory-skewed cytokines decreased whereas anti-inflammatory-related cytokines increased in bronchoalveolar lavage fluid by RES pretreatment. Mechanistically, RES regulated pulmonary cDCs' maturation and function, exhibiting lower level of CD80, CD86, major histocompatibility complex (MHC) II expression, and IL-10 secretion in ALI mice. Furthermore, RES modulated the balance between proinflammation and anti-inflammation of cDCs. Moreover, in vitro RES pretreatment regulated the maturation and function of bone marrow derived dendritic cells (BMDCs). Finally, the adoptive transfer of RES-pretreated BMDCs enhanced recovery of ALI. Thus, these data might further extend our understanding of a protective role of RES in regulating pulmonary cDCs against ALI.
Collapse
Affiliation(s)
- Bingnan Guo
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Yigen Peng
- Department of Emergency Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Yuting Gu
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Yi Zhong
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Chenglei Su
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Lin Liu
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Tengfei Song
- The Feinstein Institute for Medical Research, Manhasset, NY 11030, New York, United States
| | - Ningjun Zhao
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xianliang Yan
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Tie Xu
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
- Department of Emergency Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, China
| |
Collapse
|
18
|
Carstens MR, Wasserfall CH, Acharya AP, Lewis J, Agrawal N, Koenders K, Bracho-Sanchez E, Keselowsky BG. GRAS-microparticle microarrays identify dendritic cell tolerogenic marker-inducing formulations. LAB ON A CHIP 2021; 21:3598-3613. [PMID: 34346460 PMCID: PMC8725777 DOI: 10.1039/d1lc00096a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microarrays, miniaturized platforms used for high-content studies, provide potential advantages over traditional in vitro investigation in terms of time, cost, and parallel analyses. Recently, microarrays have been leveraged to investigate immune cell biology by providing a platform with which to systematically investigate the effects of various agents on a wide variety of cellular processes, including those giving rise to immune regulation for application toward curtailing autoimmunity. A specific embodiment incorporates dendritic cells cultured on microarrays containing biodegradable microparticles. Such an approach allows immune cell and microparticle co-localization and release of compounds on small, isolated populations of cells, enabling a quick, convenient method to quantify a variety of cellular responses in parallel. In this study, the microparticle microarray platform was utilized to investigate a small library of sixteen generally regarded as safe (GRAS) compounds (ascorbic acid, aspirin, capsaicin, celastrol, curcumin, epigallocatechin-3-gallate, ergosterol, hemin, hydrocortisone, indomethacin, menadione, naproxen, resveratrol, retinoic acid, α-tocopherol, vitamin D3) for their ability to induce suppressive phenotypes in murine dendritic cells. Two complementary tolerogenic index ranking systems were proposed to summarize dendritic cell responses and suggested several lead compounds (celastrol, ergosterol, vitamin D3) and two secondary compounds (hemin, capsaicin), which warrant further investigation for applications toward suppression and tolerance.
Collapse
Affiliation(s)
- Matthew R Carstens
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| | - Clive H Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Abhinav P Acharya
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Jamal Lewis
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Nikunj Agrawal
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| | - Kevin Koenders
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| | - Evelyn Bracho-Sanchez
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| |
Collapse
|
19
|
Rodriguez-Coira J, Villaseñor A, Izquierdo E, Huang M, Barker-Tejeda TC, Radzikowska U, Sokolowska M, Barber D. The Importance of Metabolism for Immune Homeostasis in Allergic Diseases. Front Immunol 2021; 12:692004. [PMID: 34394086 PMCID: PMC8355700 DOI: 10.3389/fimmu.2021.692004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/05/2021] [Indexed: 12/27/2022] Open
Abstract
There is increasing evidence that the metabolic status of T cells and macrophages is associated with severe phenotypes of chronic inflammation, including allergic inflammation. Metabolic changes in immune cells have a crucial role in their inflammatory or regulatory responses. This notion is reinforced by metabolic diseases influencing global energy metabolism, such as diabetes or obesity, which are known risk factors of severity in inflammatory conditions, due to the metabolic-associated inflammation present in these patients. Since several metabolic pathways are closely tied to T cell and macrophage differentiation, a better understanding of metabolic alterations in immune disorders could help to restore and modulate immune cell functions. This link between energy metabolism and inflammation can be studied employing animal, human or cellular models. Analytical approaches rank from classic immunological studies to integrated analysis of metabolomics, transcriptomics, and proteomics. This review summarizes the main metabolic pathways of the cells involved in the allergic reaction with a focus on T cells and macrophages and describes different models and platforms of analysis used to study the immune system and its relationship with metabolism.
Collapse
Affiliation(s)
- Juan Rodriguez-Coira
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Alma Villaseñor
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| | - Elena Izquierdo
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| | - Mengting Huang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Tomás Clive Barker-Tejeda
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Domingo Barber
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| |
Collapse
|
20
|
Song HY, Sik Kim W, Moo Han J, Yong Park W, Lim ST, Byun EB. HMOC, a chrysin derivative, induces tolerogenic properties in lipopolysaccharide-stimulated dendritic cells. Int Immunopharmacol 2021; 95:107523. [PMID: 33706053 DOI: 10.1016/j.intimp.2021.107523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 11/20/2022]
Abstract
Although we previously identified a new hydroxymethoxyl chrysin derivative (HMOC) using ionizing radiation, the anti-inflammatory mechanism of HMOC in dendritic cells remains unclear. In this study, we investigate the effects of HMOC on phenotypic and functional changes in activated bone marrow-derived dendritic cells (BMDCs). In lipopolysaccharide (LPS)-stimulated BMDCs, HMOC treatment inhibited pro-inflammatory cytokines (TNF-α, IL-12p70, and IL-1β), surface molecules (CD80, CD86, MHC-I, and MHC-II), and antigen-presentation to MHC-I and II without a decrease in IL-10. Furthermore, HMOC increased indoleamine 2,3-dioxygenase-1 (IDO1) activity via activation of JNK and p38 signaling in the presence of LPS. Interestingly, LPS-stimulated DCs treated with HMOC inhibited the proliferation and activation of CD4+ and CD8+ T cells, as well as differentiation of CD4+ T cells into Th1-, Th2- and Th17 cells. In addition, LPS-stimulated DCs treated with HMOC induced an increase in CD4+CD25+Foxp3+ regulatory T cells (Tregs). Collectively, our results suggest that HMOC confers tolerogenic properties in BMDCs, which are responsible for inducing Th cell differentiation to Tregs. Our findings provide a better understanding of the anti-inflammatory mechanism of HMOC in DCs and may contribute to development of a valuable therapeutic candidate for atopic dermatitis.
Collapse
Affiliation(s)
- Ha-Yeon Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Woo Sik Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Jeong Moo Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Woo Yong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung-Taik Lim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eui-Baek Byun
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea.
| |
Collapse
|
21
|
Rahimi K, Hassanzadeh K, Khanbabaei H, Haftcheshmeh SM, Ahmadi A, Izadpanah E, Mohammadi A, Sahebkar A. Curcumin: A Dietary Phytochemical for Targeting the Phenotype and Function of Dendritic Cells. Curr Med Chem 2021; 28:1549-1564. [PMID: 32410550 DOI: 10.2174/0929867327666200515101228] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/05/2020] [Accepted: 04/19/2020] [Indexed: 11/22/2022]
Abstract
Dendritic cells (DCs) are the most powerful antigen-presenting cells which link the innate and adaptive immune responses. Depending on the context, DCs initiate the immune responses or contribute to immune tolerance. Any disturbance in their phenotypes and functions may initiate inflammatory or autoimmune diseases. Hence, dysregulated DCs are the most attractive pharmacological target for the development of new therapies aiming at reducing their immunogenicity and at enhancing their tolerogenicity. Curcumin is the polyphenolic phytochemical component of the spice turmeric with a wide range of pharmacological activities. It acts in several ways as a modulator of DCs and converts them into tolerogenic DCs. Tolerogenic DCs possess anti-inflammatory and immunomodulatory activities that regulate the immune responses in health and disease. Curcumin by blocking maturation markers, cytokines and chemokines expression, and disrupting the antigen-presenting machinery of DCs render them non- or hypo-responsive to immunostimulants. It also reduces the expression of co-stimulatory and adhesion molecules on DCs and prevents them from both migration and antigen presentation but enhances their endocytosis capacity. Hence, curcumin causes DCs-inducing regulatory T cells and dampens CD4+ T helper 1 (Th1), Th2, and Th17 polarization. Inhibition of transcription factors such as NF-κB, AP-1, MAPKs (p38, JNK, ERK) and other intracellular signaling molecules such as JAK/STAT/SOCS provide a plausible explanation for most of these observations. In this review, we summarize the potential effects of curcumin on the phenotypes and functions of DCs as the key players in orchestration, stimulation, and modulation of the immune responses.
Collapse
Affiliation(s)
- Kaveh Rahimi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kambiz Hassanzadeh
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed M Haftcheshmeh
- Department of Medical Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91766-99199, Iran
| | - Abbas Ahmadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Esmael Izadpanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | |
Collapse
|
22
|
Gaglio SC, Donini M, Denbaes PE, Dusi S, Perduca M. Oxyresveratrol Inhibits R848-Induced Pro-Inflammatory Mediators Release by Human Dendritic Cells Even When Embedded in PLGA Nanoparticles. Molecules 2021; 26:molecules26082106. [PMID: 33916909 PMCID: PMC8067564 DOI: 10.3390/molecules26082106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022] Open
Abstract
Oxyresveratrol, a stilbene extracted from the plant Artocarpus lakoocha Roxb., has been reported to provide a considerable anti-inflammatory activity. Since the mechanisms of this therapeutic action have been poorly clarified, we investigated whether oxyresveratrol affects the release of the pro-inflammatory cytokines IL-12, IL-6, and TNF-α by human dendritic cells (DCs). We found that oxyresveratrol did not elicit per se the release of these cytokines, but inhibited their secretion induced upon DC stimulation with R848 (Resiquimod), a well-known immune cell activator engaging receptors recognizing RNA viruses. We then investigated whether the inclusion of oxyresveratrol into nanoparticles promoting its ingestion by DCs could favor its effects on cytokine release. For this purpose we synthesized and characterized poly(lactic-co-glycolic acid) (PLGA) nanoparticles, and we assessed their effects on DCs. We found that bare PLGA nanoparticles did not affect cytokine secretion by resting DCs, but increased IL-12, IL-6, and TNF-α secretion by R848-stimulated DCs, an event known as “priming effect”. We then loaded PLGA nanoparticles with oxyresveratrol and we observed that oxyresveratrol-bearing particles did not stimulate the cytokine release by resting DCs and inhibited the PLGA-dependent enhancement of IL-12, IL-6, and TNF-α secretion by R848-stimulated DCs. The results herein reported indicate that oxyresveratrol suppresses the cytokine production by activated DCs, thus representing a good anti-inflammatory and immune-suppressive agent. Moreover, its inclusion into PLGA nanoparticles mitigates the pro-inflammatory effects due to cooperation between nanoparticles and R848 in cytokine release. Therefore, oxyresveratrol can be able to contrast the synergistic effects of nanoparticles with microorganisms that could be present in the patient tissues, therefore overcoming a condition unfavorable to the use of some nanoparticles in biological systems.
Collapse
Affiliation(s)
- Salvatore Calogero Gaglio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (S.C.G.); (P.E.D.)
| | - Marta Donini
- Department of Medicine, Section of General Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy;
| | - Piyachat Evelyn Denbaes
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (S.C.G.); (P.E.D.)
| | - Stefano Dusi
- Department of Medicine, Section of General Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy;
- Correspondence: (S.D.); (M.P.); Tel.: +39-045-802-7124 (S.D.); +39-045-802-7984 (M.P.)
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (S.C.G.); (P.E.D.)
- Correspondence: (S.D.); (M.P.); Tel.: +39-045-802-7124 (S.D.); +39-045-802-7984 (M.P.)
| |
Collapse
|
23
|
Zhang W, Liu Z, Xu X. Navigating immune cell immunometabolism after liver transplantation. Crit Rev Oncol Hematol 2021; 160:103227. [PMID: 33675906 DOI: 10.1016/j.critrevonc.2021.103227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/18/2020] [Accepted: 01/16/2021] [Indexed: 11/15/2022] Open
Abstract
Liver transplantation (LT) is the most effective treatment for end-stage liver diseases. The immunometabolism microenvironment undergoes massive changes at the interface of immune functionalities and metabolic regulations after LT. These changes considerably modify post-transplant complications, and immune cells play an influential role in the hepatic immunometabolism microenvironment after LT. Therefore, adequate studies on the complex pathobiology of immune cells are critical to prevent post-transplant complications, and the interplay between cellular metabolism and immune function is evident. Furthermore, immune cells perform their specified functions, such as activation or differentiation, accompanied by alterations in metabolic pathways, such as metabolic reprogramming. This transformation remarkably affects post-transplant complications like rejection. By targeting different metabolic pathways, regulations of metabolism are employed to shape immune responses. These differences of metabolic pathways allow for selective regulation of immune responses to further develop effective therapies that prevent graft loss after LT. This review examines immune cells in the hepatic immunometabolism microenvironment after LT, summarizes possible mechanisms and potential prevention on rejection to acquire immune tolerance, and offers some insight into references for scientific research along with clinical treatment.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Zhikun Liu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University Cancer Center, Hangzhou 310058, China.
| |
Collapse
|
24
|
Immunomodulatory Effects of Dietary Polyphenols. Nutrients 2021; 13:nu13030728. [PMID: 33668814 PMCID: PMC7996139 DOI: 10.3390/nu13030728] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
Functional and nutraceutical foods provide an alternative way to improve immune function to aid in the management of various diseases. Traditionally, many medicinal products have been derived from natural compounds with healing properties. With the development of research into nutraceuticals, it is becoming apparent that many of the beneficial properties of these compounds are at least partly due to the presence of polyphenols. There is evidence that dietary polyphenols can influence dendritic cells, have an immunomodulatory effect on macrophages, increase proliferation of B cells, T cells and suppress Type 1 T helper (Th1), Th2, Th17 and Th9 cells. Polyphenols reduce inflammation by suppressing the pro-inflammatory cytokines in inflammatory bowel disease by inducing Treg cells in the intestine, inhibition of tumor necrosis factor-alpha (TNF-α) and induction of apoptosis, decreasing DNA damage. Polyphenols have a potential role in prevention/treatment of auto-immune diseases like type 1 diabetes, rheumatoid arthritis and multiple sclerosis by regulating signaling pathways, suppressing inflammation and limiting demyelination. In addition, polyphenols cause immunomodulatory effects against allergic reaction and autoimmune disease by inhibition of autoimmune T cell proliferation and downregulation of pro-inflammatory cytokines (interleukin-6 (IL-6), IL-1, interferon-γ (IFN-γ)). Herein, we summarize the immunomodulatory effects of polyphenols and the underlying mechanisms involved in the stimulation of immune responses.
Collapse
|
25
|
Song HY, Kim WS, Han JM, Seo HS, Lim ST, Byun EB. Galangin treatment during dendritic cell differentiation confers tolerogenic properties in response to lipopolysaccharide stimulation. J Nutr Biochem 2021; 87:108524. [PMID: 33039583 DOI: 10.1016/j.jnutbio.2020.108524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/15/2020] [Accepted: 09/30/2020] [Indexed: 12/28/2022]
Abstract
Tolerogenic dendritic cells (tolDCs) can induce the differentiation of immunosuppressive regulatory T cells and are therefore candidates for the prevention or treatment of various inflammatory diseases. Galangin, a major component of propolis and Alpinia officinarum, has well-established anti-inflammatory effects, but its ability to induce a tolerogenic state in DCs has not been demonstrated. In this study, we investigated the effects of galangin on DC differentiation and immune responses. In particular, we compared phenotypic and functional differences between DCs (Gal-DCs) generated by galangin treatment during DC differentiation and bone marrow-derived DCs. Gal-DCs were generated by adding culture medium containing various doses of galangin (1.8-18.5 µM) on 3 and 6 day. Upon lipopolysaccharide (100 ng/mL) stimulation for 24 h, Gal-DCs generated with 7.4 µM galangin treatment showed lower levels of CD86 and lower major histocompatibility complex class II antigen-presentation than those of bone marrow-derived DCs. Furthermore, Gal-DCs showed markedly increased programmed death ligand 1 expression and IL-10 production via the activation of mitogen-activated protein kinases. Interestingly, Gal-DCs co-cultured with allogeneic CD4 T cells exhibited the reduced cell proliferation and differentiation into Th1-, Th2-, and Th17-type cell; instead, Gal-DCs contributed to the induction of CD4+CD25+Foxp3+ Tregs. Taken together, our data suggest that exposure to galangin during DC differentiation confers tolerogenic properties, efficiently inducing Th cell differentiation to immunosuppressive Tregs. These findings provide new insights into the molecular mechanism underlying the anti-inflammatory effects of galangin on DCs.
Collapse
Affiliation(s)
- Ha-Yeon Song
- Research Division for Radiation Science, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea; Department of Biotechnology, College of Life science and Biotechnology, Korea University, Seoul, Republic of Korea.
| | - Woo Sik Kim
- Research Division for Radiation Science, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Jeong Moo Han
- Research Division for Radiation Science, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea; Department of Biotechnology, College of Life science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Ho Seong Seo
- Research Division for Radiation Science, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Seung-Taik Lim
- Department of Biotechnology, College of Life science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Eui-Baek Byun
- Research Division for Radiation Science, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| |
Collapse
|
26
|
Fedoros EI, Baldueva IA, Perminova IV, Badun GA, Chernysheva MG, Grozdova ID, Melik-Nubarov NS, Danilova AB, Nekhaeva TL, Kuznetsova AI, Emelyanova NV, Ryakhovskiy AA, Pigarev SE, Semenov AL, Tyndyk ML, Gubareva EA, Panchenko AV, Bykov VN, Anisimov VN. Exploring bioactivity potential of polyphenolic water-soluble lignin derivative. ENVIRONMENTAL RESEARCH 2020; 191:110049. [PMID: 32926891 DOI: 10.1016/j.envres.2020.110049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Many natural substances exhibit anti-inflammatory activity and considerable potential in prophylaxis and treatment of allergies. Knowing exact molecular targets, which is required for developing these as medicinal products, is often challenging for multicomponent compositions. In the present study we examined novel polyphenolic substance, a water-soluble fraction of wood lignin (laboratory code BP-Cx-1). In our previous study, a number of polyphenolic components of BP-Cx-1 (flavonoids, sapogenins, phenanthrenes etc.) were identified as the major carriers of biological activity of BP-Cx drug family, and several molecular targets involved in cancer and/or inflammation signaling pathways were proposed based on the results of the in vitro and in silico screening studies. In the present study, half maximal inhibitory concentration (IC50) of BP-Cx-1 was established with a radioligand method and a range of IC50 values between 22.8 and 40.3 μg/ml were obtained for adenosine receptors A1, A2A and prostaglandin receptors EP2, IP (PGI2). IC50 for serotonin 5-HT1 and for glucocorticoid GR receptors were 3.0 μg/ml and 12.6 μg/ml, respectively, both being within the range of BP-Cx-1 concentrations achievable in in vivo models. Further, distribution of [3H] labelled BP-Cx-1 in NIH3T3 murine fibroblasts and MCF7/R carcinoma cells was studied with autoradiography. [3H]-BP-Cx-1 (visualized as silver grains produced by tritium beta particles) was mainly localized along the cell membrane, in the perinuclear region and in the nucleus, suggesting ability of BP-Cx-1 to enter cells and bind to membrane or cytosol receptors. In our experiment, we observed the effect of BP-Cx-1 on maturation of dendritic cells (DCs): downregulation of expression of the lipid-presentation molecule CD1a, co-stimulatory molecules CD80, CD83 and CD 40, decreased production of pro-inflammatory cytokines IL-4 and TNF-α and increased production of anti-inflammatory cytokine IL-10. It is hypothesized that [3H]-BP-Cx-1 detectable in the nucleus is part of the activated GR complex, known to be involved in regulation of transcription of genes responsible for the anti-inflammatory response. Based on IC50, cell distribution data and results of the experiment with DCs it is suggested that the in vivo effects of BP-Cx-1 are mediated via GR and 5-HT1 receptors thus promoting development of tolerogenic effector function in dendritic cells.
Collapse
Affiliation(s)
- E I Fedoros
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia; Nobel LTD, Saint-Petersburg, Russia.
| | - I A Baldueva
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | | | - G A Badun
- Lomonosov Moscow State University, Moscow, Russia
| | | | - I D Grozdova
- Lomonosov Moscow State University, Moscow, Russia
| | | | - A B Danilova
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - T L Nekhaeva
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - A I Kuznetsova
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - N V Emelyanova
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | | | - S E Pigarev
- Nobel LTD, Saint-Petersburg, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - A L Semenov
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - M L Tyndyk
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - E A Gubareva
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - A V Panchenko
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia; FSBSI "Research Institute of Medical Primatology", Sochi, Russian Federation
| | - V N Bykov
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - V N Anisimov
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| |
Collapse
|
27
|
Hogenkamp A, Ehlers A, Garssen J, Willemsen LEM. Allergy Modulation by N-3 Long Chain Polyunsaturated Fatty Acids and Fat Soluble Nutrients of the Mediterranean Diet. Front Pharmacol 2020; 11:1244. [PMID: 32973501 PMCID: PMC7472571 DOI: 10.3389/fphar.2020.01244] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The Mediterranean diet, containing valuable nutrients such as n-3 long chain poly-unsaturated fatty acids (LCPUFAs) and other fat-soluble micronutrients, is known for its health promoting and anti-inflammatory effects. Its valuable elements might help in the battle against the rising prevalence of non-communicable diseases (NCD), including the development of allergic diseases and other (chronic) inflammatory diseases. The fat fraction of the Mediterranean diet contains bioactive fatty acids but can also serve as a matrix to dissolve and increase the uptake of fat-soluble vitamins and phytochemicals, such as luteolin, quercetin, resveratrol and lycopene with known immunomodulatory and anti-inflammatory capacities. Especially n-3 LCPUFAs such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) derived from marine oils can target specific receptors or signaling cascades, act as eicosanoid precursors and/or alter membrane fluidity and lipid raft formation, hereby exhibiting anti-inflammatory properties. Beyond n-3 LCPUFAs, fat-soluble vitamins A, D, E, and K1/2 have the potential to affect pro-inflammatory signaling cascades by interacting with receptors or activating/inhibiting signaling proteins or phosphorylation in immune cells (DCs, T-cells, mast cells) involved in allergic sensitization or the elicitation/effector phase of allergic reactions. Moreover, fat-soluble plant-derived phytochemicals can manipulate signaling cascades, mostly by interacting with other receptors or signaling proteins compared to those modified by fat-soluble vitamins, suggesting potential additive or synergistic actions by applying a combination of these nutrients which are all part of the regular Mediterranean diet. Research concerning the effects of phytochemicals such as polyphenols has been hampered due to their poor bio-availability. However, their solubility and uptake are improved by applying them within the dietary fat matrix. Alternatively, they can be prepared for targeted delivery by means of pharmaceutical approaches such as encapsulation within liposomes or even unique nanoparticles. This review illuminates the molecular mechanisms of action and possible immunomodulatory effects of n-3 LCPUFAs and fat-soluble micronutrients from the Mediterranean diet in allergic disease development and allergic inflammation. This will enable us to further appreciate how to make use of the beneficial effects of n-3 LCPUFAs, fat-soluble vitamins and a selection of phytochemicals as active biological components in allergy prevention and/or symptom reduction.
Collapse
Affiliation(s)
- Astrid Hogenkamp
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anna Ehlers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Global Centre of Excellence Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
28
|
Liu J, Wu Q, Shi J, Guo W, Jiang X, Zhou B, Ren C. LILRB4, from the immune system to the disease target. Am J Transl Res 2020; 12:3149-3166. [PMID: 32774691 PMCID: PMC7407714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Leukocyte immunoglobulin (Ig)-like receptor B4 (LILRB4) is a member of leukocyte Ig-like receptors (LILRs), which associate with membrane adaptors to signal through multiple cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Under physiological conditions, LILRB4 plays a very important role in the function of the immune system through its expression on various immune cells, such as T cells and plasma cells. Under pathological conditions, LILRB4 affects the processes of various diseases, such as the transformation and infiltration of tumors and leukemias, through various signaling pathways. Differential expression of LILRB4 is present in a variety of immune system diseases, such as Kawasaki disease, systemic lupus erythematosus (SLE), and sepsis. Recent studies have shown that LILRB4 also plays a role in mental illness. The important role of LILRB4 in the immune system and its differential expression in a variety of diseases make LILRB4 a potential prophylactic and therapeutic target for a variety of diseases.
Collapse
Affiliation(s)
- Jiachen Liu
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Qiwen Wu
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Jing Shi
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Weihua Guo
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Xingjun Jiang
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Bolun Zhou
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Caiping Ren
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| |
Collapse
|
29
|
Checconi P, De Angelis M, Marcocci ME, Fraternale A, Magnani M, Palamara AT, Nencioni L. Redox-Modulating Agents in the Treatment of Viral Infections. Int J Mol Sci 2020; 21:E4084. [PMID: 32521619 PMCID: PMC7312898 DOI: 10.3390/ijms21114084] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022] Open
Abstract
Viruses use cell machinery to replicate their genome and produce viral proteins. For this reason, several intracellular factors, including the redox state, might directly or indirectly affect the progression and outcome of viral infection. In physiological conditions, the redox balance between oxidant and antioxidant species is maintained by enzymatic and non-enzymatic systems, and it finely regulates several cell functions. Different viruses break this equilibrium and induce an oxidative stress that in turn facilitates specific steps of the virus lifecycle and activates an inflammatory response. In this context, many studies highlighted the importance of redox-sensitive pathways as novel cell-based targets for therapies aimed at blocking both viral replication and virus-induced inflammation. In the review, we discuss the most recent findings in this field. In particular, we describe the effects of natural or synthetic redox-modulating molecules in inhibiting DNA or RNA virus replication as well as inflammatory pathways. The importance of the antioxidant transcription factor Nrf2 is also discussed. Most of the data reported here are on influenza virus infection. We believe that this approach could be usefully applied to fight other acute respiratory viral infections characterized by a strong inflammatory response, like COVID-19.
Collapse
Affiliation(s)
- Paola Checconi
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (P.C.); (A.T.P.)
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| | - Maria Elena Marcocci
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino (PU), Italy; (A.F.); (M.M.)
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino (PU), Italy; (A.F.); (M.M.)
| | - Anna Teresa Palamara
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (P.C.); (A.T.P.)
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| |
Collapse
|
30
|
Kalantari T, Ciric B, Kamali-Sarvestani E, Rostami A. Bone marrow dendritic cells deficient for CD40 and IL-23p19 are tolerogenic in vitro. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:287-292. [PMID: 32440313 PMCID: PMC7229508 DOI: 10.22038/ijbms.2020.36160.8615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Objective(s): In addition to pro-inflammatory role, dendritic cells (DCs) can also be anti-inflammatory when they acquire tolerogenic phenotype. In this study we tested the role of CD40 and IL-23p19 in antigen presenting function of bone marrow-derived DCs (BMDCs) by comparing BMDCs derived from CD40 knockout (CD40KO-DCs) and IL-23p19 (IL-23p19KO-DCs) knockout mice with those from C57BL/6 mice (Cont-DCs). We have focused on CD40 and IL-23, as these molecules have well established pro-inflammatory roles in a number of autoimmune and inflammatory diseases. Materials and Methods: The expression of maturation markers MHC II and co-stimulatory molecules CD40, CD80, and CD86 was analyzed by flow cytometry, while the expression of CD40 and IL-23p19 was measured by RT-PCR. The capacity of BMDCs to activate CD4+ T cells was evaluated by 3H-thymidine incorporation, and the capacity of BMDCs to uptake antigen was evaluated using fluorescent OVA and flow cytometry. Results: The lack of CD40 or IL-23p19 had no effect on uptake of FITC-OVA by the DCs, confirming their immature phenotype. Moreover, CD40KO-DCs had significantly reduced capacity to stimulate proliferation of CD4+ T cells. CD4+ T cells activated by CD40KO-DCs and IL-23p19KO-DCs produced significantly less IFN-γ (P-value ≤0.05), while CD4+ T cells stimulated by IL-23p19KO-DCs produced less GM-CSF and more IL-10 than Cont-DCs. Conclusion: This study shows that CD40KO-DCs and IL-23p19KO-DCs have a marked tolerogenic potency in vitro. Future in vivo studies should determine if and to what extent DCs lacking CD40 or IL-23 have a potential to be useful in therapy of autoimmune inflammation.
Collapse
Affiliation(s)
- Tahereh Kalantari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
31
|
Švajger U, Rožman PJ. Recent discoveries in dendritic cell tolerance-inducing pharmacological molecules. Int Immunopharmacol 2020; 81:106275. [PMID: 32044665 DOI: 10.1016/j.intimp.2020.106275] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 01/04/2023]
Abstract
Dendritic cells (DCs) represent one of the most important biological tools for cellular immunotherapy purposes. There are an increasing number of phase I and II studies, where regulatory or tolerogenic DCs (TolDCs) are utilized as negative vaccines, with the aim of inducing tolerogenic outcomes in patients with various autoimmune or chronic-inflammatory diseases, as well as in transplant settings. The induction of tolerogenic properties in DCs can be achieved by altering their activation state toward expression of immunosuppressive elements and/or by achieving resistance to maturation, which leads to insufficient co-stimulatory signal delivery and inability to efficiently present antigens. In the past, one of the most efficient ways to induce DC tolerance has been the application of selected pharmacological agents which actively induce a tolerogenic transcription program or inhibit major pro-inflammatory transcription factors such as Nf-κB. Important examples include immunosuppressants such as different corticosteroids, vitamin D3, rapamycin and others. The quality of TolDCs induced by different approaches is becoming a vital issue and recent evidence suggests substantial heterogeneity between variously-generated TolDCs as evidenced by their transcriptomic profile and function. The possibility of various "flavors" of TolDCs encourages future research in discovery of Tol-DC inducing agents to enrich various ways of DC manipulation. This would enable a broader range of tools to manipulate DC toward specific characteristics desirable in different disease settings. In recent years, several novel small molecules have been identified with the capacity to promote DC tolerogenic characteristics. In this review, we will present and discuss these novel findings and also highlight novel understandings of tolerogenic mechanisms by which DC tolerogenicity is induced by already established agents.
Collapse
Affiliation(s)
- Urban Švajger
- Blood Transfusion Center of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia.
| | - Primož J Rožman
- Blood Transfusion Center of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia
| |
Collapse
|
32
|
Han P, Hanlon D, Sobolev O, Chaudhury R, Edelson RL. Ex vivo dendritic cell generation-A critical comparison of current approaches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:251-307. [PMID: 31759433 DOI: 10.1016/bs.ircmb.2019.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, required for the initiation of naïve and memory T cell responses and regulation of adaptive immunity. The discovery of DCs in 1973, which culminated in the Nobel Prize in Physiology or Medicine in 2011 for Ralph Steinman and colleagues, initially focused on the identification of adherent mononuclear cell fractions with uniquely stellate dendritic morphology, followed by key discoveries of their critical immunologic role in initiating and maintaining antigen-specific immunity and tolerance. The medical promise of marshaling these key capabilities of DCs for therapeutic modulation of antigen-specific immune responses has guided decades of research in hopes to achieve genuine physiologic partnership with the immune system. The potential uses of DCs in immunotherapeutic applications include cancer, infectious diseases, and autoimmune disorders; thus, methods for rapid and reliable large-scale production of DCs have been of great academic and clinical interest. However, difficulties in obtaining DCs from lymphoid and peripheral tissues, low numbers and poor survival in culture, have led to advancements in ex vivo production of DCs, both for probing molecular details of DC function as well as for experimenting with their clinical utility. Here, we review the development of a diverse array of DC production methodologies, ranging from cytokine-based strategies to genetic engineering tools devised for enhancing DC-specific immunologic functions. Further, we explore the current state of DC therapies in clinic, as well as emerging insights into physiologic production of DCs inspired by existing therapies.
Collapse
Affiliation(s)
- Patrick Han
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Douglas Hanlon
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Olga Sobolev
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Rabib Chaudhury
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Richard L Edelson
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
33
|
Domínguez-Amorocho O, Takiishi T, da Cunha FF, Camara NOS. Immunometabolism: A target for the comprehension of immune response toward transplantation. World J Transplant 2019; 9:27-34. [PMID: 31363459 PMCID: PMC6656658 DOI: 10.5500/wjt.v9.i2.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/11/2019] [Accepted: 01/28/2019] [Indexed: 02/05/2023] Open
Abstract
Organ transplantation is a life-saving procedure, however predicting graft survival is still challenging. Understanding immune-cell pathobiology is critical to the development of effective therapies to prevent rejection. Over the recent years it has become progressively evident that the complex nature of immune cell behavioral dynamics is strongly dependent on cellular metabolism, which in turn, relies on competition for nutrients, oxygen and metabolites with other immune cells and microbiota. Furthermore, the influence of the inflammatory state can lead to substantial changes in conditions within the tissue micro-environment. Considering the context of immunity, alterations in metabolic pathways (glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway, the fatty acid oxidation and synthesis, and the amino acid metabolic pathways) will influence the production of different sets of cytokines and affect transplantation outcome. It is now known that naïve, resting and effector cells acquire different metabolic profiles and studies have shown that specifically targeting some of these metabolic routes can prevent differentiation of effector T cells in favor of Tregs. Ultimately, to develop effective therapies that will prevent graft loss and understanding how cell metabolism impacts the fate and function of immune cells is now a critical point of discussion. The distinct metabolic features and requirements observed in effector and suppressive cell subsets offer promising opportunities for selective regulation of the immune responses in transplantation and will be discussed in this review.
Collapse
Affiliation(s)
- Omar Domínguez-Amorocho
- Department of Immunology, Biomedical Sciences Institute, University of São Paulo, São Paulo 05508-900, Brazil
| | - Tatiana Takiishi
- Department of Immunology, Biomedical Sciences Institute, University of São Paulo, São Paulo 05508-900, Brazil
| | - Flavia Franco da Cunha
- Department of Immunology, Biomedical Sciences Institute, University of São Paulo, São Paulo 05508-900, Brazil
| | - Niels Olsen Saraiva Camara
- Department of Immunology, Biomedical Sciences Institute, University of São Paulo, São Paulo 05508-900, Brazil
| |
Collapse
|
34
|
Domínguez-Amorocho O, Takiishi T, Cunha FFD, Câmara NOS. Immunometabolism: A target for the comprehension of immune response toward transplantation. World J Transplant 2019. [DOI: 10.5500/wjt.v9.i2.0000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
35
|
Breda CNDS, Davanzo GG, Basso PJ, Saraiva Câmara NO, Moraes-Vieira PMM. Mitochondria as central hub of the immune system. Redox Biol 2019; 26:101255. [PMID: 31247505 PMCID: PMC6598836 DOI: 10.1016/j.redox.2019.101255] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/01/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023] Open
Abstract
Nearly 130 years after the first insights into the existence of mitochondria, new rolesassociated with these organelles continue to emerge. As essential hubs that dictate cell fate, mitochondria integrate cell physiology, signaling pathways and metabolism. Thus, recent research has focused on understanding how these multifaceted functions can be used to improve inflammatory responses and prevent cellular dysfunction. Here, we describe the role of mitochondria on the development and function of immune cells, highlighting metabolic aspects and pointing out some metabolic- independent features of mitochondria that sustain cell function.
Collapse
Affiliation(s)
- Cristiane Naffah de Souza Breda
- Transplantation Immunobiology Lab, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo Gastão Davanzo
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Paulo José Basso
- Transplantation Immunobiology Lab, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Transplantation Immunobiology Lab, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Pedro Manoel Mendes Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.
| |
Collapse
|
36
|
Ombra MN, Paliogiannis P, Stucci LS, Colombino M, Casula M, Sini MC, Manca A, Palomba G, Stanganelli I, Mandalà M, Gandini S, Lissia A, Doneddu V, Cossu A, Palmieri G. Dietary compounds and cutaneous malignant melanoma: recent advances from a biological perspective. Nutr Metab (Lond) 2019; 16:33. [PMID: 31139235 PMCID: PMC6528337 DOI: 10.1186/s12986-019-0365-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/12/2019] [Indexed: 12/31/2022] Open
Abstract
Cutaneous malignant melanoma is a heterogeneous disease, being the consequence of specific genetic alterations along several molecular pathways. Despite the increased knowledge about the biology and pathogenesis of melanoma, the incidence has grown markedly worldwide, making it extremely important to develop preventive measures. The beneficial role of correct nutrition and of some natural dietary compounds in preventing malignant melanoma has been widely demonstrated. This led to numerous studies investigating the role of several dietary attitudes, patterns, and supplements in the prevention of melanoma, and ongoing research investigates their impact in the clinical management and outcomes of patients diagnosed with the disease. This article is an overview of recent scientific advances regarding specific dietary compounds and their impact on melanoma development and treatment.
Collapse
Affiliation(s)
- Maria Neve Ombra
- 1Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Panagiotis Paliogiannis
- 2Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Luigia Stefania Stucci
- 3Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Maria Colombino
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Milena Casula
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Maria Cristina Sini
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Antonella Manca
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Grazia Palomba
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Ignazio Stanganelli
- 5Istituto Scientifico Romagnolo per Studio e Cura Tumori (IRST-IRCCS), Meldola, Italy
| | - Mario Mandalà
- 6Medical Oncology, "Papa Giovanni XXIII" Hospital, Bergamo, Italy
| | - Sara Gandini
- 7Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Amelia Lissia
- 2Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Valentina Doneddu
- 2Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Antonio Cossu
- 2Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Giuseppe Palmieri
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | | |
Collapse
|
37
|
Wculek SK, Khouili SC, Priego E, Heras-Murillo I, Sancho D. Metabolic Control of Dendritic Cell Functions: Digesting Information. Front Immunol 2019; 10:775. [PMID: 31073300 PMCID: PMC6496459 DOI: 10.3389/fimmu.2019.00775] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) control innate and adaptive immunity by patrolling tissues to gather antigens and danger signals derived from microbes and tissue. Subsequently, DCs integrate those environmental cues, orchestrate immunity or tolerance, and regulate tissue homeostasis. Recent advances in the field of immunometabolism highlight the notion that immune cells markedly alter cellular metabolic pathways during differentiation or upon activation, which has important implications on their functionality. Previous studies showed that active oxidative phosphorylation in mitochondria is associated with immature or tolerogenic DCs, while increased glycolysis upon pathogen sensing can promote immunogenic DC functions. However, new results in the last years suggest that regulation of DC metabolism in steady state, after immunogenic activation and during tolerance in different pathophysiological settings, may be more complex. Moreover, ontogenically distinct DC subsets show different functional specializations to control T cell responses. It is, thus, relevant how metabolism influences DC differentiation and plasticity, and what potential metabolic differences exist among DC subsets. Better understanding of the emerging connection between metabolic adaptions and functional DC specification will likely allow the development of therapeutic strategies to manipulate immune responses.
Collapse
Affiliation(s)
- Stefanie K Wculek
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sofía C Khouili
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Elena Priego
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ignacio Heras-Murillo
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
38
|
Resveratrol (3, 5, 4'-Trihydroxy-trans-Stilbene) Attenuates a Mouse Model of Multiple Sclerosis by Altering the miR-124/Sphingosine Kinase 1 Axis in Encephalitogenic T Cells in the Brain. J Neuroimmune Pharmacol 2019; 14:462-477. [PMID: 30941623 DOI: 10.1007/s11481-019-09842-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) (RES) is a naturally-derived phytoestrogen found in the skins of red grapes and berries and has potential as a novel and effective therapeutic agent. In the current study, we investigated the role of microRNA (miRNA) in RES-mediated attenuation of experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis. Administration of RES effectively decreased disease severity, including inflammation and central nervous system immune cell infiltration. miRNA microarray analysis revealed an altered miRNA profile in encephalitogenic CD4+ T cells from EAE mice exposed to RES treatment. Additionally, bioinformatics and in silico pathway analysis suggested the involvement of RES-induced miRNA in pathways and processes that regulated cellular proliferation. Additional studies confirmed that RES affected cell cycle progression and apoptosis in activated T cells, specifically in the brain. RES treatment significantly upregulated miR-124 during EAE, while suppressing associated target gene, sphingosine kinase 1 (SK1), and this too was specific to mononuclear cells in the brains of treated mice, as peripheral immune cells remained unaltered upon RES treatment. Collectively, these studies demonstrate that RES treatment leads to amelioration of EAE development through mechanism(s) potentially involving suppression of neuroinflammation via alteration of the miR-124/SK1 axis, thereby halting cell-cycle progression and promoting apoptosis in activated encephalitogenic T cells. Graphical Abstract Resveratrol alters the miR-124/sphingosine kinase 1 (SK1) axis in encephalitogenic T cells, promotes cell-cycle arrest and apoptosis, and decreases neuroinflammation in experiemental autoimmune encephalomyelitis (EAE).
Collapse
|
39
|
The impact of metabolic reprogramming on dendritic cell function. Int Immunopharmacol 2018; 63:84-93. [PMID: 30075432 DOI: 10.1016/j.intimp.2018.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) are antigen-presenting cells with the ability to activate naïve T cells and direct the adaptive cellular immune response toward a specific profile. This is important, as different pathogens demand specific "profiles" of immune responses for their elimination. Such a goal is achieved depending on the maturation/activation status of DCs by the time of antigen presentation to T cells. Notwithstanding this, recent studies have shown that DCs alter their metabolic program to accommodate the functional changes in gene expression and protein synthesis that follow antigen recognition. In this review, we aim to summarize the data in the literature regarding the metabolic pathways involved with DC phenotypes and their functions.
Collapse
|
40
|
Regulation of Immune Function by Polyphenols. J Immunol Res 2018; 2018:1264074. [PMID: 29850614 PMCID: PMC5925142 DOI: 10.1155/2018/1264074] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/27/2018] [Indexed: 12/31/2022] Open
Abstract
Immune dysfunction is caused by various factors, including changes in relevant immune regulators and environmental stress. Immune system imbalance leads to a variety of diseases in humans. Nutrition may play an essential role in immunity by interfering with proinflammatory cytokine synthesis, immune cell regulation, and gene expression. Polyphenols, one of many categories of natural substances, exhibit a range of biological activities. Polyphenols promote immunity to foreign pathogens via various pathways. Different immune cells express multiple types of polyphenol receptors that recognise and allow cellular uptake of polyphenols, which subsequently activate signalling pathways to initiate immune responses. Furthermore, the polyphenols curcumin and epigallocatechin gallate can induce epigenetic changes in cells. In summary, polyphenols can be used to regulate intestinal mucosal immune responses, allergic diseases, and antitumour immunity.
Collapse
|
41
|
Stüve P, Minarrieta L, Erdmann H, Arnold-Schrauf C, Swallow M, Guderian M, Krull F, Hölscher A, Ghorbani P, Behrends J, Abraham WR, Hölscher C, Sparwasser TD, Berod L. De Novo Fatty Acid Synthesis During Mycobacterial Infection Is a Prerequisite for the Function of Highly Proliferative T Cells, But Not for Dendritic Cells or Macrophages. Front Immunol 2018; 9:495. [PMID: 29675017 PMCID: PMC5895737 DOI: 10.3389/fimmu.2018.00495] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, is able to efficiently manipulate the host immune system establishing chronic infection, yet the underlying mechanisms of immune evasion are not fully understood. Evidence suggests that this pathogen interferes with host cell lipid metabolism to ensure its persistence. Fatty acid metabolism is regulated by acetyl-CoA carboxylase (ACC) 1 and 2; both isoforms catalyze the conversion of acetyl-CoA into malonyl-CoA, but have distinct roles. ACC1 is located in the cytosol, where it regulates de novo fatty acid synthesis (FAS), while ACC2 is associated with the outer mitochondrial membrane, regulating fatty acid oxidation (FAO). In macrophages, mycobacteria induce metabolic changes that lead to the cytosolic accumulation of lipids. This reprogramming impairs macrophage activation and contributes to chronic infection. In dendritic cells (DCs), FAS has been suggested to underlie optimal cytokine production and antigen presentation, but little is known about the metabolic changes occurring in DCs upon mycobacterial infection and how they affect the outcome of the immune response. We therefore determined the role of fatty acid metabolism in myeloid cells and T cells during Mycobacterium bovis BCG or Mtb infection, using novel genetic mouse models that allow cell-specific deletion of ACC1 and ACC2 in DCs, macrophages, or T cells. Our results demonstrate that de novo FAS is induced in DCs and macrophages upon M. bovis BCG infection. However, ACC1 expression in DCs and macrophages is not required to control mycobacteria. Similarly, absence of ACC2 did not influence the ability of DCs and macrophages to cope with infection. Furthermore, deletion of ACC1 in DCs or macrophages had no effect on systemic pro-inflammatory cytokine production or T cell priming, suggesting that FAS is dispensable for an intact innate response against mycobacteria. In contrast, mice with a deletion of ACC1 specifically in T cells fail to generate efficient T helper 1 responses and succumb early to Mtb infection. In summary, our results reveal ACC1-dependent FAS as a crucial mechanism in T cells, but not DCs or macrophages, to fight against mycobacterial infection.
Collapse
Affiliation(s)
- Philipp Stüve
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Lucía Minarrieta
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Hanna Erdmann
- Infection Immunology, Research Center Borstel, Borstel, Germany
| | - Catharina Arnold-Schrauf
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Maxine Swallow
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Melanie Guderian
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Freyja Krull
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | | | - Peyman Ghorbani
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Jochen Behrends
- Core Facility Fluorescence Cytometry, Research Center Borstel, Borstel, Germany
| | - Wolf-Rainer Abraham
- Department of Chemical Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Tim D Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| |
Collapse
|
42
|
ILT4 functions as a potential checkpoint molecule for tumor immunotherapy. Biochim Biophys Acta Rev Cancer 2018; 1869:278-285. [DOI: 10.1016/j.bbcan.2018.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 02/06/2023]
|
43
|
Metabolic Plasticity in Dendritic Cell Responses: Implications in Allergic Asthma. J Immunol Res 2017; 2017:5134760. [PMID: 29387732 PMCID: PMC5745769 DOI: 10.1155/2017/5134760] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/07/2017] [Indexed: 12/25/2022] Open
Abstract
Dendritic cells (DCs) are highly specialized in antigen presentation and play a pivotal role in the initiation, progression, and perpetuation of adaptive immune responses. Emerging immune pathways are being recognized increasingly for DCs and their subsets that differentially regulate T lymphocyte function based on the type and interactions with the antigen. However, these interactions not only alter the signaling process and DC function but also render metabolic plasticity. The current review focuses on the metabolic cues of DCs that coordinate DC activation and differentiation and discuss whether targeting these fundamental cellular processes have implications to control airway inflammation and adaptive immunity. Therefore, strategies using metabolism-based therapeutic manipulation of DC functions could be developed into novel treatments for airway inflammation and asthma.
Collapse
|
44
|
Tomić S, Janjetović K, Mihajlović D, Milenković M, Kravić-Stevović T, Marković Z, Todorović-Marković B, Spitalsky Z, Micusik M, Vučević D, Čolić M, Trajković V. Graphene quantum dots suppress proinflammatory T cell responses via autophagy-dependent induction of tolerogenic dendritic cells. Biomaterials 2017; 146:13-28. [DOI: 10.1016/j.biomaterials.2017.08.040] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022]
|
45
|
Vanherwegen AS, Gysemans C, Mathieu C. Vitamin D endocrinology on the cross-road between immunity and metabolism. Mol Cell Endocrinol 2017; 453:52-67. [PMID: 28461074 DOI: 10.1016/j.mce.2017.04.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
Abstract
The effects of vitamin D on the immune function have been recognized for more than a quarter of a century. However, our understanding of the multifactorial nature of the effects of vitamin D at the cellular, molecular and metabolic level in different immune cells of the innate and adaptive immune system has dramatically progressed during the last decades. In this review, we summarize the main metabolic pathways preferentially used in different subsets of macrophages, dendritic cells, T and B cells as well as the immunomodulatory effects of vitamin D on these cells. We will highlight the metabolic reprogramming happening in vitamin D-conditioned tolerogenic dendritic cells. A better knowledge of the dynamics of metabolic states in immune subsets and their possible roles in inflammation and autoimmunity may advance the development of novel immunotherapies. Likewise, the implications of effects of vitamin D on immunometabolism may progress our insights in the nature of immune responses in health and disease.
Collapse
Affiliation(s)
- An-Sofie Vanherwegen
- Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Herestraat 49, O&N1, Bus 902, 3000 Leuven, Belgium
| | - Conny Gysemans
- Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Herestraat 49, O&N1, Bus 902, 3000 Leuven, Belgium.
| | - Chantal Mathieu
- Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Herestraat 49, O&N1, Bus 902, 3000 Leuven, Belgium
| |
Collapse
|
46
|
Domazetovic V, Fontani F, Tanini D, D'Esopo V, Viglianisi C, Marcucci G, Panzella L, Napolitano A, Brandi ML, Capperucci A, Menichetti S, Vincenzini MT, Iantomasi T. Protective role of benzoselenophene derivatives of resveratrol on the induced oxidative stress in intestinal myofibroblasts and osteocytes. Chem Biol Interact 2017; 275:13-21. [DOI: 10.1016/j.cbi.2017.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/18/2022]
|
47
|
Keane KN, Calton EK, Carlessi R, Hart PH, Newsholme P. The bioenergetics of inflammation: insights into obesity and type 2 diabetes. Eur J Clin Nutr 2017; 71:904-912. [PMID: 28402325 DOI: 10.1038/ejcn.2017.45] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 02/22/2017] [Accepted: 02/28/2017] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is one of the most common chronic metabolic disorders worldwide, and its incidence in Asian countries is alarmingly high. Type 2 diabetes (T2DM) is closely associated with obesity, and the staggering rise in obesity is one of the primary factors related to the increased frequency of T2DM. Low-grade chronic inflammation is also accepted as an integral metabolic adaption in obesity and T2DM, and is believed to be a major player in the onset of insulin resistance. However, the exact mechanism(s) that cause a persistent chronic low-grade infiltration of leukocytes into insulin-target tissues such as adipose, skeletal muscle and liver are not entirely known. Recent developments in the understanding of leukocyte metabolism have revealed that the inflammatory polarization of immune cells, and consequently their immunological function, are strongly connected to their metabolic profile. Therefore, it is hypothesized that dysfunctional immune cell metabolism is a central cellular mechanism that prevents the resolution of inflammation in chronic metabolic conditions such as that observed in obesity and T2DM. The purpose of this review is to explore the metabolic demands of different immune cell types, and identify the molecular switches that control immune cell metabolism and ultimately function. Understanding of these concepts may allow the development of interventions that can correct immune function and may possibly decrease chronic low-grade inflammation in humans suffering from obesity and T2DM. We also review the latest clinical techniques used to measure metabolic flux in primary leukocytes isolated from obese and T2DM patients.
Collapse
Affiliation(s)
- K N Keane
- Faculty of Health Sciences, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - E K Calton
- Health Promotion and Disease Prevention, School of Public Health, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
| | - R Carlessi
- Faculty of Health Sciences, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - P H Hart
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - P Newsholme
- Faculty of Health Sciences, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
48
|
del Cornò M, Scazzocchio B, Masella R, Gessani S. Regulation of Dendritic Cell Function by Dietary Polyphenols. Crit Rev Food Sci Nutr 2017; 56:737-47. [PMID: 24941314 DOI: 10.1080/10408398.2012.713046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Marked changes in socioeconomic status, cultural traditions, population growth, and agriculture have been affecting diets worldwide. Nutrition is known to play a pivotal role in the pathogenesis of several chronic diseases, and the use of bioactive food compounds at pharmacologic doses is emerging as a preventive and/or therapeutic approach to target metabolic dysregulations occurring in aging, obesity-related chronic diseases, and cancer. Only recently have data on the effects of specific nutrients or food on the immune system become available, and studies regarding the human immune system are still in their infancy. Beyond providing essential nutrients, diet can actively influence the immune system. Understanding how diet and nutritional status influence the innate and adaptive arms of our immune system represents an area of scientific need, opportunity, and challenge. The insights gleaned should help to address several pressing global health problems. Recently, biologically active polyphenols, which are widespread constituents of fruit and vegetables, have gained importance as complex regulators of various cellular processes, critically involved in the maintenance of body homeostasis. This review outlines the potential effects of polyphenols on the function of dendritic cells (DCs), key players in the orchestration of the immune response. Their effects on different aspects of DC biology including differentiation, maturation, and DC capacity to shift immune response toward tolerance or immune activation will be outlined.
Collapse
Affiliation(s)
- Manuela del Cornò
- a Department of Hematology , Oncology and Molecular Medicine, Istituto Superiore di Sanità , Rome , Italy
| | - Beatrice Scazzocchio
- b Department of Veterinary Public Health and Food Safety , Istituto Superiore di Sanità , Rome , Italy
| | - Roberta Masella
- b Department of Veterinary Public Health and Food Safety , Istituto Superiore di Sanità , Rome , Italy
| | - Sandra Gessani
- a Department of Hematology , Oncology and Molecular Medicine, Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
49
|
Innate and Adaptive Immune Cell Metabolism in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1011:211-223. [DOI: 10.1007/978-94-024-1170-6_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
García-González P, Ubilla-Olguín G, Catalán D, Schinnerling K, Aguillón JC. Tolerogenic dendritic cells for reprogramming of lymphocyte responses in autoimmune diseases. Autoimmun Rev 2016; 15:1071-1080. [PMID: 27485011 DOI: 10.1016/j.autrev.2016.07.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) control immune responses by driving potent inflammatory actions against external and internal threats while generating tolerance to self and harmless components. This duality and their potential to reprogram immune responses in an antigen-specific fashion have made them an interesting target for immunotherapeutic strategies to control autoimmune diseases. Several protocols have been described for in vitro generation of tolerogenic DCs (tolDCs) capable of modulating adaptive immune responses and restoring tolerance through different mechanisms that involve anergy, generation of regulatory lymphocyte populations, or deletion of potentially harmful inflammatory T cell subsets. Recently, the capacity of tolDCs to induce interleukin (IL-10)-secreting regulatory B cells has been demonstrated. In vitro assays and rodent models of autoimmune diseases provide insights to the molecular regulators and pathways enabling tolDCs to control immune responses. Here we review mechanisms through which tolDCs modulate adaptive immune responses, particularly focusing on their suitability for reprogramming autoreactive CD4+ effector T cells. Furthermore, we discuss recent findings establishing that tolDCs also modulate B cell populations and discuss clinical trials applying tolDCs to patients with autoimmune diseases.
Collapse
Affiliation(s)
- Paulina García-González
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millenium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Gabriela Ubilla-Olguín
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millenium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Diego Catalán
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millenium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Katina Schinnerling
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millenium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile.
| | - Juan Carlos Aguillón
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millenium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile.
| |
Collapse
|