1
|
Sanchez-Reinoso Z, Todeschini S, Thibodeau J, Ben Said L, Fliss I, Bazinet L, Mikhaylin S. Biocontrol Strategy of Listeria monocytogenes in Ready-to-Eat Pork Cooked Ham Using Peptic Hydrolysates of Porcine Hemoglobin. Foods 2024; 13:2394. [PMID: 39123585 PMCID: PMC11311599 DOI: 10.3390/foods13152394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that represents a serious concern for ready-to-eat (RTE) meat products due to its persistence in production facilities. Among the different strategies for the control of this pathogen, the use of antimicrobial peptides derived from food by-products, such as slaughterhouse blood proteins, has emerged as a promising biocontrol strategy. This study evaluated for the first time the use of peptic hydrolysates of porcine hemoglobin as a biocontrol strategy of L. monocytogenes in RTE pork cooked ham. Pure porcine hemoglobin (Hb-P) and porcine cruor (P-Cru) were hydrolyzed using pepsin at different temperatures (37 °C for Hb-P and 23 °C for P-Cru) for 3 h. Then, the hydrolysates were characterized in terms of their degree of hydrolysis (DH), peptide population, color, and antimicrobial activity (in vitro and in situ) against three different serotypes of L. monocytogenes. Reducing the hydrolysis temperature of P-Cru by 14 °C resulted in a 2 percentage unit decrease in DH and some differences in the peptide composition. Nevertheless, the antimicrobial activity (in situ) was not significantly impacted, decreasing the viable count of L. monocytogenes by ~1-log and retarding their growth for 21 days at 4 °C. Although the color of the product was visibly altered, leading to more saturated reddish and yellowish tones and reduced brightness, the discoloration of the hydrolysates can be addressed. This biopreservation approach holds promise for other meat products and contributes to the circular economy concept of the meat industry by valorizing slaughterhouse blood and producing new antilisterial compounds.
Collapse
Affiliation(s)
- Zain Sanchez-Reinoso
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada; (Z.S.-R.); (S.T.); (J.T.); (L.B.S.); (I.F.); (L.B.)
- Laboratory of Food Sustainability (EcoFoodLab), Food Science Department, Université Laval, Quebec City, QC G1V 0A6, Canada
- Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and Electromembrane Processes), Food Science Department, Université Laval, Quebec City, QC G1V 0A6, Canada
- International Associated Laboratory in Bioproduction of Natural Antimicrobials (LIAAN), Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Sarah Todeschini
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada; (Z.S.-R.); (S.T.); (J.T.); (L.B.S.); (I.F.); (L.B.)
- Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and Electromembrane Processes), Food Science Department, Université Laval, Quebec City, QC G1V 0A6, Canada
- International Associated Laboratory in Bioproduction of Natural Antimicrobials (LIAAN), Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Jacinthe Thibodeau
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada; (Z.S.-R.); (S.T.); (J.T.); (L.B.S.); (I.F.); (L.B.)
- Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and Electromembrane Processes), Food Science Department, Université Laval, Quebec City, QC G1V 0A6, Canada
- International Associated Laboratory in Bioproduction of Natural Antimicrobials (LIAAN), Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Laila Ben Said
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada; (Z.S.-R.); (S.T.); (J.T.); (L.B.S.); (I.F.); (L.B.)
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada; (Z.S.-R.); (S.T.); (J.T.); (L.B.S.); (I.F.); (L.B.)
- International Associated Laboratory in Bioproduction of Natural Antimicrobials (LIAAN), Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada; (Z.S.-R.); (S.T.); (J.T.); (L.B.S.); (I.F.); (L.B.)
- Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and Electromembrane Processes), Food Science Department, Université Laval, Quebec City, QC G1V 0A6, Canada
- International Associated Laboratory in Bioproduction of Natural Antimicrobials (LIAAN), Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Sergey Mikhaylin
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada; (Z.S.-R.); (S.T.); (J.T.); (L.B.S.); (I.F.); (L.B.)
- Laboratory of Food Sustainability (EcoFoodLab), Food Science Department, Université Laval, Quebec City, QC G1V 0A6, Canada
- International Associated Laboratory in Bioproduction of Natural Antimicrobials (LIAAN), Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Lagarde J, Feurer C, Denis M, Douarre PE, Piveteau P, Roussel S. Listeria monocytogenes prevalence and genomic diversity along the pig and pork production chain. Food Microbiol 2024; 119:104430. [PMID: 38225039 DOI: 10.1016/j.fm.2023.104430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 01/17/2024]
Abstract
The facultative intracellular bacterium Listeria monocytogenes (L. monocytogenes) is the causative agent of listeriosis, a severe invasive illness. This ubiquitous species is widely distributed in the environment, but infection occurs almost exclusively through ingestion of contaminated food. The pork production sector has been heavily affected by a series of L. monocytogenes-related foodborne outbreaks in the past around the world. Ready-to-eat (RTE) pork products represent one of the main food sources for strong-evidence listeriosis outbreaks. This pathogen is known to be present throughout the entire pig and pork production chain. Some studies hypothesized that the main source of contamination in final pork products was either living pigs or the food-processing environment. A detailed genomic picture of L. monocytogenes can provide a renewed understanding of the routes of contamination from pig farms to the final products. This review provides an overview of the prevalence, the genomic diversity and the genetic background linked to virulence of L. monocytogenes along the entire pig and pork production chain, from farm to fork.
Collapse
Affiliation(s)
- Jean Lagarde
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, 14 rue Pierre et Marie Curie, 94700, Maisons-Alfort, France; INRAE, Unit of Process Optimisation in Food, Agriculture and the Environment (UR OPAALE), 17 avenue de Cucillé, 35000, Rennes, France
| | - Carole Feurer
- IFIP, The French Pig and Pork Institute, Department of Fresh and Processed Meat, La Motte au Vicomte, 35650, Le Rheu, France
| | - Martine Denis
- ANSES, Unit of Hygiene and Quality of Poultry and Pork Products (UHQPAP), Ploufragan-Plouzané-Niort Laboratory, 31 rue des fusillés, 22440, Ploufragan, France
| | - Pierre-Emmanuel Douarre
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, 14 rue Pierre et Marie Curie, 94700, Maisons-Alfort, France
| | - Pascal Piveteau
- INRAE, Unit of Process Optimisation in Food, Agriculture and the Environment (UR OPAALE), 17 avenue de Cucillé, 35000, Rennes, France
| | - Sophie Roussel
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, 14 rue Pierre et Marie Curie, 94700, Maisons-Alfort, France.
| |
Collapse
|
3
|
Gonzales-Barron U, Cadavez V, De Oliveira Mota J, Guillier L, Sanaa M. A Critical Review of Risk Assessment Models for Listeria monocytogenes in Meat and Meat Products. Foods 2024; 13:359. [PMID: 38338495 PMCID: PMC10855662 DOI: 10.3390/foods13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
A review of the published quantitative risk assessment (QRA) models of L. monocytogenes in meat and meat products was performed, with the objective of appraising the intervention strategies deemed suitable for implementation along the food chain as well as their relative effectiveness. A systematic review retrieved 23 QRA models; most of them (87%) focused on ready-to-eat meat products and the majority (78%) also covered short supply chains (end processing/retail to consumption, or consumption only). The processing-to-table scope was the choice of models for processed meats such as chorizo, bulk-cooked meat, fermented sausage and dry-cured pork, in which the effects of processing were simulated. Sensitivity analysis demonstrated the importance of obtaining accurate estimates for lag time, growth rate and maximum microbial density, in particular when affected by growth inhibitors and lactic acid bacteria. In the case of deli meats, QRA models showed that delicatessen meats sliced at retail were associated with a higher risk of listeriosis than manufacture pre-packed deli meats. Many models converged on the fact that (1) controlling cold storage temperature led to greater reductions in the final risk than decreasing the time to consumption and, furthermore, that (2) lower numbers and less prevalence of L. monocytogenes at the end of processing were far more effective than keeping low temperatures and/or short times during retail and/or home storage. Therefore, future listeriosis QRA models for meat products should encompass a processing module in order to assess the intervention strategies that lead to lower numbers and prevalence, such as the use of bio-preservation and novel technologies. Future models should be built upon accurate microbial kinetic parameters, and should realistically represent cross-contamination events along the food chain.
Collapse
Affiliation(s)
- Ursula Gonzales-Barron
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Vasco Cadavez
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Juliana De Oliveira Mota
- Department of Nutrition and Food Safety, World Health Organization (WHO), CH-1211 Geneva, Switzerland;
| | - Laurent Guillier
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (Anses), 14 Rue Pierre et Marie Curie, 94701 Maisons-Alfort, France;
| | - Moez Sanaa
- Department of Nutrition and Food Safety, World Health Organization (WHO), CH-1211 Geneva, Switzerland;
| |
Collapse
|
4
|
Kang SY, Cho ER, Kang DH. Inactivation of foodborne pathogens in ground pork tenderloin using 915 MHz microwave heating depending on power level. Food Res Int 2023; 173:113231. [PMID: 37803544 DOI: 10.1016/j.foodres.2023.113231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
The main purpose of this research was to investigate the effect of power level of 915 MHz microwave heating on the inactivation of foodborne pathogens in ground pork and its bactericidal mechanism. It was demonstrated that the heating rate was proportional to the power level. For instance, the heating rates observed at microwave heating powers of 2, 3, 4, and 5 kW were 1.70, 2.77, 3.35, and 4.03℃/s, respectively. The bactericidal effect of microwave heating also significantly (P < 0.05) increased with increasing power level. In particular, when ground pork was subjected to microwave heating at 5 kW, the reduction level of pathogens was>2 log units higher than at 2 kW. To determine the bactericidal mechanism of microwave heating depending on power level, changes in transmembrane potential and DNA damage were determined using fluorescence. The extent of depolarization in membrane potential of pathogens significantly (P < 0.05) increased as power level increased. There was no significant difference in degree of DNA damage at different power levels. However, the percentage of DNA damage was>86% at all power levels. The transmembrane potential assay indicates that the bacteria exhibited dramatic pore formation on the membrane at 5 kW. Through transmission electron microscopy, the electroporation effect was enhanced as power level increased. Moreover, the quality of ground pork subjected to microwave heating at 2-5 kW was determined by measuring the moisture content, cooking loss, and texture profile.
Collapse
Affiliation(s)
- Su-Yeon Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon do 25354, Republic of Korea
| | - Eun-Rae Cho
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon do 25354, Republic of Korea
| | - Dong-Hyun Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon do 25354, Republic of Korea.
| |
Collapse
|
5
|
Ravindhiran R, Sivarajan K, Sekar JN, Murugesan R, Dhandapani K. Listeria monocytogenes an Emerging Pathogen: a Comprehensive Overview on Listeriosis, Virulence Determinants, Detection, and Anti-Listerial Interventions. MICROBIAL ECOLOGY 2023; 86:2231-2251. [PMID: 37479828 DOI: 10.1007/s00248-023-02269-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Listeria monocytogenes, the third most deleterious zoonotic pathogen, is a major causative agent of animal and human listeriosis, an infection related to the consumption of contaminated food products. Even though, this pathogen has been responsible for the outbreaks of foodborne infections in the early 1980s, the major outbreaks have been reported during the past two decades. Listeriosis infection in the host is a rare but life-threatening disease with major public health and economic implications. Extensive reports on listeriosis outbreaks are associated with milk and milk products, meat and meat products, and fresh produce. This bacterium can adapt to any environmental and stress conditions, making it a prime causative agent for major foodborne diseases. The pathogen could survive an antibiotic treatment and persist in the host cell, thereby escaping the standard diagnostic practices. The current review strives to provide concise information on the epidemiology, serotypes, and pathogenesis of the L. monocytogenes to decipher the knowledge on the endurance of the pathogen inside the host and food products as a vehicle for Listeria contaminations. In addition, various detection methods for Listeria species from food samples and frontline regimens of L. monocytogenes treatment have also been discussed.
Collapse
Affiliation(s)
- Ramya Ravindhiran
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Karthiga Sivarajan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Jothi Nayaki Sekar
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Rajeswari Murugesan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Kavitha Dhandapani
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India.
| |
Collapse
|
6
|
Gkerekou MA, Kaparakou EH, Tarantilis PA, Skandamis PN. Studying the metabolic factors that may impact the growth of co-cultured Listeria monocytogenes strains at low temperature. Food Res Int 2023; 171:113056. [PMID: 37330855 DOI: 10.1016/j.foodres.2023.113056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
The simultaneous presence of more than one strains of Listeria monocytogenes in the same food product may affect the growth capacity of each strain. The present study evaluated the metabolites composition that may potentially influence the growth of individual L. monocytogenes strains in a dual strain composite. Based on previous studies, L. monocytogenes strains, C5 (4b) and 6179 (1/2a) were selected due to the remarkable interaction, which was observed during their co-culture. The selected strains were inoculated (2.0 - 3.0 log CFU/mL) in Tryptic Soy Broth with 0.6% Yeast Extract (TSB-YE) in single and two-strain cultures (1:1 strain ratio). Bacterial growth was assessed during storage at 7 °C, under aerobic conditions (AC). Their resistance to different antibiotics enabled the selective enumeration of each strain in the co-culture. After reaching stationary phase, single and dual cultures were centrifuged and filtered. The cell-free spent medium (CFSM) was either characterized by Fourier transform infrared (FTIR-ATR) spectrometry or re-inoculated, after the addition of concentrated TSB-YE (for nutrient replenishment), with single and two-strain cultures for the evaluation of growth under the influence of metabolites produced from the same singly and co-cultured strains in the different combinations of strains and CFSM origin (7 °C/AC) (n = 2x3). By the end of storage, singly-cultured C5 and 6179 had reached 9.1 log CFU/mL, while in dual culture, 6179 was affected by the presence of C5 attaining only 6.4 ± 0.8 log CFU/mL. FTIR-ATR spectra of CFSM produced by singly-cultured 6179 and the co-culture were almost identical. Characteristic peaks in FTIR-ATR spectrum of CFSM of singly-cultured C5 at 1741, 1645 and 1223 cm-1 represent functional groups which were not present in the CFSM of the co-culture. These molecules may be located intracellularly or mounted on bacterial cell surface and removed from the supernatant during cell filtration of the co-culture. Both singly- and co-cultured 6179 managed to grow similarly regardless of CFSM origin. Contrarily, both singly- and co-cultured C5 managed to outgrow 6179 in CFSM which contained high concentration of C5 metabolites, while in CFSM produced by singly-cultured 6179, C5 did not grow, suggesting that the produced metabolites of strain 6179 appears to be harmful to strain C5. However, during co-culture, C5 may produce molecules that counteract the inhibitory effect of 6179. The findings shed more light on the mechanism behind the inter-strain interactions of L. monocytogenes indicating that both contact of cells and extracellular metabolites may influence the behavior of the different co-existing strains.
Collapse
Affiliation(s)
- Maria A Gkerekou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Eleftheria H Kaparakou
- Laboratory of General Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Petros A Tarantilis
- Laboratory of General Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Panagiotis N Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece.
| |
Collapse
|
7
|
Vidaković Knežević S, Knežević S, Vranešević J, Kravić SŽ, Lakićević B, Kocić-Tanackov S, Karabasil N. Effects of Selected Essential Oils on Listeria monocytogenes in Biofilms and in a Model Food System. Foods 2023; 12:foods12101930. [PMID: 37238748 DOI: 10.3390/foods12101930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The composition of 18 essential oils was determined using gas chromatography-mass spectrometry, and their antilisterial activity was evaluated by the disk diffusion method, followed by the determination of the minimum inhibitory and minimum bactericidal concentrations. The most active essential oils were oregano, thyme, cinnamon, winter savory, and clove, with MIC values ranging from 0.09 to 1.78 µL/mL. We investigated the biofilm-forming potential of Listeria monocytogenes on polystyrene at 5 °C, 15 °C, and 37 °C in three different media. The formation of biofilm was found to be dependent on the temperature and the availability of nutrients. After treatment with selected essential oils, the reduction in biofilm biomass was in the range of 32.61% and 78.62%. Micromorphological changes in the L. monocytogenes treated by oregano and thyme essential oils were observed in the form of impaired cell integrity and cell lyses by using scanning electron microscope. Oregano and thyme essential oils (MIC and 2MIC) significantly (p < 0.05) reduced the population of L. monocytogenes in minced pork meat during storage at 4 °C. In conclusion, the obtained results indicated the good activity of some selected essential oils on L. monocytogenes, with bacteriostatic, bactericidal, and antibiofilm effects at very low concentrations.
Collapse
Affiliation(s)
| | | | | | - Sneẑana Ž Kravić
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | | | | | - Nedjeljko Karabasil
- Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
8
|
Adhikari P, Florien N, Gupta S, Kaushal A. Recent Advances in the Detection of Listeria monocytogenes. Infect Dis (Lond) 2023. [DOI: 10.5772/intechopen.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Listeria monocytogenes is the third-most severe pathogen causing a yearly outbreak of food poisoning in the world that proliferates widely in the environment. Infants, pregnant mothers, and immuno-compromised people are at high risk. Its ability to grow in both biotic and abiotic environments leads to epidemics that infect 5 out of 10 people annually. Because of the epithelial adhesion (by E-cadherin binding), it can suppress immune cells and thrive in the gastrointestinal tract till the brain through blood flow (E-cadherin). Microbial culture is still used as a gold standard, but takes a long time and often yields false positive results due to incompetence and temperature variations. Therefore, in order to treat it rather than using broad spectrum antibiotics, a standardized time-saving and highly specific technology for early detection is very important. It has been observed that the production of a particular antibody is delaying (so does the detection process) as a result of the inadequate understanding of the pathophysiology of the bacteria. This book chapter provides a brief summary of a pathogen as well as the scientific advances that led to its identification more easily.
Collapse
|
9
|
Demaître N, De Reu K, François E, De Zutter L, Rasschaert G, Geeraerd A. Intra- and inter-batch variability in raw pork challenge test studies and their consequences on model predictions: An intricate interplay between L. monocytogenes, the microbiome, and packaging atmosphere. Int J Food Microbiol 2023; 387:110042. [PMID: 36527792 DOI: 10.1016/j.ijfoodmicro.2022.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/03/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to conduct challenge studies in raw pork by strictly following all aspects of the 2014 EURL technical guidance document for conducting shelf-life studies on Listeria monocytogenes. Growth potential was assessed on three batches of self-cut pork chops and one batch of in-house prepared pure minced pork without any additives in air and MAP (70 % O2/30% CO2) packaging. Pork chops did not support the growth of the pathogen throughout the shelf-life, given the specific conditions used in this study, with growth potential values of 0.28 and 0.46 log CFU/g, respectively, for both air and MAP. Substantial growth (>0.5 log CFU/g) was obtained in minced pork after investigating only one batch, with growth potential values of 1.69 and 0.80 log CFU/g, for air and MAP. However, both intra- and inter-batch variability for pork chops and intra-batch variability for minced pork was observed; with elevated growth being evened out by the way growth potential is calculated in the EURL 2014 document, leading to underestimations and posing a potential risk to public health. Maximum growth rate in minced pork at a constant temperature of 7 °C was estimated at μmax = 0.680 log CFU/day and μmax = 0.489 log CFU/day in air and MAP, respectively. Model predictions for the growth potential showed acceptable results for air-packed minced pork with better accuracy when the lag phase was implemented as indicated in the renewed protocol (CRL EU, 2021). In MAP, all models used, including the Combase Growth model and to a lesser extent the DMRI dynamic safety model, overestimate the growth potential probably due to a lack of integration of the changing CO2 levels in the packages. The predictive models used in this study do not adequately account for the dynamics in the raw pig matrix, which may have an inhibitory effect on the growth of L. monocytogenes, including interaction with the microbiome and CO2, and emphasize the importance of remaining critical of predictive model outcomes. In addition, the experimental intra- and inter-batch variability raise questions about the sense or nonsense of using predictive microbiology in these raw pork products.
Collapse
Affiliation(s)
- Niels Demaître
- KU Leuven, Department of Biosystems (BIOSYST), Division MeBioS, Sustainability in the agri-food chain group, Willem de Croylaan 42, box 2428, 3001 Leuven, Belgium; Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Koen De Reu
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium.
| | - Ellen François
- KU Leuven, Department of Biosystems (BIOSYST), Division MeBioS, Sustainability in the agri-food chain group, Willem de Croylaan 42, box 2428, 3001 Leuven, Belgium; Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Lieven De Zutter
- Ghent University, Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Geertrui Rasschaert
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Annemie Geeraerd
- KU Leuven, Department of Biosystems (BIOSYST), Division MeBioS, Sustainability in the agri-food chain group, Willem de Croylaan 42, box 2428, 3001 Leuven, Belgium.
| |
Collapse
|
10
|
Zambon A, Perez AG, Spilimbergo S, Fernández Escámez PS. Training in tools to develop quantitative microbial risk assessment along the food chain of Spanish products. EFSA J 2022; 20:e200903. [PMID: 36523424 PMCID: PMC9748752 DOI: 10.2903/j.efsa.2022.e200903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Food safety is a widespread challenge. Every year it is estimated that almost 1 in 10 people in the world fall ill after eating contaminated food resulting in over 400,000 deaths. The risk of outbreaks is higher when consuming ready-to-eat (RTE) products because they are eaten without a further cooking process that could inactivate pathogenic microorganisms. Hence, food processing is essential to increase the safety of RTE products. Microbiological risk assessment (MRA) integrates food science, microbiology and data science to provide a comprehensive understanding of the safety of the food system. MRA provides qualitative and/or quantitative information to decision makers, which might promote the adoption of better food practices. In this contest, this project aims to study and implement tools for quantitative microbial risk assessment (QMRA) of food products along the food chain. A common RTE product (cured ham) from Spain was used as a case study. Following, the exposure assessment model was implemented using mathematical models and statistical software to describe the microbial behaviour along the food chain. The study presents the possibility to identify the risk exposure in different scenarios (e.g. growth during different storage conditions, inactivation induced by traditional or innovative decontamination techniques), showing the flexibility of the predictive tools developed.
Collapse
Affiliation(s)
- Alessandro Zambon
- Departamento de Ingeniería AgronómicaETSIA‐Universidad Politécnica de CartagenaPaseo Alfonso XIII, 4830203CartagenaSpain
- Department of Industrial EngineeringUniversity of Paduavia Marzolo 935131PaduaItaly
| | - Alberto Garre Perez
- Departamento de Ingeniería AgronómicaETSIA‐Universidad Politécnica de CartagenaPaseo Alfonso XIII, 4830203CartagenaSpain
| | - Sara Spilimbergo
- Department of Industrial EngineeringUniversity of Paduavia Marzolo 935131PaduaItaly
| | - Pablo S Fernández Escámez
- Departamento de Ingeniería AgronómicaETSIA‐Universidad Politécnica de CartagenaPaseo Alfonso XIII, 4830203CartagenaSpain
| |
Collapse
|
11
|
Rodríguez A, Bars-Cortina D. Presence of Certain Foodborne Pathogens in Traditional Balearic Islands' Meat, Pastry, and Cheese Specialties Supported by European Union Quality Schemes, from 2018 to 2021. Foodborne Pathog Dis 2022; 19:787-795. [PMID: 36409678 DOI: 10.1089/fpd.2022.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cuisine of the Balearic Islands (Spain, southern Europe) has several products of a great tradition, recognized worldwide and covered by European Union quality schemes, such as Protected Designation of Origin (PDO) and Protected Geographical Indication (PGI). Among them, the most emblematic products are sobrasada de Mallorca (a type of raw curated pork meat), ensaimada de Mallorca (pastry product), and Mahón-Menorca cheese (cow's milk cheese). During 4 consecutive years (2018-2021), the presence/absence of Escherichia coli β-glucuronidase positive (henceforth as E. coli), Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus in these products has been monitored, as well as the total yeast and mold count in ensaimada de Mallorca. The results of the microbiological analysis showed that sobrasada presented similar microbiological patterns to those of other raw curated meat products (some presence of E. coli and L. monocytogenes). Furthermore, the sobrasada de Mallorca made with white pork tended to be positive in E. coli compared to other sobrasada subtypes. In the case of ensaimada, only a reduced number of cases within filled ensaimadas (with higher moisture content) presented unacceptable mold and yeast counts (>500 colony-forming unit [CFU]/g). Finally, the Mahón-Menorca cheese presented a surprising microbiology pattern: higher E. coli contamination in the pasteurized milk cheese compared to its raw counterpart. This pattern was observed for all the years, being statistically significant in 2020. This study has detected good microbiological status in the three traditional products studied. However, worrisome issues in Good Hygienic Practices have been detected for some companies that produce pasteurized milk Mahón-Menorca cheese under the PDO quality label. The companies involved and even the competent authorities should address these problems to correct this deviation in food security.
Collapse
Affiliation(s)
- Aránzazu Rodríguez
- Department of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain.,Cidesal Análisis de Alimentos, Palma, Spain
| | - David Bars-Cortina
- Department of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain.,Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
12
|
Shen J, Zhang G, Yang J, Zhao L, Jiang Y, Guo D, Wang X, Zhi S, Xu X, Dong Q, Wang X. Prevalence, antibiotic resistance, and molecular epidemiology of Listeria monocytogenes isolated from imported foods in China during 2018 to 2020. Int J Food Microbiol 2022; 382:109916. [PMID: 36126498 DOI: 10.1016/j.ijfoodmicro.2022.109916] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 04/19/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
A total of 1797 imported food samples collected during 2018 to 2020 were investigated for Listeria monocytogenes. Antibiotic susceptibility tests and whole genome sequencing analysis were performed for the obtained isolates. The overall prevalence of L. monocytogenes was 5.62 %; the highest prevalence was observed for pork (13.65 %), followed by fish (6.25 %), sheep casing (6.06 %), chicken (3.61 %), and beef (2.06 %). Geographical differences in prevalence were also observed for pork. Resistance to oxacillin (39.33 %) and clindamycin (16.85 %) was common, whereas resistance rates for other antibiotics were relatively low, ranging from 0 % to 6.74 %. Pork and fish isolates showed resistance to more antibiotics than beef isolates. Tetracycline and chloramphenicol resistance phenotypes strongly correlated with genotypes. The predominant serogroup was 1/2a, 3a, at 44.44 %, while the percentages of three other serogroups were similar and relatively lower, from 17.28 % to 19.75 %. Significant genetic differences were observed among lineage I and II isolates. LIPI-3 was carried by 19.75 % (16/81) of isolates and LIPI-4 by 6.17 % (5/81); all were lineage I. The stress survival island was present in 31.03 % (9/29) of lineage I and 83.02 % (44/53) of lineage II. Benzalkonium chloride tolerance genes were carried by 10.34 % (3/29) of lineage I and 23.08 % (12/52) of lineage II isolates. A total of 25 sequence types (STs) were identified, among which one was novel; ST9 and ST121 were the most prevalent. Disparate distribution of STs among food types was observed, and geographical and food related characteristics were also found for some STs. Hypervirulent STs, such as ST1, ST4 and ST6, belonged to 4b,4e,4e; carried LIPI-3 and/or LIPI-4; and some even were ECI or ECII; while only one carried SSI or BC tolerance genes. In contrast, hypo-virulent STs such as ST9 and ST121 carried SSI and BC tolerance genes, while none had LIPI-3/LIPI-4. Certain STs were detected frequently from a particular food of a particular country for a long time, indicating more attention should be given to these special persistent isolates. These findings are valuable for source tracking, prevention and control of L. monocytogenes in the global food chain.
Collapse
Affiliation(s)
- Jinling Shen
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Guodong Zhang
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA
| | - Jielin Yang
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Lina Zhao
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Yuan Jiang
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Nanjing 210095, China.
| | - Dehua Guo
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Xuan Wang
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Shuai Zhi
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xuebin Xu
- Shanghai Centers for Disease Prevention and Control, Shanghai 200336, China
| | - Qingli Dong
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiang Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
13
|
Siddi G, Piras F, Spanu V, Meloni MP, Sanna R, Carta N, Errico M, Cuccu M, De Santis EPL, Scarano C. Selection of commercial protective cultures to be added in Sardinian fermented sausage to control Listeria monocytogenes. Ital J Food Saf 2022; 11:10368. [PMID: 35832037 PMCID: PMC9272079 DOI: 10.4081/ijfs.2022.10368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/02/2022] [Indexed: 12/05/2022] Open
Abstract
Sardinian fermented sausage "Salsiccia Sarda" is a Mediterranean-style, semi-dry, fermented, RTE product, representing the main pork meat product in Sardinia (Italy). The high variability that characterizes the technological processes applied in different production plants results in sausages with different chemico-physical features sometimes permissive for the growth of Listeria monocytogenes. In order to guarantee the hygienic-sanitary quality of the final product and to innovate the manufacturing process, the main objective of this study was to evaluate the use of different commercial protective cultures to control L. monocytogenes growth in the Sardinian fermented sausage. In the first step, in vitro tests were carried out to evaluate the effectiveness of five freeze-dried bioprotective cultures availabe on the market in limiting the growth of L. monocytogenes. The two protective cultures that showed the best in vitro results were selected for a challenge test on artificially contaminated Sardinian fermented sausages. Moreover, the protective culture that showed the best results in inhibiting the growth of L. monocytogenes according to in vitro and challenge test experiments, was included into real production settings and validated in three producing plants. As a result, it was observed that protective cultures represent an important technological innovation for the Sardinian fermented sausage processing plants as they allow to control L. monocytogenes growth without altering the composition, the microflora and the chemical-physical characteristics of the product, thus ensuring safety and quality. Protective cultures also showed to reduce Enterobacteriaceae mean levels at the end of ripening and not to affect the natural concentration of lactic acid bacteria and coagulase-negative staphylococci.
Collapse
Affiliation(s)
| | - Francesca Piras
- Department of Veterinary Medicine, University of Sassari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mohamed HM, Burroughs S, Emch AW, Waite-Cusic J. Enhancing the reduction of Salmonella and Listeria monocytogenes during traditional salami processing by adding a finishing phase. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Gonzalez-Fandos E, Vazquez de Castro M, Martinez-Laorden A. Behaviour of Listeria monocytogenes and Natural Microflora during the Manufacture of Riojano Chorizo (Spanish Dry Cured Sausage). Microorganisms 2021; 9:1963. [PMID: 34576857 PMCID: PMC8467648 DOI: 10.3390/microorganisms9091963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022] Open
Abstract
Riojano chorizo is a dry cured sausage manufactured with traditional technologies without adding starter cultures at low temperatures. Its characteristics differ from other types of chorizo since sugars and nitrites are no added and processing temperatures are low- This work evaluates the behaviour of Listeria monocytogenes during the processing of inoculated Riojano chorizo as well as the natural microflora that can play a technological role or be of interest as indicators. The sausage mixture was inoculated with a cocktail of three selected strains of L. monocytogenes (CECT 932, CECT 934 and CECT 4032) (4 log10 CFU/g) and after processed following the traditional production method. Samples were taken before inoculation, after inoculation, after stuffing (day 0) and on days 6, 13, 21 and 28 of processing. L. monocytogenes, mesophiles, Micrococcaceae, lactic acid bacteria, Enterobacteriaceae, S. aureus, sulfite-reducing clostridia and molds and yeast counts were evaluated. Furthermore, pH, water activity and humidity were determined. No growth of L mocytogenes was observed during the first 6 days, when the temperature of processing was 4 °C. The low temperature in the initial stages was a relevant hurdle to control L. monocytoegenes growth. A significant decrease (p ≤ 0.05) in L. monocytogenes counts was observed on day 13 compared to the initial counts. During drying (days 6 to 21) a reduction in this pathogen of 1.28 log CFU/g was observed. The low water activity below 0.92 on day 13 and 0.86 on day 21 seems to be critical for the reduction of L. monocytogenes.
Collapse
Affiliation(s)
- Elena Gonzalez-Fandos
- Food Technology Department, CIVA Research Center, University of La Rioja, Madre de Dios 53, 26006 Logroño, Spain; (M.V.d.C.); (A.M.-L.)
| | | | | |
Collapse
|
16
|
Zhang H, Wang J, Chang Z, Liu X, Chen W, Yu Y, Wang X, Dong Q, Ye Y, Zhang X. Listeria monocytogenes Contamination Characteristics in Two Ready-to-Eat Meat Plants From 2019 to 2020 in Shanghai. Front Microbiol 2021; 12:729114. [PMID: 34512606 PMCID: PMC8427505 DOI: 10.3389/fmicb.2021.729114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous foodborne pathogen that causes listeriosis and is mostly linked to consumption of ready-to-eat (RTE) foods. Lack of hygiene in food processing environments may be a primary reason for contamination by L. monocytogenes isolates. In this study, L. monocytogenes strains isolated from two RTE meat processing plants in the Shanghai municipality, China, were characterized during 2019–2020 using pulsed-field gel electrophoresis and whole-genome sequencing. Results showed that 29 samples (12.2%) out of 239 were positive for L. monocytogenes, with 21 (18.9%) and 8 (6.25%) isolates from plants A and B, respectively. The packaging room at plant A had the most contamination (14, 48.3%; p < 0.05), with a peak occurrence of 76.5% in processing environments. Nineteen L. monocytogenes isolates belonging to the pulsotype (PT) 7 group were indistinguishable (≥ 95.7%). Furthermore, core-genome multiple loci sequencing typing identified up to nine allelic differences, and the closet pairwise differences among these ST5 isolates included 0–16 small nucleotide polymorphisms. Therefore, L. monocytogenes likely persisted at plant A during 2019–2020 with ongoing clone transmission. In contrast, no L. monocytogenes isolates were identified from processing environments at plant B. Most L. monocytogenes isolates were sampled from raw materials (62.5%). Several isolates (ST378, ST8, and ST120) were detected only once in 2020 and were considered as transient isolates. However, three ST121 isolates with the same PT (PT2) were detected in 2020 and should be noted for their stronger survival ability in harsh environments. These results suggest that continuous monitoring, stringent surveillance, and source tracking are crucial to guaranteeing food safety in RTE food plants.
Collapse
Affiliation(s)
- Hongzhi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jing Wang
- The Minhang District Center for Disease Control and Prevention, Shanghai, China
| | - Zhaoyu Chang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xin Liu
- Institute of Food Quality and Safety, University of Shanghai for Science and Technology, Shanghai, China
| | - Weijie Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Ying Yu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xiaoguang Wang
- The Minhang District Center for Disease Control and Prevention, Shanghai, China
| | - Qingli Dong
- Institute of Food Quality and Safety, University of Shanghai for Science and Technology, Shanghai, China
| | - Yulong Ye
- The Jinshan District Center for Disease Control and Prevention, Shanghai, China
| | - Xi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
17
|
Conditions of In Vitro Biofilm Formation by Serogroups of Listeria monocytogenes Isolated from Hass Avocados Sold at Markets in Mexico. Foods 2021; 10:foods10092097. [PMID: 34574207 PMCID: PMC8467555 DOI: 10.3390/foods10092097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Listeria monocytogenes is an important pathogen that has been implicated in foodborne illnesses and the recall of products such as fruit and vegetables. This study determines the prevalence of virulence-associated genes and serogroups and evaluates the effects of different growth media and environmental conditions on biofilm formation by L. monocytogenes. Eighteen L. monocytogenes isolates from Hass avocados sold at markets in Guadalajara, Mexico, were characterized by virulence-associated genes and serogroup detection with PCR. All isolates harbored 88.8% actA, 88.8% plcA, 83.3% mpl, 77.7% inlB, 77.7% hly, 66.6% prfA, 55.5% plcB, and 33.3% inlA. The results showed that 38.8% of isolates harbored virulence genes belonging to Listeria pathogenicity island 1 (LIPI-1). PCR revealed that the most prevalent serogroup was serogroup III (1/2b, 3b, and 7 (n = 18, 66.65%)), followed by serogroup IV (4b, 4d-4e (n = 5, 27.7%)) and serogroup I (1/2a-3a (n = 1, 5.5%)). The assessment of the ability to develop biofilms using a crystal violet staining method revealed that L. monocytogenes responded to supplement medium TSBA, 1/10 diluted TSBA, and TSB in comparison with 1/10 diluted TSB (p < 0.05) on polystyrene at 240 h (p < 0.05). In particular, the biofilm formation by L. monocytogenes (7.78 ± 0.03-8.82 ± 0.03 log10 CFU/cm2) was significantly different in terms of TSBA on polypropylene type B (PP) (p < 0.05). In addition, visualization by epifluorescence microscopy, scanning electron microscopy (SEM), and treatment (DNase I and proteinase K) revealed the metabolically active cells and extracellular polymeric substances of biofilms on PP. L. monocytogenes has the ability to develop biofilms that harbor virulence-associated genes, which represent a serious threat to human health and food safety.
Collapse
|
18
|
Incidence, Enumeration and Confirmation of Listeria and its Species in Ready-to-eat Street Vended Salads Sold at Various Outlets of Faisalabad City, Pakistan. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The desire for a healthy lifestyle and faster mode of preparation has supported the consumption of ready to eat fresh salad. Street vended salads are recognized as a source of pathogenic transamination in different parts of the world. The present study was designed to evaluate the safety status of fresh vegetable and Russian salads being sold at various food outlets of Faisalabad. Samples of freshly prepared salads were collected from representative selected different areas of Faisalabad city divided into four different zones (zone 1, zone 2, zone 3 and zone 4). Prevalence and enumeration of Listeria was done through microbial testing via the spread plate method. Among samples of vegetable salad, highest prevalence of Listeria was found in the zone 2 (75%) whereas Russian salad samples from zones 1 and 3 exhibited 62% prevalence, the highest among all 4 zones of study. On the whole, the lowest prevalence of Listeria was found in zone 4 (50% vegetable salad and 58% Russian salad). Biochemical conformation of Listeria done through different tests for the identification of various Listeria species, exhibited that Listeria monocytogenes and Listeria innocua were highly prevalent in samples from zones 1 and 3 respectively. The results will help to improve safety concerns associated with street vended foods.
Collapse
|
19
|
Gonzalez-Fandos E, Vazquez de Castro M, Martinez-Laorden A, Perez-Arnedo I. Behavior of Listeria monocytogenes and Other Microorganisms in Sliced Riojano Chorizo (Spanish Dry-Cured Sausage) during Storage under Modified Atmospheres. Microorganisms 2021; 9:1384. [PMID: 34202256 PMCID: PMC8306544 DOI: 10.3390/microorganisms9071384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/22/2023] Open
Abstract
Sliced ready-to-eat meat products packaged under modified atmospheres are often marketed since they cover consumer demands. The slicing process could be a potential risk for consumers since contamination with Listeria monocytogenes could occur during this stage. The current study evaluated the behavior of L. monocytogenes and other microorganisms in commercial sliced Riojano chorizo. This meat product was sliced and inoculated with L. monocytogenes (3.5 log CFU/g) before packaging under different atmospheres (air, vacuum, 100% N2, 20% CO2/80% N2 and 40% CO2/60% N2) and stored at 4 °C for up to 60 days. Samples were taken on days 0, 7, 21, 28 and 60 of storage. L. monocytogenes, mesophiles, Enterobacteriaceae, lactic acid bacteria, Micrococcaceae, molds and yeast counts were evaluated. Additionally, water activity, humidity and pH were determined. L. monocytogenes counts decreased in inoculated sliced chorizo during storage. Packaging conditions and day of storage influenced microbial counts. After 60 days, a significant reduction (p ≤ 0.05) in the initial Listeria contamination levels (3.5. log CFU/g) between 1.1 and 1.46 logarithmic units was achieved in the sausages packaged in modified atmosphere. The highest reductions were observed in slices packaged in 40% CO2/60% N2 after 60 days of storage at 4 °C.
Collapse
Affiliation(s)
- Elena Gonzalez-Fandos
- CIVA Research Center, Food Technology Department, University of La Rioja, Madre de Dios 53, 26006 Logroño, La Rioja, Spain; (M.V.d.C.); (A.M.-L.); (I.P.-A.)
| | | | | | | |
Collapse
|
20
|
Demaître N, Rasschaert G, De Zutter L, Geeraerd A, De Reu K. Genetic Listeria monocytogenes Types in the Pork Processing Plant Environment: From Occasional Introduction to Plausible Persistence in Harborage Sites. Pathogens 2021; 10:pathogens10060717. [PMID: 34200429 PMCID: PMC8228754 DOI: 10.3390/pathogens10060717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/19/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to investigate the L. monocytogenes occurrence and genetic diversity in three Belgian pork cutting plants. We specifically aim to identify harborage sites and niche locations where this pathogen might occur. A total of 868 samples were taken from a large diversity of food and non-food contact surfaces after cleaning and disinfection (C&D) and during processing. A total of 13% (110/868) of environmental samples tested positive for L. monocytogenes. When looking in more detail, zone 3 non-food contact surfaces were contaminated more often (26%; 72/278) at typical harborage sites, such as floors, drains, and cleaning materials. Food contact surfaces (zone 1) were less frequently contaminated (6%; 25/436), also after C&D. PFGE analysis exhibited low genetic heterogeneity, revealing 11 assigned clonal complexes (CC), four of which (CC8, CC9, CC31, and CC121) were predominant and widespread. Our data suggest (i) the occasional introduction and repeated contamination and/or (ii) the establishment of some persistent meat-adapted clones in all cutting plants. Further, we highlight the importance of well-designed extensive sampling programs combined with genetic characterization to help these facilities take corrective actions to prevent transfer of this pathogen from the environment to the meat.
Collapse
Affiliation(s)
- Niels Demaître
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium; (N.D.); (G.R.)
| | - Geertrui Rasschaert
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium; (N.D.); (G.R.)
| | - Lieven De Zutter
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Annemie Geeraerd
- Division MeBioS, Sustainability in the Agri-Food Chain Group, BIOSYST Department, KU Leuven, Willem de Croylaan 42, Box 2428, 3001 Leuven, Belgium;
| | - Koen De Reu
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium; (N.D.); (G.R.)
- Correspondence: ; Tel.: +32-9272-3043
| |
Collapse
|
21
|
Hansen TB, Abdalas S, Al-Hilali I, Hansen LT. Predicting the effect of salt on heat tolerance of Listeria monocytogenes in meat and fish products. Int J Food Microbiol 2021; 352:109265. [PMID: 34116257 DOI: 10.1016/j.ijfoodmicro.2021.109265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/22/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Listeria monocytogenes is a potentially fatal foodborne pathogen that can be found in various ready-to-eat (RTE) products. It tolerates adverse conditions such as high salt concentrations and refrigerated storage, thus, the elimination of the pathogen in food processing often relies on heat processing. The objective of this study was to create a model to predict the effect of salt on heat tolerance of L. monocytogenes in meat and seafood products during heat treatments conducted at 57 to 65 °C to reduce numbers by ≥3 log10 cycles. Salt concentrations, up to 6% in the water phase (WPS%), were applied to cover a variety of lightly salted RTE meat and seafood products. The experimental work involved samples of ground pork tenderloin, ground chicken breast fillet and skinned, ground salmon fillet adjusted to different WPS% i.e., 3.6 and 5.2 WPS% for pork samples, 2.0, 3.0, 3.5 and 6.0 WPS% for chicken samples and 3.0 and 6.0 WPS% for salmon samples. All samples were inoculated with late-stationary phase L. monocytogenes cultures. For pork samples, a two-strain mixture of a pork isolate (MS22254) and an environmental isolate (MS22246) was applied. For chicken and salmon samples, a seafood isolate (MS22258) and isolate MS22246 was applied as single cultures. Samples were vacuum-packed in sterile bags, immerged in water bath, and held at constant temperatures of 57, 60 and 65 °C for pork samples and 58, 61 and 62.5 °C for chicken and salmon samples. For survivor curves, where at least 3 log10-reduction were obtained, heat tolerance was expressed as decimal reduction times, D-values. D-values were observed to increase with increasing WPS%. The effect of salt on heat tolerance of L. monocytogenes was defined as the relative increase (RI-value) in D-value obtained when salt had been added to the food. The effect of WPS% on RI-values was independent of heating temperatures, foods and strains. For secondary modelling, RI-values were transformed using the natural logarithm, ln(RI) and fitted to a linear model as a function of WPS%. Model validation, with 56 independent values collected from the scientific literature, resulted in bias and accuracy factors of 0.89 and 1.26, respectively, suggesting acceptable performance with tendency to slightly under-predict. The developed predictive model can be used to guide the design of heat processes for manufacturers of lightly preserved and mildly processed meat and seafood products requiring more than 3 log10 reduction of L. monocytogenes to ensure safety.
Collapse
Affiliation(s)
- Tina Beck Hansen
- The National Food Institute, Technical University of Denmark, Division for Microbiology and Production, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark.
| | - Somaya Abdalas
- The National Food Institute, Technical University of Denmark, Division for Microbiology and Production, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Iman Al-Hilali
- The National Food Institute, Technical University of Denmark, Division for Microbiology and Production, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Lisbeth Truelstrup Hansen
- The National Food Institute, Technical University of Denmark, Division for Microbiology and Production, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
22
|
ABUELNAGA ASM, ABD EL-RAZIK KAEH, ATA NS, HEDIA RH, ELGABRY EAE, SOLIMAN MMH, MARIE HSAW. Bacteriological assessment and multiplex-PCR test for the detection of meat adulteration of different animal species. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.11520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Modernization of Control of Pathogenic Micro-Organisms in the Food-Chain Requires a Durable Role for Immunoaffinity-Based Detection Methodology-A Review. Foods 2021; 10:foods10040832. [PMID: 33920486 PMCID: PMC8069916 DOI: 10.3390/foods10040832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 01/03/2023] Open
Abstract
Food microbiology is deluged by a vastly growing plethora of analytical methods. This review endeavors to color the context into which methodology has to fit and underlines the importance of sampling and sample treatment. The context is that the highest risk of food contamination is through the animal and human fecal route with a majority of foodborne infections originating from sources in mass and domestic kitchens at the end of the food-chain. Containment requires easy-to-use, failsafe, single-use tests giving an overall risk score in situ. Conversely, progressive food-safety systems are relying increasingly on early assessment of batches and groups involving risk-based sampling, monitoring environment and herd/flock health status, and (historic) food-chain information. Accordingly, responsible field laboratories prefer specificity, multi-analyte, and high-throughput procedures. Under certain etiological and epidemiological circumstances, indirect antigen immunoaffinity assays outperform the diagnostic sensitivity and diagnostic specificity of e.g., nucleic acid sequence-based assays. The current bulk of testing involves therefore ante- and post-mortem probing of humoral response to several pathogens. In this review, the inclusion of immunoglobulins against additional invasive micro-organisms indicating the level of hygiene and ergo public health risks in tests is advocated. Immunomagnetic separation, immunochromatography, immunosensor, microsphere array, lab-on-a-chip/disc platforms increasingly in combination with nanotechnologies, are discussed. The heuristic development of portable and ambulant microfluidic devices is intriguing and promising. Tant pis, many new platforms seem unattainable as the industry standard. Comparability of results with those of reference methods hinders the implementation of new technologies. Whatever the scientific and technological excellence and incentives, the decision-maker determines this implementation after weighing mainly costs and business risks.
Collapse
|
24
|
Mohan V, Cruz CD, van Vliet AHM, Pitman AR, Visnovsky SB, Rivas L, Gilpin B, Fletcher GC. Genomic diversity of Listeria monocytogenes isolates from seafood, horticulture and factory environments in New Zealand. Int J Food Microbiol 2021; 347:109166. [PMID: 33838478 DOI: 10.1016/j.ijfoodmicro.2021.109166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 11/28/2022]
Abstract
Listeria monocytogenes is a foodborne human pathogen that causes systemic infection, fetal-placental infection in pregnant women causing abortion and stillbirth and meningoencephalitis in elderly and immunocompromised individuals. This study aimed to analyse L. monocytogenes from different sources from New Zealand (NZ) and to compare them with international strains. We used pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST) and whole-genome single nucleotide polymorphisms (SNP) to study the population structure of the NZ L. monocytogenes isolates and their relationship with the international strains. The NZ isolates formed unique clusters in PFGE, MLST and whole-genome SNP comparisons compared to the international isolates for which data were available. PFGE identified 31 AscI and 29 ApaI PFGE patterns with indistinguishable pulsotypes being present in seafood, horticultural products and environmental samples. Apart from the Asc0002:Apa0002 pulsotype which was distributed across different sources, other pulsotypes were site or factory associated. Whole-genome analysis of 200 randomly selected L. monocytogenes isolates revealed that lineage II dominated the NZ L. monocytogenes populations. MLST comparison of international and NZ isolates with lineage II accounted for 89% (177 of 200) of the total L. monocytogenes population, while the international representation was 45.3% (1674 of 3473). Rarefaction analysis showed that sequence type richness was greater in NZ isolates compared to international trend, however, it should be noted that NZ isolates predominantly came from seafood, horticulture and their respective processing environments or factories, unlike international isolates where there was a good mixture of clinical, food and environmental isolates.
Collapse
Affiliation(s)
- Vathsala Mohan
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand.
| | - Cristina D Cruz
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Arnoud H M van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Daphne Jackson Road, Guildford GU2 7AL, Surrey, United Kingdom
| | - Andrew R Pitman
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, New Zealand.
| | - Sandra B Visnovsky
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, New Zealand
| | - Lucia Rivas
- Institute of Environmental Science and Research Limited, Christchurch, New Zealand
| | - Brent Gilpin
- Institute of Environmental Science and Research Limited, Christchurch, New Zealand
| | - Graham C Fletcher
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| |
Collapse
|
25
|
Study of the transfer of Listeria monocytogenes during the slaughter of cattle using molecular typing. Meat Sci 2021; 175:108450. [PMID: 33550159 DOI: 10.1016/j.meatsci.2021.108450] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 11/23/2022]
Abstract
The introduction, transmission, and persistence of Listeria monocytogenes in Belgian beef slaughterhouses was investigated using genetic characterization. During slaughter, samples were taken of the hide, carcass, and environment to detect the pathogen. Remarkably, L. monocytogenes was massively present on the hide of incoming animals (93%; 112/120), regardless of their visual cleanliness, which implies high contamination pressure levels entering the slaughterhouses. Pathogen transfer via cross-contamination was conclusively confirmed in this study, with the same pulsotypes isolated from the hide, carcass, and environmental samples. Despite the important bacterial presence on the hide of incoming animals, most slaughterhouses succeeded in limiting the transfer as cause of carcass contamination. Persistence along the slaughter line seemed to be a more significant problem, as it was clearly linked to most of the L. monocytogenes positive carcasses. In one slaughterhouse, whole genome sequencing (WGS) revealed that the carcass splitter had been contaminating carcasses with the same strain belonging to CC9 for more than one year.
Collapse
|
26
|
Gkerekou MA, Athanaseli KG, Kapetanakou AE, Drosinos EH, Skandamis PN. Εvaluation of oxygen availability on growth and inter-strain interactions of L. monocytogenes in/on liquid, semi-solid and solid laboratory media. Int J Food Microbiol 2021; 341:109052. [PMID: 33515814 DOI: 10.1016/j.ijfoodmicro.2021.109052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
The coexistence and interactions among Listeria monocytogenes strains in combination with the structural characteristics of foods, may influence their growth capacity and thus, the final levels at the time of consumption. In the present study, we aimed to evaluate the effect of oxygen availability in combination with substrate micro-structure on growth and inter-strain interactions of L. monocytogenes. L. monocytogenes strains, selected for resistance to different antibiotics (to enable distinct enumeration), belonging to serotypes 4b (C5, ScottA), 1/2a (6179) and 1/2b (PL25) and were inoculated in liquid (Tryptic Soy Broth supplemented with Yeast Extract - TSB-YE) and solid (TSB-YE supplemented with 0.6% and 1.2% agar) media (2-3 log CFU/mL, g or cm2), single or as two-strain cultures (1:1 strain-ratio). Aerobic conditions (A) were achieved with constant shaking or surface inoculation for liquid and solid media respectively, while static incubation or pour plated media corresponded to hypoxic environment (H). Anoxic conditions (An) were attained by adding 0.1% w/v sodium thioglycolate and paraffin overlay (for solid media). Growth was assessed during storage at 7 °C (n = 3 × 2). Inter-strain interactions were manifested by the difference in the final population between singly and co-cultured strains. Τhe extent of suppression increased with reduction in agar concentration, while the impact of oxygen availability was dependent on strain combination. During co-culture, in liquid and solid media, 6179 was suppressed by C5 by 4.0 (in TSB-YE under H) to 1.8 log units (in solid medium under An), compared to the single culture, which attained population of ca. 9.4 log CFU/mL or g. The growth of 6179 was also inhibited by ScottA by 2.7 and 1.9 log units, in liquid culture under H and An, respectively. Interestingly, in liquid medium under A, H and An, ScottA was suppressed by C5, by 3.3, 2.4 and 2.3 log units, respectively, while in solid media, growth inhibition was less pronounced. Investigating growth interactions in different environments could assist in explaining the dominance of L. monocytogenes certain serotypes.
Collapse
Affiliation(s)
- Maria A Gkerekou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Konstantina G Athanaseli
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Anastasia E Kapetanakou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Eleftherios H Drosinos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Panagiotis N Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece.
| |
Collapse
|
27
|
Noviyanti F, Hosotani Y, Inatsu Y, Kawasaki S. A comparison of Listeria monocytogenes growth monitoring in ground pork samples by real-time polymerase chain reaction to conventional agar and most probable number methods. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Fia Noviyanti
- National Food Research Institute, Food Hygiene Laboratory
| | - Yukie Hosotani
- National Food Research Institute, Food Hygiene Laboratory
| | | | | |
Collapse
|
28
|
Application of Neutral Electrolyzed Water on pork chops and its impact on meat quality. Sci Rep 2020; 10:19910. [PMID: 33199806 PMCID: PMC7669837 DOI: 10.1038/s41598-020-76931-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 10/23/2020] [Indexed: 12/04/2022] Open
Abstract
Physicochemical and microbiological properties of pork chops sprayed with Neutral Electrolyzed Water (NEW) were evaluated during storage at refrigeration temperature. Pork chops were randomly allocated into three groups and were artificially contaminated with an inoculum of 106 CFU/mL of Listeria monocytogenes. Each group was treated with either NEW (58 ppm), NaClO (35 ppm), or saline solution (SS). Subsequently, recovered bacteria were plated on TSA petri dishes and the reduction percentage of Listeria monocytogenes was calculated 24 h and 8 days after treatment. Physicochemical analysis [pH, content of lactic acid, thiobarbituric acid reactive substances (TBARS) and total volatile base nitrogen (TVBN)] were performed to evaluate the effect of all solutions used on pork meat kept at 4 °C for 19 days. In vitro NEW reduced L. monocytogenes titers by > 99.98% and 80.19% and 90.35% in artificially contaminated pork 24 h and 8 days after NEW treatment, respectively. Compared to the SS treatment, NEW and NaClO solutions caused a 0.67 Log UFC/g and 0.65 Log UFC/g reduction respectively. After eight days post-treatment, NEW and NaClO bacterial titers were below the SS treatment. NEW caused little color change in treated meat. It helped to reduce the formation of lactic acid and TVB-N when pork chops are kept at 4 °C for 19 days. Therefore, NEW could be considered as a new alternative to sanitize and preserve pork meat.
Collapse
|
29
|
Matle I, Mbatha KR, Madoroba E. A review of Listeria monocytogenes from meat and meat products: Epidemiology, virulence factors, antimicrobial resistance and diagnosis. ACTA ACUST UNITED AC 2020; 87:e1-e20. [PMID: 33054262 PMCID: PMC7565150 DOI: 10.4102/ojvr.v87i1.1869] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
Listeria monocytogenes is a zoonotic food-borne pathogen that is associated with serious public health and economic implications. In animals, L. monocytogenes can be associated with clinical listeriosis, which is characterised by symptoms such as abortion, encephalitis and septicaemia. In human beings, listeriosis symptoms include encephalitis, septicaemia and meningitis. In addition, listeriosis may cause gastroenteric symptoms in human beings and still births or spontaneous abortions in pregnant women. In the last few years, a number of reported outbreaks and sporadic cases associated with consumption of contaminated meat and meat products with L. monocytogenes have increased in developing countries. A variety of virulence factors play a role in the pathogenicity of L. monocytogenes. This zoonotic pathogen can be diagnosed using both classical microbiological techniques and molecular-based methods. There is limited information about L. monocytogenes recovered from meat and meat products in African countries. This review strives to: (1) provide information on prevalence and control measures of L. monocytogenes along the meat value chain, (2) describe the epidemiology of L. monocytogenes (3) provide an overview of different methods for detection and typing of L. monocytogenes for epidemiological, regulatory and trading purposes and (4) discuss the pathogenicity, virulence traits and antimicrobial resistance profiles of L. monocytogenes.
Collapse
Affiliation(s)
- Itumeleng Matle
- Bacteriology Division, Agricultural Research Council - Onderstepoort Veterinary Research, Onderstepoort, Pretoria, South Africa; and, Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida.
| | | | | |
Collapse
|
30
|
Rugna G, Carra E, Bergamini F, Franzini G, Faccini S, Gattuso A, Morganti M, Baldi D, Naldi S, Serraino A, Piva S, Merialdi G, Giacometti F. Distribution, virulence, genotypic characteristics and antibiotic resistance of Listeria monocytogenes isolated over one-year monitoring from two pig slaughterhouses and processing plants and their fresh hams. Int J Food Microbiol 2020; 336:108912. [PMID: 33091754 DOI: 10.1016/j.ijfoodmicro.2020.108912] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Listeria monocytogenes contamination in raw pork and ready to eat foods is an important food safety concern, also for the increasing detection of antimicrobial-resistant isolates. Data on L. monocytogenes occurrence, persistence, distribution and genetic characterization in two different plants, namely in continuum from slaughtered pigs, environment and unfinished products (fresh hams) were observed by one-year monitoring and were integrated with their antimicrobial resistance patterns. A total of 98 samples out of the overall 1131 (8.7%) were positive for L. monocytogenes, respectively 2.6% and 13.2% in plants A and B: only three serotypes were identified, 1/2c (50%), 1/2b (36.7%) and 1/2a (13.27%), and strains were classified in 35 pulsotypes and 16 clusters by PFGE; a unique P-type was highlighted according to the detection of virulence genes. The contamination flow of L. monocytogenes has a low occurrence in slaughterhouse (Plant A = 1.1%, Plant B: 3.1%; p > 0.05) and increased throughout the processing chain with trimming area as the most contaminated (Plant A: 25%, Plant B: 57%; (p < 0.05)), both in the environment and in unfinished products (80% in hams before trimming in plant B). The dominant role of environmental contamination in post-slaughter processing is confirmed to be a significant cause of meat contamination by L. monocytogenes. Very high levels of resistance were observed for clindamycin (57%) and high resistance levels (>20-50%) to ciprofloxacin, oxacillin, levofloxacin and daptomycin, confirming the L. monocytogenes resistance trend to a wide range of antimicrobial agents. A total of 11 L. monocytogenes isolates were multidrug resistant and 7 out of them were isolated from slaughtered pigs. An interesting significant (p < 0.05) statistical correlation has been found between resistance to some antimicrobial agents and lineage/serotypes. Microbiological sampling of food and environments after sanitization are commonly used as verification procedure for the absence of L. monocytogenes in food plants and to give assurance of food safety, but strains characterization is necessary for industries to target specific control measures, like the enforcement of the hygiene program and of the control of operator activities, at least for permanent strains. The only presence of L. monocytogenes could not be considered as the conclusive assessment of a potential risk for public health, also in terms of emerging and emerged antimicrobial resistances.
Collapse
Affiliation(s)
- Gianluca Rugna
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Elena Carra
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Federica Bergamini
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Giuliana Franzini
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Silvia Faccini
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Antonietta Gattuso
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Marina Morganti
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Deborah Baldi
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Simona Naldi
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Silvia Piva
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Merialdi
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
31
|
Cherifi T, Arsenault J, Pagotto F, Quessy S, Côté JC, Neira K, Fournaise S, Bekal S, Fravalo P. Distribution, diversity and persistence of Listeria monocytogenes in swine slaughterhouses and their association with food and human listeriosis strains. PLoS One 2020; 15:e0236807. [PMID: 32760141 PMCID: PMC7410256 DOI: 10.1371/journal.pone.0236807] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/13/2020] [Indexed: 02/05/2023] Open
Abstract
Listeria monocytogenes is the etiological agent of listeriosis, a major foodborne disease and an important public health concern. Contamination of meat with L. monocytogenes occurs frequently at the slaughterhouse. Our aims were; 1) to investigate the distribution of L. monocytogenes in the processing areas of four swine slaughterhouses; 2) to describe the diversity of L. monocytogenes strains by pulsed-field gel electrophoresis; 3) to identify persistent L. monocytogenes strains and describe their distribution; 4) to investigate the associations between persistence of strains and their following characteristics: detection in food isolates, detection in human clinical isolates, and the presence of benzalkonium chloride (BAC) resistance genes. Various operation areas within the four swine slaughterhouses were sampled on four occasions. A total of 2496 samples were analyzed, and L. monocytogenes was successfully isolated from 243 samples. The proportion of positive samples ranged from 32 to 58% in each slaughterhouse and from 24 to 68% in each operation area. Fifty-eight different pulsotypes were identified and eight pulsotypes, present in samples collected during 4 visits, were considered persistent. The persistent pulsotypes were significantly more likely to be detected in food (P < 0.01, exact χ²) and human clinical cases (P < 0.01, exact χ²), respectively. Among pulsotypes harboring the BAC bcrABC resistance cassette or the emrE multidrug transporter gene, 42.8% were persistent compared to 4.5% for pulsotypes without these resistance genes (P < 0.01, exact χ²). Our study highlights the importance of persistent L. monocytogenes strains in the environmental contamination of slaughterhouses, which may lead to repeated contamination of meat products. It also shows that the presence of disinfectants resistance genes is an important contributing factor.
Collapse
Affiliation(s)
- Tamazight Cherifi
- Chaire de recherche en salubrité des viandes, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Centre de recherche en infectiologie porcine et avicole (CRIPA-FQRNT), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Groupe de recherche et d’enseignement en salubrité des aliments (GRESA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- * E-mail: (TC); (PF)
| | - Julie Arsenault
- Centre de recherche en infectiologie porcine et avicole (CRIPA-FQRNT), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Epidemiology of Zoonoses and Public Health Research Unit (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Franco Pagotto
- Listeriosis Reference Service, Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Sylvain Quessy
- Chaire de recherche en salubrité des viandes, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Groupe de recherche et d’enseignement en salubrité des aliments (GRESA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Jean-Charles Côté
- Chaire de recherche en salubrité des viandes, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Groupe de recherche et d’enseignement en salubrité des aliments (GRESA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Kersti Neira
- Chaire de recherche en salubrité des viandes, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Centre de recherche en infectiologie porcine et avicole (CRIPA-FQRNT), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Groupe de recherche et d’enseignement en salubrité des aliments (GRESA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | | | - Sadjia Bekal
- Laboratoire de santé publique du Québec, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Philippe Fravalo
- Chaire de recherche en salubrité des viandes, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Centre de recherche en infectiologie porcine et avicole (CRIPA-FQRNT), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Epidemiology of Zoonoses and Public Health Research Unit (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- * E-mail: (TC); (PF)
| |
Collapse
|
32
|
In-Depth Longitudinal Study of Listeria monocytogenes ST9 Isolates from the Meat Processing Industry: Resolving Diversity and Transmission Patterns Using Whole-Genome Sequencing. Appl Environ Microbiol 2020; 86:AEM.00579-20. [PMID: 32414794 PMCID: PMC7357480 DOI: 10.1128/aem.00579-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Listeria monocytogenes is a deadly foodborne pathogen that is widespread in the environment, and certain types can be established in food factories. The sequence type ST9 dominates in meat processing environments, and this work was undertaken to obtain data needed for the tracking of this subtype. By using whole-genome sequencing (WGS), we revealed the presence of cross-contamination routes between meat factories as well as within a single factory, including the spread from different reservoirs within the same room. It was also possible to estimate the time frame of persistence in the factory, as well as when and how new clones had entered. The present work contributes valuable information about the diversity of ST9 and exemplifies the potential power of WGS in food safety management, allowing the determination of relationships between strains both in an international context and locally between and within factories. Listeria monocytogenes is a pathogen mostly associated with the consumption of ready-to-eat foods and can cause severe disease and death. It can be introduced into food chains from raw materials, but often the contamination source is the food production environment, where certain clones can persist for years. In the meat chain, ST9 is one of the most commonly encountered L. monocytogenes sequence types, and for effective source tracking, the divergence and spread of ST9 must be understood. In this study, whole-genome sequencing (WGS) was used to characterize and track 252 L. monocytogenes ST9 isolates collected from four Norwegian meat processing plants between 2009 and 2017. The isolates formed distinct clusters relative to genomes found in public databases, and all but three isolates clustered into two major clonal populations. Different contamination patterns were revealed, e.g., evidence of contamination of two factories with a clone that diverged from its ancestor in the late 1990s through a common source of raw materials; breach of hygienic barriers within a factory, leading to repeated detection of two clones in the high-risk zone during a 4- to 6-year period; entry through the purchase and installation of second-hand equipment harboring a previously established clonal population; and spreading and diversification of two clones from two reservoirs within the same production room over a 9-year period. The present work provides data on the diversity of ST9, which is crucial for epidemiological investigations and highlights how WGS can be used for source tracking within food processing factories. IMPORTANCEListeria monocytogenes is a deadly foodborne pathogen that is widespread in the environment, and certain types can be established in food factories. The sequence type ST9 dominates in meat processing environments, and this work was undertaken to obtain data needed for the tracking of this subtype. By using whole-genome sequencing (WGS), we revealed the presence of cross-contamination routes between meat factories as well as within a single factory, including the spread from different reservoirs within the same room. It was also possible to estimate the time frame of persistence in the factory, as well as when and how new clones had entered. The present work contributes valuable information about the diversity of ST9 and exemplifies the potential power of WGS in food safety management, allowing the determination of relationships between strains both in an international context and locally between and within factories.
Collapse
|
33
|
D'Arrigo M, Mateo-Vivaracho L, Guillamón E, Fernández-León MF, Bravo D, Peirotén Á, Medina M, García-Lafuente A. Characterization of persistent Listeria monocytogenes strains from ten dry-cured ham processing facilities. Food Microbiol 2020; 92:103581. [PMID: 32950165 DOI: 10.1016/j.fm.2020.103581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/04/2020] [Accepted: 06/23/2020] [Indexed: 11/24/2022]
Abstract
The majority of cases of listeriosis are associated with the consumption of contaminated food. Some strains of Listeria monocytogenes can persist over months or years in meat processing plants increasing the risk of product contamination. The presence of L. monocytogenes was examined in 10 dry-cured ham processing facilities. A total of 1801 samples were collected from environment and equipment, during processing (1095) and after cleaning and disinfection (706). These samples were taken from non-food contact (736) and food contact (1065) surfaces. In addition, 204 samples from ham surfaces were also analysed. Prevalence varied from 6% to 34% among facilities, and was higher during processing than after cleaning and disinfection (24.8% vs 11.0%) and from non-food than from food contact surfaces (22.6% vs 17.4%). L. monocytogenes serotype 1/2a was predominant (53.9%), followed by 1/2c (26.0%) and 1/2b (15.3%) and less frequently 4b (4.8%). A total of 142 different pulsotypes were registered. Potential persistent L.monocytogenes strains were isolated in 9 out the 10 facilities, with no more than 6 pulsotypes in a given plant. Two pulsotypes were common in different installations, detected before and after cleaning and disinfection, highlighting the importance of monitoring the presence of this pathogen in dry-cured ham processing environments.
Collapse
Affiliation(s)
- Matilde D'Arrigo
- Centro para la Calidad de los Alimentos, INIA, José Tudela s/n, 42004 Soria, Spain
| | | | - Eva Guillamón
- Centro para la Calidad de los Alimentos, INIA, José Tudela s/n, 42004 Soria, Spain
| | | | - Daniel Bravo
- Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Ángela Peirotén
- Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Margarita Medina
- Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Ana García-Lafuente
- Centro para la Calidad de los Alimentos, INIA, José Tudela s/n, 42004 Soria, Spain.
| |
Collapse
|
34
|
Xue K, Prezioso SM, Christendat D. QuiC2 represents a functionally distinct class of dehydroshikimate dehydratases identified in Listeria species including Listeria monocytogenes. Environ Microbiol 2020; 22:2680-2692. [PMID: 32190965 DOI: 10.1111/1462-2920.14987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 11/28/2022]
Abstract
Many Listeria species including L. monocytogenes contain the pathway for the biosynthesis of protocatechuate from shikimate and quinate. The qui1 and qui2 operons within these Listeria spp. encode enzymes for this pathway. The diversion of shikimate pathway intermediates in some Listeria species to produce protocatechuate suggests an important biological role for this compound to these organisms. A total of seven ORFs, including quiC2, were identified within qui1 and qui2, however only three proteins encoded by the operons have been functionally annotated. The final step in Listeria's protocatechuate biosynthesis involves the conversion of dehydroshikimate by a dehydroshikimate dehydratase (DSD). In this study, we demonstrate that QuiC2 functions as a DSD in Listeria spp. through biochemical and structural analyses. Moreover, we show that QuiC2 forms a phylogenetic cluster distinct from other functionally annotated DSDs. The individual phylogenetic clusters of DSD are represented by enzymes that produce protocatechuate for distinct biological processes. Similarly, QuiC2 is expected to produce protocatechuate for a novel biological process. We postulate that protocatechuate produced by DSDs found within the QuiC2 phylogenetic cluster provides an ecological niche for representative organisms.
Collapse
Affiliation(s)
- Kevin Xue
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada, M5S 3B2
| | - Stephanie M Prezioso
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada, M5S 3B2
| | - Dinesh Christendat
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada, M5S 3B2.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| |
Collapse
|
35
|
Silva DAL, Botelho CV, Martins BTF, Tavares RM, Camargo AC, Yamatogi RS, Bersot LS, Nero LA. Listeria monocytogenes From Farm to Fork in a Brazilian Pork Production Chain. J Food Prot 2020; 83:485-490. [PMID: 32065647 DOI: 10.4315/0362-028x.jfp-19-379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/19/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT Listeria monocytogenes contamination was assessed in different steps of a pork production chain. Ten lots of pigs were sampled at termination barns, at slaughter (after bleeding, after buckling, after evisceration, and after final washing), at processing (knives, deboning tables, and employees' hands), and of end products (ribs, shoulder, ham, and sausage). All samples (n = 670) were subjected to L. monocytogenes detection, and the obtained isolates (n = 18, identified as Listeria spp.) were characterized by their biochemical characteristics, serogroups, virulence genes, pulsed-field gel electrophoresis profiles, antibiotic resistances (ampicillin, penicillin, gentamicin, and sulfamethoxazole-trimethoprim), and adhesion abilities. The results revealed the low occurrence of Listeria spp. in the evaluated pork production chain. However, four tested sausage samples (40%) were positive for Listeria spp., with L. monocytogenes identified in two (20%) of these samples. Ten isolates were identified as L. monocytogenes (eight from serogroup 1/2a or 3a and two from serogroup 4b, 4d, or 4e): all isolates were also positive for the virulence-related genes hlyA, iap, plcA, actA, inlA, inlB, inlC, and inlJ and susceptible to the tested antibiotics. One sausage sample was contaminated by both serogroups 1/2a or 3a and 4b, 4d, or 4e. Isolates from serogroup 1/2a or 3a obtained during visits 5 and 6 presented distinct genetic profiles by pulsed-field gel electrophoresis, indicating that contamination may come from different sources. The adhesion potential exhibited by Listeria spp. isolates (n = 18) ranged from weak (serogroup 4b, 4d, or 4e) to moderate (L. innocua and L. monocytogenes serogroup 1/2a or 3a). Despite the low occurrence of L. monocytogenes, pathogenic serogroups were detected in sausages, demanding control measures by the industry. HIGHLIGHTS
Collapse
Affiliation(s)
- Danilo A L Silva
- Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil (ORCID: https://orcid.org/0000-0002-4954-5824 [L.A.N.]); and
| | - Clarisse V Botelho
- Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil (ORCID: https://orcid.org/0000-0002-4954-5824 [L.A.N.]); and
| | - Bruna T F Martins
- Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil (ORCID: https://orcid.org/0000-0002-4954-5824 [L.A.N.]); and
| | - Rafaela M Tavares
- Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil (ORCID: https://orcid.org/0000-0002-4954-5824 [L.A.N.]); and
| | - Anderson C Camargo
- Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil (ORCID: https://orcid.org/0000-0002-4954-5824 [L.A.N.]); and
| | - Ricardo S Yamatogi
- Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil (ORCID: https://orcid.org/0000-0002-4954-5824 [L.A.N.]); and
| | - Luciano S Bersot
- Laboratório de Inspeção e Controle de Qualidade de Alimentos e Água, Universidade Federal do Paraná, R. Pioneiro 2153 Jardim Dallas, Palotina, Paraná 85950-000, Brazil
| | - Luís A Nero
- Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil (ORCID: https://orcid.org/0000-0002-4954-5824 [L.A.N.]); and
| |
Collapse
|
36
|
Temporal analysis of the Listeria monocytogenes population structure in floor drains during reconstruction and expansion of a meat processing plant. Int J Food Microbiol 2019; 314:108360. [PMID: 31678600 DOI: 10.1016/j.ijfoodmicro.2019.108360] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 10/25/2022]
Abstract
Due to a higher probability for violation of hygiene measures, reconstruction work is a substantial food safety challenge for food business operators (FBOs). Here, we monitored a Listeria monocytogenes contamination scenario during a timely enduring reconstruction period that aimed at an expansion of the main building of a leading meat processing facility. Reconstruction took place while food production was ongoing. We used a longitudinal sampling scheme targeting 40 floor water drains distributed over the food processing environment (FPE) over a five year period. The population structure of L. monocytogenes was determined by PCR-serogrouping, pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). While the first sampling deciphered a baseline of contamination (45%), intensified sanitation measures decreased L. monocytogenes prevalence before commencement of work (5%). The reconstruction activities increased the prevalence of L. monocytogenes in the FPE (20.5%) and changed the population structure to a higher proportion of disease-associated genotypes (61%). During the first sampling ST121 was prevalent throughout the FPE, even in the packaging area. After the second and third sampling, following increased application of hypochlorite during sanitation, ST121 was only present in the raw material preparation area. A resilient flora was detected during three sampling events (ST8, ST9 and ST37) which might have not been exposed to daily cleaning in the floor drains. After the accomplishment of reconstruction work, the L. monocytogenes population structure shifted to the condition initially found (45% and 20.5% during the first and sixth sampling event). This paper indicates that reconstruction phases are high risk episodes for food safety in FPEs. Special precautions must be taken to avoid cross-contamination of products since reconstruction is usually ongoing for extended periods of time.
Collapse
|
37
|
Melero B, Manso B, Stessl B, Hernández M, Wagner M, Rovira J, Rodríguez-Lázaro D. Distribution and Persistence of Listeria monocytogenes in a Heavily Contaminated Poultry Processing Facility. J Food Prot 2019; 82:1524-1531. [PMID: 31414898 DOI: 10.4315/0362-028x.jfp-19-087] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We studied the colonization and distribution of Listeria monocytogenes in a heavily contaminated poultry processing plant over a 1-year period. A total of 180 nonfood contact surfaces, 70 food contact surfaces, 29 personnel, and 40 food samples were analyzed. L. monocytogenes isolates were subtyped by PCR serotyping, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing. L. monocytogenes was detected in samples collected at every visit to the plant, and 43.8% (visit 4) to 65.6% (visit 7) of samples were positive, for an overall prevalence of 55.2%. The deboning area had the highest prevalence of positive samples (83.3%), and the processing area had the highest diversity of PFGE types. Ninety percent of the final products were positive for L. monocytogenes. Most of the isolates belonged to well-known persistent L. monocytogenes sequence types (ST9 and ST121). This study illustrates a well-established L. monocytogenes contamination problem in a poultry processing plant associated with a generalized failure of the food safety system as a whole. These findings reflect the potential for L. monocytogenes contamination when the food safety and quality management system is unsatisfactory, as described in the present study. It is essential to revise food safety and quality management systems to eliminate L. monocytogenes from food processing facilities, to control the entrance of sporadic sequence types, and to prevent L. monocytogenes spread within such facilities, especially in those premises with higher L. monocytogenes prevalence in the environment and final food products.
Collapse
Affiliation(s)
- Beatriz Melero
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain (ORCID: https://orcid.org/0000-0002-8795-854X [D.R.-L.])
| | - Beatriz Manso
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain (ORCID: https://orcid.org/0000-0002-8795-854X [D.R.-L.])
| | - Beatrix Stessl
- Institute of Milk Hygiene, Milk Technology and Food Science, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Marta Hernández
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain (ORCID: https://orcid.org/0000-0002-8795-854X [D.R.-L.]).,Laboratory of Molecular Biology and Microbiology, Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain
| | - Martin Wagner
- Institute of Milk Hygiene, Milk Technology and Food Science, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Jordi Rovira
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain (ORCID: https://orcid.org/0000-0002-8795-854X [D.R.-L.])
| | - David Rodríguez-Lázaro
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain (ORCID: https://orcid.org/0000-0002-8795-854X [D.R.-L.])
| |
Collapse
|
38
|
Choyam S, Srivastava AK, Shin JH, Kammara R. Ocins for Food Safety. Front Microbiol 2019; 10:1736. [PMID: 31428063 PMCID: PMC6687839 DOI: 10.3389/fmicb.2019.01736] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023] Open
Abstract
The food industry produces highly perishable products. Food spoilage represents a severe problem for food manufacturers. Therefore, it is important to identify effective preservation solutions to prevent food spoilage. Ocins (e.g., bacteriocins, lactocins, and enterocins) are antibacterial proteins synthesized by bacteria that destroy or suppress the growth of related or unrelated bacterial strains. Ocins represent a promising strategy for food preservation, because of their antagonist effects toward food spoilage microorganisms, high potency, and low toxicity. Additionally, they can be bioengineered. The most common and commercially available ocins are nisin, plantaracin, sakacin P, and pediocin. Several ocins have been characterized and studied biochemically and genetically; however, their structure-function relationship, biosynthesis, and mechanism of action are not understood. This narrative review focuses primarily on ocins and their relevance to the food industry to help prevent food spoilage. In particular, the applications and limitations of ocins in the food industry are highlighted.
Collapse
Affiliation(s)
- Shilja Choyam
- Affiliated to AcSIR for Ph.D. Thesis, CSIR-CFTRI, Mysuru, India
- Department of Protein Chemistry and Technology, CSIR-CFTRI, Mysuru, India
| | | | - Jae-Ho Shin
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Rajagopal Kammara
- Affiliated to AcSIR for Ph.D. Thesis, CSIR-CFTRI, Mysuru, India
- Department of Protein Chemistry and Technology, CSIR-CFTRI, Mysuru, India
| |
Collapse
|
39
|
Prevalence and characterization of Listeria monocytogenes isolated from pork meat and on inert surfaces. Braz J Microbiol 2019; 50:817-824. [PMID: 30976991 DOI: 10.1007/s42770-019-00073-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 02/09/2019] [Indexed: 10/27/2022] Open
Abstract
This study focuses on the prevalence of Listeria monocytogenes (Lm) in pork meat and on inert surfaces from slaughterhouses in Sonora, Mexico. A total of 21 Lm were obtained from 103 samples, giving a prevalence of 20.3%. The prevalence of Lm in pork loin was 15.9% and 20.8% for inert surfaces in Federal Inspection Type (FIT) slaughterhouses. For non-FIT slaughterhouses, the prevalence was 25.7%. PCR amplification of genomic DNA from the Lm isolates revealed the presence of the hlyA gene, suggesting a pathogenic nature for these isolates. The isolates obtained in this work all clustered with Lm, according to our phylogenetic analysis based on the 16S rDNA sequence. This Lm cluster indicates that Lm isolates 7-2, 4, 2-1, 10B, 8, 3, 3-3, and 9 share 16S rRNA identity with other Lm isolates that have been reported as foodborne pathogens (rR2-502, J1817, J1816, J1926) and that are involved in foodborne outbreaks. The most commonly detected serotypes were 1/2a and 1/2b. All isolates displayed differential responses to the assayed antibiotics, and most isolates were able to grow in the presence of penicillin G, or both penicillin and penicillin-derived (oxacillin) antibiotics.
Collapse
|
40
|
Rocha R, Sousa JM, Cerqueira L, Vieira MJ, Almeida C, Azevedo NF. Development and application of Peptide Nucleic Acid Fluorescence in situ Hybridization for the specific detection of Listeria monocytogenes. Food Microbiol 2018; 80:1-8. [PMID: 30704592 DOI: 10.1016/j.fm.2018.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/25/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023]
Abstract
Listeria monocytogenes is one of the most important foodborne pathogens due to the high hospitalization and mortality rates associated to an outbreak. Several new molecular methods that accelerate the identification of L. monocytogenes have been developed, however conventional culture-based methods still remain the gold standard. In this work we developed a novel Peptide Nucleic Acid Fluorescence in situ Hybridization (PNA-FISH) method for the specific detection of L. monocytogenes. The method was based on an already existing PNA probe, LmPNA1253, coupled with a novel blocker probe in a 1:2 ratio. The method was optimized for the detection of L. monocytogenes in food samples through an evaluation of several rich and selective enrichment broths. The best outcome was achieved using One Broth Listeria in a two-step enrichment of 24 h plus 18 h. For validation in food samples, ground beef, ground pork, milk, lettuce and cooked shrimp were artificially contaminated with two ranges of inoculum: a low level (0.2-2 CFU/25 g or mL) and a high level (2-10 CFU/25 g or mL). The PNA-FISH method performed well in all types of food matrices, presenting an overall accuracy of ≈99% and a detection limit of 0.5 CFU/25 g or mL of food sample.
Collapse
Affiliation(s)
- Rui Rocha
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; BIOMODE, Biomolecular Determination S.A., Edifício GNRATION, Praça Conde Agrolongo no 123, 4700-312, Braga, Portugal.
| | - José M Sousa
- BIOMODE, Biomolecular Determination S.A., Edifício GNRATION, Praça Conde Agrolongo no 123, 4700-312, Braga, Portugal
| | - Laura Cerqueira
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; BIOMODE, Biomolecular Determination S.A., Edifício GNRATION, Praça Conde Agrolongo no 123, 4700-312, Braga, Portugal
| | - Maria J Vieira
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Carina Almeida
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; BIOMODE, Biomolecular Determination S.A., Edifício GNRATION, Praça Conde Agrolongo no 123, 4700-312, Braga, Portugal; INIAV, IP- National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, 4485-655, Vairão, Vila do Conde, Portugal
| | - Nuno F Azevedo
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
41
|
Yu T, Jiang X, Zhang Y, Ji S, Gao W, Shi L. Effect of Benzalkonium Chloride Adaptation on Sensitivity to Antimicrobial Agents and Tolerance to Environmental Stresses in Listeria monocytogenes. Front Microbiol 2018; 9:2906. [PMID: 30546352 PMCID: PMC6279922 DOI: 10.3389/fmicb.2018.02906] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/13/2018] [Indexed: 01/09/2023] Open
Abstract
Listeria monocytogenes is an important food-borne pathogen that can persist in food processing environments and thus contaminate food products. Benzalkonium chloride (BC) is a common disinfectant widely used in food industry. Selective pressure associated with exposure to BC may result in adaptation to this agent in L. monocytogenes. In this study, the effect of BC adaptation on susceptibility to antimicrobial agents and tolerance to environmental stresses, as well as the role of efflux pumps in BC adaptation were investigated in Listeria monocytogenes. Exposure of L. monocytogenes to progressively increasing concentrations of BC led to adaptation not only to BC but also to several other antimicrobial agents with different modes of action, including cefotaxime, cephalothin, ciprofloxacin, and ethidium bromide (EtBr), indicating that the disinfectant BC has the ability to select for antibiotic resistance. Reserpine, an efflux pump inhibitor, reduced minimum inhibitory concentrations (MICs) of cephalosporins, ciprofloxacin, and EtBr in BC adapted strains, indicating that efflux pumps are involved in cross-adaptation to these antimicrobial agents. Our results showed that expression levels of the efflux pump MdrL in the BC adapted strains increased significantly relative to the corresponding wild-type strains (P < 0.05), with the highest increase in one BC adapted strain named HL06BCA. Moreover, the knockout mutant HL06BCAΔmdrL showed impaired growth compared to that of HL06BCA when exposed to 2 μg/ml of BC. It suggests that efflux pump MdrL is associated with BC adaptation in L. monocytogenes. However, we did not find mdrL to be associated with cross-adaptation to cephalosporins, ciprofloxacin, and EtBr in HL06BCA. Additionally, increased sensitivity to acid, alkali, osmotic, ethanol, and oxidative stresses was observed in most strains after repeated exposure to BC. These results suggest rotation of different disinfectant is helpful to maintain high effectiveness of BC toward L. monocytogenes and ethanol and hydrogen peroxide are at least the appropriate candidates.
Collapse
Affiliation(s)
- Tao Yu
- Department of Life Science and Technology, Xinxiang University, Xinxiang, China
| | - Xiaobing Jiang
- Department of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yige Zhang
- Department of Life Sciences, Henan Normal University, Xinxiang, China
| | - Shengdong Ji
- Department of Life Sciences, Henan Normal University, Xinxiang, China
| | - Wujun Gao
- Department of Life Sciences, Henan Normal University, Xinxiang, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
42
|
Bucur FI, Grigore-Gurgu L, Crauwels P, Riedel CU, Nicolau AI. Resistance of Listeria monocytogenes to Stress Conditions Encountered in Food and Food Processing Environments. Front Microbiol 2018; 9:2700. [PMID: 30555426 PMCID: PMC6282059 DOI: 10.3389/fmicb.2018.02700] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
Listeria monocytogenes is a human food-borne facultative intracellular pathogen that is resistant to a wide range of stress conditions. As a consequence, L. monocytogenes is extremely difficult to control along the entire food chain from production to storage and consumption. Frequent and recent outbreaks of L. monocytogenes infections illustrate that current measures of decontamination and preservation are suboptimal to control L. monocytogenes in food. In order to develop efficient measures to prevent contamination during processing and control growth during storage of food it is crucial to understand the mechanisms utilized by L. monocytogenes to tolerate the stress conditions in food matrices and food processing environments. Food-related stress conditions encountered by L. monocytogenes along the food chain are acidity, oxidative and osmotic stress, low or high temperatures, presence of bacteriocins and other preserving additives, and stresses as a consequence of applying alternative decontamination and preservation technologies such high hydrostatic pressure, pulsed and continuous UV light, pulsed electric fields (PEF). This review is aimed at providing a summary of the current knowledge on the response of L. monocytogenes toward these stresses and the mechanisms of stress resistance employed by this important food-borne bacterium. Circumstances when L. monocytogenes cells become more sensitive or more resistant are mentioned and existence of a cross-resistance when multiple stresses are present is pointed out.
Collapse
Affiliation(s)
- Florentina Ionela Bucur
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Peter Crauwels
- Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | | | - Anca Ioana Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| |
Collapse
|
43
|
Yang S, Pei X, Yang D, Zhang H, Chen Q, Chui H, Qiao X, Huang Y, Liu Q. Microbial contamination in bulk ready-to-eat meat products of China in 2016. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Leroy F. Meat as a Pharmakon: An Exploration of the Biosocial Complexities of Meat Consumption. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 87:409-446. [PMID: 30678819 DOI: 10.1016/bs.afnr.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In contemporary dietary advice, meat is depicted as a pharmakon: it is believed to either heal or poison the human body (and mind). Often, it also serves as a scapegoat for a wide range of public health issues and other societal problems. Related attitudes, practices, and beliefs pertain to a demarcated mode of thinking or episteme that is characteristic for the so-called post-domestic or industrialized societies. The latter are not only typified by an abundant yet largely concealed production of meat, but increasingly also by moral crisis and confusion about its nutritional meaning. For an improved appreciation of the ambiguous position of meat in human health and disease, as well as the concomitant scattering into different subject positions (e.g., the omnivore, flexitarian, vegetarian, vegan, permaculturalist, and carnivore position), an interdisciplinary approach is required. To this end, the current study tentatively combines food research with a selection of (post-structuralist) concepts from the humanities. The aim is to outline a historical and biosocial need for meat (as well as its rejection) and to analyze how its transformative effects have contributed to a polarized discourse on diet and well-being in academia and society at large. Excessive categorization (for instance with respect to meat's alleged naturalness, normalness, necessity, and niceness) and Manichean thinking in binary opposites are among the key factors that lead to impassioned yet often sterile debates between the advocates and adversaries of meat eating in a post-truth context.
Collapse
Affiliation(s)
- Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
45
|
Witkowska E, Korsak D, Kowalska A, Janeczek A, Kamińska A. Strain-level typing and identification of bacteria - a novel approach for SERS active plasmonic nanostructures. Anal Bioanal Chem 2018; 410:5019-5031. [PMID: 29907950 PMCID: PMC6061775 DOI: 10.1007/s00216-018-1153-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/16/2018] [Accepted: 05/18/2018] [Indexed: 10/24/2022]
Abstract
One of the potential applications of surface-enhanced Raman spectroscopy (SERS) is the detection of biological compounds and microorganisms. Here we demonstrate that SERS coupled with principal component analysis (PCA) serves as a perfect method for determining the taxonomic affiliation of bacteria at the strain level. We demonstrate for the first time that it is possible to distinguish different genoserogroups within a single species, Listeria monocytogenes, which is one of the most virulent foodborne pathogens and in some cases contact with which may be fatal. We also postulate that it is possible to detect additional proteins in the L. monocytogenes cell envelope, which provide resistance to benzalkonium chloride and cadmium. A better understanding of this infectious agent could help in selecting the appropriate pharmaceutical product for enhanced treatment. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Evelin Witkowska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Dorota Korsak
- Faculty of Biology, Institute of Microbiology, Department of Applied Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Aneta Kowalska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Anna Janeczek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
46
|
Meat in the post-truth era: Mass media discourses on health and disease in the attention economy. Appetite 2018; 125:345-355. [DOI: 10.1016/j.appet.2018.02.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 01/06/2023]
|
47
|
Koklic T, Pintarič Š, Zdovc I, Golob M, Umek P, Mehle A, Dobeic M, Štrancar J. Photocatalytic disinfection of surfaces with copper doped Ti02 nanotube coatings illuminated by ceiling mounted fluorescent light. PLoS One 2018; 13:e0197308. [PMID: 29768464 PMCID: PMC5955584 DOI: 10.1371/journal.pone.0197308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/29/2018] [Indexed: 11/18/2022] Open
Abstract
High economic burden is associated with foodborne illnesses. Different disinfection methods are therefore employed in food processing industry; such as use of ultraviolet light or usage of surfaces with copper-containing alloys. However, all the disinfection methods currently in use have some shortcomings. In this work we show that copper doped TiO2 nanotubes deposited on existing surfaces and illuminated with ceiling mounted fluorescent lights can retard the growth of Listeria Innocua by 80% in seven hours of exposure to the fluorescent lights at different places in a food processing plant or in the laboratory conditions with daily reinocuation and washing. The disinfection properties of the surfaces seem to depend mainly on the temperature difference of the surface and the dew point, where for the maximum effectiveness the difference should be about 3 degrees celsius. The TiO2 nanotubes have a potential to be employed for an economical and continuous disinfection of surfaces.
Collapse
Affiliation(s)
- Tilen Koklic
- Jožef Stefan Institute, Ljubljana, Slovenia
- NAMASTE Center of Excellence, Ljubljana, Slovenia
| | - Štefan Pintarič
- NAMASTE Center of Excellence, Ljubljana, Slovenia
- Veterinary faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Irena Zdovc
- NAMASTE Center of Excellence, Ljubljana, Slovenia
- Veterinary faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Majda Golob
- Veterinary faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Polona Umek
- Jožef Stefan Institute, Ljubljana, Slovenia
- NAMASTE Center of Excellence, Ljubljana, Slovenia
| | - Alma Mehle
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - Martin Dobeic
- NAMASTE Center of Excellence, Ljubljana, Slovenia
- Veterinary faculty, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: (JŠ); (MD)
| | - Janez Štrancar
- Jožef Stefan Institute, Ljubljana, Slovenia
- NAMASTE Center of Excellence, Ljubljana, Slovenia
- * E-mail: (JŠ); (MD)
| |
Collapse
|
48
|
Affiliation(s)
- Aili Liu
- MOST-USDA Joint Research Center for Food Safety, Department of Food Science, School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai 200240 People's Republic of China
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, Department of Food Science, School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai 200240 People's Republic of China
| |
Collapse
|
49
|
Heir E, Møretrø T, Simensen A, Langsrud S. Listeria monocytogenes strains show large variations in competitive growth in mixed culture biofilms and suspensions with bacteria from food processing environments. Int J Food Microbiol 2018; 275:46-55. [PMID: 29631210 DOI: 10.1016/j.ijfoodmicro.2018.03.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 02/05/2023]
Abstract
Interactions and competition between resident bacteria in food processing environments could affect their ability to survive, grow and persist in microhabitats and niches in the food industry. In this study, the competitive ability of L. monocytogenes strains grown together in separate culture mixes with other L. monocytogenes (L. mono mix), L. innocua (Listeria mix), Gram-negative bacteria (Gram- mix) and with a multigenera mix (Listeria + Gram- mix) was investigated in biofilms on stainless steel and in suspensions at 12 °C. The mixed cultures included resident bacteria from processing surfaces in meat and salmon industry represented by L. monocytogenes (n = 6), L. innocua (n = 5) and Gram-negative bacteria (n = 6; Acinetobacter sp., Pseudomonas fragi, Pseudomonas fluorescens, Serratia liquefaciens, Stenotrophomonas maltophilia). Despite hampered in growth in mixed cultures, L. monocytogenes established in biofilms with counts at day nine between 7.3 and 9.0 log per coupon with the lowest counts in the Listeria + G- mix that was dominated by Pseudomonas. Specific L. innocua inhibited growth of L. monocytogenes strains differently; inhibition that was further enhanced by the background Gram-negative microbiota. In these multispecies and multibacteria cultures, the growth competitive effects lead to the dominance of a strong competitor L. monocytogenes strain that was only slightly inhibited by L. innocua and showed strong competitive abilities in mixed cultures with resident Gram-negative bacteria. The results indicates complex patterns of bacterial interactions and L. monocytogenes inhibition in the multibacteria cultures that only partially depend on cell contact and likely involve various antagonistic and bacterial tolerance mechanisms. The study indicates large variations among L. monocytogenes in their competitiveness under multibacterial culture conditions that should be considered in further studies towards understanding of L. monocytogenes persistence in food processing facilities.
Collapse
Affiliation(s)
- Even Heir
- Nofima, The Norwegian Institute of Food, Fishery and Aquaculture Research, N-1430 Aas, Norway.
| | - Trond Møretrø
- Nofima, The Norwegian Institute of Food, Fishery and Aquaculture Research, N-1430 Aas, Norway
| | - Andreas Simensen
- Nofima, The Norwegian Institute of Food, Fishery and Aquaculture Research, N-1430 Aas, Norway
| | - Solveig Langsrud
- Nofima, The Norwegian Institute of Food, Fishery and Aquaculture Research, N-1430 Aas, Norway
| |
Collapse
|
50
|
Horita CN, Baptista RC, Caturla MY, Lorenzo JM, Barba FJ, Sant’Ana AS. Combining reformulation, active packaging and non-thermal post-packaging decontamination technologies to increase the microbiological quality and safety of cooked ready-to-eat meat products. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.12.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|