1
|
Li Y, Xue L, Gao J, Cai W, Zhang Z, Meng L, Miao S, Hong X, Xu M, Wu Q, Zhang J. A systematic review and meta-analysis indicates a substantial burden of human noroviruses in shellfish worldwide, with GII.4 and GII.2 being the predominant genotypes. Food Microbiol 2023; 109:104140. [DOI: 10.1016/j.fm.2022.104140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
|
2
|
Errani F, Ciulli S, Mandrioli L, Serratore P, Volpe E. Detection of Human and Fish Viruses in Marine Gastropods. Animals (Basel) 2022; 12:ani12162122. [PMID: 36009711 PMCID: PMC9405270 DOI: 10.3390/ani12162122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Mollusca is one of the largest phyla in the animal kingdom that includes more than 100,000 existing species living in aquatic and terrestrial habitats. Within this phylum, marine molluscs are considered an important resource for fisheries, and gastropods represent 2% of marine molluscs fished worldwide. Similar to bivalves, gastropods are susceptible to environmental contamination, and they are able to accumulate microorganisms. However, despite their economic importance, only few studies have focused on the monitoring of viral contamination in their tissues and their possible role as carriers. In this study, the presence of human pathogenic viruses such as hepatitis A virus, but not noroviruses, different to the situation in bivalve molluscs, was found in gastropods. This finding suggests a low risk of food-borne viral infections for gastropod consumers. Furthermore, one of the most impactful pathogens for marine aquaculture, nervous necrosis virus (NNV), was detected in gastropods. However, the animal tissues examined did not show any histological changes, suggesting the absence of a pathogenic effect of NNV in the analyzed gastropods. Abstract Marine gastropods represent a major food source for higher trophic levels and an important source of animal protein for humans. Like bivalve molluscs, gastropods can accumulate several types of contaminants; however, the bioaccumulation of microorganisms, particularly viruses, has been poorly investigated in these animals. This study focused on gastropods (Tritia mutabilis, Bolinus brandaris and Rapana venosa) collected during the fishing season from 2017 to 2021 in the north-western Adriatic Sea, and on clams (Ruditapes philippinarum) harvested in the same geographical area, in order to evaluate the presence of human and fish viruses in their tissues. A virological investigation was carried out on the digestive gland using molecular methods. The presence of hepatitis A virus was detected in one sample, whereas noroviruses were not present in the investigated specimens. Regarding fish viruses, it was possible to detect the presence of nervous necrosis virus (NNV) in 26.5% of the analyzed gastropods; however, the histological examination did not show any pathological changes in the nervous tissue in both NNV-positive and -negative batches. As a whole, the investigated gastropods showed the ability to bioaccumulate viruses; however, lower contamination by human viruses compared to bivalve molluscs was pointed out, posing a minor concern to human health.
Collapse
|
3
|
Savini F, Giacometti F, Tomasello F, Pollesel M, Piva S, Serraino A, De Cesare A. Assessment of the Impact on Human Health of the Presence of Norovirus in Bivalve Molluscs: What Data Do We Miss? Foods 2021; 10:2444. [PMID: 34681492 PMCID: PMC8535557 DOI: 10.3390/foods10102444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 01/22/2023] Open
Abstract
In the latest One Health ECDC EFSA technical report, Norovirus in fish and fishery products have been listed as the agent/food pair causing the highest number of strong-evidence outbreaks in the EU in 2019. This review aims to identify data gaps that must be filled in order to increase knowledge on Norovirus in bivalve molluscs, perform a risk assessment and rank the key mitigation strategies for this biological hazard, which is relevant to public health. Virologic determinations are not included in any of the food safety and process hygiene microbiologic criteria reflected in the current European regulations. In addition, the Escherichia coli-based indices of acceptable faecal contamination for primary production, as well as the food safety criteria, do not appear sufficient to indicate the extent of Norovirus contamination. The qualitative risk assessment data collected in this review suggests that bivalve molluscs present a high risk to human health for Norovirus only when consumed raw or when insufficiently cooked. On the contrary, the risk can be considered negligible when they are cooked at a high temperature, while information is still scarce for non-thermal treatments.
Collapse
Affiliation(s)
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (F.S.); (F.T.); (M.P.); (S.P.); (A.S.); (A.D.C.)
| | | | | | | | | | | |
Collapse
|
4
|
Development of an RNA Extraction Protocol for Norovirus from Raw Oysters and Detection by qRT-PCR and Droplet-Digital RT-PCR. Foods 2021; 10:foods10081804. [PMID: 34441580 PMCID: PMC8393641 DOI: 10.3390/foods10081804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
Foodborne viruses such as norovirus and hepatitis A virus cause frequent outbreaks associated with the consumption of raw or undercooked oysters. Viral particles are bioaccumulated in the oyster's digestive glands, making RNA extraction and RT-PCR detection difficult due to the complex nature of the food matrix and the presence of RT-PCR inhibitors. Herein, we have developed a viral RNA extraction protocol from raw oysters using murine norovirus (MNV) as a surrogate for human noroviruses. The method combines lysis in Tri-Reagent reagent, followed by RNA extraction using Direct-Zol purification columns and lithium chloride precipitation. Viral load quantification was performed by both qRT-PCR and droplet-digital RT-PCR. We have demonstrated that this method can efficiently remove RT-PCR inhibitors, and is sensitive enough to reliably detect viral contamination at 25 PFU/0.2 g. We have also compared the efficiency of this method with the ISO 15216-1:2017 method and Method E developed by Quang and colleagues, and observed significantly higher efficiency compared with the ISO 15216-1 method and comparable efficiency with Method E, with less steps, and shorter hands-on time.
Collapse
|
5
|
Amroabadi MA, Rahimi E, Shakerian A, Momtaz H. Incidence of hepatitis A and hepatitis E viruses and norovirus and rotavirus in fish and shrimp samples caught from the Persian Gulf. ARQ BRAS MED VET ZOO 2021. [DOI: 10.1590/1678-4162-11742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT Foodborne viruses including hepatitis A virus (HAV), norovirus (NoV), rotavirus (RoV) and hepatitis E virus (HEV) are easily transmitted through contaminated seafoods. The current research was done to assess the incidence of RoV, NoV GI and GII,hAV and hEV in fish and shrimp samples caught from the Persian Gulf, Iran. Three-hundred and twenty fish and shrimp samples were collected. The presence of foodborne viruses were assessed by the real-time PCR. Forty-nine out of 320 (15.31%) fish and shrimp samples were positive for foodborne viruses. Distribution of hAV, NoV GI and NoV GII amongst all studied samples were 0.93%, 5.93% and 8.43%, respectively. hEV and RoV viruses were not found in studied samples. Parastromateus niger and Scomberomorus commerson fish and Penaeus monodon shrimp were the most frequently contaminated samples. Simultaneous incidence of hAV and NoV GI and hAV and NoV GII were 0.31% and 0.93%, respectively. Distribution of foodborne viruses in samples collected through spring, summer, autumn and winter seasons were 14.28%, 9.33%, 11.76% and 24.44%, respectively. Findings revealed that the incidence of foodborne viruses was significantly associated with seafood species and also season of sampling.
Collapse
Affiliation(s)
| | | | - A. Shakerian
- Islamic Azad University, Iran; Islamic Azad University, Iran
| | | |
Collapse
|
6
|
Errani F, Ponti M, Volpe E, Ciulli S. Spatial and seasonal variability of human and fish viruses in mussels inside and offshore of Ravenna's harbour (Adriatic Sea, Italy). J Appl Microbiol 2020; 130:994-1008. [PMID: 32743895 DOI: 10.1111/jam.14806] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 01/13/2023]
Abstract
AIMS This study aims to investigate the presence and spatial-seasonal variability of human and fish viruses in coastal marine systems using Ravenna's harbour area (Adriatic Sea, Italy) as a model. METHODS AND RESULTS Human viruses (noroviruses and hepatitis A virus) and one of the most threatening finfish pathogens, the nervous necrosis virus (NNV), were investigated in mussels living inside and offshore Ravenna's harbour. Thirty-three and 36·7% of tested mussel samples resulted contaminated by human and fish viruses respectively. A different spatial-seasonal distribution was observed. Human viruses were detected mainly in inner port sites during colder months, while NNV was detected in both inside and offshore of Ravenna's harbour, mainly during warmer months. CONCLUSIONS The presence of human viruses in the inner port close to the city centre could be attributed to wastewaters carrying pathogens in the port environment and this arises public health concerns, however, the presence of these viruses limited to the canal port during the winter can greatly reduce the risk to human health. Regarding NNV, the accumulation and release of viable virus by mussels, could represent a viral source for susceptible finfish. These findings reflect the different epidemiological features of these infections and indicate the importance to choose the correct indicator to monitor viral contaminations. SIGNIFICANCE AND IMPACT OF THE STUDY The high frequency of viral contamination pointed out in the study stresses the imperative to monitor the viral presence in all coastal habitats where the high natural value meets several recreational and commercial activities such as the Ravenna's harbour area. Particularly, this study could represent a novel starting point for the development of a more structured bio-monitoring program, in order to ensure improved environmental management and safety of coastal areas.
Collapse
Affiliation(s)
- F Errani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Cesenatico, Italy
| | - M Ponti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA) & Centro Interdipartimentale di Ricerca per le Scienze Ambientali (CIRSA), Alma Mater Studiorum, University of Bologna, Ravenna, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Roma, Italy
| | - E Volpe
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Cesenatico, Italy
| | - S Ciulli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Cesenatico, Italy
| |
Collapse
|
7
|
Sarmento SK, Guerra CR, Malta FC, Coutinho R, Miagostovich MP, Fumian TM. Human norovirus detection in bivalve shellfish in Brazil and evaluation of viral infectivity using PMA treatment. MARINE POLLUTION BULLETIN 2020; 157:111315. [PMID: 32658680 DOI: 10.1016/j.marpolbul.2020.111315] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Noroviruses are the most common cause of gastroenteritis outbreaks in humans and bivalve shellfish consumption is a recognized route of infection. Our aim was to detect and characterize norovirus in bivalves from a coastal city of Brazil. Nucleic acid was extracted from the bivalve's digestive tissue concentrates using magnetic beads. From March 2018 to June 2019, 77 samples were screened using quantitative RT-PCR. Noroviruses were detected in 41.5%, with the GII being the most prevalent (37.7%). The highest viral load was 3.5 × 106 and 2.5 × 105 GC/g in oysters and mussels, respectively. PMA-treatment demonstrated that a large fraction of the detected norovirus corresponded to non-infectious particles. Genetic characterization showed the circulation of the GII.2[P16] and GII.4[P4] genotypes. Norovirus detection in bivalves reflects the anthropogenic impact on marine environment and serves as an early warning for the food-borne disease outbreaks resulting from the consumption of contaminated molluscs.
Collapse
Affiliation(s)
- Sylvia Kahwage Sarmento
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ CEP 21045-900, Brazil
| | - Caroline Rezende Guerra
- Laboratório de Genética Marinha, Departamento de Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM), Arraial do Cabo , RJ CEP 28930-000, Brazil
| | - Fábio Correia Malta
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ CEP 21045-900, Brazil
| | - Ricardo Coutinho
- Laboratório de Genética Marinha, Departamento de Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM), Arraial do Cabo , RJ CEP 28930-000, Brazil
| | - Marize Pereira Miagostovich
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ CEP 21045-900, Brazil
| | - Tulio Machado Fumian
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ CEP 21045-900, Brazil.
| |
Collapse
|
8
|
Suffredini E, Le Q, Di Pasquale S, Pham T, Vicenza T, Losardo M, To K, De Medici D. Occurrence and molecular characterization of enteric viruses in bivalve shellfish marketed in Vietnam. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Razafimahefa RM, Ludwig-Begall LF, Thiry E. Cockles and mussels, alive, alive, oh-The role of bivalve molluscs as transmission vehicles for human norovirus infections. Transbound Emerg Dis 2019; 67 Suppl 2:9-25. [PMID: 31232515 DOI: 10.1111/tbed.13165] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/04/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
Abstract
Human noroviruses are recognized as the leading worldwide cause of sporadic and epidemic viral gastroenteritis, causing morbidity and mortality in impoverished developing countries and engendering enormous economic losses in developed countries. Transmitted faecal-orally, either via person-to-person contact, or by consumption of contaminated foods or water, norovirus outbreaks are often reported in institutional settings or in the context of communal dining. Bivalve molluscs, which accumulate noroviruses via filter feeding and are often eaten raw or insufficiently cooked, are a common food vehicle implicated in gastroenteritis outbreaks. The involvement of bivalve molluscs in norovirus outbreaks and epidemiology over the past two decades are reviewed. The authors describe how their physiology of filter feeding can render them concentrated vehicles of norovirus contamination in polluted environments and how high viral loads persist in molluscs even after application of depuration practices and typical food preparation steps. The global prevalence of noroviruses in bivalve molluscs as detected by different monitoring efforts is determined and the various methods currently utilized for norovirus extraction and detection from bivalve matrices described. An overview of gastroenteritis outbreaks affirmatively associated with norovirus-contaminated bivalve molluscs as reported in the past 18 years is also provided. Strategies for risk reduction in shellfish contamination and subsequent human infection are discussed.
Collapse
Affiliation(s)
- Ravo M Razafimahefa
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Louisa F Ludwig-Begall
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| |
Collapse
|
10
|
Guix S, Pintó RM, Bosch A. Final Consumer Options to Control and Prevent Foodborne Norovirus Infections. Viruses 2019; 11:E333. [PMID: 30970561 PMCID: PMC6520945 DOI: 10.3390/v11040333] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/28/2022] Open
Abstract
Norovirus (NoV) causes about one-fifth of all cases of foodborne diseases and is a foremost cause of domestically acquired foodborne acute gastroenteritis and outbreaks. NoV infections are often associated with the consumption of contaminated fresh and ready-to-eat produce, fresh and frozen berries, raw/undercooked bivalve mollusks and products which become contaminated during handling. Despite many industrial efforts to control and prevent NoV contamination of foods, the prevalence of NoV in high-risk foodstuffs at retail is still significant. Although certain consumer behaviors may even increase the risk of virus transmission, interventions aiming at changing/implementing consumer habits may be considered as opportunities for risk mitigation. This review aims at providing an update on the progress made in characterizing the effect that consumer habits, which are most critical to prevent NoV transmission (food choice and hygiene, disinfection and cooking during food preparation), may have on reducing the risk of NoV infection. A better understanding of the options for NoV control and prevention may be translated into innovative educational, social or even technological tools targeting consumers with the objective of mitigating the risk of NoV transmission.
Collapse
Affiliation(s)
- Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Nutrition and Food Safety (INSA·UB), University of Barcelona, 08291 Santa Coloma de Gramenet, Spain.
| | - Rosa M Pintó
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Nutrition and Food Safety (INSA·UB), University of Barcelona, 08291 Santa Coloma de Gramenet, Spain.
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Nutrition and Food Safety (INSA·UB), University of Barcelona, 08291 Santa Coloma de Gramenet, Spain.
| |
Collapse
|
11
|
Quang Le H, Suffredini E, Tien Pham D, Kim To A, De Medici D. Development of a method for direct extraction of viral RNA from bivalve molluscs. Lett Appl Microbiol 2018; 67:426-434. [DOI: 10.1111/lam.13065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 01/26/2023]
Affiliation(s)
- H. Quang Le
- School of Biotechnology and Food Technology; Hanoi University of Science and Technology; Hanoi Vietnam
| | - E. Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health; Istituto Superiore di Sanità; Rome Italy
| | - D. Tien Pham
- School of Biotechnology and Food Technology; Hanoi University of Science and Technology; Hanoi Vietnam
| | - A. Kim To
- School of Biotechnology and Food Technology; Hanoi University of Science and Technology; Hanoi Vietnam
| | - D. De Medici
- Department of Food Safety, Nutrition and Veterinary Public Health; Istituto Superiore di Sanità; Rome Italy
| |
Collapse
|
12
|
Microcosm environment models for studying the stability of adenovirus and murine norovirus in water and sediment. Int J Hyg Environ Health 2018; 221:734-741. [DOI: 10.1016/j.ijheh.2018.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/19/2018] [Accepted: 04/09/2018] [Indexed: 11/15/2022]
|
13
|
Romalde JL, Rivadulla E, Varela MF, Barja JL. An overview of 20 years of studies on the prevalence of human enteric viruses in shellfish from Galicia, Spain. J Appl Microbiol 2017; 124:943-957. [PMID: 29094428 DOI: 10.1111/jam.13614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
Galicia (NW Spain) has 1490 km of coastline, and its particular topography, characterized by the presence of fiord-like inlets, called rías, with an important primary production, makes this region very favourable for shellfish growth and culture. In fact, Galicia is one of the most important mussel producers in the world. Due to its proximity to cities and villages and the anthropogenic activities in these estuaries, and despite the routine official controls on the bivalve harvesting areas, contamination with material of faecal origin is sometimes possible but, current regulation based on Escherichia coli as an indicator micro-organism has been revealed as useful for bacterial contaminants, this is not the case for enteric viruses. The aim of this review is to offer a picture on the situation of different harvesting areas in Galicia, from a virological standpoint. A recompilation of results obtained in the last 20 years is presented, including not only the data for the well-known agents norovirus (NoV) and hepatitis A virus (HAV) but also data on emerging viral hazards, including sapovirus (SaV), hepatitis E virus (HEV) and aichivirus (AiV). Epidemiological differences related to diverse characteristics of the harvesting areas, viral genotype distribution or epidemiological links between environmental and clinical strains will also be presented and discussed. The presentation of these historical data all together could be useful for future decisions by competent authorities for a better management of shellfish growing areas.
Collapse
Affiliation(s)
- J L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - E Rivadulla
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - M F Varela
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - J L Barja
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
14
|
Suffredini E, Proroga YTR, Di Pasquale S, Di Maro O, Losardo M, Cozzi L, Capuano F, De Medici D. Occurrence and Trend of Hepatitis A Virus in Bivalve Molluscs Production Areas Following a Contamination Event. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:423-433. [PMID: 28452010 DOI: 10.1007/s12560-017-9302-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to assess the trend of hepatitis A virus (HAV) in a coastal zone impacted by a contamination event, providing data for the development of management strategies. A total of 352 samples, including four bivalve mollusc species (Mytilus galloprovincialis, Solen vagina, Venus gallina and Donax trunculus), were taken over a period of 6 months from 27 production areas of the coast and analysis were performed according to ISO/TS 15216-1:2013. HAV presence was detected in 77 samples from 11 production areas and all positive results were related to samples collected in the first 3 months of the surveillance, during which HAV prevalence was 39.9% and values as high as 5096 genome copies/g were detected. A progressive reduction of viral contamination was evident during the first trimester of the monitoring, with prevalence decreasing from 78.8% in the first month, to 37.8% in the second and 3.9% in the third and quantitative levels reduced from an average value of 672 genome copies/g to 255 genome copies/g over a period of 4 weeks (virus half-life: 21.5 days). A regression analysis showed that, during the decreasing phase of the contamination, the data fitted a reciprocal quadratic model (Ra2 = 0.921) and, based on the model, a residual presence of HAV could be estimated after negativization of the production areas. The statistical analysis of the results per shellfish species and per production area showed that there were limited differences in contamination prevalence and levels among diverse bivalve species, while a statistically significant difference was present in quantitative levels of one production area. These data could be useful for the development of both risk assessment models and code of practice for the management of viral contamination in primary production.
Collapse
Affiliation(s)
- Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Yolande Thérèse Rose Proroga
- Department of Food Inspection, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, Portici, 80055, Naples, Italy
| | - Simona Di Pasquale
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Orlandina Di Maro
- Department of Food Inspection, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, Portici, 80055, Naples, Italy
| | - Maria Losardo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Loredana Cozzi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Federico Capuano
- Department of Food Inspection, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, Portici, 80055, Naples, Italy
| | - Dario De Medici
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
15
|
Ilic N, Velebit B, Teodorovic V, Djordjevic V, Karabasil N, Vasilev D, Djuric S, Adzic B, Dimitrijevic M. Influence of Environmental Conditions on Norovirus Presence in Mussels Harvested in Montenegro. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:406-414. [PMID: 28439785 DOI: 10.1007/s12560-017-9298-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/17/2017] [Indexed: 06/07/2023]
Abstract
This study comprises the first systematic survey of the occurrence of Norovirus in Mediterranean mussels from harvesting areas in Montenegro coast of Adriatic Sea. Mussels may accumulate contaminants of public health concern, including pathogenic bacteria and viruses. Microbiological monitoring of harvesting areas is based on count of Escherichia coli in bivalve molluscs in the European Union. It is assumed that E. coli does not reflect contamination with enteric viruses. A structured field study was undertaken at six locations in Bay of Kotor, Montenegro, in order to investigate plausible influence of environmental factors on the variability of E. coli and norovirus (NoV). From July 2015 to July 2016, a total of 72 samples of mussels were collected in coastal harvesting areas of the Montenegro. The samples were screened for NoV of genogroups GI and GII using reverse transcription-qPCR (RT-qPCR). There were 43% NoV positive samples with higher presence of genogroup GII (74.2%). With regard to influence of environmental conditions on Norovirus presence, we have proved seasonal pattern of virus occurrence i.e., the largest number of positive samples was noticed during winter, while other physico-chemical factors were not of great significance. It was found that count of E. coli did not correlate with Norovirus prevalence. From the aspect of food safety, an upgrade of monitoring plans could lead to obtaining safer products.
Collapse
Affiliation(s)
- Nevena Ilic
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000, Belgrade, Serbia.
| | - Branko Velebit
- Institute of Meat Hygiene and Technology, Kacanskog 13, 11040, Belgrade, Serbia
| | - Vlado Teodorovic
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000, Belgrade, Serbia
| | - Vesna Djordjevic
- Institute of Meat Hygiene and Technology, Kacanskog 13, 11040, Belgrade, Serbia
| | - Nedjeljko Karabasil
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000, Belgrade, Serbia
| | - Dragan Vasilev
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000, Belgrade, Serbia
| | - Spomenka Djuric
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000, Belgrade, Serbia
| | - Bojan Adzic
- Specialist Veterinary Laboratory, Bulevar Dzordza Vasingtona bb, 81000, Podgorica, Montenegro
| | - Mirjana Dimitrijevic
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000, Belgrade, Serbia
| |
Collapse
|
16
|
Campos CJA, Goblick G, Lee R, Wittamore K, Lees DN. Determining the zone of impact of norovirus contamination in shellfish production areas through microbiological monitoring and hydrographic analysis. WATER RESEARCH 2017; 124:556-565. [PMID: 28810227 DOI: 10.1016/j.watres.2017.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/14/2017] [Accepted: 08/08/2017] [Indexed: 05/09/2023]
Abstract
Norovirus (NoV) contamination of filter feeding bivalve shellfish is a well-recognised human health threat when shellfish are grown in sewage polluted waters. To date, the identification of high risk zones around sewage discharges in shellfish production areas (SPAs) has not been based on NoV data. This study utilised molecular methods for NoV analysis, combined with hydrographic studies, to determine the relationship between NoV concentrations in shellfish and sewage effluent dilution. Cages with mussels and oysters were placed at different distances downstream of sewage discharges in two coastal sites in England. The shellfish were tested for concentrations of NoV (genogroups I and II) and E. coli. Drogue tracking and dye tracing studies were conducted to quantify the dispersion and dilution of sewage effluent in the SPAs. Significant negative associations were found between both total concentrations of NoV (GI + GII) and E. coli and sewage effluent dilution in the SPAs. The total NoV concentrations predicted by the model at 300:1, 1000:1 and 5000:1 ratios of estuarine water to sewage effluent were 1200; 600; and 200 copies/g, respectively. The estimated area of NoV contamination varied according with local pollution source impacts and hydrographic characteristics. The results help to inform the derivation of sewage discharge buffer zones as a control measure for mitigating risk from human NoV contamination in SPAs.
Collapse
Affiliation(s)
- Carlos J A Campos
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth DT48UB, UK.
| | - Gregory Goblick
- US Food and Drug Administration, 5100 Paint Branch Parkway, College Park, MD 20740-3835, USA
| | - Ron Lee
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth DT48UB, UK; MicroSeaSafe, 33 Franklin Road, Weymouth DT4 0JW, UK
| | - Ken Wittamore
- Triskel Marine Ltd., 12 St Fimbarrus Road, Fowey PL23 1JJ, UK
| | - David N Lees
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth DT48UB, UK
| |
Collapse
|
17
|
Risky behaviours from the production to the consumption of bivalve molluscs: Involving stakeholders in the prioritization process based on consensus methods. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
La Bella G, Martella V, Basanisi MG, Nobili G, Terio V, La Salandra G. Food-Borne Viruses in Shellfish: Investigation on Norovirus and HAV Presence in Apulia (SE Italy). FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:179-186. [PMID: 27943110 PMCID: PMC5429374 DOI: 10.1007/s12560-016-9273-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/28/2016] [Indexed: 05/18/2023]
Abstract
Shellfish are an important vehicle for transmission of food-borne pathogens including norovirus (NoV) and hepatitis A virus (HAV). The risks related with consumption of shellfish are greater if these products are eaten raw or slightly cooked. As molluscs are filter-feeding organisms, they are able to concentrate pathogens dispersed in the water. Data on shellfish viral contamination are therefore useful to obtain a background information on the presence of contamination in the environment, chiefly in shellfish production areas and to generate a picture of the epidemiology of viral pathogens in local populations. From January 2013 to July 2015, 253 samples of bivalve molluscs collected in harvesting areas from a large coastal tract (860 km) of Southern Italy were screened for HAV and NoV of genogroups GI and GII, using real-time reverse transcription qualitative PCR. The RNA of HAV was not detected in any of the analyzed samples. In contrast, the RNA of NoV was identified in 14.2% of the samples with a higher prevalence of NoVs of genogroup GII (12.2%) than genogroup GI (1.6%). Upon sequence analysis of a short diagnostic region located in capsid region, the NoV strains were characterized as GII.2, GII.4 Sydney 2012, GII.6, GII.13, GI.4, and GI.6, all which were circulating in local populations in the same time span. These data confirm that consumption of mussels can expose consumers to relevant risks of infection. Also, matching between the NoV genotypes circulating in local population and detected in molluscs confirms the diffusion in the environment of NoVs.
Collapse
Affiliation(s)
- G La Bella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - V Martella
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari "Aldo Moro", Valenzano (BA), Italy
| | - M G Basanisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - G Nobili
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - V Terio
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari "Aldo Moro", Valenzano (BA), Italy
| | - G La Salandra
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy.
| |
Collapse
|
19
|
Zhou Z, Tian Z, Li Q, Tian P, Wu Q, Wang D, Shi X. In Situ Capture RT-qPCR: A New Simple and Sensitive Method to Detect Human Norovirus in Oysters. Front Microbiol 2017; 8:554. [PMID: 28421051 PMCID: PMC5376551 DOI: 10.3389/fmicb.2017.00554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/16/2017] [Indexed: 11/13/2022] Open
Abstract
Human noroviruses (HuNoVs) are the major cause worldwide for non-bacterial acute gastroenteritis. In this study, we applied a novel viral receptor mediated in situ capture RT-qPCR (ISC-RT-qPCR) to detect HuNoVs in oysters and compared with the traditional RT-qPCR method. Ten HuNoVs RT-PCR positive and 5 negative clinical samples from gastroenteritis patients were used to compare specificity and sensitivity of ISC-RT-qPCR against that of the RT-qPCR assay. ISC-RT-qPCR had at a one-log and a two-log increase in sensitivity over that of the RT-qPCR assay for genotype I (GI) and GII, respectively. Distributions of HuNoVs in oyster tissues were investigated in artificially inoculated oysters. GI HuNoVs could be detected in all tissues in inoculated oysters by both ISC-RT-qPCR and RT-qPCR. GII HuNoVs could only be detected in gills and digestive glands by both methods. The number of viral genomic copies (vgc) measured by ISC-RT-qPCR was comparable with RT-qPCR in the detection of GI and GII HuNoVs in inoculated oysters. Thirty-six oyster samples from local market were assayed for HuNoVs by both assays. More HuNoVs could be detected by ISC-RT-qPCR in retail oysters. The detection rates of GI HuNoVs in gills, digestive glands, and residual tissues were 33.3, 25.0, and 19.4% by ISC-RT-qPCR; and 5.6, 11.1, and 11.1% by RT-qPCR, respectively. The detection rates of GII HuNoVs in gills were 2.8% by ISC-RT-qPCR; no GII HuNoV was detected in these oysters by RT-qPCR. Overall, all results demonstrated that ISC-RT-qPCR is a promising method for detecting HuNoVs in oyster samples.
Collapse
Affiliation(s)
- Zhenhuan Zhou
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Zhengan Tian
- Shanghai Entry-Exit Inspection and Quarantine Bureau of P.R.CShanghai, China
| | - Qianqian Li
- Department of Bioengineering, Shanghai Institute of TechnologyShanghai, China
| | - Peng Tian
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of AgricultureAlbany, CA, USA
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Dapeng Wang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
20
|
Kittigul L, Thamjaroen A, Chiawchan S, Chavalitshewinkoon-Petmitr P, Pombubpa K, Diraphat P. Prevalence and Molecular Genotyping of Noroviruses in Market Oysters, Mussels, and Cockles in Bangkok, Thailand. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:133-40. [PMID: 26872638 DOI: 10.1007/s12560-016-9228-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/29/2016] [Indexed: 05/06/2023]
Abstract
Noroviruses are the most common cause of acute gastroenteritis associated with bivalve shellfish consumption. This study aimed to detect and characterize noroviruses in three bivalve shellfish species: oysters (Saccostrea forskali), cockles (Anadara nodifera), and mussels (Perna viridis). The virus concentration procedure (adsorption-twice elution-extraction) and a molecular method were employed to identify noroviruses in shellfish. RT-nested PCR was able to detect known norovirus GII.4 of 8.8 × 10(-2) genome copies/g of digestive tissues from oyster and cockle concentrates, whereas in mussel concentrates, the positive result was seen at 8.8 × 10(2) copies/g of digestive tissues. From August 2011 to July 2012, a total of 300 shellfish samples, including each of 100 samples from oysters, cockles, and mussels were collected and tested for noroviruses. Norovirus RNA was detected in 12.3 % of shellfish samples. Of the noroviruses, 7.7 % were of the genogroup (G) I, 2.6 % GII, and 2.0 % were mixed GI and GII. The detection rate of norovirus GI was 2.1 times higher than GII. With regards to the different shellfish species, 17 % of the oyster samples were positive, while 14.0 and 6.0 % were positive for noroviruses found in mussels and cockles, respectively. Norovirus contamination in the shellfish occurred throughout the year with the highest peak in September. Seventeen norovirus-positive PCR products were characterized upon a partial sequence analysis of the capsid gene. Based on phylogenetic analysis, five different genotypes of norovirus GI (GI.2, GI.3, GI.4, GI.5, and GI.9) and four different genotypes of GII (GII.1, GII.2, GII.3, and GII.4) were identified. These findings indicate the prevalence and distribution of noroviruses in three shellfish species. The high prevalence of noroviruses in oysters contributes to the optimization of monitoring plans to improve the preventive strategies of acute gastroenteritis.
Collapse
Affiliation(s)
- Leera Kittigul
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand.
| | - Anyarat Thamjaroen
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| | - Suwat Chiawchan
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| | | | - Kannika Pombubpa
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| | - Pornphan Diraphat
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| |
Collapse
|
21
|
Caruso G, La Ferla R, Azzaro M, Zoppini A, Marino G, Petochi T, Corinaldesi C, Leonardi M, Zaccone R, Fonda Umani S, Caroppo C, Monticelli L, Azzaro F, Decembrini F, Maimone G, Cavallo RA, Stabili L, Hristova Todorova N, K. Karamfilov V, Rastelli E, Cappello S, Acquaviva MI, Narracci M, De Angelis R, Del Negro P, Latini M, Danovaro R. Microbial assemblages for environmental quality assessment: Knowledge, gaps and usefulness in the European Marine Strategy Framework Directive. Crit Rev Microbiol 2015; 42:883-904. [DOI: 10.3109/1040841x.2015.1087380] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Garcia LAT, Nascimento MA, Barardi CRM. Effect of UV light on the inactivation of recombinant human adenovirus and murine norovirus seeded in seawater in shellfish depuration tanks. FOOD AND ENVIRONMENTAL VIROLOGY 2015; 7:67-75. [PMID: 25528135 DOI: 10.1007/s12560-014-9177-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/15/2014] [Indexed: 05/04/2023]
Abstract
Shellfish depuration is a process that aims to eliminate pathogens from mollusk tissues. Seawater disinfection during the depuration process is important and ultraviolet (UV) light treatment is the most used method worldwide. Viral models are usually employed as surrogates of fastidious viruses in viability studies. The aim of this study was to employ methods based on green fluorescent protein (GFP) fluorescence and plaque forming units to detect, respectively, recombinant adenovirus (rAdV-GFP) and murine norovirus (MNV) artificially seeded in environmental matrices. These assays were applied to assess the inactivation of rAdV-GFP and MNV in seawater in recirculation shellfish depuration tanks with and without UV light treatment. Kinetics of rAdV GFP-expression was previously measured by UV-spectrophotometer. Flow cytometry (FC), fluorescence microscopy (FM), and plaque assay were used to determine virus titer and detection limits. The influence of the environmental matrix on the performance of the methods was prior determined using either drinking water or filtered seawater seeded with rAdV-GFP. Disinfection of seeded seawater was evaluated with and without UV treatment. The time of 24-h post-infection was established as ideal for fluorescence detection on rAdV-GFP infected cells. FC showed lower sensitivity, when compared to FM, which was similar to plaque assay. Seawater disinfection on depuration tanks was promising and rAdV-GFP declined 99.99 % after 24 and 48 h with and without UV treatment, respectively. MNV was completely inactivated after 24 h in both treatments. As conclusion, the depuration tanks were effective to inactivate rAdV-GFP and MNV and the UV disinfection treatment accelerated the process.
Collapse
Affiliation(s)
- Lucas A T Garcia
- Laboratório de Virologia Aplicada, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | | | | |
Collapse
|
23
|
Detection and quantification of hepatitis A virus and norovirus in Spanish authorized shellfish harvesting areas. Int J Food Microbiol 2014; 193:43-50. [PMID: 25462922 DOI: 10.1016/j.ijfoodmicro.2014.10.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/17/2014] [Accepted: 10/04/2014] [Indexed: 01/11/2023]
Abstract
An 18-month survey was conducted in ten class "B" harvesting areas from two Galician Rias (NW of Spain), the most important bivalve production area in Europe, to determine the prevalence of hepatitis A virus (HAV) and human norovirus (NoV), including genogroups I (GI) and II (GII). Quantification was performed by reverse transcription real-time PCR (RT-qPCR), according to the recently developed standard method ISO/TS 15216-1:2013. Four bivalve species were studied, including wild and cultured mussels (Mytilus galloprovincialis), clams (Venerupis philippinarum and Venerupis decussata) and cockles (Cerastoderma edule). Overall, 55.4% of samples were contaminated by at least one of the studied viruses, being detected the simultaneous presence of two or three viruses in 11.3% of the cases. NoV GI was the most prevalent virus (32.1%), followed by NoV GII (25.6%) and HAV (10.1%). Cultured mussels showed the highest percentage of positive samples (61.4%), followed by cockles (59.4%), wild mussels (54.3%) and clams (38.7%). Viral contamination levels for most of the positive samples ranged from 10(2) to 10(3) RNA copies/g of digestive tissue (RNAc/g DT). The presence of viral contamination was statistically higher (P<0.0001) in warm months (April to September) than in cold months (October to March). The data presented here may contribute to the development of more representative sampling strategies, in monitoring and management of shellfish growing areas as well as being useful in a future scenario in which viral critical values are adopted in legislation.
Collapse
|
24
|
Bigoraj E, Kwit E, Chrobocińska M, Rzeżutka A. Occurrence of norovirus and hepatitis A virus in wild mussels collected from the Baltic Sea. FOOD AND ENVIRONMENTAL VIROLOGY 2014; 6:207-212. [PMID: 24906970 DOI: 10.1007/s12560-014-9153-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
The aim of the study was to define the occurrence of human noroviruses of genogroup I and II (NoV GI and NoV GII) and hepatitis A virus (HAV) in the Baltic Sea mussels. The shellfish samples were taken at the sampling sites located on the Polish coast. In total, 120 shellfish were tested as pooled samples using RT-PCR and hybridisation with virus specific probes. NoV GI was detected in 22 (18.3%), NoV GII in 28 (23.3%), and HAV in 9 (7.5%) of the shellfish. The nucleotide sequence analysis of the detected NoV GII strains showed a 97.3-99.3% similarity to GII.4 virus strain. This is the first report describing the NoV and HAV occurrence in wild Baltic mussels and their possible role as bioindicators of seawater contamination with human enteric viruses.
Collapse
Affiliation(s)
- Ewelina Bigoraj
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| | | | | | | |
Collapse
|
25
|
Suffredini E, Lanni L, Arcangeli G, Pepe T, Mazzette R, Ciccaglioni G, Croci L. Qualitative and quantitative assessment of viral contamination in bivalve molluscs harvested in Italy. Int J Food Microbiol 2014; 184:21-6. [DOI: 10.1016/j.ijfoodmicro.2014.02.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/15/2014] [Accepted: 02/27/2014] [Indexed: 11/27/2022]
|
26
|
Grodzki M, Schaeffer J, Piquet JC, Le Saux JC, Chevé J, Ollivier J, Le Pendu J, Le Guyader FS. Bioaccumulation efficiency, tissue distribution, and environmental occurrence of hepatitis E virus in bivalve shellfish from France. Appl Environ Microbiol 2014; 80:4269-76. [PMID: 24795382 PMCID: PMC4068666 DOI: 10.1128/aem.00978-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/29/2014] [Indexed: 01/16/2023] Open
Abstract
Hepatitis E virus (HEV), an enteric pathogen of both humans and animals, is excreted by infected individuals and is therefore present in wastewaters and coastal waters. As bivalve molluscan shellfish are known to concentrate viral particles during the process of filter feeding, they may accumulate this virus. The bioaccumulation efficiencies of oysters (Crassostrea gigas), flat oysters (Ostrea edulis), mussels (Mytilus edulis), and clams (Ruditapes philippinarum) were compared at different time points during the year. Tissue distribution analysis showed that most of the viruses were concentrated in the digestive tissues of the four species. Mussels and clams were found to be more sensitive to sporadic contamination events, as demonstrated by rapid bioaccumulation in less than 1 h compared to species of oysters. For oysters, concentrations increased during the 24-h bioaccumulation period. Additionally, to evaluate environmental occurrence of HEV in shellfish, an environmental investigation was undertaken at sites potentially impacted by pigs, wild boars, and human waste. Of the 286 samples collected, none were contaminated with hepatitis E virus, despite evidence that this virus is circulating in some French areas. It is possible that the number of hepatitis E viral particles discharged into the environment is too low to detect or that the virus may have a very short period of persistence in pig manure and human waste.
Collapse
Affiliation(s)
- Marco Grodzki
- Ifremer, Laboratoire de Microbiologie, LSEM-SG2M, Nantes, France
| | - Julien Schaeffer
- Ifremer, Laboratoire de Microbiologie, LSEM-SG2M, Nantes, France
| | | | | | | | - Joanna Ollivier
- Ifremer, Laboratoire de Microbiologie, LSEM-SG2M, Nantes, France
| | - Jacques Le Pendu
- Inserm, U892, CNRS, UMR6299, Université de Nantes, Nantes, France
| | | |
Collapse
|
27
|
First norovirus outbreaks associated with consumption of green seaweed (Enteromorpha spp.) in South Korea. Epidemiol Infect 2014; 143:515-21. [PMID: 24866366 DOI: 10.1017/s0950268814001332] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In February 2012, an outbreak of gastroenteritis was reported in school A; a successive outbreak was reported at school B. A retrospective cohort study conducted in school A showed that seasoned green seaweed with radishes (relative risk 7·9, 95% confidence interval 1·1-56·2) was significantly associated with illness. Similarly, a case-control study of students at school B showed that cases were 5·1 (95% confidence interval 1·1-24·8) times more likely to have eaten seasoned green seaweed with pears. Multiple norovirus genotypes were detected in samples from students in schools A and B. Norovirus GII.6 isolated from schools A and B were phylogenetically indistinguishable. Green seaweed was supplied by company X, and norovirus GII.4 was isolated from samples of green seaweed. Green seaweed was assumed to be linked to these outbreaks. To our knowledge, this is the first reported norovirus outbreak associated with green seaweed.
Collapse
|
28
|
Toffan A, Brutti A, De Pasquale A, Cappellozza E, Pascoli F, Cigarini M, Di Rocco M, Terregino C, Arcangeli G. The effectiveness of domestic cook on inactivation of murine norovirus in experimentally infected Manila clams (Ruditapes philippinarum
). J Appl Microbiol 2013; 116:191-8. [DOI: 10.1111/jam.12346] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 11/27/2022]
Affiliation(s)
- A. Toffan
- Fish Virology Department; Istituto Zooprofilattico Sperimentale delle Venezie; Legnaro Padova Italy
| | - A. Brutti
- Stazione Sperimentale per l'Industria delle Conserve Alimentari in Parma; Parma Italy
| | - A. De Pasquale
- National Reference Centre for Pathology of fish, crustacean and mollusc disease; Istituto Zooprofilattico Sperimentale delle Venezie; Adria Rovigo Italy
| | - E. Cappellozza
- Fish Virology Department; Istituto Zooprofilattico Sperimentale delle Venezie; Legnaro Padova Italy
| | - F. Pascoli
- Fish Virology Department; Istituto Zooprofilattico Sperimentale delle Venezie; Legnaro Padova Italy
| | - M. Cigarini
- Stazione Sperimentale per l'Industria delle Conserve Alimentari in Parma; Parma Italy
| | - M. Di Rocco
- Stazione Sperimentale per l'Industria delle Conserve Alimentari in Parma; Parma Italy
| | - C. Terregino
- Fish Virology Department; Istituto Zooprofilattico Sperimentale delle Venezie; Legnaro Padova Italy
| | - G. Arcangeli
- National Reference Centre for Pathology of fish, crustacean and mollusc disease; Istituto Zooprofilattico Sperimentale delle Venezie; Adria Rovigo Italy
| |
Collapse
|
29
|
Norovirus contamination on French marketed oysters. Int J Food Microbiol 2013; 166:244-8. [PMID: 23973835 DOI: 10.1016/j.ijfoodmicro.2013.07.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/13/2013] [Accepted: 07/24/2013] [Indexed: 01/07/2023]
Abstract
Contaminated shellfish have been implicated in gastroenteritis outbreaks in different countries. As no regulation has been set up yet regarding viral contamination of food, very few data are available on the prevalence of contaminated products on the market. This study presents data obtained from oysters collected on the French market in one producing area over a 16 month period of time. Noroviruses were detected in 9% of samples with a seasonal impact and influence of climatic events. Contamination levels were low and, surprisingly, oysters sampled directly from the producer were found to have less contamination than oysters from supermarkets.
Collapse
|
30
|
Pavoni E, Consoli M, Suffredini E, Arcangeli G, Serracca L, Battistini R, Rossini I, Croci L, Losio MN. Noroviruses in Seafood: A 9-Year Monitoring in Italy. Foodborne Pathog Dis 2013; 10:533-9. [DOI: 10.1089/fpd.2012.1399] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Enrico Pavoni
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Marta Consoli
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Elisabetta Suffredini
- Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità, Rome, Italy
| | | | - Laura Serracca
- Istituto Zooprofilattico Sperimentale del Piemonte, della Liguria, e della Valle d'Aosta, La Spezia, Italy
| | - Roberta Battistini
- Istituto Zooprofilattico Sperimentale del Piemonte, della Liguria, e della Valle d'Aosta, La Spezia, Italy
| | - Irene Rossini
- Istituto Zooprofilattico Sperimentale del Piemonte, della Liguria, e della Valle d'Aosta, La Spezia, Italy
| | - Luciana Croci
- Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità, Rome, Italy
| | - Marina Nadia Losio
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| |
Collapse
|
31
|
Manso CF, Romalde JL. Detection and characterization of hepatitis A virus and norovirus in mussels from Galicia (NW Spain). FOOD AND ENVIRONMENTAL VIROLOGY 2013; 5:110-118. [PMID: 23471578 DOI: 10.1007/s12560-013-9108-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/26/2013] [Indexed: 06/01/2023]
Abstract
Shellfish are recognized as a potential vehicle of viral disease and despite the control measures for shellfish safety there is periodic emergence of viral outbreaks associated with shellfish consumption. In this study a total of 81 mussel samples from Ría do Burgo, A Coruña (NW Spain) were analysed. Samples were collected in seven different harvesting areas with the aim to establish a correlation between the prevalence of norovirus (NoV) and hepatitis A virus (HAV) in mussel samples and the water quality. In addition, the genogroup of the detected HAV and NoV strains was also determined. The HAV presence was detected in 18.5 % of the samples. Contamination levels for this virus ranged from 1.1 × 10² to 4.1 × 10⁶ RNA copies/g digestive tissue. NoV were detected in 49.4 % of the cases reaching contamination levels from 5.9 × 10³ to 1.6 × 10⁹ RNA copies/g digestive tissue for NoV GI and from 6.1 × 10³ to 5.4 × 10⁶ RNA copies/g digestive tissue for NoV GII. The χ²-test showed no statistical correlation between the number of positive samples and the classification of molluscan harvesting area based on the E. coli number. All the detected HAV strains belong to genogroup IB. NoV strains were assigned to genotype I.4, II.4 and II.6.
Collapse
Affiliation(s)
- Carmen F Manso
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | |
Collapse
|
32
|
Stals A, Van Coillie E, Uyttendaele M. Viral genes everywhere: public health implications of PCR-based testing of foods. Curr Opin Virol 2013; 3:69-73. [DOI: 10.1016/j.coviro.2012.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 10/31/2012] [Accepted: 11/02/2012] [Indexed: 11/24/2022]
|