1
|
Andrew M, Jayaraman G. Production optimization and antioxidant potential of exopolysaccharide produced by a moderately halophilic bacterium Virgibacillus dokdonensis VITP14. Prep Biochem Biotechnol 2025; 55:112-130. [PMID: 38963714 DOI: 10.1080/10826068.2024.2370879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
This study aimed to enhance the extracellular polymeric substances (EPS) production of Virgibacillus dokdonensis VITP14 and explore its antioxidant potential. EPS and biomass production by VITP14 strain were studied under different culture parameters and media compositions using one factor at a time method. Among different nutrient sources, glucose and peptone were identified as suitable carbon and nitrogen sources. Furthermore, the maximum EPS production was observed at 5% of inoculum size, 5 g/L of NaCl, and 96 h of fermentation. Response surface methodology was employed to augment EPS production and investigate the optimal levels of nutrient sources with their interaction. The strain was observed to produce actual maximum EPS of about 26.4 g/L for finalized optimum medium containing glucose 20 g/L, peptone 10 g/L, and NaCl 50 g/L while the predicted maximum EPS was 26.5 g/L. There was a nine fold increase in EPS production after optimization study. Additionally, EPS has exhibited significant scavenging, reducing, and chelating potential (>85%) at their higher concentration. This study imparts valuable insights into optimizing moderately halophilic bacterial EPS production and evaluating its natural antioxidant properties. According to findings, V. dokdonensis VITP14 was a promising isolate that will provide significant benefits to biopolymer producing industries.
Collapse
Affiliation(s)
- Monic Andrew
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gurunathan Jayaraman
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Nikolova C, Morris G, Ellis D, Bowler B, Jones M, Mulloy B, Gutierrez T. Characterization of the surface-active exopolysaccharide produced by Halomonas sp TGOS-10: Understanding its role in the formation of marine oil snow. PLoS One 2024; 19:e0299235. [PMID: 38805414 PMCID: PMC11132480 DOI: 10.1371/journal.pone.0299235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 02/06/2024] [Indexed: 05/30/2024] Open
Abstract
In this study, we characterize the exopolymer produced by Halomonas sp. strain TGOS-10 -one of the organisms found enriched in sea surface oil slicks during the Deepwater Horizon oil spill. The polymer was produced during the early stationary phase of growth in Zobell's 2216 marine medium amended with glucose. Chemical and proton NMR analysis showed it to be a relatively monodisperse, high-molecular-mass (6,440,000 g/mol) glycoprotein composed largely of protein (46.6% of total dry weight of polymer). The monosaccharide composition of the polymer is typical to that of other marine bacterial exopolymers which are generally rich in hexoses, with the notable exception that it contained mannose (commonly found in yeast) as a major monosaccharide. The polymer was found to act as an oil dispersant based on its ability to effectively emulsify pure and complex oils into stable oil emulsions-a function we suspect to be conferred by the high protein content and high ratio of total hydrophobic nonpolar to polar amino acids (52.7:11.2) of the polymer. The polymer's chemical composition, which is akin to that of other marine exopolymers also having a high protein-to-carbohydrate (P/C) content, and which have been shown to effect the rapid and non-ionic aggregation of marine gels, appears indicative of effecting marine oil snow (MOS) formation. We previously reported the strain capable of utilising aromatic hydrocarbons when supplied as single carbon sources. However, here we did not detect biodegradation of these chemicals within a complex (surrogate Macondo) oil, suggesting that the observed enrichment of this organism during the Deepwater Horizon spill may be explained by factors related to substrate availability and competition within the complex and dynamic microbial communities that were continuously evolving during that spill.
Collapse
Affiliation(s)
- Christina Nikolova
- Institute of Mechanical, Process, and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Gordon Morris
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - David Ellis
- Department of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Bernard Bowler
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Martin Jones
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Barbara Mulloy
- Institute of Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Tony Gutierrez
- Institute of Mechanical, Process, and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Tiwari ON, Bobby MN, Kondi V, Halder G, Kargarzadeh H, Ikbal AMA, Bhunia B, Thomas S, Efferth T, Chattopadhyay D, Palit P. Comprehensive review on recent trends and perspectives of natural exo-polysaccharides: Pioneering nano-biotechnological tools. Int J Biol Macromol 2024; 265:130747. [PMID: 38479657 DOI: 10.1016/j.ijbiomac.2024.130747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 04/18/2024]
Abstract
Exopolysaccharides (EPSs), originating from various microbes, and mushrooms, excel in their conventional role in bioremediation to showcase diverse applications emphasizing nanobiotechnology including nano-drug carriers, nano-excipients, medication and/or cell encapsulation, gene delivery, tissue engineering, diagnostics, and associated treatments. Acknowledged for contributions to adsorption, nutrition, and biomedicine, EPSs are emerging as appealing alternatives to traditional polymers, for biodegradability and biocompatibility. This article shifts away from the conventional utility to delve deeply into the expansive landscape of EPS applications, particularly highlighting their integration into cutting-edge nanobiotechnological methods. Exploring EPS synthesis, extraction, composition, and properties, the discussion emphasizes their structural diversity with molecular weight and heteropolymer compositions. Their role as raw materials for value-added products takes center stage, with critical insights into recent applications in nanobiotechnology. The multifaceted potential, biological relevance, and commercial applicability of EPSs in contemporary research and industry align with the nanotechnological advancements coupled with biotechnological nano-cleansing agents are highlighted. EPS-based nanostructures for biological applications have a bright future ahead of them. Providing crucial information for present and future practices, this review sheds light on how eco-friendly EPSs derived from microbial biomass of terrestrial and aquatic environments can be used to better understand contemporary nanobiotechnology for the benefit of society.
Collapse
Affiliation(s)
- Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Md Nazneen Bobby
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh 522213, India
| | - Vanitha Kondi
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak 502313, Telangana, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, West Bengal 713209, India
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Seinkiewicza 112, 90-363 Lodz, Poland
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Sabu Thomas
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Priyadarshini Hills, Athirampuzha, Kerala, 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O. Box, 17011, Doornfontein, 2028, Johannesburg, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata 700102, India
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India.
| |
Collapse
|
4
|
Yaşar Yıldız S, Radchenkova N. Exploring Extremophiles from Bulgaria: Biodiversity, Biopolymer Synthesis, Functional Properties, Applications. Polymers (Basel) 2023; 16:69. [PMID: 38201734 PMCID: PMC10780585 DOI: 10.3390/polym16010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Bulgaria stands out as a country rich in diverse extreme environments, boasting a remarkable abundance of mineral hot waters, which positions it as the second-largest source of such natural resources in Europe. Notably, several thermal and coastal solar salterns within its territory serve as thriving habitats for thermophilic and halophilic microorganisms, which offer promising bioactive compounds, including exopolysaccharides (EPSs). Multiple thermophilic EPS producers were isolated, along with a selection from several saltern environments, revealing an impressive taxonomic and bacterial diversity. Four isolates from three different thermophilic species, Geobacillus tepidamans V264, Aeribacillus pallidus 418, Brevibacillus thermoruber 423, and Brevibacillus thermoruber 438, along with the halophilic strain Chromohalobacter canadensis 28, emerged as promising candidates for further exploration. Optimization of cultivation media and conditions was conducted for each EPS producer. Additionally, investigations into the influence of aeration and stirring in laboratory bioreactors provided valuable insights into growth dynamics and polymer synthesis. The synthesized biopolymers showed excellent emulsifying properties, emulsion stability, and synergistic interaction with other hydrocolloids. Demonstrated biological activities and functional properties pave the way for potential future applications in diverse fields, with particular emphasis on cosmetics and medicine. The remarkable versatility and efficacy of biopolymers offer opportunities for innovation and development in different industrial sectors.
Collapse
Affiliation(s)
- Songül Yaşar Yıldız
- Department of Bioengineering, Istanbul Medeniyet University, 34720 Istanbul, Turkey;
| | - Nadja Radchenkova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Kim I, Chhetri G, So Y, Park S, Jung Y, Woo H, Seo T. Characterization and Antioxidant Activity of Exopolysaccharides Produced by Lysobacter soyae sp. nov Isolated from the Root of Glycine max L. Microorganisms 2023; 11:1900. [PMID: 37630460 PMCID: PMC10456730 DOI: 10.3390/microorganisms11081900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Microbial exopolysaccharides (EPSs) have attracted attention from several fields due to their high industrial applicability. In the present study, rhizosphere strain CJ11T was isolated from the root of Glycine max L. in Goyang-si, Republic of Korea, and a novel exopolysaccharide was purified from the Lysobacter sp. CJ11T fermentation broth. The exopolysaccharide's average molecular weight was 0.93 × 105 Da. Its monosaccharide composition included 72.2% mannose, 17.2% glucose, 7.8% galactose, and 2.8% arabinose. Fourier-transform infrared spectroscopy identified the exopolysaccharide carbohydrate polymer functional groups, and the structural properties were investigated using nuclear magnetic resonance. In addition, a microstructure of lyophilized EPS was determined by scanning electron microscopy. Using thermogravimetric analysis, the degradation of the exopolysaccharide produced by strain CJ11T was determined to be 210 °C. The exopolysaccharide at a concentration of 4 mg/mL exhibited 2,2-diphenyl-1-picrylhydrazyl free-radical-scavenging activity of 73.47%. Phylogenetic analysis based on the 16S rRNA gene sequencing results revealed that strain CJ11T was a novel isolate for which the name Lysobacter soyae sp. nov is proposed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Taegun Seo
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (I.K.); (G.C.); (Y.S.); (S.P.); (Y.J.); (H.W.)
| |
Collapse
|
6
|
Jaiswal TP, Chakraborty S, Sharma S, Mishra A, Mishra AK, Singh SS. Prospects of a hot spring-originated novel cyanobacterium, Scytonema ambikapurensis, for wastewater treatment and exopolysaccharide-enriched biomass production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53424-53444. [PMID: 36856995 DOI: 10.1007/s11356-023-26032-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The present work performs the polyphasic characterization of a novel cyanobacterial species Scytonema ambikapurensis isolated from an Indian hot spring and evaluates its wastewater bioremediation potential. While the physicochemical analyses of the wastewater indicated high load of nutrients and metals, the wastewater bioremediation experiment performed using the test cyanobacterium denoted the removal of 70 and 86% phosphate, 49 and 66% sulfate, 96 and 98% nitrate, 91 and 92% nitrite, 95 and 96% ammonia, 66 and 72% chloride, 79 and 81% zinc, 68 and 80% nickel, 81 and 90% calcium, and 80 and 90% potassium from the autoclaved and un-autoclaved wastewater, respectively, after 20 days of culturing. The kinetics study of zinc and nickel removal from wastewater revealed that the cyanobacterium employed sequential biosorption (by following pseudo-second-order kinetics model) and bioaccumulation methods to remove these two metals. The quality of the autoclaved and un-autoclaved wastewater was further improved by the cyanobacterium through reduction of hardness by 74 and 81%, respectively. In wastewater, the cyanobacterium not only enhanced its biomass, chlorophyll and carbohydrate contents, but also produced small amount of released and high capsular exopolysaccharide (EPS). The FTIR and TGA analyses of capsular EPS unraveled that it was a negatively charged sulfated biomolecule having thermostability up to 240 °C, which suggested its possible use as excellent emulsifying, viscosifying, and biosorption agent. The credibility of this EPS as biosorption agent was ascertained by evaluating its metal chelating ability. Finally, the experimental data denoting the ability of S. ambikapurensis to bioremediate wastewater and simultaneously produce EPS was statistically validated by PCA1-pollutant removal model and the PCA2-cellular constituent model, respectively. Briefly, the study discloses that the cyanobacterium has huge biotechnological and industrial importance as it bioremediates wastewater and simultaneously produces thermostable exopolysaccharide.
Collapse
Affiliation(s)
- Tameshwar Prasad Jaiswal
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Sindhunath Chakraborty
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Sanjay Sharma
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Aditi Mishra
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Satya Shila Singh
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
7
|
Ahmad E, Sharma SK, Kashyap AS, Manzar N, Sahu PK, Singh UB, Singh HV, Sharma PK. Evaluation of Osmotolerant Potential of Halomonas sulfidaeris MV-19 Isolated from a Mud Volcano. Curr Microbiol 2023; 80:102. [PMID: 36773109 DOI: 10.1007/s00284-023-03202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023]
Abstract
Salinity is one of the major challenges for cultivation of crops in a sustainable way because it severely affects plant growth and yield. Keeping this challenge in view, in the current study, a salt-tolerant Halomonas MV-19 was isolated from an extreme niche of mud volcano of Andaman Nicobar Island, India and identified on the basis of standard morphological, biochemical, and physiological tests and identified as Halomonas sulfidaeris strain MV-19 by 16S rRNA gene sequencing. The bacterium can grow on nutrient agar and nutrient broth supplemented with 3.5 M (≥ 20%) sodium chloride (NaCl). Sugar utilization assay revealed that H. sulfidaeris MV-19 utilizes only three sugars (dextrose, fructose, and mannose) from among twenty four tested sugars. The best growth of H. sulfidaeris MV-19 was observed in nutrient broth supplemented with 8% NaCl. When the broth was supplemented with dextrose, fructose, and mannose, the H. sulfidaeris MV-19 grew maximally in nutrient broth supplemented with 8% NaCl and 5% fructose. This strain produced exopolysaccharides (EPS) in nutrient broth supplemented with 8% NaCl and sugars (dextrose, fructose, and mannose). The EPS production was increased by 350% (three and half time) after addition of 5% fructose in nutrient broth compare with the EPS production in nutrient broth without supplemented with sugars. H. sulfidaeris MV-19 strain can produce EPS, which can help aggregate soil particle and reduced osmotic potential in soil, thus, be useful in alleviation of salinity stress in different crops cultivated in saline soils. The findings of the current investigation are expected to contribute towards effective abiotic stress management.
Collapse
Affiliation(s)
- Ees Ahmad
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Sushil K Sharma
- ICAR-National Institute of Biotic Stress Management, Baronda, Raipur, Chhattisgarh, 493 225, India
| | - Abhijeet S Kashyap
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Nazia Manzar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Pramod K Sahu
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Udai B Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Harsh V Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Pawan K Sharma
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India.
| |
Collapse
|
8
|
Saravanaraj A, Sivanesh N, Anusha S, Surianarayanan M. Metabolic behaviour of Halomanas variabilis in a bio-reaction calorimeter during batch production of extracellular polymeric substances. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Kuschmierz L, Meyer M, Bräsen C, Wingender J, Schmitz OJ, Siebers B. Exopolysaccharide composition and size in Sulfolobus acidocaldarius biofilms. Front Microbiol 2022; 13:982745. [PMID: 36225367 PMCID: PMC9549778 DOI: 10.3389/fmicb.2022.982745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular polymeric substances (EPS) comprise mainly carbohydrates, proteins and extracellular DNA (eDNA) in biofilms formed by the thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius. However, detailed information on the carbohydrates in the S. acidocaldarius biofilm EPS, i.e., the exopolysaccharides (PS), in terms of identity, composition and size were missing. In this study, a set of methods was developed and applied to study the PS in S. acidocaldarius biofilms. It was initially shown that addition of sugars, most significantly of glucose, to the basal N-Z-amine-based growth medium enhanced biofilm formation. For the generation of sufficient amounts of biomass suitable for chemical analyses, biofilm growth was established and optimized on the surface of membrane filters. EPS were isolated and the contents of carbohydrates, proteins and eDNA were determined. PS purification was achieved by enzymatic digestion of other EPS components (nucleic acids and proteins). After trifluoroacetic acid-mediated hydrolysis of the PS fraction, the monosaccharide composition was analyzed by reversed-phase liquid chromatography (RP-LC) coupled to mass spectrometry (MS). Main sugar constituents detected were mannose, glucose and ribose, as well as minor proportions of rhamnose, N-acetylglucosamine, glucosamine and galactosamine. Size exclusion chromatography (SEC) revealed the presence of one single PS fraction with a molecular mass of 4-9 × 104 Da. This study provides detailed information on the PS composition and size of S. acidocaldarius MW001 biofilms and methodological tools for future studies on PS biosynthesis and secretion.
Collapse
Affiliation(s)
- Laura Kuschmierz
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Martin Meyer
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
- Teaching and Research Center for Separation, University of Duisburg-Essen, Essen, Germany
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Jost Wingender
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Oliver J. Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
- Teaching and Research Center for Separation, University of Duisburg-Essen, Essen, Germany
- Oliver J. Schmitz,
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Bettina Siebers,
| |
Collapse
|
10
|
Srivastava N, Kumari S, Kurmi S, Pinnaka AK, Choudhury AR. Isolation, purification, and characterization of a novel exopolysaccharide isolated from marine bacteria Brevibacillus borstelensis M42. Arch Microbiol 2022; 204:399. [PMID: 35713724 DOI: 10.1007/s00203-022-02993-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
Abstract
Marine microbes produce polysaccharides with unique physicochemical and functional properties that help them survive in harsh marine environments. However, only a handful of marine exopolysaccharides (EPSs) have been reported to date. The present study explored the seashore of Visakhapatnam, India, to report a novel exopolysaccharide designated as Br42 produced by Brevibacillus borstelensis M42. The isolate was identified through morphological, biochemical, phylogenetic, and genome sequencing analysis. The studies on fermentation kinetics revealed that EPS Br42 was a primary metabolite with a maximum production of 1.88 ± 0.02 g/L after 60 h when production broth was fortified with 2% glucose. Additionally, EPS Br42 was found to be a heteropolysaccharide consisting of glucose and galacturonic acid with a molecular weight of about 286 kDa. Interestingly, this molecule possesses industrially relevant functional properties such as water-holding (510 ± 0.35%), oil-holding (374 ± 0.12% for coconut oil and 384 ± 0.35% for olive oil), and swelling capacities (146.6 ± 5.75%). EPS Br42 could form an emulsion that was stable at a wide pH range for about 72 h and, in fact, performed better as compared to Span 20, a commercially used synthetic emulsifier. Moreover, this EPS was also found to be heat stable and exhibited non-Newtonian pseudoplastic behavior. These physicochemical and functional properties of polysaccharides suggest that the EPS Br42 has potential for multifarious industrial applications as an emulsifier, stabilizer, viscosifier, and binding agent.
Collapse
Affiliation(s)
- Nandita Srivastava
- Biochemical Engineering Research and Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumeeta Kumari
- Microbial Type Culture Collection and Gene Bank (MTCC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India
| | - Shubham Kurmi
- Biochemical Engineering Research and Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India
| | - Anil Kumar Pinnaka
- Microbial Type Culture Collection and Gene Bank (MTCC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India
| | - Anirban Roy Choudhury
- Biochemical Engineering Research and Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India.
| |
Collapse
|
11
|
Xiao M, Ren X, Yu Y, Gao W, Zhu C, Sun H, Kong Q, Fu X, Mou H. Fucose-containing bacterial exopolysaccharides: Sources, biological activities, and food applications. Food Chem X 2022; 13:100233. [PMID: 35498987 PMCID: PMC9039932 DOI: 10.1016/j.fochx.2022.100233] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Bacterial exopolysaccharides are high molecular weight polysaccharides that are secreted by a wide range of bacteria, with diverse structures and easy preparation. Fucose, fucose-containing oligosaccharides (FCOs), and fucose-containing polysaccharides (FCPs) have important applications in the food and medicine fields, including applications in products for removing Helicobacter pylori and infant formula powder. Fucose-containing bacterial exopolysaccharide (FcEPS) is a prospective source of fucose, FCOs, and FCPs. This review systematically summarizes the common sources and applications of FCPs and FCOs and the bacterial strains capable of producing FcEPS reported in recent years. The repeated-unit structures, synthesis pathways, and factors affecting the production of FcEPS are reviewed, as well as the degradation methods of FcEPS for preparing FCOs. Finally, the bioactivities of FcEPS, including anti-oxidant, prebiotic, anti-cancer, anti-inflammatory, anti-viral, and anti-microbial activities, are discussed and may serve as a reference strategy for further applications of FcEPS in the functional food and medicine industries.
Collapse
Key Words
- 2′-FL, 2′-fucosyllactose
- 3-FL, 3-fucosyllactose
- ABTS, 2,2′-azinobis-3-ethylbenzothiazoline-6-sulphonate
- Bacterial exopolysaccharides
- Bioactivity
- DPPH, 2,2-diphenyl-1-picrylhydrazyl
- EPS, exopolysaccharides
- FCOs, fucose-containing oligosaccharides
- FCPs, fucose-containing polysaccharides
- FcEPS, fucose-containing EPS
- Food application
- Fucose
- HMOs, human milk oligosaccharides
- MAPK, mitogen-activated protein kinase
- PBMCs, peripheral blood mononuclear cells
- ROS, reactive oxygen species
- SCFAs, short-chain fatty acids
- Structure
Collapse
Affiliation(s)
- Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Ying Yu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Wei Gao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Han Sun
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi Province, People's Republic of China
- Corresponding authors.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
- Corresponding authors.
| |
Collapse
|
12
|
Kumar A, Mukhia S, Kumar R. Production, characterisation, and application of exopolysaccharide extracted from a glacier bacterium Mucilaginibacter sp. ERMR7:07. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Concórdio-Reis P, Alves VD, Moppert X, Guézennec J, Freitas F, Reis MAM. Characterization and Biotechnological Potential of Extracellular Polysaccharides Synthesized by Alteromonas Strains Isolated from French Polynesia Marine Environments. Mar Drugs 2021; 19:522. [PMID: 34564184 PMCID: PMC8470090 DOI: 10.3390/md19090522] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 02/04/2023] Open
Abstract
Marine environments comprise almost three quarters of Earth's surface, representing the largest ecosystem of our planet. The vast ecological and metabolic diversity found in marine microorganisms suggest that these marine resources have a huge potential as sources of novel commercially appealing biomolecules, such as exopolysaccharides (EPS). Six Alteromonas strains from different marine environments in French Polynesia atolls were selected for EPS extraction. All the EPS were heteropolysaccharides composed of different monomers, including neutral monosaccharides (glucose, galactose, and mannose, rhamnose and fucose), and uronic acids (glucuronic acid and galacturonic acid), which accounted for up to 45.5 mol% of the EPS compositions. Non-carbohydrate substituents, such as acetyl (0.5-2.1 wt%), pyruvyl (0.2-4.9 wt%), succinyl (1-1.8 wt%), and sulfate (1.98-3.43 wt%); and few peptides (1.72-6.77 wt%) were also detected. Thermal analysis demonstrated that the EPS had a degradation temperature above 260 °C, and high char yields (32-53%). Studies on EPS functional properties revealed that they produce viscous aqueous solutions with a shear thinning behavior and could form strong gels in two distinct ways: by the addition of Fe2+, or in the presence of Mg2+, Cu2+, or Ca2+ under alkaline conditions. Thus, these EPS could be versatile materials for different applications.
Collapse
Affiliation(s)
- Patrícia Concórdio-Reis
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (P.C.-R.); (M.A.M.R.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Vítor D. Alves
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal;
| | - Xavier Moppert
- Pacific Biotech SAS, BP 140 289, 98 701 Arue, Tahiti, French Polynesia;
| | - Jean Guézennec
- AiMB (Advices in Marine Biotechnology), 17 Rue d’Ouessant, 29280 Plouzané, France;
| | - Filomena Freitas
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (P.C.-R.); (M.A.M.R.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Maria A. M. Reis
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (P.C.-R.); (M.A.M.R.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
14
|
Banerjee A, Sarkar S, Govil T, González-Faune P, Cabrera-Barjas G, Bandopadhyay R, Salem DR, Sani RK. Extremophilic Exopolysaccharides: Biotechnologies and Wastewater Remediation. Front Microbiol 2021; 12:721365. [PMID: 34489911 PMCID: PMC8417407 DOI: 10.3389/fmicb.2021.721365] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/26/2021] [Indexed: 01/18/2023] Open
Abstract
Various microorganisms thrive under extreme environments, like hot springs, hydrothermal vents, deep marine ecosystems, hyperacid lakes, acid mine drainage, high UV exposure, and more. To survive against the deleterious effect of these extreme circumstances, they form a network of biofilm where exopolysaccharides (EPSs) comprise a substantial part. The EPSs are often polyanionic due to different functional groups in their structural backbone, including uronic acids, sulfated units, and phosphate groups. Altogether, these chemical groups provide EPSs with a negative charge allowing them to (a) act as ligands toward dissolved cations as well as trace, and toxic metals; (b) be tolerant to the presence of salts, surfactants, and alpha-hydroxyl acids; and (c) interface the solubilization of hydrocarbons. Owing to their unique structural and functional characteristics, EPSs are anticipated to be utilized industrially to remediation of metals, crude oil, and hydrocarbons from contaminated wastewaters, mines, and oil spills. The biotechnological advantages of extremophilic EPSs are more diverse than traditional biopolymers. The present review aims at discussing the mechanisms and strategies for using EPSs from extremophiles in industries and environment bioremediation. Additionally, the potential of EPSs as fascinating biomaterials to mediate biogenic nanoparticles synthesis and treat multicomponent water contaminants is discussed.
Collapse
Affiliation(s)
- Aparna Banerjee
- Centro de investigación en Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación Y Posgrado, Universidad Católica del Maule, Talca, Chile
- Centro de Biotecnología de los Recursos Naturales (CENBio), Facultad de Ciencias Agrarias Y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Shrabana Sarkar
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
| | - Tanvi Govil
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
- Composite and Nanocomposite Advanced Manufacturing – Biomaterials Center, Rapid City, SD, United States
| | - Patricio González-Faune
- Escuela Ingeniería en Biotecnología, Facultad de Ciencias Agrarias Y Forestales, Universidad Católica del Maule, Talca, Chile
| | | | - Rajib Bandopadhyay
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
| | - David R. Salem
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
- Department of Materials and Metallurgical Engineering, South Dakota Mines, Rapid City, SD, United States
| | - Rajesh K. Sani
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
- BuGReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, United States
| |
Collapse
|
15
|
Morales-Guzmán D, Martínez-Morales F, Bertrand B, Rosas-Galván NS, Curiel-Maciel NF, Teymennet-Ramírez KV, Mazón-Román LE, Licea-Navarro AF, Trejo-Hernández MR. Microbial prospection of communities that produce biosurfactants from the water column and sediments of the Gulf of Mexico. Biotechnol Appl Biochem 2020; 68:1202-1215. [PMID: 32969539 DOI: 10.1002/bab.2042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 09/13/2020] [Indexed: 11/10/2022]
Abstract
Microbial communities capable of hydrocarbon degradation linked to biosurfactant (BS) and bioemulsifier (BE) production are basically unexplored in the Gulf of México (GOM). In this work, the BS and BE production of culturable marine bacterial hydrocarbonoclasts consortia isolated from two sites (the Perdido Fold Belt and Coatzacoalcos area) was investigated. The prospection at different locations and depths led to the screening and isolation of a wide variety of bacterial consortia with BS and BE activities, after culture enrichment with crude oil and glycerol as the carbon sources. At least 55 isolated consortia presented reduction in surface tension (ST) and emulsifying activity (EI24 ). After colony purification, bacteria were submitted to polyphasic analysis assays that resulted in the identification of different strains of cultivable Gammaproteobacteria Gram (-) Citrobacter, Enterobacter, Erwinia, Pseudomonas, Vibrio, Shewanella, Thalassospira, Idiomarina, Pseudoalteromonas, Photobacterium, and Gram (+) Staphylococcus, Bacillus, and Microbacterium. Overall, the best results for ST reduction and EI24 were obtained with consortia. Individually, Pseudomonas, Bacillus, and Enterobacter strains showed the best results for the reduction of ST after 6 days, while Thalassospira and Idiomarina strains showed the best results for EI24 (above 68% after 9 days). Consortia isolates from the GOM had the ability to degrade crude oil by up to 40-80% after 24 and 36 months, respectively. In all cases, biodegradation of crude oil was related to the reduction in ST and bioemulsifying activity and was independent from the depth in the water column.
Collapse
Affiliation(s)
- Daniel Morales-Guzmán
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Fernando Martínez-Morales
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Brandt Bertrand
- Universidad Nacional Autónoma de México (ICF-UNAM). Avenida Universidad 2001, Chamilpa, Instituto de Ciencias Físicas, Cuernavaca, Morelos, México
| | - Nashbly Sarela Rosas-Galván
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Nidya Fabiola Curiel-Maciel
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | - Luis Enrique Mazón-Román
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Alexei Fedorovish Licea-Navarro
- Departamento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada, Ensenada, BC, México
| | - María R Trejo-Hernández
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
16
|
Joulak I, Finore I, Poli A, Abid Y, Bkhairia I, Nicolaus B, Di Donato P, Dal Poggetto G, Gharsallaoui A, Attia H, Azabou S. Hetero-exopolysaccharide from the extremely halophilic Halomonas smyrnensis K2: production, characterization and functional properties in vitro. 3 Biotech 2020; 10:395. [PMID: 32832343 PMCID: PMC7431504 DOI: 10.1007/s13205-020-02356-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/23/2020] [Indexed: 12/27/2022] Open
Abstract
In this study, we firstly reported the production and the structural characterization of a novel hetero-exopolysaccharide namely EPS-K2 from the extremely halophilc Halomonas smyrnensis K2. Results revealed that EPS-K2 was mainly composed of three monosaccharides including mannose (66.69%), glucose (19.54%) and galactose (13.77%). EPS-K2 showed high thermostability with a degradation temperature around 260 °C, which could make it a suitable candidate for application in thermal processes. Moreover, EPS-K2 showed attractive functional properties. In fact, it exhibited potent antioxidant activity in a dose-dependent manner as assessed in analyses of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, iron chelating and DNA protection ability. Furthermore, EPS-K2 showed strong adhesion inhibition activity against Enterococcus faecalis (75.52 ± 3.35%) and Escherichia coli (61.95 ± 2.48%) at 1 g/l concentration, as well as a high biofilm disruption activity especially against E. coli (70.73 ± 2.78%), at 2 g/l concentration. According to its biotechnological properties, EPS-K2 could be exploited as functional ingredient in food, biomedicine, and pharmaceutical industries.
Collapse
Affiliation(s)
- Ichrak Joulak
- Laboratoire Analyse, Valorisation et Sécurité des Aliments, Université de Sfax, ENIS, Sfax, 3038 Tunisia
| | - Ilaria Finore
- Consiglio Nazionale delle Ricerche (C.N.R.), Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Annarita Poli
- Consiglio Nazionale delle Ricerche (C.N.R.), Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Yousra Abid
- Laboratoire Analyse, Valorisation et Sécurité des Aliments, Université de Sfax, ENIS, Sfax, 3038 Tunisia
| | - Intidhar Bkhairia
- Laboratoire de Génie Enzymatique et de Microbiologie, Université de Sfax, Ecole Nationale d’Ingénieurs de Sfax, B.P. 1173-3038 Sfax, Tunisia
| | - Barbara Nicolaus
- Consiglio Nazionale delle Ricerche (C.N.R.), Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Paola Di Donato
- Consiglio Nazionale delle Ricerche (C.N.R.), Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Department of Science and Technology, Parthenope University of Naples, Centro Direzionale-Isola C4, 80143 Naples, Italy
| | - Giovanni Dal Poggetto
- Consiglio Nazionale delle Ricerche (C.N.R.), Institute for Polymers, Composites and Biomaterials (IPCB), via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Adem Gharsallaoui
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Hamadi Attia
- Laboratoire Analyse, Valorisation et Sécurité des Aliments, Université de Sfax, ENIS, Sfax, 3038 Tunisia
| | - Samia Azabou
- Laboratoire Analyse, Valorisation et Sécurité des Aliments, Université de Sfax, ENIS, Sfax, 3038 Tunisia
| |
Collapse
|
17
|
Structural characterization and functional properties of novel exopolysaccharide from the extremely halotolerant Halomonas elongata S6. Int J Biol Macromol 2020; 164:95-104. [PMID: 32673722 DOI: 10.1016/j.ijbiomac.2020.07.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/21/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022]
Abstract
Production of extracellular polysaccharides by halophilic Archaea and Bacteria has been widely reported and the members of the genus Halomonas have been identified as the most potential producers. In the present work, a novel exopolysaccharide (EPS-S6) produced by the extremely halotolerant newly isolated Halomonas elongata strain S6, was characterized. According to the HPAE-PAD results, EPS-S6 was mainly composed of glucosamine, mannose, rhamnose and glucose (1:0.9:0.7:0.3). EPS-S6 was highly negatively charged and its molecular weight was about 270 kDa. Studies on its functional properties showed that EPS-S6 had several potential features. It has noticeable antioxidant activities on 2,2-diphenyl-1-picrylhydrazyl (DPPH•) inhibition and DNA protection, good ability to inhibit and to disrupt pathogenic biofilms, excellent flocculation of kaolin suspension and interesting emulsifying properties at acidic, neutral and basic pH. Therefore, EPS-S6 could have potential biotechnological concern in several fields such as in food, cosmetic and environmental industries.
Collapse
|
18
|
Anestopoulos I, Kiousi DE, Klavaris A, Maijo M, Serpico A, Suarez A, Sanchez G, Salek K, Chasapi SA, Zompra AA, Galanis A, Spyroulias GA, Gombau L, Euston SR, Pappa A, Panayiotidis MI. Marine-Derived Surface Active Agents: Health-Promoting Properties and Blue Biotechnology-Based Applications. Biomolecules 2020; 10:E885. [PMID: 32526944 PMCID: PMC7355491 DOI: 10.3390/biom10060885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022] Open
Abstract
Surface active agents are characterized for their capacity to adsorb to fluid and solid-water interfaces. They can be classified as surfactants and emulsifiers based on their molecular weight (MW) and properties. Over the years, the chemical surfactant industry has been rapidly increasing to meet consumer demands. Consequently, such a boost has led to the search for more sustainable and biodegradable alternatives, as chemical surfactants are non-biodegradable, thus causing an adverse effect on the environment. To these ends, many microbial and/or marine-derived molecules have been shown to possess various biological properties that could allow manufacturers to make additional health-promoting claims for their products. Our aim, in this review article, is to provide up to date information of critical health-promoting properties of these molecules and their use in blue-based biotechnology (i.e., biotechnology using aquatic organisms) with a focus on food, cosmetic and pharmaceutical/biomedical applications.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.-E.K.); (A.K.); (A.G.)
| | - Despina-Evgenia Kiousi
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.-E.K.); (A.K.); (A.G.)
| | - Ariel Klavaris
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.-E.K.); (A.K.); (A.G.)
| | - Monica Maijo
- Division of Health & Biomedicine, LEITAT Technological Centre, 08005 Barcelona, Spain; (M.M.); (A.S.); (A.S.); (G.S.); (L.G.)
| | - Annabel Serpico
- Division of Health & Biomedicine, LEITAT Technological Centre, 08005 Barcelona, Spain; (M.M.); (A.S.); (A.S.); (G.S.); (L.G.)
| | - Alba Suarez
- Division of Health & Biomedicine, LEITAT Technological Centre, 08005 Barcelona, Spain; (M.M.); (A.S.); (A.S.); (G.S.); (L.G.)
| | - Guiomar Sanchez
- Division of Health & Biomedicine, LEITAT Technological Centre, 08005 Barcelona, Spain; (M.M.); (A.S.); (A.S.); (G.S.); (L.G.)
| | - Karina Salek
- Institute of Mechanical, Process & Energy Engineering, Heriot Watt University, Edinburgh EH14 4AS, UK; (K.S.); (S.R.E.)
| | - Stylliani A. Chasapi
- Department of Pharmacy, University of Patras, 26504 Patra, Greece; (S.A.C.); (A.A.Z.); (G.A.S.)
| | - Aikaterini A. Zompra
- Department of Pharmacy, University of Patras, 26504 Patra, Greece; (S.A.C.); (A.A.Z.); (G.A.S.)
| | - Alex Galanis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.-E.K.); (A.K.); (A.G.)
| | - Georgios A. Spyroulias
- Department of Pharmacy, University of Patras, 26504 Patra, Greece; (S.A.C.); (A.A.Z.); (G.A.S.)
| | - Lourdes Gombau
- Division of Health & Biomedicine, LEITAT Technological Centre, 08005 Barcelona, Spain; (M.M.); (A.S.); (A.S.); (G.S.); (L.G.)
| | - Stephen R. Euston
- Institute of Mechanical, Process & Energy Engineering, Heriot Watt University, Edinburgh EH14 4AS, UK; (K.S.); (S.R.E.)
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.-E.K.); (A.K.); (A.G.)
| | - Mihalis I. Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
- Department of Electron Microscopy & Molecular Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, PO Box 23462, 1683 Nicosia, Cyprus
| |
Collapse
|
19
|
Sahana TG, Rekha PD. A novel exopolysaccharide from marine bacterium Pantoea sp. YU16-S3 accelerates cutaneous wound healing through Wnt/β-catenin pathway. Carbohydr Polym 2020; 238:116191. [PMID: 32299547 DOI: 10.1016/j.carbpol.2020.116191] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 01/14/2023]
Abstract
Natural polysaccharides with versatile properties are the potential candidates for wound healing applications. In this study, an exopolysaccharide, EPS-S3, isolated from a marine bacteria Pantoea sp. YU16-S3 was evaluated for its wound-healing abilities by studying the key molecular mechanisms in vitro and in vivo. Basic characterisation showed EPS-S3 as a heteropolysaccharide with glucose, galactose, N-acetyl galactosamine and glucosamine. The molecular weight of EPS-S3 was estimated to be 1.75 × 105 Da. It showed thermal stability up to 200 °C and shear-thickening non-Newtonian behaviour. It was biocompatible with dermal fibroblasts and keratinocytes and showed cell adhesion and cell proliferation properties. EPS-S3 facilitated cell migration in fibroblasts, induced rapid transition of cell cycle phases and also activated macrophages. In vivo experiments in rats showed the re-epithelialization of injured tissue with increased expression of HB-EGF, FGF, E-cadherin and β-catenin in EPS-S3 treatment. The results indicate that EPS-S3 modulates healing process through Wnt/β-catenin pathway due to its unique characteristics. In conclusion, EPS-S3 biosynthesized by the marine bacterium is a potential biomolecule for cutaneous wound healing applications.
Collapse
Affiliation(s)
- T G Sahana
- Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, India.
| | - P D Rekha
- Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, India.
| |
Collapse
|
20
|
Gutierrez T, Morris G, Ellis D, Mulloy B, Aitken MD. Production and characterisation of a marine Halomonas surface-active exopolymer. Appl Microbiol Biotechnol 2019; 104:1063-1076. [PMID: 31813048 PMCID: PMC6962145 DOI: 10.1007/s00253-019-10270-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 11/26/2022]
Abstract
During screening for novel emulsifiers and surfactants, a marine gammaproteobacterium, Halomonas sp. MCTG39a, was isolated and selected for its production of an extracellular emulsifying agent, P39a. This polymer was produced by the new isolate during growth in a modified Zobell’s 2216 medium amended with 1% glucose, and was extractable by cold ethanol precipitation. Chemical, chromatographic and nuclear magnetic resonance spectroscopic analysis confirmed P39a to be a high-molecular-weight (~ 261,000 g/mol) glycoprotein composed of carbohydrate (17.2%) and protein (36.4%). The polymer exhibited high emulsifying activities against a range of oil substrates that included straight-chain aliphatics, mono- and alkyl- aromatics and cycloparaffins. In general, higher emulsification values were measured under low (0.1 M PBS) compared to high (synthetic seawater) ionic strength conditions, indicating that low ionic strength is more favourable for emulsification by the P39a polymer. However, as observed with other bacterial emulsifying agents, the polymer emulsified some aromatic hydrocarbon species, as well as refined and crude oils, more effectively under high ionic strength conditions, which we posit could be due to steric adsorption to these substrates as may be conferred by the protein fraction of the polymer. Furthermore, the polymer effected a positive influence on the degradation of phenanthrene by other marine bacteria, such as the specialist PAH-degrader Polycyclovorans algicola. Collectively, based on the ability of this Halomonas high-molecular-weight glycoprotein to emulsify a range of pure hydrocarbon species, as well as refined and crude oils, it shows promise for the bioremediation of contaminated sites.
Collapse
Affiliation(s)
- Tony Gutierrez
- Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK. .,Department of Environmental Sciences and Engineering, Gillings School of Global Public Health,, University of North Carolina, Chapel Hill, NC, USA.
| | - Gordon Morris
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Dave Ellis
- Institute of Chemical Sciences (ICS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Barbara Mulloy
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Michael D Aitken
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health,, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Adimoolam SR, Nanjan Easwaran S, Subramanian Mohanakrishnan A, Mahadevan S. Metabolic heat coherent growth of Halomonas variabilis (HV) for enhanced production of Extracellular Polymeric Substances (EPS) in a Bio Reaction Calorimeter (BioRC). Prep Biochem Biotechnol 2019; 50:56-65. [PMID: 31648576 DOI: 10.1080/10826068.2019.1663532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The optimum condition at which the halophilic salt-tolerant bacterium Halomonas variabilis (MTCC 3712) produces the maximum amount of extracellular polymeric substances (EPS) was investigated experimentally using response surface methodology based on the central composite design (CCD). Hyper-saline medium containing 1.5% w/v NaCl enriched nutrient medium with 1.5% glucose as a carbon source was used to produce about 4.74 g/L of EPS in 16 h compared to various other EPS production of this kind. The metabolic heat profile confirms net EPS production by HV was a growth-associated aerobic process. There is a good agreement between metabolic heat and Oxygen Uptake Rate (OUR). The maximum observed heat release was 2.1 W. The total protein content of the sample is 53% of the total EPS (Soluble EPS, Loosely bound EPS, and tightly bound EPS). The emulsifying and flocculating activities of the EPS were measured to explore the possibility of using the biopolymer for effluent treatment.
Collapse
Affiliation(s)
- Saravana Raj Adimoolam
- Department of Chemical Engineering, Vel Tech High Tech Dr.Rangarajan Dr.Sakunthala Engineering College, Avadi, India
| | | | | | | |
Collapse
|
22
|
Purification, characterization and functional properties of exopolysaccharide from a novel halophilic Natronotalea sambharensis sp. nov. Int J Biol Macromol 2019; 136:547-558. [DOI: 10.1016/j.ijbiomac.2019.06.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
|
23
|
Sran KS, Sundharam SS, Krishnamurthi S, Roy Choudhury A. Production, characterization and bio-emulsifying activity of a novel thermostable exopolysaccharide produced by a marine strain of Rhodobacter johrii CDR-SL 7Cii. Int J Biol Macromol 2019; 127:240-249. [DOI: 10.1016/j.ijbiomac.2019.01.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
|
24
|
Sahana TG, Rekha PD. A bioactive exopolysaccharide from marine bacteria Alteromonas sp. PRIM-28 and its role in cell proliferation and wound healing in vitro. Int J Biol Macromol 2019; 131:10-18. [PMID: 30851325 DOI: 10.1016/j.ijbiomac.2019.03.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 02/07/2023]
Abstract
Marine bacteria secrete exopolysaccharides (EPS) with unique structural and functional properties and serve as a source of newer bioactive biopolymers. This study reports an EPS produced by a marine bacterium identified as Alteromonas sp. PRIM-28 for its bioactivities. The EPS was characterised using standard methods and tested for its bioactivities using in vitro models. EPS-A28 is an anionic heteropolysaccharide with a molecular weight of 780 kDa and exists as triple helical structure in aqueous solution. Monosaccharide composition is mannuronic acid, glucose and N-acetyl glucosamine repeating units in the ratio 1:3.67:0.93. The FT-IR spectra showed the presence of sulphate, phosphate and uronic acid residues. The thermal analysis showed partial degradation of the EPS-A28 at 190 °C and 40% of residues were stable up to 800 °C. It showed biocompatibility and induced proliferation and migration of dermal fibroblasts (HDF) and keratinocytes. EPS-A28 could increase the S-phase of cell cycle. The proliferative property of the EPS-A28 was established by the increased expression of fibroblast proliferation marker (Ki-67) also its capability of binding to cell surface. It also induced nitric oxide and arginase synthesis in macrophages. These findings suggest that EPS-A28 can be potentially used as a multifunctional bioactive polymer in wound care.
Collapse
Affiliation(s)
- T G Sahana
- Yenepoya Research Centre, Yenepoya University, University Road, Deralakatte, Mangalore, India.
| | - P D Rekha
- Yenepoya Research Centre, Yenepoya University, University Road, Deralakatte, Mangalore, India.
| |
Collapse
|
25
|
Torres M, Hong KW, Chong TM, Reina JC, Chan KG, Dessaux Y, Llamas I. Genomic analyses of two Alteromonas stellipolaris strains reveal traits with potential biotechnological applications. Sci Rep 2019; 9:1215. [PMID: 30718637 PMCID: PMC6361997 DOI: 10.1038/s41598-018-37720-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/27/2018] [Indexed: 11/08/2022] Open
Abstract
The Alteromonas stellipolaris strains PQQ-42 and PQQ-44, previously isolated from a fish hatchery, have been selected on the basis of their strong quorum quenching (QQ) activity, as well as their ability to reduce Vibrio-induced mortality on the coral Oculina patagonica. In this study, the genome sequences of both strains were determined and analyzed in order to identify the mechanism responsible for QQ activity. Both PQQ-42 and PQQ-44 were found to degrade a wide range of N-acylhomoserine lactone (AHL) QS signals, possibly due to the presence of an aac gene which encodes an AHL amidohydrolase. In addition, the different colony morphologies exhibited by the strains could be related to the differences observed in genes encoding cell wall biosynthesis and exopolysaccharide (EPS) production. The PQQ-42 strain produces more EPS (0.36 g l-1) than the PQQ-44 strain (0.15 g l-1), whose chemical compositions also differ. Remarkably, PQQ-44 EPS contains large amounts of fucose, a sugar used in high-value biotechnological applications. Furthermore, the genome of strain PQQ-42 contained a large non-ribosomal peptide synthase (NRPS) cluster with a previously unknown genetic structure. The synthesis of enzymes and other bioactive compounds were also identified, indicating that PQQ-42 and PQQ-44 could have biotechnological applications.
Collapse
Affiliation(s)
- Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, France
| | - Kar-Wai Hong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Teik-Min Chong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - José Carlos Reina
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Kok-Gan Chan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Yves Dessaux
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, France.
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| |
Collapse
|
26
|
Extremophilic exopolysaccharides: A review and new perspectives on engineering strategies and applications. Carbohydr Polym 2019; 205:8-26. [DOI: 10.1016/j.carbpol.2018.10.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
|
27
|
Shahzad H, Iqbal M, Khan QU. Rheo-chemical characterization of exopolysaccharides produced by plant growth promoting rhizobacteria. TURKISH JOURNAL OF BIOCHEMISTRY 2018. [DOI: 10.1515/tjb-2017-0204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background
Modern agriculture recognizes soil biota as major contributors for availabilities of nitrogen and phosphorus to plants. Centralizing focus on exopolymer production of these living entities is need of time to emphasize their impact on soil structural restoration and heavy metal intoxication.
Material and methods
Mung bean rhizosphere collected from 25 locations was serially diluted and poured onto MY agar plates that were incubated for 120 h at 25°C to isolate bacteria having watery mucoidal appearance. Liquid broths of secluded cultures were then tested for optical scattering and were treated with ethanol to precipitate Exopolysaccharides (EPS) for their physicochemical characterization.
Results
Anion-exchange and high-performance size exclusion chromatographic analysis indicated two main monosaccharides, Mannose (52%) and Glucose (29%) fractions of EPS. EPS have substantial (0.2%) protein contents, capacity related to emulsify several hydrophobic substances. 0.5% EPS solution had low viscosity with pseudoplastic behaviour, least suspended particles producing less turbid solutions.
Conclusion
Six strains (M2, M3, M11, M16, M19, and M22) secreted noticeably greater amounts of exopolymers than other strains. Organic nature and pseudoplasticity of these exopolymers helps in soil structural restoration, sulfates and phosphates helps in heavy metals detoxication.
Collapse
Affiliation(s)
| | - Muhammad Iqbal
- University of Agriculture, Institute of Soil and Environmental Sciences , Faisalabad , Pakistan
| | | |
Collapse
|
28
|
Isolation and characterization of halophilic bacteria producing exopolymers with emulsifying and antioxidant activities. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
|
30
|
Chikkanna A, Ghosh D, Kishore A. Expression and characterization of a potential exopolysaccharide from a newly isolated halophilic thermotolerant bacteria Halomonas nitroreducens strain WB1. PeerJ 2018; 6:e4684. [PMID: 29707437 PMCID: PMC5922230 DOI: 10.7717/peerj.4684] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/09/2018] [Indexed: 11/20/2022] Open
Abstract
The halophilic bacterial strain WB1 isolated from a hydrothermal vent was taxonomically characterized using multiple proxies, as Halomonas nitroreducens strain WB1. When grown on malt extract/yeast extract (MY) medium, it produced large quantities of exopolysaccharide (EPS). The polymer was synthesized at a higher rate during the log and early stationary phases. The anionic polysaccharide is primarily composed of glucose, mannose, and galactose. The studied EPS was highly viscous and had pseudoplastic nature. The EPS was found to be a mixture of three polysaccharides under FT-IR, which makes it less labile to environmental diagenesis. It also has emulsifying and antioxidant activity along with the binding capacity to heavy metals. The EPS has unique and interesting physical and chemical properties, which are different from earlier reported exo-polysaccharides produced by different bacterial genus. This suggests that the extreme geological niches like hypersaline, hyperthermal, hypothermal, and oligophilic environments, which are not well studied so far, can offer extensive and potential resources for medical, biotechnological and industrial applications. The study clearly showed that the thermal springs from the temperate region can be a potent source of many such industrially important microbial genera and need further detailed studies to be carried out.
Collapse
Affiliation(s)
- Arpitha Chikkanna
- Laboratory of Biogeochem-mystery, Centre for Earth Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Devanita Ghosh
- Laboratory of Biogeochem-mystery, Centre for Earth Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Abhinoy Kishore
- Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
31
|
Radchenkova N, Boyadzhieva I, Atanasova N, Poli A, Finore I, Di Donato P, Nicolaus B, Panchev I, Kuncheva M, Kambourova M. Extracellular polymer substance synthesized by a halophilic bacterium Chromohalobacter canadensis 28. Appl Microbiol Biotechnol 2018; 102:4937-4949. [DOI: 10.1007/s00253-018-8901-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/27/2022]
|
32
|
Exopolysaccharides from Marine and Marine Extremophilic Bacteria: Structures, Properties, Ecological Roles and Applications. Mar Drugs 2018; 16:md16020069. [PMID: 29461505 PMCID: PMC5852497 DOI: 10.3390/md16020069] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/08/2018] [Accepted: 02/16/2018] [Indexed: 11/16/2022] Open
Abstract
The marine environment is the largest aquatic ecosystem on Earth and it harbours microorganisms responsible for more than 50% of total biomass of prokaryotes in the world. All these microorganisms produce extracellular polymers that constitute a substantial part of the dissolved organic carbon, often in the form of exopolysaccharides (EPS). In addition, the production of these polymers is often correlated to the establishment of the biofilm growth mode, during which they are important matrix components. Their functions include adhesion and colonization of surfaces, protection of the bacterial cells and support for biochemical interactions between the bacteria and the surrounding environment. The aim of this review is to present a summary of the status of the research about the structures of exopolysaccharides from marine bacteria, including capsular, medium released and biofilm embedded polysaccharides. Moreover, ecological roles of these polymers, especially for those isolated from extreme ecological niches (deep-sea hydrothermal vents, polar regions, hypersaline ponds, etc.), are reported. Finally, relationships between the structure and the function of the exopolysaccharides are discussed.
Collapse
|
33
|
Sivasankar P, Seedevi P, Poongodi S, Sivakumar M, Murugan T, Sivakumar L, Sivakumar K, Balasubramanian T. Characterization, antimicrobial and antioxidant property of exopolysaccharide mediated silver nanoparticles synthesized by Streptomyces violaceus MM72. Carbohydr Polym 2018; 181:752-759. [DOI: 10.1016/j.carbpol.2017.11.082] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/29/2017] [Accepted: 11/22/2017] [Indexed: 10/18/2022]
|
34
|
Panda AK, Bisht SS, Kaushal BR, De Mandal S, Kumar NS, Basistha BC. Bacterial diversity analysis of Yumthang hot spring, North Sikkim, India by Illumina sequencing. BIG DATA ANALYTICS 2017. [DOI: 10.1186/s41044-017-0022-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
35
|
Zhang Z, Cai R, Zhang W, Fu Y, Jiao N. A Novel Exopolysaccharide with Metal Adsorption Capacity Produced by a Marine Bacterium Alteromonas sp. JL2810. Mar Drugs 2017; 15:md15060175. [PMID: 28604644 PMCID: PMC5484125 DOI: 10.3390/md15060175] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/05/2017] [Accepted: 06/09/2017] [Indexed: 11/16/2022] Open
Abstract
Most marine bacteria can produce exopolysaccharides (EPS). However, very few structures of EPS produced by marine bacteria have been determined. The characterization of EPS structure is important for the elucidation of their biological functions and ecological roles. In this study, the structure of EPS produced by a marine bacterium, Alteromonas sp. JL2810, was characterized, and the biosorption of the EPS for heavy metals Cu2+, Ni2+, and Cr6+ was also investigated. Nuclear magnetic resonance (NMR) analysis indicated that the JL2810 EPS have a novel structure consisting of the repeating unit of [-3)-α-Rhap-(1→3)-α-Manp-(1→4)-α-3OAc-GalAp-(1→]. The biosorption of the EPS for heavy metals was affected by a medium pH; the maximum biosorption capacities for Cu2+ and Ni2+ were 140.8 ± 8.2 mg/g and 226.3 ± 3.3 mg/g at pH 5.0; however, for Cr6+ it was 215.2 ± 5.1 mg/g at pH 5.5. Infrared spectrometry analysis demonstrated that the groups of O-H, C=O, and C-O-C were the main function groups for the adsorption of JL2810 EPS with the heavy metals. The adsorption equilibrium of JL2810 EPS for Ni2+ was further analyzed, and the equilibrium data could be better represented by the Langmuir isotherm model. The novel EPS could be potentially used in industrial applications as a novel bio-resource for the removal of heavy metals.
Collapse
Affiliation(s)
- Zilian Zhang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, China.
| | - Ruanhong Cai
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, China.
| | - Wenhui Zhang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, China.
| | - Yingnan Fu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, China.
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
36
|
Characterization of novel Acidobacteria exopolysaccharides with potential industrial and ecological applications. Sci Rep 2017; 7:41193. [PMID: 28117455 PMCID: PMC5259719 DOI: 10.1038/srep41193] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/15/2016] [Indexed: 01/19/2023] Open
Abstract
Acidobacteria have been described as one of the most abundant and ubiquitous bacterial phyla in soil. However, factors contributing to this ecological success are not well elucidated mainly due to difficulties in bacterial isolation. Acidobacteria may be able to survive for long periods in soil due to protection provided by secreted extracellular polymeric substances that include exopolysaccharides (EPSs). Here we present the first study to characterize EPSs derived from two strains of Acidobacteria from subdivision 1 belonging to Granulicella sp. EPS are unique heteropolysaccharides containing mannose, glucose, galactose and xylose as major components, and are modified with carboxyl and methoxyl functional groups that we characterized by Fourier transform infrared (FTIR) spectroscopy. Both EPS compounds we identified can efficiently emulsify various oils (sunflower seed, diesel, and liquid paraffin) and hydrocarbons (toluene and hexane). Moreover, the emulsions are more thermostable over time than those of commercialized xanthan. Acidobacterial EPS can now be explored as a source of biopolymers that may be attractive and valuable for industrial applications due to their natural origin, sustainability, biodegradability and low toxicity.
Collapse
|
37
|
In vitro antioxidant activities of an exopolysaccharide from a salt pan bacterium Halolactibacillus miurensis. Carbohydr Polym 2017; 155:400-406. [DOI: 10.1016/j.carbpol.2016.08.085] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 01/22/2023]
|
38
|
Karuppiah P, Venkatasamy V, Viswaprakash N, Ramasamy T. A statistical approach on optimization of exopolymeric substance production by Halomonas sp. S19 and its emulsification activity. BIORESOUR BIOPROCESS 2015. [DOI: 10.1186/s40643-015-0077-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
39
|
Santini TC, Kerr JL, Warren LA. Microbially-driven strategies for bioremediation of bauxite residue. JOURNAL OF HAZARDOUS MATERIALS 2015; 293:131-157. [PMID: 25867516 DOI: 10.1016/j.jhazmat.2015.03.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/12/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
Globally, 3 Gt of bauxite residue is currently in storage, with an additional 120 Mt generated every year. Bauxite residue is an alkaline, saline, sodic, massive, and fine grained material with little organic carbon or plant nutrients. To date, remediation of bauxite residue has focused on the use of chemical and physical amendments to address high pH, high salinity, and poor drainage and aeration. No studies to date have evaluated the potential for microbial communities to contribute to remediation as part of a combined approach integrating chemical, physical, and biological amendments. This review considers natural alkaline, saline environments that present similar challenges for microbial survival and evaluates candidate microorganisms that are both adapted for survival in these environments and have the capacity to carry out beneficial metabolisms in bauxite residue. Fermentation, sulfur oxidation, and extracellular polymeric substance production emerge as promising pathways for bioremediation whether employed individually or in combination. A combination of bioaugmentation (addition of inocula from other alkaline, saline environments) and biostimulation (addition of nutrients to promote microbial growth and activity) of the native community in bauxite residue is recommended as the approach most likely to be successful in promoting bioremediation of bauxite residue.
Collapse
Affiliation(s)
- Talitha C Santini
- Centre for Mined Land Rehabilitation, Sir James Foots Building, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Geography, Planning, and Environmental Management, Steele Building, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Earth and Environment, The University of Western Australia, 35 Stirling Hwy Crawley, WA 6009, Australia.
| | - Janice L Kerr
- Centre for Mined Land Rehabilitation, Sir James Foots Building, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Lesley A Warren
- School of Geography and Earth Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
40
|
Characterization of haloglycan, an exopolysaccharide produced by Halomonas stenophila HK30. Int J Biol Macromol 2015; 72:117-24. [DOI: 10.1016/j.ijbiomac.2014.07.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/21/2014] [Accepted: 07/31/2014] [Indexed: 11/24/2022]
|
41
|
Biosynthesis of Extracellular Polymeric Substances by the Marine BacteriumSaccharophagus degradansunder Different Nutritional Conditions. INT J POLYM SCI 2015. [DOI: 10.1155/2015/526819] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The effect of carbon source, carbon to nitrogen (C/N) ratio, and limitation in nutrients (N, P, K, Ca, Mg, and Fe) on extracellular polymeric substances (EPS) synthesis by the marine bacteriumSaccharophagus degradanswas studied. This strain was able to grow in mineral medium and produce EPS with different efficiency according to the C source used (g EPS/L): glucose or starch (1.5 ± 0.2); galactose, sucrose, or xylose (0.7 ± 0.2); and fructose (0.3 ± 0.1). The C/N ratio (glucose/ammonium) had a significant effect on EPS biosynthesis due to its production rise as the C/N ratio increased from 3 to 100 (0.7 to 2.1 g EPS/L). It was also observed that limitation in nutrients such as N, P, K, Ca, Mg, and Fe also favored EPS biosynthesis. When taking into account both factors (C/N ratio, 100; nutrients limitation, 50%) a positive synergistic effect was noted on EPS production since under these conditions the maximum concentration obtained was 4.12 ± 0.3 g/L after 72 h of culture. The polymer was found to be a polysaccharide of mainly glucose, mannose, and galactose. This is the first report on EPS production byS. degradanswhich is a new feature of this versatile marine bacterium.
Collapse
|
42
|
Jeganathan A, Ramamoorthy S, Thillaichidambaram M. Optimization of extracellular polysaccharide production in Halobacillus trueperi AJSK using response surface methodology. ACTA ACUST UNITED AC 2014. [DOI: 10.5897/ajb2014.14109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
43
|
Baxter BK, Gunde-Cimerman N, Oren A. Salty sisters: The women of halophiles. Front Microbiol 2014; 5:192. [PMID: 24926287 PMCID: PMC4045239 DOI: 10.3389/fmicb.2014.00192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/10/2014] [Indexed: 01/02/2023] Open
Abstract
A history of halophile research reveals the commitment of scientists to uncovering the secrets of the limits of life, in particular life in high salt concentration and under extreme osmotic pressure. During the last 40 years, halophile scientists have indeed made important contributions to extremophile research, and prior international halophiles congresses have documented both the historical and the current work. During this period of salty discoveries, female scientists, in general, have grown in number worldwide. But those who worked in the field when there were small numbers of women sometimes saw their important contributions overshadowed by their male counterparts. Recent studies suggest that modern female scientists experience gender bias in matters such as conference invitations and even representation among full professors. In the field of halophilic microbiology, what is the impact of gender bias? How has the participation of women changed over time? What do women uniquely contribute to this field? What are factors that impact current female scientists to a greater degree? This essay emphasizes the “her story” (not “history”) of halophile discovery.
Collapse
Affiliation(s)
- Bonnie K Baxter
- Great Salt Lake Institute, Westminster College Salt Lake City, UT, USA
| | - Nina Gunde-Cimerman
- Molecular Genetics and Microbiology, University of Ljubljana Ljubljana, Slovenia ; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins Ljubljana, Slovenia
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem Givat Ram, Israel
| |
Collapse
|
44
|
Characterization of new exopolysaccharides produced by coculturing of L. kefiranofaciens with yoghurt strains. Int J Biol Macromol 2013; 59:377-83. [DOI: 10.1016/j.ijbiomac.2013.04.075] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/21/2013] [Accepted: 04/27/2013] [Indexed: 11/21/2022]
|
45
|
Extracellular polymeric substances from two biofilm forming Vibrio species: Characterization and applications. Carbohydr Polym 2013; 94:882-8. [DOI: 10.1016/j.carbpol.2013.02.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/05/2013] [Accepted: 02/10/2013] [Indexed: 12/11/2022]
|
46
|
Biomedical Applications of Exopolysaccharides Produced by Microorganisms Isolated from Extreme Environments. Extremophiles 2012. [DOI: 10.1002/9781118394144.ch14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
|
47
|
Llamas I, Amjres H, Mata JA, Quesada E, Béjar V. The potential biotechnological applications of the exopolysaccharide produced by the halophilic bacterium Halomonas almeriensis. Molecules 2012; 17:7103-20. [PMID: 22692238 PMCID: PMC6268429 DOI: 10.3390/molecules17067103] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/31/2012] [Accepted: 06/05/2012] [Indexed: 11/16/2022] Open
Abstract
We have studied the extracellular polysaccharide (EPS) produced by the type strain, M8(T), of the halophilic bacterium Halomonas almeriensis, to ascertain whether it might have any biotechnological applications. All the cultural parameters tested influenced both bacterial growth and polysaccharide production. EPS production was mainly growth-associated and under optimum environmental and nutritional conditions M8(T) excreted about 1.7 g of EPS per litre of culture medium (about 0.4 g of EPS per gram of dry cell weight). Analysis by anion-exchange chromatography and high-performance size-exclusion chromatography indicated that the exopolysaccharide was composed of two fractions, one of 6.3 × 10(6) and another of 1.5 × 10(4) Daltons. The monosaccharide composition of the high-molecular-weight fraction was mannose (72% w/w), glucose (27.5% w/w) and rhamnose (0.5% w/w). The low-molecular-weight fraction contained mannose (70% w/w) and glucose (30% w/w). The EPS has a substantial protein fraction (1.1% w/w) and was capable of emulsifying several hydrophobic substrates, a capacity presumably related to its protein content. The EPS produced solutions of low viscosity with pseudoplastic behaviour. It also had a high capacity for binding some cations. It contained considerable quantities of sulphates (1.4% w/w), an unusual feature in bacterial polysaccharides. All these characteristics render it potentially useful as a biological agent, bio-detoxifier and emulsifier.
Collapse
Affiliation(s)
- Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain.
| | | | | | | | | |
Collapse
|
48
|
Neave MJ, Streten-Joyce C, Glasby CJ, McGuinness KA, Parry DL, Gibb KS. The bacterial community associated with the marine polychaete Ophelina sp.1 (Annelida: Opheliidae) is altered by copper and zinc contamination in sediments. MICROBIAL ECOLOGY 2012; 63:639-650. [PMID: 22038035 DOI: 10.1007/s00248-011-9966-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 10/05/2011] [Indexed: 05/31/2023]
Abstract
Tolerant species of polychaete worms can survive in polluted environments using various resistance mechanisms. One aspect of resistance not often studied in polychaetes is their association with symbiotic bacteria, some of which have resistance to metals and may help the organism to survive. We used "next generation" 454 sequencing of bacterial 16S rRNA sequences associated with polychaetes from a copper- and zinc-polluted harbor and from a reference site to determine bacterial community structure. We found changes in the bacteria at the polluted site, including increases in the abundance of bacteria from the order Alteromonadales. These changes in the bacteria associated with polychaetes may be relatively easy to detect and could be a useful indicator of metal pollution.
Collapse
|
49
|
Abstract
Polysaccharides are ubiquitous in animals and plant cells where they play a significant role in a number of physiological situations e.g. hydration, mechanical properties of cell walls and ionic regulation. This review concentrates on heparin-like entities from marine procaryotes and eukaryotes. Carbohydrates from marine prokaryotes offer a significant structural chemodiversity with novel material and biological properties. Cyanobacteria are Gram-negative photosynthetic prokaryotes considered as a rich source of novel molecules, and marine bacteria are a rich source of polysaccharides with novel structures, which may be a good starting point from which to synthesise heparinoid molecules. For example, some sulphated polysaccharides have been isolated from gamma-proteobacteria such as Alteromonas and Pseudoalteromonas sp. In contrast to marine bacteria, all marine algae contain sulphated wall polysaccharides, whereas such polymers are not found in terrestrial plants. In their native form, or after chemical modifications, a range of polysaccharides isolated from marine organisms have been described that have anticoagulant, anti-thrombotic, anti-tumour, anti-proliferative, anti-viral or anti-inflammatory activities.In spite of the enormous potential of sulphated oligosaccharides from marine sources, their technical and pharmaceutical usage is still limited because of the high complexity of these molecules. Thus, the production of tailor-made oligo- and polysaccharidic structures by biocatalysis is also a growing field of interest in biotechnology.
Collapse
Affiliation(s)
- S Colliec-Jouault
- Laboratoire de Biotechnologie et Molécules Marines, Nantes Cedex 3, France.
| | | | | |
Collapse
|
50
|
Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2011; 2011:693253. [PMID: 22007151 PMCID: PMC3191746 DOI: 10.1155/2011/693253] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/11/2011] [Indexed: 11/18/2022]
Abstract
Extreme environments, generally characterized by atypical temperatures, pH, pressure, salinity, toxicity, and radiation levels, are inhabited by various microorganisms specifically adapted to these particular conditions, called extremophiles. Among these, the microorganisms belonging to the Archaea domain are of significant biotechnological importance as their biopolymers possess unique properties that offer insights into their biology and evolution. Particular attention has been devoted to two main types of biopolymers produced by such peculiar microorganisms, that is, the extracellular polysaccharides (EPSs), considered as a protection against desiccation and predation, and the endocellular polyhydroxyalkanoates (PHAs) that provide an internal reserve of carbon and energy. Here, we report the composition, biosynthesis, and production of EPSs and PHAs by different archaeal species.
Collapse
|