1
|
King L, Xia L, Chen J, Li W, Wang Q, Huang Y, Wang P, Liang X, Li Y, Chen L, Shan Z, Peng X, Liu L. Exposure to perchlorate and cardiovascular disease in China: A community-based cross-sectional study and benchmark dose estimation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125429. [PMID: 39617200 DOI: 10.1016/j.envpol.2024.125429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/22/2024] [Accepted: 11/28/2024] [Indexed: 12/08/2024]
Abstract
The association between exposure to perchlorate, which inhibits thyroidal iodine uptake, and cardiovascular disease (CVD) is unclear in China. Moreover, the point of departure (POD) for perchlorate based on observed adverse health effect in Chinese populations remains absent. A total of 2355 adults (mean age 50.4 years and 39.2% male) from four communities in Shenzhen were included in analyses. Spot urine specimens were collected to measure urinary perchlorate concentrations, which were applied to estimate daily intakes of perchlorate. Multivariable logistic regression model was applied to examine the association between perchlorate and CVD. The roles of cardiometabolic risk factors, including obesity, abdominal obesity, hypertension, diabetes, and hyperlipidemia, were evaluated with mediation analyses. We further employed Bayesian benchmark dose (BMD) modeling to derive the POD for risk assessment. Comparing extreme tertiles, subjects in the highest perchlorate tertile had a significantly elevated risk of prevalent CVD (OR: 2.16; 95% CI: 1.28, 3.65). Multivariable-adjusted ORs for hypertension, diabetes, and hyperlipidemia associated with per doubling in urinary perchlorate concentration were 1.11 (95% CI: 1.01, 1.21), 1.15 (95% CI: 1.02, 1.28), and 1.11 (95% CI: 1.01, 1.20), respectively. Hypertension, diabetes, and hyperlipidemia partially mediated the perchlorate-CVD association (mediated proportion ranged from 7.75% to 11.30%). Given a benchmark response of 5% and 10%, the model-averaged BMD lower bounds (BMDLs) of perchlorate exposure on CVD were 0.15 and 0.40 μg/kg-bw day, respectively. Our estimated POD for perchlorate was lower than those recommended by other groups. These findings call for stricter regulations on perchlorate contamination to promote cardiovascular health in China.
Collapse
Affiliation(s)
- Lei King
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Xia
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyi Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoling Liang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonggang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhilei Shan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Brown SC, Aitken WW, Lombard J, Parrish A, Dewald JR, Nardi MI, Mantero AMA, Metalonis SW, Szapocznik J. Longitudinal Impacts of High Versus Low Greenness on Cardiovascular Disease Conditions. J Am Heart Assoc 2024; 13:e029939. [PMID: 39344601 DOI: 10.1161/jaha.123.029939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/02/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Greenness-or vegetative presence-has been identified as a factor in chronic disease. The present study examines the longitudinal relationship between objective measures of greenness at the residential block level and incidence of 6 cardiovascular disease conditions. METHODS AND RESULTS Analyses examined the impact of consistently high versus consistently low "precision" greenness at the Census block level on the 5-year incidence of cardiovascular disease conditions, including acute myocardial infarction, atrial fibrillation, heart failure, ischemic heart disease, stroke/transient ischemic attack, and hypertension, among 229 034 US Medicare beneficiaries in Miami-Dade County, Florida, USA. Zero-inflated Poisson regression was used to model the odds of developing any new cardiovascular disease and number of new cardiovascular disease conditions based on greenness tertiles computed across 2011 and 2016 Normalized Difference Vegetation Index values, adjusting for individual age, sex, race, ethnicity, baseline cardiovascular disease conditions, neighborhood income, and walkability in 2011 and 2016. When compared with individuals consistently in the low greenness tertile in 2011 and 2016, those consistently in the high greenness tertile in 2011 and 2016 had a 9% lower odds of having any new cardiovascular conditions (odds ratio [OR], 0.91 [95% CI, 0.84-0.99]; P=0.021). CONCLUSIONS Over a 5-year period, consistently high greenness, when compared with consistently low greenness, was associated with lower odds of any new cardiovascular disease conditions. Identifying the role of greenness exposure in such a small geographic area, the Census block on which the older adult resides, allows for more precise, strategic decisions on where additional trees can be added-by selecting at-risk blocks rather than entire neighborhoods for tree-planting interventions.
Collapse
Affiliation(s)
- Scott C Brown
- Department of Public Health Sciences University of Miami Miller School of Medicine Miami FL
- University of Miami School of Architecture Coral Gables FL
| | - William W Aitken
- Department of Medicine University of Miami Miller School of Medicine Miami FL
| | - Joanna Lombard
- Department of Public Health Sciences University of Miami Miller School of Medicine Miami FL
- University of Miami School of Architecture Coral Gables FL
| | | | - Julius R Dewald
- Department of Public Health Sciences University of Miami Miller School of Medicine Miami FL
| | - Maria I Nardi
- Miami-Dade County Department of Parks Recreation and Open Spaces (MDPROS) Miami FL
| | - Alejandro M A Mantero
- Biostatistics Collaboration & Consulting Core University of Miami Miller School of Medicine Miami FL
| | - Sarah W Metalonis
- Biostatistics Collaboration & Consulting Core University of Miami Miller School of Medicine Miami FL
| | - José Szapocznik
- Department of Public Health Sciences University of Miami Miller School of Medicine Miami FL
- University of Miami School of Architecture Coral Gables FL
| |
Collapse
|
3
|
Münzel T, Hahad O, Lelieveld J, Aschner M, Nieuwenhuijsen MJ, Landrigan PJ, Daiber A. Soil and water pollution and cardiovascular disease. Nat Rev Cardiol 2024:10.1038/s41569-024-01068-0. [PMID: 39317838 DOI: 10.1038/s41569-024-01068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/26/2024]
Abstract
Healthy, uncontaminated soils and clean water support all life on Earth and are essential for human health. Chemical pollution of soil, water, air and food is a major environmental threat, leading to an estimated 9 million premature deaths worldwide. The Global Burden of Disease study estimated that pollution was responsible for 5.5 million deaths related to cardiovascular disease (CVD) in 2019. Robust evidence has linked multiple pollutants, including heavy metals, pesticides, dioxins and toxic synthetic chemicals, with increased risk of CVD, and some reports suggest an association between microplastic and nanoplastic particles and CVD. Pollutants in soil diminish its capacity to produce food, leading to crop impurities, malnutrition and disease, and they can seep into rivers, worsening water pollution. Deforestation, wildfires and climate change exacerbate pollution by triggering soil erosion and releasing sequestered pollutants into the air and water. Despite their varied chemical makeup, pollutants induce CVD through common pathophysiological mechanisms involving oxidative stress and inflammation. In this Review, we provide an overview of the relationship between soil and water pollution and human health and pathology, and discuss the prevalence of soil and water pollutants and how they contribute to adverse health effects, focusing on CVD.
Collapse
Affiliation(s)
- Thomas Münzel
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University Mainz, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Omar Hahad
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Philip J Landrigan
- Global Observatory on Planetary Health, Boston College, Boston, MA, USA
- Centre Scientifique de Monaco, Monaco, Monaco
| | - Andreas Daiber
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
4
|
Esposito E, Indolfi C, Bello I, Smimmo M, Vellecco V, Schettino A, Montanaro R, Morroni F, Sita G, Graziosi A, Panza E, Sorrentino R, d'Emmanuele di Villa Bianca R, Mitidieri E. The endocrine disruptor vinclozolin causes endothelial injury via eNOS/Nox4/IRE1α signaling. Eur J Pharmacol 2024; 977:176758. [PMID: 38901528 DOI: 10.1016/j.ejphar.2024.176758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Vinclozolin (VCZ) is a common dicarboximide fungicide used to protect crops from diseases. It is also an endocrine disruptor, and its effects on various organs have been described but its influence on vasculature has not yet been addressed. This study focuses on the potential mechanism of VCZ-induced vascular injury. The effect of VCZ on vascular function in terms of relaxing and contracting response was evaluated in mice aorta. A short exposure to VCZ affected the endothelial but not the smooth muscle component. Specifically, it caused a disruption of the eNOS/NO signaling. In line, a short exposure to VCZ in bovine aortic endothelial cells promoted eNOS uncoupling resulting in a reduction of NO bioavailability and eNOS dimer/monomer ratio, and in turn an increase of nitro-tyrosine levels and ROS formation. Prolonging the exposure to VCZ (3 and 6h) an up-regulation of Nox4, enzyme-generating ROS constitutively expressed in endothelial cells, and an increase in ROS and malondialdehyde content coupled with a reduction in NO levels were found. These events were strictly linked to endoplasmic reticulum stress as demonstrated by the phosphorylation of inositol-requiring transmembrane kinase endoribonuclease 1α (IRE1α), a stress sensor and its reversion by using a selective inhibitor. Collectively, these results demonstrated that VCZ provokes endothelial dysfunction by oxidative stress involving eNOS/Nox4/IRE1α axis. The rapid exposure affected the endothelial function promoting eNOS uncoupling while a post-transcriptional modification, involving Nox4/IRE1α signaling, occurred following prolonged exposure. Thus, exposure to VCZ could contribute to the onset and/or progression of cardiovascular diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Erika Esposito
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Chiara Indolfi
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy.
| | - Ivana Bello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Martina Smimmo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Valentina Vellecco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Anna Schettino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Rosangela Montanaro
- Department of Science, University of Basilicata, Macchia Romana Campus 10, Viale dell'Ateneo Lucano, 85100, Potenza, Italy.
| | - Fabiana Morroni
- Department of Pharmacy and BioTechnology-FaBiT, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126, Bologna, Italy.
| | - Giulia Sita
- Department of Pharmacy and BioTechnology-FaBiT, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126, Bologna, Italy.
| | - Agnese Graziosi
- Department of Pharmacy and BioTechnology-FaBiT, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126, Bologna, Italy.
| | - Elisabetta Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Raffaella Sorrentino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | | | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| |
Collapse
|
5
|
Stanic B, Kokai D, Opacic M, Pogrmic-Majkic K, Andric N. Transcriptome-centric approach to the derivation of adverse outcome pathway networks of vascular dysfunction after long-term low-level exposure of human endothelial cells to dibutyl phthalate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174918. [PMID: 39038667 DOI: 10.1016/j.scitotenv.2024.174918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Dibutyl phthalate (DBP) is an endocrine disruptor that adversely affects reproduction; however, evidence suggests it can also impact other systems, including vascular function. The mechanisms underlying DBP-induced vascular dysfunction, particularly after long-term low-level exposure of endothelial cells to this phthalate, remain largely unknown. To address this gap, we used experimentally derived data on differentially expressed genes (DEGs) obtained after 12 weeks of exposure of human vascular endothelial cells EA.hy926 to the concentrations of DBP to which humans are routinely exposed (10-9 M, 10-8 M, and 10-7 M) and various computational tools and manual data curation to build the first adverse outcome pathway (AOP) network relevant to DBP-induced vascular toxicity. DEGs were used to infer transcription factors (molecular initiating events) and molecular functions and biological processes (key events, KEs) using the Enrichr database. The AOP-helpFinder 2.0, an artificial intelligence-based web tool, was used to link genes and KEs and assign confidence scores to co-occurred terms. We constructed the AOP networks using Cytoscape and then manually arranged KEs to depict the flow of mechanistic information across different levels of network organization. An AOP network was created for each DBP concentration, revealing several distinct high-confidence subnetworks that could be involved in DBP-induced vascular toxicity: the insulin-like growth factor subnetwork for 10-7 M DBP, the CXCL8-dependent chemokine subnetwork for 10-8 M DBP, and the fatty acid subnetwork for 10-9 M DBP. We also developed an AOP network providing a mechanistic insight into the dose-dependent effects of DBP in endothelial cells leading to vascular dysfunction. In summary, we present novel putative AOP networks describing the mechanistic flow of information involved in DBP-induced vascular dysfunction in a long-term low-level exposure scenario.
Collapse
Affiliation(s)
- Bojana Stanic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Dunja Kokai
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Marija Opacic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | | | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia.
| |
Collapse
|
6
|
Mérida DM, Acosta-Reyes J, Bayán-Bravo A, Moreno-Franco B, Laclaustra M, Guallar-Castillón P. Phthalate exposure and subclinical carotid atherosclerosis: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124044. [PMID: 38677462 DOI: 10.1016/j.envpol.2024.124044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/13/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Phthalates may be associated with an increased risk of cardiometabolic diseases by interfering with glucose and lipid metabolism and by promoting adipogenesis. This study aimed to perform a systematic review and meta-analysis of the association between phthalate exposure and subclinical carotid atherosclerosis, using surrogate markers such as carotid intima-media thickness (IMT) and carotid plaques. The literature search was performed using four databases (Web of Science, Medline, PubMed, and Scopus), and this systematic review includes all available observational studies until July 6th, 2023. The Joanna Briggs Institute critical appraisal tool was used to assess the risk of bias. Meta-analyses were performed, and random effects models were used. Six high-quality cross-sectional studies and 2570 participants aged 12 to 70 were included. Six phthalate metabolites showed significant associations with subclinical carotid atherosclerosis. Exposure to MBzP, ΣDEHP, and MnBP was associated with increased carotid IMT. Exposure to MEP was associated with a higher prevalence of carotid plaques, and MiBP was associated with a lower prevalence. Mixed results were observed for MMP in older adults. The meta-analyses showed a high degree of heterogeneity, and the results are based on single studies. This study accurately describes the evidence of this association to date, suggesting that phthalates are associated with increased carotid IMT and a higher prevalence of carotid plaques. Further research is needed to elucidate this association, as phthalates are still used in the manufacture of everyday products, humans continue to be exposed to them, and atherosclerosis is a public health concern.
Collapse
Affiliation(s)
- Diana María Mérida
- Department of Preventive Medicine and Public Health. School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
| | - Jorge Acosta-Reyes
- Department of Public Health, Division of Health Sciences, Universidad del Norte, Km 5 vía Puerto Colombia, Barranquilla, Colombia.
| | - Ana Bayán-Bravo
- Clinical Nutrition and Dietetics Unit, Department of Endocrinology and Nutrition, 12 de Octubre Hospital, 28041 Madrid, Spain.
| | - Belén Moreno-Franco
- Instituto de Investigación Sanitaria Aragón, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; Department of Preventive Medicine and Public Health, Universidad de Zaragoza, 50009 Zaragoza, Spain; CIBERCV (CIBER de Enfermedades Cardiovasculares), 28029 Madrid, Spain.
| | - Martín Laclaustra
- Instituto de Investigación Sanitaria Aragón, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; CIBERCV (CIBER de Enfermedades Cardiovasculares), 28029 Madrid, Spain; Department of Medicine, Psychiatry and Dermatology, Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | - Pilar Guallar-Castillón
- Department of Preventive Medicine and Public Health. School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; CIBERESP (CIBER of Epidemiology and Public Health), 28029 Madrid, Spain; IMDEA-Food Institute. CEI UAM+CSIC, Carretera de Cantoblanco 8, 28049 Madrid, Spain.
| |
Collapse
|
7
|
Wada R, Peng FJ, Lin CA, Vermeulen R, Iglesias-González A, Palazzi P, Bodinier B, Streel S, Guillaume M, Vuckovic D, Dagnino S, Chiquet J, Appenzeller BMR, Chadeau-Hyam M. Hair-Derived Exposome Exploration of Cardiometabolic Health: Piloting a Bayesian Multitrait Variable Selection Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5383-5393. [PMID: 38478982 DOI: 10.1021/acs.est.3c08739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Cardiometabolic health is complex and characterized by an ensemble of correlated and/or co-occurring conditions including obesity, dyslipidemia, hypertension, and diabetes mellitus. It is affected by social, lifestyle, and environmental factors, which in-turn exhibit complex correlation patterns. To account for the complexity of (i) exposure profiles and (ii) health outcomes, we propose to use a multitrait Bayesian variable selection approach and identify a sparse set of exposures jointly explanatory of the complex cardiometabolic health status. Using data from a subset (N = 941 participants) of the nutrition, environment, and cardiovascular health (NESCAV) study, we evaluated the link between measurements of the cumulative exposure to (N = 33) pollutants derived from hair and cardiometabolic health as proxied by up to nine measured traits. Our multitrait analysis showed increased statistical power, compared to single-trait analyses, to detect subtle contributions of exposures to a set of clinical phenotypes, while providing parsimonious results with improved interpretability. We identified six exposures that were jointly explanatory of cardiometabolic health as modeled by six complementary traits, of which, we identified strong associations between hexachlorobenzene and trifluralin exposure and adverse cardiometabolic health, including traits of obesity, dyslipidemia, and hypertension. This supports the use of this type of approach for the joint modeling, in an exposome context, of correlated exposures in relation to complex and multifaceted outcomes.
Collapse
Affiliation(s)
- Rin Wada
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, London W2 1PG, U.K
- MRC Centre for Environment and Health Imperial College London, London W2 1PG, U.K
| | - Feng-Jiao Peng
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen L-1445, Luxembourg
| | - Chia-An Lin
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, London W2 1PG, U.K
| | - Roel Vermeulen
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, London W2 1PG, U.K
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CM, The Netherlands
| | - Alba Iglesias-González
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen L-1445, Luxembourg
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen L-1445, Luxembourg
| | - Barbara Bodinier
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, London W2 1PG, U.K
- MRC Centre for Environment and Health Imperial College London, London W2 1PG, U.K
| | - Sylvie Streel
- Department of Public Health Sciences, University of Liege, Liege 4000, Belgium
| | - Michèle Guillaume
- Department of Public Health Sciences, University of Liege, Liege 4000, Belgium
| | - Dragana Vuckovic
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, London W2 1PG, U.K
- MRC Centre for Environment and Health Imperial College London, London W2 1PG, U.K
| | - Sonia Dagnino
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, London W2 1PG, U.K
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), Institut des sciences du vivant Fréderic Joliot, CEA, Université Côte d'Azur, Nice 06107, France
| | - Julien Chiquet
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, Palaiseau 91120, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen L-1445, Luxembourg
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, School of Public Health Imperial College London, London W2 1PG, U.K
- MRC Centre for Environment and Health Imperial College London, London W2 1PG, U.K
| |
Collapse
|
8
|
Ranta A, Ozturk S, Wasay M, Giroud M, Béjot Y, Reis J. Environmental factors and stroke: Risk and prevention. J Neurol Sci 2023; 454:120860. [PMID: 37944211 DOI: 10.1016/j.jns.2023.120860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/01/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Stroke is a leading cause of death and adult disability globally. In addition to traditional risk factors, environmental risk factors have emerged over the recent past and are becoming increasingly important. The disproportionate rise of stroke incidence in low- and middle-income countries has been attributed, at least in part, to environmental factors. This narrative review provides details on the interplay between the environment and health generally and stroke specifically, covering topics including air pollution, atmospheric brown clouds, desert dust storms, giant wildfires, chemical contamination, biological aggressors, urbanization, and climate change. It also covers some beneficial environmental effects such as can be harnessed from the exposure to green spaces. It concludes with a summary of pragmatic actions that can be taken to help address some of these challenges at individual, community, and political advocacy levels.
Collapse
Affiliation(s)
- Annemarei Ranta
- Department of Medicine, University of Otago, Wellington, New Zealand; Department of Neurology, Wellington Hospital, Wellington, New Zealand.
| | - Serefnur Ozturk
- Department of Neurology, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Mohammad Wasay
- Department of Medicine, Aga Khan University, Karachi, Pakistan.
| | - Maurice Giroud
- Department of Neurology, University Hospital of Dijon, France; Dijon Stroke Registry, Pathophysiology and Epidemiology of cerebrocardiovascular diseases (EA7460), University of Bourgogne, Dijon, France.
| | - Yannick Béjot
- Department of Neurology, University Hospital of Dijon, France; Dijon Stroke Registry, Pathophysiology and Epidemiology of cerebrocardiovascular diseases (EA7460), University of Bourgogne, Dijon, France.
| | - Jacques Reis
- Faculty of Medicine, University of Strasbourg, Strasbourg, France
| |
Collapse
|
9
|
Huang K, Yu D, Fang H, Ju L, Piao W, Guo Q, Xu X, Wei X, Yang Y, Zhao L. Association of fine particulate matter and its constituents with hypertension: the modifying effect of dietary patterns. Environ Health 2023; 22:55. [PMID: 37553681 PMCID: PMC10411005 DOI: 10.1186/s12940-023-01000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/19/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Studies have shown that nutritional supplements could reduce the adverse effects induced by air pollution. However, whether dietary patterns can modify the association of long-term exposure to fine particulate matter (PM2.5) and its constituents with hypertension defined by the 2017 ACC/AHA guideline has not been evaluated. METHODS We included 47,501 Chinese adults from a nationwide cross-sectional study. PM2.5 and five constituents were estimated by satellite-based random forest models. Dietary approaches to stop hypertension (DASH) and alternative Mediterranean diet (AMED) scores were calculated for each participant. Interactions between dietary patterns and air pollution were examined by adding a multiplicative interaction term to logistic models. RESULTS Long-term exposure to PM2.5 and its constituents was associated with an increased risk of hypertension and stage 1-2 hypertension. The DASH and AMED scores significantly modified these associations, as individuals with higher scores had a significantly lower risk of air pollution-related hypertension and stage 1-2 hypertension (P-interaction < 0.05), except for interaction between PM2.5, sulfate, nitrate, ammonium, and AMED score on stage 1 hypertension. For each IQR increase in PM2.5, participants with the lowest DASH and AMED quintiles had hypertension risk with ORs (95%CI) of 1.20 (1.10, 1.30) and 1.19 (1.09, 1.29), whereas those with the highest DASH and AMED quintiles had lower risks with 0.98 (0.91, 1.05) and 1.04 (0.97, 1.11). The stratified analysis found modification effect was more prominent in the < 65 years age group. Consuming more fresh vegetables, fruits, whole grains, and dairy would reduce the risk of hypertension caused by PM2.5 and its constituents. CONCLUSIONS Dietary patterns rich in antioxidants can reduce long-term exposure to PM2.5 and its constituents-induced hypertension defined by the 2017 ACC/AHA guideline, especially in young and middle-aged individuals. Compared to the Mediterranean diet, the DASH diet offers superior dietary guidance to prevent stage 1 hypertension caused by air pollution.
Collapse
Affiliation(s)
- Kun Huang
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Dongmei Yu
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
- NHC Key Laboratory of Trace Element Nutrition, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Hongyun Fang
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
- NHC Key Laboratory of Trace Element Nutrition, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Lahong Ju
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Wei Piao
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
- NHC Key Laboratory of Trace Element Nutrition, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Qiya Guo
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Xiaoli Xu
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Xiaoqi Wei
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Yuxiang Yang
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Liyun Zhao
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China.
- NHC Key Laboratory of Trace Element Nutrition, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| |
Collapse
|
10
|
Lee DH, Lee IK. Can lipophilic pollutants in adipose tissue explain weight change-related risk in type 2 diabetes mellitus? J Diabetes Investig 2023; 14:528-530. [PMID: 36722694 PMCID: PMC10034949 DOI: 10.1111/jdi.13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/02/2023] Open
Affiliation(s)
- Duk-Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
11
|
Liu J, Shi J, Hernandez R, Li X, Konchadi P, Miyake Y, Chen Q, Zhou T, Zhou C. Paternal phthalate exposure-elicited offspring metabolic disorders are associated with altered sperm small RNAs in mice. ENVIRONMENT INTERNATIONAL 2023; 172:107769. [PMID: 36709676 DOI: 10.1016/j.envint.2023.107769] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 05/10/2023]
Abstract
Exposure to ubiquitous plastic-associated endocrine disrupting chemicals (EDCs) is associated with the increased risk of many chronic diseases. For example, phthalate exposure is associated with cardiometabolic mortality in humans, with societal costs ∼ $39 billion/year or more. We recently demonstrated that several widely used plastic-associated EDCs increase cardiometabolic disease in appropriate mouse models. In addition to affecting adult health, parental exposure to EDCs has also been shown to cause metabolic disorders, including obesity and diabetes, in the offspring. While most studies have focused on the impact of maternal EDC exposure on the offspring's health, little is known about the effects of paternal EDC exposure. In the current study, we investigated the adverse impact of paternal exposure to a ubiquitous but understudied phthalate, dicyclohexyl phthalate (DCHP) on the metabolic health of F1 and F2 offspring in mice. Paternal DCHP exposure led to exacerbated insulin resistance and impaired insulin signaling in F1 offspring without affecting diet-induced obesity. We previously showed that sperm small non-coding RNAs including tRNA-derived small RNAs (tsRNAs) and rRNA-derived small RNAs (rsRNAs) contribute to the intergenerational transmission of paternally acquired metabolic disorders. Using a novel PANDORA-seq, we revealed that DCHP exposure can lead to sperm tsRNA/rsRNA landscape changes that were undetected by traditional RNA-seq, which may contribute to DCHP-elicited adverse effects. Lastly, we found that paternal DCHP can also cause sex-specific transgenerational adverse effects in F2 offspring and elicited glucose intolerance in female F2 descendants. Our results suggest that exposure to endocrine disrupting phthalates may have intergenerational and transgenerational adverse effects on the metabolic health of their offspring. These findings increase our understanding of the etiology of chronic human diseases originating from chemical-elicited intergenerational and transgenerational effects.
Collapse
Affiliation(s)
- Jingwei Liu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Xiuchun Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Pranav Konchadi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Yuma Miyake
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, NV 89557, United States
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
12
|
HDL Functions-Current Status and Future Perspectives. Biomolecules 2023; 13:biom13010105. [PMID: 36671490 PMCID: PMC9855960 DOI: 10.3390/biom13010105] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in Western countries. A low HDL-C is associated with the development of CVD. However, recent epidemiology studies have shown U-shaped curves between HDL-C and CVD mortality, with paradoxically increased CVD mortality in patients with extremely high HDL-C levels. Furthermore, HDL-C raising therapy using nicotinic acids or CETP inhibitors mostly failed to reduce CVD events. Based on this background, HDL functions rather than HDL-C could be a novel biomarker; research on the clinical utility of HDL functionality is ongoing. In this review, we summarize the current status of HDL functions and their future perspectives from the findings of basic research and clinical trials.
Collapse
|
13
|
Lind PM, Lind L, Salihovic S, Ahlström H, Michaelsson K, Kullberg J, Strand R. Serum levels of perfluoroalkyl substances (PFAS) and body composition - A cross-sectional study in a middle-aged population. ENVIRONMENTAL RESEARCH 2022; 209:112677. [PMID: 35074350 DOI: 10.1016/j.envres.2022.112677] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/10/2021] [Accepted: 01/03/2022] [Indexed: 05/15/2023]
Abstract
BACKGROUND It has been suggested that per- and polyfluoroalkyl substances (PFAS) are endocrine disruptors with a potential to influence fat mass. OBJECTIVE The primary hypothesis tested was that we would find positive relationships for PFAS vs measures of adiposity. METHODS In 321 subjects all aged 50 years in the POEM study, five PFAS (perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA)) were measured in serum together with a Dual-energy X-ray absorptiometry (DXA) scan for determination of fat and lean mass. Whole-body magnetic resonance imaging scan was performed and the body was divided into >1 million voxels. Voxel-wise statistical analysis was carried out by a novel method denoted Imiomics. RESULTS PFOS and PFHxS, did not show any consistent associations with body composition. However, PFOA, and especially PFNA and PFDA, levels were inversely related to most traditional measures reflecting the amount of fat in women, but not in men. In the Imiomics analysis of tissue volume, PFDA and PFNA levels were inversely related to the volume of subcutaneous fat, mainly in the arm, trunk and hip regions in women, while no such clear relationship was seen in men. Also, the visceral fat content of the liver, the pericardium, and the gluteus muscle were inversely related to PFDA and PFNA in women. DISCUSSION Contrary to our hypothesis, some PFAS showed inverse relationships vs measurements of adiposity. CONCLUSION PFOS and PFHxS levels in plasma did not show any consistent associations with body composition, but PFOA, and especially PFNA and PFDA were inversely related to multiple measures reflecting the amount of fat, but in women only.
Collapse
Affiliation(s)
- P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden.
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden.
| | - Samira Salihovic
- Inflammatory Response and Infection Susceptibility Centre, School of Medical Sciences, Örebro University, Örebro, Sweden.
| | - Håkan Ahlström
- Department of Surgical Sciences, Section of Radiology, Uppsala University, Uppsala, Sweden; Antaros Medical AB, Mölndal, Sweden.
| | - Karl Michaelsson
- Department of Surgical Sciences, Unit of Medical Epidemiology, Uppsala University, Uppsala, Sweden.
| | - Joel Kullberg
- Department of Surgical Sciences, Section of Radiology, Uppsala University, Uppsala, Sweden; Antaros Medical AB, Mölndal, Sweden.
| | - Robin Strand
- Department of Surgical Sciences, Section of Radiology, Uppsala University, Uppsala, Sweden; Department of Information Technology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Liu J, Hernandez R, Li X, Meng Z, Chen H, Zhou C. Pregnane X Receptor Mediates Atherosclerosis Induced by Dicyclohexyl Phthalate in LDL Receptor-Deficient Mice. Cells 2022; 11:1125. [PMID: 35406689 PMCID: PMC8997706 DOI: 10.3390/cells11071125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/17/2022] Open
Abstract
Plastic-associated endocrine disrupting chemicals (EDCs) have been implicated in the etiology of cardiovascular disease (CVD) in humans, but the underlying mechanisms remain elusive. Dicyclohexyl phthalate (DCHP) is a widely used phthalate plasticizer; whether and how exposure to DCHP elicits adverse effects in vivo is mostly unknown. We previously reported that DCHP is a potent ligand of the pregnane X receptor (PXR) which acts as a xenobiotic sensor to regulate xenobiotic metabolism. PXR also functions in macrophages to regulate atherosclerosis development in animal models. In the current study, LDL receptor-deficient mice with myeloid-specific PXR deficiency (PXRΔMyeLDLR-/-) and their control littermates (PXRF/FLDLR-/-) were used to determine the impact of DCHP exposure on macrophage function and atherosclerosis. Chronic exposure to DCHP significantly increased atherosclerotic lesion area in the aortic root and brachiocephalic artery of PXRF/FLDLR-/- mice by 65% and 77%, respectively. By contrast, DCHP did not affect atherosclerosis development in PXRΔMyeLDLR-/- mice. Exposure to DCHP led to elevated expression of the scavenger receptor CD36 in macrophages and increased macrophage form cell formation in PXRF/FLDLR-/- mice. Our findings provide potential mechanisms underlying phthalate-associated CVD risk and will ultimately stimulate further investigations and mitigation of the adverse effects of plastic-associated EDCs on CVD risk in humans.
Collapse
Affiliation(s)
- Jingwei Liu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (J.L.); (R.H.); (X.L.); (Z.M.)
| | - Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (J.L.); (R.H.); (X.L.); (Z.M.)
| | - Xiuchun Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (J.L.); (R.H.); (X.L.); (Z.M.)
| | - Zhaojie Meng
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (J.L.); (R.H.); (X.L.); (Z.M.)
| | - Hong Chen
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA;
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (J.L.); (R.H.); (X.L.); (Z.M.)
| |
Collapse
|
15
|
Male Lower Urinary Tract Dysfunction: An Underrepresented Endpoint in Toxicology Research. TOXICS 2022; 10:toxics10020089. [PMID: 35202275 PMCID: PMC8880407 DOI: 10.3390/toxics10020089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023]
Abstract
Lower urinary tract dysfunction (LUTD) is nearly ubiquitous in men of advancing age and exerts substantial physical, mental, social, and financial costs to society. While a large body of research is focused on the molecular, genetic, and epigenetic underpinnings of the disease, little research has been dedicated to the influence of environmental chemicals on disease initiation, progression, or severity. Despite a few recent studies indicating a potential developmental origin of male LUTD linked to chemical exposures in the womb, it remains a grossly understudied endpoint in toxicology research. Therefore, we direct this review to toxicologists who are considering male LUTD as a new aspect of chemical toxicity studies. We focus on the LUTD disease process in men, as well as in the male mouse as a leading research model. To introduce the disease process, we describe the physiology of the male lower urinary tract and the cellular composition of lower urinary tract tissues. We discuss known and suspected mechanisms of male LUTD and examples of environmental chemicals acting through these mechanisms to contribute to LUTD. We also describe mouse models of LUTD and endpoints to diagnose, characterize, and quantify LUTD in men and mice.
Collapse
|
16
|
Conlon K. Marine Debris and Human Health: An Exposure Pathway of Persistent Organic Pollutants? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:263-265. [PMID: 34347906 DOI: 10.1002/etc.5186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Although there are not any direct studies linking persistent organic pollutants (POPs) accumulated on marine debris to human health, there are numerous studies showing human health impacts from repeated and high-level POP exposure, as well as studies showing that POPs accumulate on plastic debris in the marine environment. With this knowledge, there is a need for greater awareness of the risks of POP exposure for those who handle marine debris regularly, especially in contexts of higher exposure such as those working in marine debris-concentrated areas. Among the scientific community, understanding of the exposure risk might be high, but others who handle marine debris, for instance, citizen groups in the Global South, are not necessarily aware of this exposure pathway. Moreover, global consumers who are marketed "ocean plastics" upcycled products are also not aware of potential POP exposure. Before marine plastics are accepted into the upcycled economy, these risks warrant further examination. This is a perspectives piece that aims to draw awareness to these emergent POP exposure pathways and considerations regarding marine plastic pollution. Environ Toxicol Chem 2022;41:263-265. © 2021 SETAC.
Collapse
Affiliation(s)
- Katie Conlon
- Portland State University, Portland, Oregon, USA
| |
Collapse
|
17
|
Sun J, Fang R, Wang H, Xu DX, Yang J, Huang X, Cozzolino D, Fang M, Huang Y. A review of environmental metabolism disrupting chemicals and effect biomarkers associating disease risks: Where exposomics meets metabolomics. ENVIRONMENT INTERNATIONAL 2022; 158:106941. [PMID: 34689039 DOI: 10.1016/j.envint.2021.106941] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/03/2021] [Accepted: 10/12/2021] [Indexed: 05/27/2023]
Abstract
Humans are exposed to an ever-increasing number of environmental toxicants, some of which have gradually been elucidated to be important risk factors for metabolic diseases, such as diabetes and obesity. These metabolism-sensitive diseases typically occur when key metabolic and signaling pathways were disrupted, which can be influenced by the exposure to contaminants such as endocrine disrupting chemicals (EDCs), along with genetic and lifestyle factors. This promotes the concept and research on environmental metabolism disrupting chemicals (MDCs). In addition, identifying endogenous biochemical markers of effect linked to disease states is becoming an important tool to screen the biological targets following environmental contaminant exposure, as well as to provide an overview of toxicity risk assessment. As such, the current review aims to contribute to the further understanding of exposome and human health and disease by characterizing environmental exposure and effect metabolic biomarkers. We summarized MDC-associated metabolic biomarkers in laboratory animal and human cohort studies using high throughput targeted and nontargeted metabolomics techniques. Contaminants including heavy metals and organohalogen compounds, especially EDCs, have been repetitively associated with metabolic disorders, whereas emerging contaminants such as perfluoroalkyl substances and microplastics have also been found to disrupt metabolism. In addition, we found major limitations in the effective identification of metabolic biomarkers especially in human studies, toxicological research on the mixed effect of environmental exposure has also been insufficient compared to the research on single chemicals. Thus, it is timely to call for research efforts dedicated to the study of combined effect and metabolic alterations for the better assessment of exposomic toxicology and health risks. Moreover, advanced computational and prediction tools, further validation of metabolic biomarkers, as well as systematic and integrative investigations are also needed in order to reliably identify novel biomarkers and elucidate toxicity mechanisms, and to further utilize exposome and metabolome profiling in public health and safety management.
Collapse
Affiliation(s)
- Jiachen Sun
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Runcheng Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Jing Yang
- State Environmental Protection Key Laboratory of Quality Control in Environmental, Monitoring, China National Environmental Monitoring Center, Beijing, China
| | - Xiaochen Huang
- School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Daniel Cozzolino
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plans, Australia
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| |
Collapse
|
18
|
Sui Y, Meng Z, Chen J, Liu J, Hernandez R, Gonzales MB, Gwag T, Morris AJ, Zhou C. Effects of Dicyclohexyl Phthalate Exposure on PXR Activation and Lipid Homeostasis in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:127001. [PMID: 34851150 PMCID: PMC8634903 DOI: 10.1289/ehp9262] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Exposure to plastic-associated endocrine disrupting chemicals (EDCs) has been associated with an increased risk of cardiovascular disease (CVD) in humans. However, the underlying mechanisms for this association are unclear. Many EDCs have been shown to function as ligands of the nuclear receptor pregnane X receptor (PXR), which functions as xenobiotic sensor but also has pro-atherogenic effects in vivo. OBJECTIVE We sought to investigate the contribution of PXR to the adverse effects dicyclohexyl phthalate (DCHP), a widely used phthalate plasticizer, on lipid homeostasis and CVD risk factors. METHODS Cell-based assays, primary organoid cultures, and PXR conditional knockout and PXR-humanized mouse models were used to investigate the impact of DCHP exposure on PXR activation and lipid homeostasis in vitro and in vivo. Targeted lipidomics were performed to measure circulating ceramides, novel predictors for CVD. RESULTS DCHP was identified as a potent PXR-selective agonist that led to higher plasma cholesterol levels in wild-type mice. DCHP was then demonstrated to activate intestinal PXR to elicit hyperlipidemia by using tissue-specific PXR-deficient mice. Interestingly, DCHP exposure also led to higher circulating ceramides in a PXR-dependent manner. DCHP-mediated PXR activation stimulated the expression of intestinal genes mediating lipogenesis and ceramide synthesis. Given that PXR exhibits considerable species-specific differences in receptor pharmacology, PXR-humanized mice were also used to replicate these findings. DISCUSSION Although the adverse health effects of several well-known phthalates have attracted considerable attention, little is known about the potential impact of DCHP on human health. Our studies demonstrate that DCHP activated PXR to induce hypercholesterolemia and ceramide production in mice. These results indicate a potentially important role of PXR in contributing to the deleterious effects of plastic-associated EDCs on cardiovascular health in humans. Testing PXR activation should be considered for risk assessment of phthalates and other EDCs. https://doi.org/10.1289/EHP9262.
Collapse
Affiliation(s)
- Yipeng Sui
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Zhaojie Meng
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Jianzhong Chen
- Division of Cardiovascular Medicine, College of Medicine and Lexington Veterans Affairs Medical Center, University of Kentucky, Lexington, Kentucky
| | - Jingwei Liu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Miko B. Gonzales
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Taesik Gwag
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Andrew J. Morris
- Division of Cardiovascular Medicine, College of Medicine and Lexington Veterans Affairs Medical Center, University of Kentucky, Lexington, Kentucky
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| |
Collapse
|
19
|
Stanic B, Petrovic J, Basica B, Kaisarevic S, Schirmer K, Andric N. Characterization of the ERK1/2 phosphorylation profile in human and fish liver cells upon exposure to chemicals of environmental concern. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 88:103749. [PMID: 34547448 DOI: 10.1016/j.etap.2021.103749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
We developed phospho-ERK1/2 ELISA for human and rainbow trout liver cells, employing HepG2 and RTL-W1 cell lines as models. The assay was applied to detect changes in ERK1/2 activity for nine chemicals, added over a wide concentration range and time points. Cell viability was measured to separate ERK1/2 regulation from cytotoxicity. Perfluorooctane sulfonate and carbendazim did not change ERK1/2 activity; influence on ERK1/2 due to cytotoxicity was indicated for tributyltin and cypermethrin. Mancozeb, benzo[a]pyrene, and bisphenol A stimulated ERK1/2 up to ∼2- (HepG2) and 1.5 (RTL-W1)-fold, though the kinetics differed between chemicals and cell lines. Bisphenol A and benzo[a]pyrene were the most potent concentration-wise, altering ERK1/2 activity in pM (HepG2) to nM (RTL-W1) range. While atrazine and ibuprofen increased ERK1/2 activity by ∼2-fold in HepG2, they did not initiate an appreciable response in RTL-W1. This assay proved to be a sensitive, medium- to high-throughput tool for detecting unrecognized ERK1/2-disrupting chemicals.
Collapse
Affiliation(s)
- Bojana Stanic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Jelena Petrovic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Branka Basica
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Sonja Kaisarevic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia.
| |
Collapse
|
20
|
Khwaja S, Hussain SI, Zahid M, Aziz Z, Akram A, Jabeen U, Rasheed A, Rasheed S, Baqa K, Basit A. Persistent organic pollutants distribution in plasma lipoprotein fractions. BRAZ J BIOL 2021; 83:e248910. [PMID: 34550288 DOI: 10.1590/1519-6984.248910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
This study determines the associations among serum lipid profiles, risk of cardiovascular disease, and persistent organic pollutants. Using Gas chromatography technique, the intensity of toxic pollutant residues in serum samples of Hypertensive patients were measured. Based on statistical analysis, the effects of different covariates namely pesticides, age, systolic blood pressure, diastolic blood pressure, and lipid profile duration was checked using the logistic regression model. Statistical computation was performed on SPSS 22.0. The P-values of F-Statistic for each lipid profile class are greater than 0.01 (1%), therefore we cannot reject the null hypothesis for all cases. The estimated coefficients, their standard errors, Wald Statistic, and odds ratio of the binary logistic regression model for different lipid profile parameters indicate if pesticides increase then the logit value of different lipid profile parameters changes from -0.46 to -0.246 except LDL which increases by 0.135. The study reports a significantly increased threat of cardiovascular disease with increased concentrations of toxic pollutants.
Collapse
Affiliation(s)
- S Khwaja
- Federal Urdu University of Arts, Science, and Technology, Department of Zoology, Gulshan-e-Iqbal, Karachi, Pakistan
| | - S I Hussain
- Federal Urdu University of Arts, Science, and Technology, Department of Zoology, Gulshan-e-Iqbal, Karachi, Pakistan
| | - M Zahid
- Federal Urdu University of Arts, Science, and Technology, Department of Zoology, Gulshan-e-Iqbal, Karachi, Pakistan
| | - Z Aziz
- Federal Urdu University of Arts, Science, and Technology, Department of Statistics, Gulshan-e-Iqbal, Karachi, Pakistan
| | - A Akram
- Federal Urdu University of Arts, Science, and Technology, Department of Zoology, Gulshan-e-Iqbal, Karachi, Pakistan
| | - U Jabeen
- Federal Urdu University of Arts, Science, and Technology, Department of Biochemistry, Gulshan-e-Iqbal, Karachi, Pakistan
| | - A Rasheed
- Federal Urdu University of Arts, Science, and Technology, Department of Zoology, Gulshan-e-Iqbal, Karachi, Pakistan
| | - S Rasheed
- Federal Urdu University of Arts, Science, and Technology, Department of Zoology, Gulshan-e-Iqbal, Karachi, Pakistan
| | - K Baqa
- Federal Urdu University of Arts, Science, and Technology, Department of Biochemistry, Gulshan-e-Iqbal, Karachi, Pakistan
| | - A Basit
- Baqai Medical University, Karachi, Pakistan
| |
Collapse
|
21
|
Lind L, Araujo JA, Barchowsky A, Belcher S, Berridge BR, Chiamvimonvat N, Chiu WA, Cogliano VJ, Elmore S, Farraj AK, Gomes AV, McHale CM, Meyer-Tamaki KB, Posnack NG, Vargas HM, Yang X, Zeise L, Zhou C, Smith MT. Key Characteristics of Cardiovascular Toxicants. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:95001. [PMID: 34558968 PMCID: PMC8462506 DOI: 10.1289/ehp9321] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND The concept of chemical agents having properties that confer potential hazard called key characteristics (KCs) was first developed to identify carcinogenic hazards. Identification of KCs of cardiovascular (CV) toxicants could facilitate the systematic assessment of CV hazards and understanding of assay and data gaps associated with current approaches. OBJECTIVES We sought to develop a consensus-based synthesis of scientific evidence on the KCs of chemical and nonchemical agents known to cause CV toxicity along with methods to measure them. METHODS An expert working group was convened to discuss mechanisms associated with CV toxicity. RESULTS The group identified 12 KCs of CV toxicants, defined as exogenous agents that adversely interfere with function of the CV system. The KCs were organized into those primarily affecting cardiac tissue (numbers 1-4 below), the vascular system (5-7), or both (8-12), as follows: 1) impairs regulation of cardiac excitability, 2) impairs cardiac contractility and relaxation, 3) induces cardiomyocyte injury and death, 4) induces proliferation of valve stroma, 5) impacts endothelial and vascular function, 6) alters hemostasis, 7) causes dyslipidemia, 8) impairs mitochondrial function, 9) modifies autonomic nervous system activity, 10) induces oxidative stress, 11) causes inflammation, and 12) alters hormone signaling. DISCUSSION These 12 KCs can be used to help identify pharmaceuticals and environmental pollutants as CV toxicants, as well as to better understand the mechanistic underpinnings of their toxicity. For example, evidence exists that fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)] air pollution, arsenic, anthracycline drugs, and other exogenous chemicals possess one or more of the described KCs. In conclusion, the KCs could be used to identify potential CV toxicants and to define a set of test methods to evaluate CV toxicity in a more comprehensive and standardized manner than current approaches. https://doi.org/10.1289/EHP9321.
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, University of Uppsala, Sweden
| | - Jesus A. Araujo
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), UCLA, Los Angeles, California, USA
- Department of Environmental Health Sciences, Fielding School of Public Health and Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, USA
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, North Carolina, USA
| | - Brian R. Berridge
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
| | - Weihsueh A. Chiu
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Vincent J. Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Sarah Elmore
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Aimen K. Farraj
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, California, USA
| | - Cliona M. McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | | | - Nikki Gillum Posnack
- Children’s National Heart Institute and the Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Hugo M. Vargas
- Translational Safety & Bioanalytical Sciences, Amgen, Inc., Thousand Oaks, California, USA
| | - Xi Yang
- Division of Pharmacology and Toxicology, Office of Cardiology, Hematology, Endocrinology, and Nephrology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
22
|
Gong G, Kam H, Tse YC, Giesy JP, Seto SW, Lee SMY. Forchlorfenuron (CPPU) causes disorganization of the cytoskeleton and dysfunction of human umbilical vein endothelial cells, and abnormal vascular development in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:115791. [PMID: 33401215 DOI: 10.1016/j.envpol.2020.115791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Forchlorfenuron (CPPU) has been used worldwide, to boost size and improve quality of various agricultural products. CPPU and its metabolites are persistent and have been detected frequently in fruits, water, sediments, and organisms in aquatic systems. Although the public became aware of CPPU through the exploding watermelon scandal of 2011 in Zhenjiang, China, little was known of its potential effects on the environment and wildlife. In this study, adverse effects of CPPU on developmental angiogenesis and vasculature, which is vulnerable to insults of persistent toxicants, were studied in vivo in zebrafish embryos (Danio rerio). Exposure to 10 mg CPPU/L impaired survival and hatching, while development was hindered by exposure to 2.5 mg CPPU/L. Developing vascular structure, including common cardinal veins (CCVs), intersegmental vessels (ISVs) and sub-intestinal vessels (SIVs), were significantly restrained by exposure to CPPU, in a dose-dependent manner. Also, CPPU caused disorganization of the cytoskeleton. In human umbilical vein endothelial cells (HUVECs), CPPU inhibited proliferation, migration and formation of tubular-like structures in vitro. Results of Western blot analyses revealed that exposure to CPPU increased phosphorylation of FLT-1, but inhibited phosphorylation of FAK and its downstream MAPK pathway in HUVECs. In summary, CPPU elicited developmental toxicity to the developing endothelial system of zebrafish and HUVECs. This was do, at least in part due to inhibition of the FAK/MAPK signaling pathway rather than direct interaction with the VEGF receptor (VEGFR).
Collapse
Affiliation(s)
- Guiyi Gong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Yu-Chung Tse
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, 76706, United States
| | - Sai-Wang Seto
- Department of Applied Biology and Chemistry Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau.
| |
Collapse
|
23
|
Hukkanen J, Hakkola J. PXR and 4β-Hydroxycholesterol Axis and the Components of Metabolic Syndrome. Cells 2020; 9:cells9112445. [PMID: 33182477 PMCID: PMC7696146 DOI: 10.3390/cells9112445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/10/2023] Open
Abstract
Pregnane X receptor (PXR) activation has been found to regulate glucose and lipid metabolism and affect obesity in response to high-fat diets. PXR also modulates vascular tone. In fact, PXR appears to regulate multiple components of metabolic syndrome. In most cases, the effect of PXR action is harmful to metabolic health, and PXR can be hypothesized to play an important role in metabolic disruption elicited by exposure to endocrine-disrupting chemicals. The majority of the data on the effects of PXR activation on metabolic health come from animal and cell culture experiments. However, randomized, placebo-controlled, human trials indicate that the treatment with PXR ligands impairs glucose tolerance and increases 24-h blood pressure and heart rate. In addition, plasma 4β-hydroxycholesterol (4βHC), formed under the control of PXR in the liver, is associated with lower blood pressure in healthy volunteers. Furthermore, 4βHC regulates cholesterol transporters in peripheral tissues and may activate the beneficial reverse HDL cholesterol transport. In this review, we discuss the current knowledge on the role of PXR and the PXR–4βHC axis in the regulation of components of metabolic syndrome.
Collapse
Affiliation(s)
- Janne Hukkanen
- Research Unit of Internal Medicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, POB 5000, FI-90014 Oulu, Finland
- Correspondence: (J.H.); (J.H.); Tel.: +358-8-3156212 (J.H.); +358-294-485235 (J.H.)
| | - Jukka Hakkola
- Research Unit of Biomedicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, POB 5000, FI-90014 Oulu, Finland
- Correspondence: (J.H.); (J.H.); Tel.: +358-8-3156212 (J.H.); +358-294-485235 (J.H.)
| |
Collapse
|
24
|
Fu X, Xu J, Zhang R, Yu J. The association between environmental endocrine disruptors and cardiovascular diseases: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2020; 187:109464. [PMID: 32438096 DOI: 10.1016/j.envres.2020.109464] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/15/2020] [Accepted: 03/29/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Except for known cardiovascular risk factors, long-term exposure to environmental endocrine disruptors (EEDs) - a class of exogenous chemicals, or a mixture of chemicals, that can interfere with any aspect of hormone action - has been shown to increase the risk of cardiovascular diseases (CVDs), which are still controversial. OBJECTIVE To conduct a comprehensive systematic review and meta-analysis to estimate the association between EEDs, including nonylphenol (NP), bisphenol A (BPA), polychlorinated biphenyl (PCB), organo-chlorine pesticide (OCP) and phthalate (PAE) exposure and CVD risk. METHODS The heterogeneity between different studies was qualitatively and quantitatively evaluated using Q test and I2 statistical magnitude, respectively. Subgroup analysis was performed using chemical homologs - a previously unused grouping method - to extract data and perform meta-analysis to assess their exposure to CVD. RESULTS Twenty-nine literatures were enrolled with a total sample size of 88891. The results indicated that exposure to PCB138 and PCB153 were the risk factors for CVD morbidity (odds ratio (OR) = 1.35, 95% confidence interval (CI): 1.10-1.66; OR = 1.35, 95% CI: 1.13-1.62). Exposure to organo-chlorine pesticide (OCP) (OR = 1.12, 95% CI: 1.00-1.24), as well as with phthalate (PAE) (OR = 1.11, 95% CI: 1.06-1.17) and BPA (OR = 1.19, 95% CI: 1.03-1.37) were positively associated with CVD risk, respectively. BPA exposure concentration had no correlation with total cholesterol (TC), or low-density lipoprotein (LDL), but exhibited a correlation with gender, waist circumference (WC), high-density lipoprotein (HDL), age, and body mass index (BMI) (standardized mean difference (SMD)) = 1.51; 95% CI: =(1.01-2.25); SMD = 0.16; 95% CI: (0.08-0.23); SMD = -0.19; 95% CI: (-0.27-0.12); SMD = -0.78; 95% CI: (-1.42-0.14); SMD = 0.08; 95% CI: (0.00-0.16). CONCLUSIONS EED exposure is a risk factor for CVD. Long-term exposure to EEDs can influence cardiovascular health in humans. A possible synergistic effect may exist between the homologs. The mechanism of which needs to be further explored and demonstrated by additional prospective cohort studies, results of in vitro and in vivo analyses, as well as indices affecting CVD.
Collapse
Affiliation(s)
- Xiangjun Fu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| | - Renyi Zhang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, PR China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|
25
|
Ramadan M, Cooper B, Posnack NG. Bisphenols and phthalates: Plastic chemical exposures can contribute to adverse cardiovascular health outcomes. Birth Defects Res 2020; 112:1362-1385. [PMID: 32691967 DOI: 10.1002/bdr2.1752] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022]
Abstract
Phthalates and bisphenols are high production volume chemicals that are used in the manufacturing of consumer and medical products. Given the ubiquity of bisphenol and phthalate chemicals in the environment, biomonitoring studies routinely detect these chemicals in 75-90% of the general population. Accumulating evidence suggests that such chemical exposures may influence human health outcomes, including cardiovascular health. These associations are particularly worrisome for sensitive populations, including fetal, infant and pediatric groups-with underdeveloped metabolic capabilities and developing organ systems. In the presented article, we aimed to review the literature on environmental and clinical exposures to bisphenols and phthalates, highlight experimental work that suggests that these chemicals may exert a negative influence on cardiovascular health, and emphasize areas of concern that relate to vulnerable pediatric groups. Gaps in our current knowledge are also discussed, so that future endeavors may resolve the relationship between chemical exposures and the impact on pediatric cardiovascular physiology.
Collapse
Affiliation(s)
- Manelle Ramadan
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA.,Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, USA
| | - Blake Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA.,Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, USA.,Department of Pediatrics, George Washington University, School of Medicine, Washington, District of Columbia, USA.,Department of Pharmacology & Physiology, George Washington University, School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
26
|
Lee YM, Lee DH. Letter to the Editor: Effect of fatty fish or nut consumption on concentrations of persistent organic pollutants in overweight or obese men and women: A randomized controlled clinical trial. Nutr Metab Cardiovasc Dis 2020; 30:849-850. [PMID: 32139250 DOI: 10.1016/j.numecd.2020.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/27/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Yu-Mi Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Duk-Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Republic of Korea.
| |
Collapse
|
27
|
Lee D, Jacobs DR, Lind L, Lind PM. Lipophilic Environmental Chemical Mixtures Released During Weight‐Loss: The Need to Consider Dynamics. Bioessays 2020; 42:e1900237. [DOI: 10.1002/bies.201900237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/06/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Duk‐Hee Lee
- Department of Preventive MedicineSchool of MedicineKyungpook National University Daegu 41944 Korea
| | - David R Jacobs
- Division of Epidemiology and Community HealthSchool of Public HealthUniversity of Minnesota Minneapolis Minnesota 55454 USA
| | - Lars Lind
- Department of Medical SciencesCardiovascular EpidemiologyUppsala University Uppsala 75237 Sweden
| | - P. Monica Lind
- Department of Medical SciencesOccupational and Environmental MedicineUppsala University Uppsala 75185 Sweden
| |
Collapse
|
28
|
Lee YM, Heo S, Kim SA, Lee DH. Is dietary macronutrient intake associated with serum concentrations of organochlorine pesticides in humans? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113819. [PMID: 31887593 DOI: 10.1016/j.envpol.2019.113819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/03/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
In the general population, chronic exposure to low-dose persistent organic pollutants (POPs), particularly organochlorine pesticides (OCPs), has been recently linked to many chronic diseases. Widespread contamination of the food chain and human adipose tissue has made avoiding exposure to these chemicals impossible; thus, alternative strategies for decreasing the chemical burden must be investigated. Recently, macronutrient intake was found to significantly modify the toxicokinetics of POPs in animal experimental studies. Thus, we evaluated whether macronutrient intake was related to serum concentrations of OCPs in healthy adults without cardio-metabolic diseases. Subjects included 1,764 adults, aged 20 years or above, who participated in the National Health and Nutrition Examination Survey 1999-2004. Macronutrient intake was assessed based on a 24-h dietary recall interview. Six individual OCPs commonly detected among the general population were evaluated as markers of OCPs and other coexisting lipophilic chemicals stored in adipose tissue and released into circulation. High fat intake was associated with lower concentrations of OCPs, while high carbohydrate intake showed the opposite result. When three types of fats were individually evaluated, both saturated fatty acids and monounsaturated fatty acids, but not polyunsaturated fatty acids, were inversely associated with serum concentrations of OCPs. Adjustment for possible confounders did not change the results. When stratified by age, gender, body mass index, and physical activity, these associations were similar in most subgroups. Thus, similar to the findings observed in animal experimental studies, a moderate-fat diet with low carbohydrate intake was related to low serum concentrations of OCPs in humans. Although these findings need to be replicated, changing dietary macronutrient intake can be investigated as a practical strategy for dealing with unavoidable lipophilic chemical mixtures such as OCPs in modern society.
Collapse
Affiliation(s)
- Yu-Mi Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Somi Heo
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Se-A Kim
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea.
| | - Duk-Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
29
|
Liberda EN, Zuk AM, Tsuji LJS. Complex contaminant mixtures and their associations with intima-media thickness. BMC Cardiovasc Disord 2019; 19:289. [PMID: 31830904 PMCID: PMC6909558 DOI: 10.1186/s12872-019-1246-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/06/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The burden of cardiovascular disease (CVD) morbidity and mortality is higher among Indigenous persons, who also experience greater health disparities when compared to non-Indigenous Canadians, particularly in remote regions of Canada. Assessment of carotid intima-media thickness (cIMT), a noninvasive screening tool and can be used as biomarker to assess increased CVD risk. Few studies have examined environmental contaminant body burden and its association with cIMT. METHODS Data from the Environment-and-Health Study in the Eeyou Istchee territory of northern Québec, Canada was used to assess complex body burden mixtures of POPs, metals and metalloids among (n = 535) Indigenous people between 15 and 87 years of age with cIMT. First, Principal Component Analysis (PCA) was used to reduce the complexity of the contaminant data. Second, based on the underlying PCA profiles from the biological data, we examined each of the prominent principal component (PC) axes on cIMT using multivariable linear regression models. Lastly, based on these PC axes, cIMT was also regressed on summed (Σ) organic compound concentrations, polychlorinated biphenyl, perfluorinated compounds, respectively, ∑10 OCs, ∑13 PCBs, ∑3PFCs, and nickel. RESULTS Most organochlorines and PFCs loaded primarily on PC-1 (53% variation). Nickel, selenium, and cadmium were found to load on PC-5. Carotid-IMT was significantly associated with PC-1 β = 0.004 (95 % CI 0.001, 0.007), and PC-5 β = 0.013 (95 % CI 0.002, 0.023). However, the association appears to be greater for PC-5, accounting for 3% of the variation, and mostly represented by nickel. Results show that that both nickel, and ∑3PFCs were similarly associated with cIMT β = 0.001 (95 % CI 0.0003, 0.003), and β = 0.001 (95 % CI 0.0004, 0.002), respectively. But ∑10OCs was significantly associated with a slightly greater β = 0.004 (95 % CI 0.001, 0.007) cIMT change, though with less precision. Lastly, ∑13PCBs also increased β = 0.002 (95 % CI 0.0004, 0.003) cIMT after fully adjusting for covariates. CONCLUSION Our results suggest that environmental contaminants are associated with cIMT. This is important for the Cree from the Eeyou Istchee territory who may experience higher body burdens of contaminants than non-Indigenous Canadians.
Collapse
Affiliation(s)
- Eric N Liberda
- School of Occupational and Public Health, Ryerson University, Toronto, 350 Victoria St, Toronto, Ontario, M5B 2K3, Canada.
| | - Aleksandra M Zuk
- Health Studies, and the Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, M1C 1A4, Ontario, Canada
| | - Leonard J S Tsuji
- Health Studies, and the Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, M1C 1A4, Ontario, Canada
| |
Collapse
|
30
|
Golestanzadeh M, Riahi R, Kelishadi R. Association of exposure to phthalates with cardiometabolic risk factors in children and adolescents: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:35670-35686. [PMID: 31728953 DOI: 10.1007/s11356-019-06589-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Recent studies revealed controversial results on the association of exposure to phthalates with cardiometabolic risk factors in children and adolescents. Therefore, this systematic review and meta-analysis was conducted in this regard. At first, we searched English-language papers in Scopus, Web of Science, and PubMed databases, with no restriction of time, till the end of the year 2018. We performed a comprehensive literature search for association between phthalate exposure and cardiometabolic risk factors including obesity, hypertension, hyperglycemia, and dyslipidemia. Among 99 published papers found in scientific databases, 17 cohort, 15 cross-sectional, and three case-control studies were included in the meta-analysis. We observed a significant association between the concentrations of phthalates and their metabolites with body mass index (BMI), BMI z-score, waist circumference (WC), and low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and glucose in serum. In addition, significant association was observed between prenatal phthalate exposure and birth weight. To the best of our knowledge, this is the first meta-analysis of its kind. It shows positive association between phthalate exposure and some cardiometabolic risk factors in children and adolescents. Therefore, prevention of exposure to phthalates and reduction of their use should be underscored in strategies for primordial prevention of cardiovascular diseases. Recent studies revealed controversial results on the association of exposure to phthalates with cardiometabolic risk factors in children and adolescents. Therefore, this systematic review and meta-analysis was conducted in this regard.
Collapse
Affiliation(s)
- Mohsen Golestanzadeh
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Riahi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
31
|
Mansouri V, Ebrahimpour K, Poursafa P, Riahi R, Shoshtari-Yeganeh B, Hystad P, Kelishadi R. Exposure to phthalates and bisphenol A is associated with higher risk of cardiometabolic impairment in normal weight children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18604-18614. [PMID: 31055746 DOI: 10.1007/s11356-019-05123-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Some obese individuals have normal metabolic profile, and some normal-weight persons have impaired metabolic status. Our hypothesis was that one of the potential underlying factors for such differences in cardiometabolic profiles might be the exposure to some environmental chemicals. This study aimed to investigate the association of serum bisphenol A (BPA) and phthalate metabolites with cardiometabolic risk factors in children and adolescents independent of their weight status. This case-control study was conducted on a subsample of 320 participants of a national school-based surveillance program in Iran. We measured serum BPA and phthalate metabolites by gas chromatography mass spectrophotometry. We compared them in children and adolescents with and without excess weight and those with and without cardiometabolic risk factors (80 in each group). We categorized the concentrations of chemicals to tertiles and then we applied logistic regression models after adjustment for potential confounding factors. The concentrations of BPA and some metabolites of phthalates were significantly different in the four groups studied. MEHP concentration was associated with higher odds ratio of cardiometabolic risk factors in participants with normal weight (OR, 95% CI 2.82, 1.001-7.91) and those with excess weight (OR, 95% CI 3.15, 1.27-7.83). MBP concentration increased the odds ratio of cardiometabolic risk factors only in normal weight children and adolescents (OR, 95% CI 6.59, 2.33-18.59, P < 0.001). In participants without cardiometabolic risk factor, MMP and MEHHP were significantly associated with increased risk of excess weight (OR, 95% CI 5.90, 1.21-28.75 and 7.82, 1.5-41.8, respectively). This study showed that the association of BPA and phthalate with cardiometabolic risk factors is independent of the weight status. Our findings suggest that the metabolic impairment in some normal weight children and normal metabolic profile of some obese children can be, in part, related to exposure to these environmental chemicals. Graphical abstract.
Collapse
Affiliation(s)
- Vahid Mansouri
- Medical Student, Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Hezarjerib Ave, Isfahan, Iran
| | - Karim Ebrahimpour
- Environment Health Engineering Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parinaz Poursafa
- Environment Health Engineering Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Riahi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Hezarjerib Ave, Isfahan, Iran
| | - Bahareh Shoshtari-Yeganeh
- Environment Health Engineering Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Roya Kelishadi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Hezarjerib Ave, Isfahan, Iran.
| |
Collapse
|
32
|
Su TC, Hwang JJ, Sun CW, Wang SL. Urinary phthalate metabolites, coronary heart disease, and atherothrombotic markers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:37-44. [PMID: 30753939 DOI: 10.1016/j.ecoenv.2019.02.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/02/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Cross-sectional studies have described an association between exposure to phthalate esters and cardiovascular risk factors. However, the association with coronary heart disease (CHD) is still unclear. A total of 180 subjects randomly selected from 336 CHD patients, and 360 age- and sex-matched non-CHD controls were included from 2008 to 2011. Urinary metabolites of phthalate esters were measured by liquid chromatography-tandem mass spectrometry. The geometric means of urinary phthalates metabolites were significantly higher for the three Di-(2-ethylhexyl)-phthalate (DEHP) metabolites, mono-2-ethylhexyl phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate, and mono-(2-ethyl-5-oxohexyl) phthalate among CHD patients in-hospital than those of being discharged. Excluding 89 CHD patients of in-hospital and hospital discharge within 2 days, we found the urinary concentrations of MEHP, mono-n-butyl phthalate (MnBP), and mono-isobutyl phthalate (MiBP) of 91 CHD patients discharged ≥ 3 days were higher than those of controls. Among 451 participants, those with higher tertile levels of urinary MEHP, MnBP, and MiBP showed an increased risk for CHD compared to those with lowest tertile levels; the corresponding odds ratios (95% CI) were 2.77 (1.22-6.28), 2.90 (1.32-6.4), and 3.19 (1.41-7.21), respectively, after adjustment for confounders. Higher levels of hs-CRP, fibrinogen, and D-dimer were linked with increased levels of all DEHP metabolites in CHD patients. In conclusion, exposure to DEHP and dibutyl phthalates was positively associated with CHD and this relationship may be probably mediated via atherothrombosis.
Collapse
Affiliation(s)
- Ta-Chen Su
- Departments of Environmental and Occupational Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan.
| | - Juey-Jen Hwang
- Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Cardiovascular Medical Center, National Taiwan University Hospital Yunlin Branch, Taiwan
| | - Chien-Wen Sun
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli, Taiwan.
| |
Collapse
|
33
|
Park MH, Gutiérrez-García AK, Choudhury M. Mono-(2-ethylhexyl) Phthalate Aggravates Inflammatory Response via Sirtuin Regulation and Inflammasome Activation in RAW 264.7 Cells. Chem Res Toxicol 2019; 32:935-942. [PMID: 31016965 DOI: 10.1021/acs.chemrestox.9b00101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Artificial environmental endocrine disrupting chemicals (EDCs) exert public health concerns. Exposure to EDCs may induce various disorders in the cardiometabolic system. However, the underlying mechanisms remain largely unknown. Over the past decade, an abundance of evidence has emerged demonstrating a close link between cardiometabolic disorders and inflammation. The aim of the present study was to evaluate the immunological effects on macrophages from six EDCs via sirtuin (SIRT) regulation using the murine macrophage RAW 264.7 cell. We studied first the effects of these EDCs, including a series of doses of benzyl butyl phthalate (BBP), bisphenol A (BPA), diethylhexyl phthalate (DEHP), mono-(2-ethylhexyl)phthalate (MEHP), perfluorooctanoate (PFOA), or perfluorooctanesulfonate (PFOS), on SIRT1-7 transcriptional level. Among these EDCs, MEHP significantly decreased all sirtuin genes' expression in a dose-dependent manner. Under MEHP treatment, SIRT activity and protein expression were significantly decreased, while the protein expression of acetylated NF-κB was significantly increased along with significant increases in IL-1β transcription. These results indicate that MEHP may induce the inflammatory response via SIRT-mediated acetylation of NF-κB. Additionally, the enhanced IL-1β secretion in the presence of 50 μM MEHP ( P < 0.01) also supports inflammasome activation (significant ASC and NLRP3 protein augmentation). Both events may be regulated by MEHP induced reactive oxygen species ( P < 0.01). In conclusion, our study suggests for the first time that EDCs differentially modulate sirtuins' gene expression levels in macrophages and that a specific phthalate MEHP can lead to an increased inflammatory response by impairing vital epigenetic regulators and inflammasome activation.
Collapse
Affiliation(s)
- Min Hi Park
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy , Texas A&M University , College Station , Texas 77843 , United States
| | - Ana K Gutiérrez-García
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy , Texas A&M University , College Station , Texas 77843 , United States
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
34
|
Suarez-Lopez JR, Clemesha CG, Porta M, Gross MD, Lee DH. Organochlorine pesticides and polychlorinated biphenyls (PCBs) in early adulthood and blood lipids over a 23-year follow-up. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 66:24-35. [PMID: 30594847 DOI: 10.1016/j.etap.2018.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/31/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Some evidence in humans suggests that persistent organic pollutants (POPs), including organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), may alter the blood lipid composition. This study analyzed associations between serum POPs concentrations in young adulthood with blood lipid levels up to 23 years later. METHODS Serum POPs were measured in year 2 of follow-up (n = 180 men and women, ages: 20-32y), and plasma lipids in follow-up years 2, 7, 10, 15, 20 and 25. 32 POPs were detectable in ≥75% of participants (23 PCBs, 8 OCPs and PBB-153). We created summary scores for PCBs and OCPs for both wet-weight, and lipid standardized (LP) concentrations. We used repeated measures regression adjusting for demographic factors, BMI, smoking, diabetes status, among others. RESULTS We observed positive associations of the 23 LP-PCB score with total cholesterol (βper SD increase [95%CI]: 5.0 mg/dL [0.7, 9.2]), triglycerides (7.8 mg/dL [-0.9, 16.5]), LDL (4.2 mg/dL [0.2, 8.2]), oxidized LDL 3.4 U/L (-0.05, 6.8), and cholesterol/HDL ratio (0.2 [0.02, 0.3]). The associations for triglycerides (14.7 mg/dL [0.4, 20.1]), cholesterol/HDL (0.33 [0.09, 0.56]) and, to some extent, LDL (4.7 md/dL [-1.6, 10.9]) were only observed among participants in the upper 50th percentile of BMI. Non-dioxin-like PCBs had stronger associations that dioxin-like PCBs. OCPs and PBB-s had positive associations with most outcomes. CONCLUSIONS PCBs and PBB-153 measured in young adulthood were positively associated with prospective alterations in most blood lipid components, with evidence of effect modification by BMI. Further longitudinal studies with multiple measures of POPs overtime are needed.
Collapse
Affiliation(s)
- Jose R Suarez-Lopez
- Department of Family Medicine and Public Health, University of California, 9500 Gilman Drive #0725, La Jolla, San Diego, CA 92093-0725, USA.
| | - Chase G Clemesha
- Department of Family Medicine and Public Health, University of California, 9500 Gilman Drive #0725, La Jolla, San Diego, CA 92093-0725, USA.
| | - Miquel Porta
- Hospital del Mar Institute of Medical Research (IMIM), School of Medicine, Universitat Autonoma de Barcelona, and CIBERESP, Carrer del Dr. Aiguader, 88, E-08003 Barcelona, Catalonia, Spain.
| | - Myron D Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota, MMC 609 Mayo 8609, 420 Delaware, Minneapolis, MN 55455, USA.
| | - Duk-Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, 101 Dongin-dong, Jung-gu, Daegu, 700-422, Republic of Korea.
| |
Collapse
|
35
|
Patil SS, Bhagwat RV, Kumar V, Durugkar T. Megaplastics to Nanoplastics: Emerging Environmental Pollutants and Their Environmental Impacts. MICROORGANISMS FOR SUSTAINABILITY 2019. [DOI: 10.1007/978-981-13-7904-8_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
36
|
Flannagan KS, Ramírez-Zea M, Roman AV, Das AK, Villamor E. Adipose tissue polyunsaturated fatty acids and metabolic syndrome among adult parents and their children. Nutr Metab Cardiovasc Dis 2018; 28:1237-1244. [PMID: 30360954 DOI: 10.1016/j.numecd.2018.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/03/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Polyunsaturated fatty acids (PUFA) may play a role in the etiology of the metabolic syndrome (MetS). The aim of the study was to examine the associations of adipose tissue PUFA biomarkers with MetS among parents and children in Mesoamerica. METHOD AND RESULTS We conducted a cross-sectional study among 468 parents and 201 children aged 7-12 y from the capital cities of Guatemala, El Salvador, the Dominican Republic, Honduras, Nicaragua, Panama, Costa Rica, and Belize, and Tuxtla Gutiérrez in Mexico. We measured PUFA biomarkers in gluteal adipose tissue by gas chromatography. In adults, MetS was defined according to the National Cholesterol Education Program's Adult Treatment Panel III definition. In children, we created an age- and sex-standardized metabolic risk score using abdominal circumference, the homeostasis model of insulin resistance, blood pressure, serum HDL cholesterol, and triglycerides. We estimated prevalence ratios of MetS and mean differences in metabolic score across quartiles of PUFA using multivariable-adjusted Poisson and linear regression models, respectively. Among adults, MetS was associated with low alpha-linolenic acid (ALA), high eicosapentaenoic acid (EPA), and low gamma-linolenic acid (GLA). It was linearly, positively associated with dihomo-gamma-linolenic acid (DGLA) and estimated Δ6-desaturase (D6D) activity. Among children, the metabolic score was positively associated with docosapentaenoic acid (DPA), DGLA, and D6D activity. CONCLUSIONS Among Mesoamerican adults, MetS prevalence is inversely associated with adipose tissue ALA and GLA, and positively associated with EPA, DGLA, and the D6D index. Among children, metabolic risk score is positively associated with DPA, DGLA, and the D6D index.
Collapse
Affiliation(s)
- K S Flannagan
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - M Ramírez-Zea
- INCAP Research Center for the Prevention of Chronic Diseases, Institute of Nutrition of Central America and Panama, Guatemala City, Guatemala
| | - A V Roman
- INCAP Research Center for the Prevention of Chronic Diseases, Institute of Nutrition of Central America and Panama, Guatemala City, Guatemala
| | - A K Das
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - E Villamor
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA; Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
37
|
Qin ZZ, Xu JY, Chen GC, Ma YX, Qin LQ. Effects of fatty and lean fish intake on stroke risk: a meta-analysis of prospective cohort studies. Lipids Health Dis 2018; 17:264. [PMID: 30470232 PMCID: PMC6260659 DOI: 10.1186/s12944-018-0897-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Fish intake has been postulated to reduce the risk of stroke. However, whether the beneficial effect of fish are mainly linked to fat content, as a source of omega-3 polyunsaturated fatty acids, remains unclear. We conducted a meta-analysis to compare the effect of fatty and lean fish intake on stroke risk. METHODS We performed a literature search on four database (PubMed, Embase, Scopus, and Cochrane Library) through February 1, 2018 to identify prospective studies of fatty and lean fish in relation to stroke risk. A random-effects model was used to calculate the summary estimates. RESULTS We identified five prospective studies, including 7 comparisons for fatty fish intake and 5 comparisons for lean fish intake. Compared with the highest category of intake with lowest category, the summary relative risk was 0.88 [95% confidence interval (CI), 0.74-1.04] for fatty fish intake and 0.81 (95% CI, 0.67-0.99) for lean fish intake. No heterogeneity across studies and publication bias were observed. CONCLUSION Our findings demonstrated that fatty and lean fish intake has beneficial effects on stroke risk, especially lean fish intake. Additional prospective studies are necessary to confirm these observations.
Collapse
Affiliation(s)
- Zhi-Zhen Qin
- School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017 Hebei Province China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Ren’ai Road, Suzhou, 215123 Jiangsu Province China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren’ai Road, Suzhou, 215123 Jiangsu Province China
| | - Yu-Xia Ma
- School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017 Hebei Province China
| | - Li-Qiang Qin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Ren’ai Road, Suzhou, 215123 Jiangsu Province China
| |
Collapse
|
38
|
Ferro A, Teixeira D, Pestana D, Monteiro R, Santos CC, Domingues VF, Polónia J, Calhau C. POPs' effect on cardiometabolic and inflammatory profile in a sample of women with obesity and hypertension. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2018; 74:310-321. [PMID: 30431394 DOI: 10.1080/19338244.2018.1535480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 06/09/2023]
Abstract
Persistent organic pollutants (POPs) are man-made compounds with metabolic disruption impact. We investigated the effect of POP exposure in the cardiometabolic and inflammatory profile in a population of women with obesity and hypertension. In 43 premenopausal women (22 treated vs. 21 nontreated) undergoing bariatric surgery, blood and adipose tissue samples (visceral (vAT) and abdominal subcutaneous (scAT)) were collected. Median concentrations of ∑HCH and ∑POPs in vAT were significantly higher in treated women. VAT ∑HCH and scAT ∑HCH and ∑POPs concentrations were positively correlated with systolic blood pressure in the non-treated group. Our findings suggest that exposure to POPs and its accumulation in vAT and circulating in plasma may be associated to a higher cardiovascular risk in women with obesity and hypertension, with or without antihypertensive treatment.
Collapse
Affiliation(s)
- Ana Ferro
- CINTESIS - Center for Research in Health Technologies and Information Systems, Porto, Portugal
- Interno de Formação Específica - Medicina Interna, Pedro Hispano General Hospital Matosinhos, Matosinhos, Portugal
| | - Diana Teixeira
- CINTESIS - Center for Research in Health Technologies and Information Systems, Porto, Portugal
- Nutrition & Metabolism, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
- Comprehensive Health Research Centre, NOVA Medical School|Faculdade de Ciências, Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Diogo Pestana
- CINTESIS - Center for Research in Health Technologies and Information Systems, Porto, Portugal
- Nutrition & Metabolism, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
- Comprehensive Health Research Centre, NOVA Medical School|Faculdade de Ciências, Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Rosário Monteiro
- Department of Biochemistry, Faculty of Medicine, University of Porto, Centro de Investigação Médica, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Cristina C Santos
- CINTESIS - Center for Research in Health Technologies and Information Systems, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Valentina F Domingues
- REQUIMTE/LAQV-GRAQ - Instituto Superior de Engenharia, Instituto Politécnico do Porto, Porto, Portugal
| | - Jorge Polónia
- Faculty of Medicine, University of Porto, Porto, Portugal
- Unit of Hypertension, Pedro Hispano General Hospital Matosinhos, Matosinhos, Portugal
| | - Conceição Calhau
- CINTESIS - Center for Research in Health Technologies and Information Systems, Porto, Portugal
- Nutrition & Metabolism, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
- Comprehensive Health Research Centre, NOVA Medical School|Faculdade de Ciências, Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
39
|
Argacha JF, Mizukami T, Bourdrel T, Bind MA. Ecology of the cardiovascular system: Part II - A focus on non-air related pollutants. Trends Cardiovasc Med 2018; 29:274-282. [PMID: 30224235 DOI: 10.1016/j.tcm.2018.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/22/2022]
Abstract
An integrated exposomic view of the relation between environment and cardiovascular health should consider the effects of both air and non-air related environmental stressors. Cardiovascular impacts of ambient air temperature, indoor and outdoor air pollution were recently reviewed. We aim, in this second part, to address the cardiovascular effects of noise, food pollutants, radiation, and some other emerging environmental factors. Road traffic noise exposure is associated with increased risk of premature arteriosclerosis, coronary artery disease, and stroke. Numerous studies report an increased prevalence of hypertension in people exposed to noise, especially while sleeping. Sleep disturbances generated by nocturnal noise are followed by a neuroendocrine stress response. Some oxidative and inflammatory endothelial reactions are observed during experimental session of noise exposure. Moreover, throughout the alimentation, the cardiovascular system is exposed to persistent organic pollutants (POPs) as dioxins or pesticides, and plastic associated chemicals (PACs), such as bisphenol A. Epidemiological studies show positive associations of exposures to POPs and PACs with diabetes, arteriosclerosis and cardiovascular disease incidence. POPs and PACS share some abilities to interact with nuclear receptors activating different pathways leading to oxidative stress, insulin resistance and angiotensin potentiation. Regarding radiation, survivors of nuclear explosion have an excess risk of cardiovascular disease. Dose-effect relationships remain debated, but an increased cardiovascular risk at low dose of radiation exposure may be of concern. Some emerging environmental factors like electromagnetic fields, greenspace and light exposure may also require further attention. Non-air related environmental stressors also play an important role in the burden of cardiovascular disease. Specific methodologies should be developed to assess the interactions between air and non-air related pollutants.
Collapse
Affiliation(s)
- J F Argacha
- Cardiology Department, Universitair Ziekenhuis Brussel, VUB, Belgium.
| | - T Mizukami
- Cardiology Department, Universitair Ziekenhuis Brussel, VUB, Belgium
| | - T Bourdrel
- Radiology Department, Imaging Medical Center Etoile-Neudorf, Strasbourg, France
| | - M-A Bind
- Department of Statistics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW To assess the strength of evidence for associations between environmental toxicants and hypertensive disorders of pregnancy, suggest potential biological mechanisms based on animal and in vitro studies, and highlight avenues for future research. RECENT FINDINGS Evidence is strongest for links between persistent chemicals, including lead, cadmium, organochlorine pesticides, and polycyclic biphenyls, and preeclampsia, although associations are sometimes not detectable at low-exposure levels. Results have been inconclusive for bisphenols, phthalates, and organophosphates. Biological pathways may include oxidative stress, epigenetic changes, endocrine disruption, and abnormal placental vascularization. Additional prospective epidemiologic studies beginning in the preconception period and extending postpartum are needed to assess the life course trajectory of environmental exposures and women's reproductive and cardiovascular health. Future studies should also consider interactions between chemicals and consider nonlinear associations. These results confirm recommendations by the International Federation of Gynecology and Obstetrics, the American Society for Reproductive Medicine, the American Academy of Pediatrics, and the Endocrine Society that providers counsel their pregnant patients to limit exposure to environmental toxicants.
Collapse
|
41
|
Ryu DH, Yu HT, Kim SA, Lee YM, Hong SH, Yoon YR, Kim DJ, Kim HC, Moon HB, Shin EC, Lee DH. Is Chronic Exposure to Low-Dose Organochlorine Pesticides a New Risk Factor of T-cell Immunosenescence? Cancer Epidemiol Biomarkers Prev 2018; 27:1159-1167. [PMID: 29991517 DOI: 10.1158/1055-9965.epi-17-0799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 01/10/2018] [Accepted: 07/04/2018] [Indexed: 11/16/2022] Open
Abstract
Background: T-cell immunosenescence, a hallmark of an aging immune system, is potentially linked to the risk of developing cancer and other aging-related diseases. Chronic infection by cytomegalovirus (CMV) has been widely studied as a risk factor for T-cell immunosenescence, but the role of persistent chemicals has never been examined. As a typical example of persistent chemicals, we evaluated whether organochlorine pesticides (OCPs) are related to T-cell immunosenescence in the general population.Methods: Serum concentrations of β-hexachlorocyclohexane, p,p'-DDT, p,p'-DDE, and trans-nonachlor were measured in 95 Korean adults ages 30 to 64 years. T-cell immunosenescence was assessed by the frequencies of CD8+CD57+, CD8+CD28-, CD4+CD57+, and CD4+CD28- T lymphocytes in 20 mL of fresh peripheral blood.Results: The senescence of CD8+ T lymphocytes was the most consistently associated with OCPs. For quartiles of measurements of OCPs, adjusted mean percentages of CD8+CD57+ and CD8+CD28- T lymphocytes in the CD8+ T lymphocyte population were 23.9, 27.6, 31.0, and 38.7 (P trend < 0.01) and 25.6, 27.3, 28.0, and 35.5 (P trend = 0.02), respectively. When we compared the strength of the associations among OCPs, CMV IgG titer, and age, OCPs showed the strongest association with markers of immunosenescence. Importantly, the association between OCPs and immunosenescence markers was more prominent among participants without known risk factors, such as a young age or low CMV immunoglobulin G titer.Conclusions: Chronic exposure to low-dose OCPs may be a new risk factor for T-cell immunosenescence.Impact: T-cell immunosenescence may be one possible mechanism linking low-dose OCPs and many chronic diseases. Cancer Epidemiol Biomarkers Prev; 27(10); 1159-67. ©2018 AACR.
Collapse
Affiliation(s)
- Dong-Hee Ryu
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Jung-gu, Daegu, Republic of Korea
| | - Hee Tae Yu
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Republic of Korea
| | - Se-A Kim
- BK 21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Jung-gu, Daegu, Republic of Korea
| | - Yu-Mi Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Jung-gu, Daegu, Republic of Korea
| | - Seon-Hui Hong
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Young-Ran Yoon
- Department of Biomedical Science, School of Medicine, Kyungpook National University and Hospital, Jung-gu, Daegu, Republic of Korea
| | - Dae-Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Hyeon-Chang Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Republic of Korea
| | - Hyo-Bang Moon
- Department of Environmental Marine Sciences, College of Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea.
| | - Duk-Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Jung-gu, Daegu, Republic of Korea. .,BK 21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Jung-gu, Daegu, Republic of Korea
| |
Collapse
|
42
|
Lu X, Xu X, Lin Y, Zhang Y, Huo X. Phthalate exposure as a risk factor for hypertension. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:20550-20561. [PMID: 29862479 DOI: 10.1007/s11356-018-2367-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/22/2018] [Indexed: 02/05/2023]
Abstract
Phthalates are ubiquitous in environment. Hypertension is a major risk factor for cardiovascular diseases. Phthalate exposure is associated with hypertension in multiple studies. This review aims to summarize the scientific literature on associations between phthalate exposure and hypertension and discuss the mechanisms in the relationship. We identified and reviewed original articles published to March 2018, using PubMed and Web of Science to search the terms "phthalate(s)," "phthalic acid," "blood pressure," "high blood pressure," "hypertension," "prehypertension," and "cardiovascular disease." Findings were summarized based on the relevance to the themes, including presentation of main phthalates and their major metabolites as well as associations of phthalate exposure with blood pressure in epidemiological and experimental studies. We identified ten population-based investigations and five toxicological experiments. Epidemiological data underscored a possible correlation between phthalate exposure and hypertension in adults, whereas individual study in children stands on the opposite. Experimental studies mainly targeted the increasing effect of phthalates on blood pressure. This review suggested some underlying mechanisms of phthalate-associated hypertension. Considering the current evidence, phthalate might be risk factors of hypertension. However, the effect of phthalate exposure in early life on blood pressure in later life or adulthood is still unclear. Well-designed longitudinal and molecular mechanism studies are indispensable.
Collapse
Affiliation(s)
- Xueling Lu
- Laboratory of Environmental Medicine and Developmental Toxicology and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yucong Lin
- Tabor Academy, Marion, MA, USA
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Yu Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China.
| |
Collapse
|
43
|
Mudumbi JBN, Ntwampe SKO, Mekuto L, Matsha T, Itoba-Tombo EF. The role of pollutants in type 2 diabetes mellitus (T2DM) and their prospective impact on phytomedicinal treatment strategies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:262. [PMID: 29610974 DOI: 10.1007/s10661-018-6634-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is the most common form of diabetes and it is characterized by high blood sugar and abnormal sera lipid levels. Although the specific reasons for the development of these abnormalities are still not well understood, traditionally, genetic and lifestyle behavior have been reported as the leading causes of this disease. In the last three decades, the number of diabetic patients has drastically increased worldwide, with current statistics suggesting the number is to double in the next two decades. To combat this incurable ailment, orthodox medicines, to which economically disadvantaged patients have minimal access to, have been used. Thus, a considerable amalgamation of medicinal plants has recently been proven to possess therapeutic capabilities to manage T2DM, and this has prompted studies primarily focusing on the healing aspect of these plants, and ultimately, their commercialization. Hence, this review aims to highlight the potential threat of pollutants, i.e., polyfluoroalkyl compounds (PFCs), endocrine disrupting chemicals (EDCs) and heavy metals, to medicinal plants, and their prospective impact on the phytomedicinal therapy strategies for T2DM. It is further suggested that auxiliary research be undertaken to better comprehend the factors that influence the uptake of these compounds by these plants. This should include a comprehensive risk assessment of phytomedicinal products destined for the treatment of T2DM. Regulations that control the use of PFC-precursors in certain developing countries are also long overdue.
Collapse
Affiliation(s)
- John Baptist Nzukizi Mudumbi
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa.
| | - Seteno Karabo Obed Ntwampe
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| | - Lukhanyo Mekuto
- Department of Chemical Engineering, University of Johannesburg, PO Box 17011, Johannesburg, Gauteng, 2028, South Africa
| | - Tandi Matsha
- Department of Bio-Medical sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa
| | - Elie Fereche Itoba-Tombo
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| |
Collapse
|
44
|
Helsley RN, Zhou C. Epigenetic impact of endocrine disrupting chemicals on lipid homeostasis and atherosclerosis: a pregnane X receptor-centric view. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx017. [PMID: 29119010 PMCID: PMC5672952 DOI: 10.1093/eep/dvx017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/08/2017] [Accepted: 09/02/2017] [Indexed: 05/25/2023]
Abstract
Despite the major advances in developing diagnostic techniques and effective treatments, atherosclerotic cardiovascular disease (CVD) is still the leading cause of mortality and morbidity worldwide. While considerable progress has been achieved to identify gene variations and environmental factors that contribute to CVD, much less is known about the role of "gene-environment interactions" in predisposing individuals to CVD. Our chemical environment has significantly changed in the last few decades, and there are more than 100,000 synthetic chemicals in the market. Recent large-scale human population studies have associated exposure to certain chemicals including many endocrine disrupting chemicals (EDCs) with increased CVD risk, and animal studies have also confirmed that some EDCs can cause aberrant lipid homeostasis and increase atherosclerosis. However, the underlying mechanisms of how exposure to those EDCs influences CVD risk remain elusive. Numerous EDCs can activate the nuclear receptor pregnane X receptor (PXR) that functions as a xenobiotic sensor to regulate host xenobiotic metabolism. Recent studies have demonstrated the novel functions of PXR in lipid homeostasis and atherosclerosis. In addition to directly regulating transcription, PXR has been implicated in the epigenetic regulation of gene transcription. Exposure to many EDCs can also induce epigenetic modifications, but little is known about how the changes relate to the onset or progression of CVD. In this review, we will discuss recent research on PXR and EDCs in the context of CVD and propose that PXR may play a previously unrealized role in EDC-mediated epigenetic modifications that affect lipid homeostasis and atherosclerosis.
Collapse
Affiliation(s)
- Robert N Helsley
- Department of Pharmacology and Nutritional Sciences, Center for Metabolic Disease Research, University of Kentucky, Lexington, KY 40536, USA
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Changcheng Zhou
- Department of Pharmacology and Nutritional Sciences, Center for Metabolic Disease Research, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
45
|
Dekita M, Wu Z, Ni J, Zhang X, Liu Y, Yan X, Nakanishi H, Takahashi I. Cathepsin S Is Involved in Th17 Differentiation Through the Upregulation of IL-6 by Activating PAR-2 after Systemic Exposure to Lipopolysaccharide from Porphyromonas gingivalis. Front Pharmacol 2017; 8:470. [PMID: 28769800 PMCID: PMC5511830 DOI: 10.3389/fphar.2017.00470] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 06/30/2017] [Indexed: 12/15/2022] Open
Abstract
Positive links have been found between periodontitis and numerous diseases in humans via persistent inflammation throughout the body. However, the main factors responsible for maintaining this pro-inflammatory condition are poorly understood. The spleen, the largest secondary immune organ, is a central hub regulating the immune response/inflammation due to the dendritic cell (DC) response to CD4+ T cell subtype differentiation, and lysosomal proteinase cathepsin S (CatS) is known to be involved in DC functions. In the present study, we found that CatS-induced IL-6 production by splenic DCs subsequently promotes Th17 differentiation, in response to systemic exposure to lipopolysaccharide derived from Porphyromonas gingivalis (PgLPS). The population of CD11c+ DCs was significantly increased in the splenic marginal zone (MZ) locally of wild-type (DBA/2) mice with splenomegaly but not in that of CatS deficient (CatS-/-) mice after systemic exposure to PgLPS for 7 consecutive days (5 mg/kg/day, intraperitoneal). Similarly, the population of Th17+CD4+ T cells was also significantly increased in the splenic MZ of wild-type mice but not in that of CatS-/- mice after PgLPS exposure. Furthermore, the increase in the Th17+ CD4+ T cell population paralleled increases in the levels of CatS and IL-6 in CD11c+ cells in the splenic MZ. In isolated primary splenic CD11c+ cells, the mRNA expression and the production of IL-6 was dramatically increased in wild-type mice but not in CatS-/- mice after direct stimulation with PgLPS (1 μg/ml), and this PgLPS-induced increase in the IL-6 expression was completely abolished by pre-treatment with Z-Phe-Leu-COCHO (Z-FL), the specific inhibitor of CatS. The PgLPS activated protease-activated receptor (PAR) 2 in the isolated splenic CD11c+ cells was also significantly inhibited by CatS deficiently. In addition, the PgLPS-induced increase in the IL-6 production by splenic CD11c+ cells was completely abolished by pre-treatment with FSLLRY-NH2, a PAR2 antagonist, as well as Akti, a specific inhibitor of Akt. These findings indicate that CatS plays a critical role in driving splenic DC-dependent Th17 differentiation through the upregulation of IL-6 by activating PAR2 after exposure to components of periodontal bacteria. Therefore, CatS-specific inhibitors may be effective in alleviating periodontitis-related immune/inflammation.
Collapse
Affiliation(s)
- Masato Dekita
- Section of Orthodontics and Dentofacial Orthopedics, Kyushu UniversityFukuoka, Japan
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Kyushu UniversityFukuoka, Japan.,OBT Research Center, Faculty of Dental Science, Kyushu UniversityFukuoka, Japan
| | - Junjun Ni
- Department of Aging Science and Pharmacology, Kyushu UniversityFukuoka, Japan
| | - Xinwen Zhang
- Department of Aging Science and Pharmacology, Kyushu UniversityFukuoka, Japan.,Center of Implant Dentistry, School of Stomatology, China Medical UniversityShenyang, China
| | - Yicong Liu
- Department of Aging Science and Pharmacology, Kyushu UniversityFukuoka, Japan
| | - Xu Yan
- The VIP Department, School of Stomatology, China Medical UniversityShenyang, China
| | - Hiroshi Nakanishi
- Department of Aging Science and Pharmacology, Kyushu UniversityFukuoka, Japan
| | - Ichiro Takahashi
- Section of Orthodontics and Dentofacial Orthopedics, Kyushu UniversityFukuoka, Japan
| |
Collapse
|
46
|
Henríquez-Hernández LA, Luzardo OP, Zumbado M, Serra-Majem L, Valerón PF, Camacho M, Álvarez-Pérez J, Salas-Salvadó J, Boada LD. Determinants of increasing serum POPs in a population at high risk for cardiovascular disease. Results from the PREDIMED-CANARIAS study. ENVIRONMENTAL RESEARCH 2017; 156:477-484. [PMID: 28415042 DOI: 10.1016/j.envres.2017.03.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 11/17/2022]
Affiliation(s)
- Luis A Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Instituto Canario de Investigación del Cáncer (ICIC), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Instituto Canario de Investigación del Cáncer (ICIC), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Instituto Canario de Investigación del Cáncer (ICIC), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Lluis Serra-Majem
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Spain; Preventive Medicine Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Pilar F Valerón
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Instituto Canario de Investigación del Cáncer (ICIC), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - María Camacho
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Instituto Canario de Investigación del Cáncer (ICIC), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Jacqueline Álvarez-Pérez
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Spain; Preventive Medicine Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Jordi Salas-Salvadó
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Spain; Human Nutrition Unit, Faculty of Medicine and Health Sciences, IISPV, Rovira i Virgili University, Reus, Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Instituto Canario de Investigación del Cáncer (ICIC), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| |
Collapse
|
47
|
Schæbel LK, Bonefeld-Jørgensen EC, Vestergaard H, Andersen S. The influence of persistent organic pollutants in the traditional Inuit diet on markers of inflammation. PLoS One 2017; 12:e0177781. [PMID: 28542407 PMCID: PMC5438139 DOI: 10.1371/journal.pone.0177781] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 05/03/2017] [Indexed: 12/02/2022] Open
Abstract
Concentrations of persistent organic pollutants (POPs) are high in Inuit living predominately on the traditional marine diet. Adverse effects of POPs include disruption of the immune system and cardiovascular diseases that are frequent in Greenland Inuit. We aimed to assess the association between exposure to POPs from the marine diet and inflammation, taking into account other factors such as vitamin D. We invited Inuit and non-Inuit living in settlements or the town in rural East Greenland or in the capital city Nuuk. Participants completed a food frequency questionnaire and donated a blood sample for measurement of the two markers of inflammation YKL-40 and hsCRP, 25-hydroxy-vitamin D, eleven organochlorine pesticides (OCPs), fourteen polychlorinated biphenyls (PCBs), one polybrominated biphenyl, and nine polybrominated diphenyl ethers (PBDEs) adjusted to the serum lipid content. Participants were 50 through 69 years old, living in settlements, town or city (n = 151/173/211; 95% participation rate). ΣOCP, ΣPCB and ΣPBDE serum levels were higher in Inuit than in non-Inuit (p<0.001/ p<0.001/ p<0.001), in older individuals (p<0.001/p<0.001/p = 0.002) and in participants with the highest intake of Greenlandic food items (p<0.001/p<0.001/p<0.001). Both YKL-40 and hsCRP serum levels were higher in Inuit compared to non-Inuit (p<0.001/p = 0.001), and increased with age (p<0.001/p = 0.001) and with the intake of Greenlandic food items (p<0.001/p = 0.002). Multivariate analysis conformed to a marked influence on both YKL-40 and hsCRP by ΣOCP (p<0.001/p<0.001) and ΣPCBs (p<0.001/p = 0.001) after adjusting for age, BMI, vitamin D, alcohol and smoking. POP levels were associated with the intake of the traditional Inuit diet and with markers of inflammation. This supports a pro-inflammatory role of POPs to promote chronic diseases common to populations in Greenland. These data inform guidelines on 'the Arctic dilemma' and encourage follow-up on the ageing Arctic populations.
Collapse
Affiliation(s)
- L. K. Schæbel
- Centre for Arctic Health, Department of Public Health, Aarhus University, Aarhus, Denmark
- Arctic Health Research Centre, Institute of Clinical Medicine, Aalborg University, Aalborg, Denmark
- * E-mail:
| | | | - H. Vestergaard
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - S. Andersen
- Arctic Health Research Centre, Institute of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Geriatric and Internal Medicine, Aalborg University Hospital, Aalborg, Denmark
- Institute of Health Sciences, Ilisimatusarfik, University of Greenland, Nuuk, Greenland
| |
Collapse
|
48
|
|
49
|
Trasande L, Lind PM, Lampa E, Lind L. Dismissing manufactured uncertainties, limitations and competing interpretations about chemical exposures and diabetes. J Epidemiol Community Health 2017; 71:942. [PMID: 28264882 DOI: 10.1136/jech-2017-208901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 11/03/2022]
Affiliation(s)
- Leonardo Trasande
- New York University (NYU) School of Medicine, New York, New York, USA.,NYU Wagner School of Public Service, New York, New York, USA.,NYU College of Global Public Health, New York University, New York, New York, USA
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| | - Erik Lampa
- Uppsala Clinical Research Center, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
50
|
Fernández-Cruz T, Martínez-Carballo E, Simal-Gándara J. Perspective on pre- and post-natal agro-food exposure to persistent organic pollutants and their effects on quality of life. ENVIRONMENT INTERNATIONAL 2017; 100:79-101. [PMID: 28089279 DOI: 10.1016/j.envint.2017.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/26/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Adipose tissue constitutes a continual source of internal exposure to organic pollutants (OPs). When fats mobilize during pregnancy and breastfeeding, OPs could affect foetal and neonatal development, respectively. SCOPE AND APPROACH The main aim of this review is to deal with pre- and post-natal external exposure to organic pollutants and their effects on health, proposing prevention measures to reduce their risk. The goal is the development of a biomonitoring framework program to estimate their impact on human health, and prevent exposure by recommending some changes in personal lifestyle habits. KEY FINDINGS AND CONCLUSIONS It has been shown that new studies should be developed taking into account their cumulative effect and the factors affecting their body burden. In conclusion, several programs should continuously be developed by different health agencies to have a better understanding of the effect of these substances and to develop a unified public policy.
Collapse
Affiliation(s)
- Tania Fernández-Cruz
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Elena Martínez-Carballo
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Jesús Simal-Gándara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| |
Collapse
|