1
|
Kiesewetter B, Melhorn P, Macheiner S, Wolff L, Kretschmer-Chott E, Haug A, Mazal P, Raderer M. Does the dose matter? Antiproliferative efficacy and toxicity of everolimus in patients with neuroendocrine tumors - Experiences from a tertiary referral center. J Neuroendocrinol 2023; 35:e13319. [PMID: 37485760 DOI: 10.1111/jne.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/12/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023]
Abstract
The mTOR-inhibitor everolimus has been approved for the treatment of advanced neuroendocrine tumors (NETs) but is associated with relevant toxicities in clinical practice. Hence, optimal treatment sequencing and the impact of dose reductions have yet to be clarified. This retrospective analysis assessed patients with advanced, well-differentiated NET treated with everolimus at the Medical University of Vienna. The primary objective was to evaluate the efficacy of everolimus in a real-world cohort. A total of 52 patients treated with everolimus for advanced NET grade 1 (G1) or G2 (or typical or atypical carcinoid) 2010-2021 were included in this analysis. The most common sites of origin were pancreas (44%) and lung (29%). The initial dose was decided by the treating physician based on clinical assessment and 25 patients (48%) each were started at 10 mg/day and 5 mg/day. Median progression-free survival (PFS) following everolimus in the overall cohort was 9.8 months (95% CI: 4.3-15.3), with a statistically significant PFS difference (p = .03) between NET G1/typical carcinoids (42.9 months) and NET G2/atypical carcinoids (8.9 months). PFS was numerically but not significantly shorter in patients treated with a reduced dose (7.5 months vs. 12.4 months, p = .359). Even in this mixed full/half dose cohort, 93% developed treatment-related side effects (mostly grade I, no grade IV), 63% had dose reductions or interruptions, and five stopped due to toxicity. Median survival following treatment was 40.9 months (95% CI: 21.5-60.3) and no difference with regard to dosing was observed (p = .517). These data from an unselected patient cohort show long-term outcomes similar to those reported in the pivotal studies. Comparing everolimus starting dose, median PFS did not significantly differ for patients treated at a lower dose. While this finding is limited by the sample size and warrants prospective verification, initiating therapy at a reduced dose might be practicable and safe in a distinct subset of patients.
Collapse
Affiliation(s)
- Barbara Kiesewetter
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Philipp Melhorn
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Simon Macheiner
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Ladislaia Wolff
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Kretschmer-Chott
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Alexander Haug
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Peter Mazal
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Markus Raderer
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Vitale G, Dicitore A, Barrea L, Sbardella E, Razzore P, Campione S, Faggiano A, Colao A, Albertelli M, Altieri B, Bottiglieri F, De Cicco F, Di Molfetta S, Fanciulli G, Feola T, Ferone D, Ferraù F, Gallo M, Giannetta E, Grillo F, Grossrubatscher E, Guadagno E, Guarnotta V, Isidori AM, Lania A, Lenzi A, Calzo FL, Malandrino P, Messina E, Modica R, Muscogiuri G, Pes L, Pizza G, Pofi R, Puliani G, Rainone C, Rizza L, Rubino M, Ruggieri RM, Sesti F, Venneri MA, Zatelli MC. From microbiota toward gastro-enteropancreatic neuroendocrine neoplasms: Are we on the highway to hell? Rev Endocr Metab Disord 2021; 22:511-525. [PMID: 32935263 PMCID: PMC8346435 DOI: 10.1007/s11154-020-09589-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Gut microbiota is represented by different microorganisms that colonize the intestinal tract, mostly the large intestine, such as bacteria, fungi, archaea and viruses. The gut microbial balance has a key role in several functions. It modulates the host's metabolism, maintains the gut barrier integrity, participates in the xenobiotics and drug metabolism, and acts as protection against gastro-intestinal pathogens through the host's immune system modulation. The impaired gut microbiota, called dysbiosis, may be the result of an imbalance in this equilibrium and is linked with different diseases, including cancer. While most of the studies have focused on the association between microbiota and gastrointestinal adenocarcinomas, very little is known about gastroenteropancreatic (GEP) neuroendocrine neoplasms (NENs). In this review, we provide an overview concerning the complex interplay between gut microbiota and GEP NENs, focusing on the potential role in tumorigenesis and progression in these tumors.
Collapse
Affiliation(s)
- Giovanni Vitale
- Istituto Auxologico Italiano IRCCS, Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Cusano Milanino, MI, Italy.
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy.
| | - Alessandra Dicitore
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Luigi Barrea
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Emilia Sbardella
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Paola Razzore
- Endocrinology Unit, A.O. Ordine Mauriziano, Turin, Italy
| | | | | | - Annamaria Colao
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Lin SR, Wen YC, Yeh HL, Jiang KC, Chen WH, Mokgautsi N, Huang J, Chen WY, Liu YN. EGFR-upregulated LIFR promotes SUCLG2-dependent castration resistance and neuroendocrine differentiation of prostate cancer. Oncogene 2020; 39:6757-6775. [PMID: 32963351 DOI: 10.1038/s41388-020-01468-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/23/2020] [Accepted: 09/10/2020] [Indexed: 11/09/2022]
Abstract
Neuroendocrine (NE) differentiation is a well-recognized phenotypic change of prostate cancer after androgen deprivation therapy (ADT), and it ultimately develops into an aggressive subset of this disease. However, the contribution of signaling pathways that lead to metabolic disorders and NE differentiation of prostate cancer remains unclear. In this study, we identified that ADT induced upregulation of the succinate-CoA ligase GDP-forming beta subunit (SUCLG2), which regulates succinate metabolism and NE differentiation of prostate cancer. We demonstrated a connection that upregulation of epidermal growth factor receptor (EGFR)-leukemia inhibitory factor receptor (LIFR) signaling induced SUCLG2 expression in prostate cancer cells. The LIFR is upregulated by nuclear EGFR, which acts as a transcriptional regulator, directly binds to the LIFR promoter, and drives NE differentiation and glycolysis of prostate cancer. LIFR upregulation is associated with SUCLG2, which increased succinate synthesis and enzymatic activities of mitochondrial nucleoside diphosphate kinase (NDPK) in prostate cancer cells. Knockdown of SUCLG2 suppressed NE differentiation in cultured cells and reduced prostate tumor growth in a xenograft model. Analysis of prostate tissue samples showed increased intensity of nuclear EGFR associated with the LIFR and SUCLG2 in castration-resistant prostate cancer tumors. Our study provides a mechanism whereby ADT upregulates EGFR-LIFR signaling that activates SUCLG2, which subsequently stimulates the metabolic changes associated with NE differentiation and aggressive prostate cancer phenotype.
Collapse
Affiliation(s)
- Shian-Ren Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Lien Yeh
- Institute of Information System and Applications, National Tsing Hua University, Hsinchu, Taiwan
| | - Kuo-Ching Jiang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Hao Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ntlotlang Mokgautsi
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
4
|
Gao C, Peng YN, Wang HZ, Fang SL, Zhang M, Zhao Q, Liu J. Inhibition of Heat Shock Protein 90 as a Novel Platform for the Treatment of Cancer. Curr Pharm Des 2020; 25:849-855. [PMID: 31244417 DOI: 10.2174/1381612825666190503145944] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
Heat shock protein 90 (Hsp90) plays an essential role in various physiological and pathological processes. It activates client proteins to participate in tumor progression. Blocking Hsp90 could enable effective antitumor effects in many tumor types, such as multiple myeloma and colon cancer. Recently, it has motivated an interest in Hsp90 inhibitors that bind to the N-terminal or C-terminal ATP pocket as antitumor drugs. We reviewed the data from experimental and clinical trials on Hsp90 inhibitors in the treatment of different malignancies to explore and summarize their antitumor mechanisms.
Collapse
Affiliation(s)
- Chang Gao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ya-Nan Peng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Hai-Zhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Shi-Lin Fang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Meng Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
5
|
Zanini S, Renzi S, Giovinazzo F, Bermano G. mTOR Pathway in Gastroenteropancreatic Neuroendocrine Tumor (GEP-NETs). Front Endocrinol (Lausanne) 2020; 11:562505. [PMID: 33304317 PMCID: PMC7701056 DOI: 10.3389/fendo.2020.562505] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) originate from neuroendocrine cells in the gastrointestinal tract. They are heterogeneous, and though initially considered rare tumors, the incidence of GEP-NENs has increased in the last few decades. Therapeutic approaches for the metastatic disease include surgery, radiological intervention by chemoembolisation, radiofrequency ablation, biological therapy in addition to somatostatin analogs, and PRRT therapy (177Lu-DOTATATE). The PI3K-AKT-mTOR pathway is essential in the regulation of protein translation, cell growth, and metabolism. Evidence suggests that the mTOR pathway is involved in malignant progression and resistance to treatment through over-activation of several mechanisms. PI3K, one of the main downstream of the Akt-mTOR axis, is mainly involved in the neoplastic process. This pathway is frequently deregulated in human tumors, making it a central target in the development of new anti-cancer treatments. Recent molecular studies identify potential targets within the PI3K/Akt/mTOR pathway in GEP-NENs. However, the use of target therapy has been known to lead to resistance due to several mechanisms such as feedback activation of alternative pathways, inactivation of protein kinases, and deregulation of the downstream mTOR components. Therefore, the specific role of targeted drugs for the management of GEP-NENs is yet to be well-defined. The variable clinical presentation of advanced neuroendocrine tumors is a significant challenge for designing studies. This review aims to highlight the role of the PI3K/Akt/mTOR pathway in the development of neuroendocrine tumors and further specify its potential as a therapeutic target in advanced stages.
Collapse
Affiliation(s)
- Sara Zanini
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Serena Renzi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Francesco Giovinazzo
- Fondazione Policlinico Universitario A. Gemelli Istituto di ricovero e cura a carattere scientifico (IRCCS), Department of Surgery -Transplantation Service, Rome, Italy
- *Correspondence: Francesco Giovinazzo
| | - Giovanna Bermano
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
- Giovanna Bermano
| |
Collapse
|
6
|
Romano D. Relevance of neuroendocrine tumours models assessed by kinomic profiling. ANNALES D'ENDOCRINOLOGIE 2019; 80:144-148. [PMID: 31054767 DOI: 10.1016/j.ando.2019.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although there is evidence of a significant rise of neuroendocrine tumours (NETs) incidence, current treatments are largely insufficient due to somewhat poor knowledge of these tumours. Despite many efforts achieved to expose driver oncogene mutations in NETs, the genetic landscape of NETs is characterized by relatively few mutations and chromosomal aberrations per tumour compared with other tumour types. In addition, NETs display few actionable mutations providing compelling rationale for targeted therapies. Recent works aiming at characterizing currently used NETs in vitro models at the genomic level raised concerns on their reliability as bona fide tools to study NETs biology. However, the lack of actionable mutation in NETs implies that sole use of genomic is not sufficient to describe these models and establish appropriate therapeutic strategies. Several kinases and kinase-involving signalling pathways have been demonstrated as abnormally regulated in NETs. Yet, kinases have only been investigated regardless of their involvement in large intracellular signalling networks. In order to assess the validity of in vitro NETs models to study NETs biology, "next-generation" high throughput functional technologies based on "kinome-wide activity" will demonstrate the similarities between signalling pathways in NETs models and patients' samples. These approaches will significantly assist in identifying actionable alterations in NETs signalling pathways and guide patient stratification into early-phase clinical trials based on kinase inhibition targeted therapies.
Collapse
Affiliation(s)
- David Romano
- Marseille Medical Genetics, MMG, U1251 Inserm, Aix-Marseille université, Marseille, France.
| |
Collapse
|
7
|
Herrera-Martínez AD, Hofland LJ, Gálvez Moreno MA, Castaño JP, de Herder WW, Feelders RA. Neuroendocrine neoplasms: current and potential diagnostic, predictive and prognostic markers. Endocr Relat Cancer 2019; 26:R157-R179. [PMID: 30615596 DOI: 10.1530/erc-18-0354] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
Some biomarkers for functioning and non-functioning neuroendocrine neoplasms (NENs) are currently available. Despite their application in clinical practice, results should be interpreted cautiously. Considering the variable sensitivity and specificity of these parameters, there is an unmet need for novel biomarkers to improve diagnosis and predict patient outcome. Nowadays, several new biomarkers are being evaluated and may become future tools for the management of NENs. These biomarkers include (1) peptides and growth factors; (2) DNA and RNA markers based on genomics analysis, for example, the so-called NET test, which has been developed for analyzing gene transcripts in circulating blood; (3) circulating tumor/endothelial/progenitor cells or cell-free tumor DNA, which represent minimally invasive methods that would provide additional information for monitoring treatment response and (4) improved imaging techniques with novel radiolabeled somatostatin analogs or peptides. Below we summarize some future directions in the development of novel diagnostic and predictive/prognostic biomarkers in NENs. This review is focused on circulating and selected tissue markers.
Collapse
Affiliation(s)
- Aura D Herrera-Martínez
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Reina Sofia University Hospital, Córdoba, Spain
| | - Leo J Hofland
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - María A Gálvez Moreno
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Reina Sofia University Hospital, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Reina Sofia University Hospital, Córdoba, Spain
| | - Wouter W de Herder
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Richard A Feelders
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
8
|
Abstract
Pancreatic neuroendocrine tumors are rare tumors of the pancreas originating from the islets of the Langerhans. These tumors comprise 1% to 3% of all newly diagnosed pancreatic cancers every year and have a unique heterogeneity in clinical presentation. Whole-genome sequencing has led to an increased understanding of the molecular biology of these tumors. In this review, we will summarize the current knowledge of the signaling pathways involved in the tumorigenesis of pancreatic neuroendocrine tumors as well as the major studies targeting these pathways at preclinical and clinical levels.
Collapse
|
9
|
Grillo F, Florio T, Ferraù F, Kara E, Fanciulli G, Faggiano A, Colao A. Emerging multitarget tyrosine kinase inhibitors in the treatment of neuroendocrine neoplasms. Endocr Relat Cancer 2018; 25:R453-R466. [PMID: 29769293 DOI: 10.1530/erc-17-0531] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/16/2018] [Indexed: 12/18/2022]
Abstract
In the last few years, the therapeutic approach for neuroendocrine neoplasms (NENs) has changed dramatically following the approval of several novel targeted treatments. The multitarget tyrosine kinase inhibitor (MTKI), sunitinib malate, has been approved by Regulatory Agencies in pancreatic NENs. The MTKI class, however, includes several other molecules (approved for other conditions), which are currently being studied in NENs. An in-depth review on the studies published on the MTKIs in neuroendocrine tumors such as axitinib, cabozantinib, famitinib, lenvatinib, nintedanib, pazopanib, sorafenib and sulfatinib was performed. Furthermore, we extensively searched on the Clinical Trial Registries databases worldwide, in order to collect information on the ongoing clinical trials related to this topic. Our systematic analysis on emerging MTKIs in the treatment of gastroenteropancreatic and lung NENs identifies in vitro and in vivo studies, which demonstrate anti-tumor activity of diverse MTKIs on neuroendocrine cells and tumors. Moreover, for the first time in the literature, we report an updated view concerning the upcoming clinical trials in this field: presently, phase I, II and III clinical trials are ongoing and will include, overall, a staggering 1667 patients. This fervid activity underlines the increasing interest of the scientific community in the use of emerging MTKIs in NEN treatment.
Collapse
Affiliation(s)
- Federica Grillo
- Pathology UnitDepartment of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
- Ospedale Policlinico San Martino IRCCSGenova, Italy
| | - Tullio Florio
- Pharmacology UnitDepartment of Internal Medicine (DIMI), University of Genova, Genova, Italy
| | - Francesco Ferraù
- Department of Human Pathology of Adulthood and ChildhoodUniversity of Messina, Messina, Italy
| | - Elda Kara
- Unit of EndocrinologyMetabolism, Diabetology and Nutrition, Azienda Sanitaria Universitaria Integrata di Udine, Ospedale Santa Maria della Misericordia, Udine, Italy
| | - Giuseppe Fanciulli
- Neuroendocrine Tumours UnitDepartment of Clinical and Experimental Medicine, University of Sassari - AOU Sassari, Sassari, Italy
| | - Antongiulio Faggiano
- Department of Clinical Medicine and SurgeryUniversity 'Federico II', Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and SurgeryUniversity 'Federico II', Naples, Italy
| | | |
Collapse
|
10
|
Blažević A, Hofland J, Hofland LJ, Feelders RA, de Herder WW. Small intestinal neuroendocrine tumours and fibrosis: an entangled conundrum. Endocr Relat Cancer 2018; 25:R115-R130. [PMID: 29233841 DOI: 10.1530/erc-17-0380] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
Small intestinal neuroendocrine tumours (SI-NETs) are neoplasms characterized by their ability to secrete biogenic amines and peptides. These cause distinct clinical pathology including carcinoid syndrome, marked by diarrhoea and flushing, as well as fibrosis, notably mesenteric fibrosis. Mesenteric fibrosis often results in significant morbidity by causing intestinal obstruction, oedema and ischaemia. Although advancements have been made to alleviate symptoms of carcinoid syndrome and prolong the survival of patients with SI-NETs, therapeutic options for patients with mesenteric fibrosis are still limited. As improved insight in the complex pathogenesis of mesenteric fibrosis is key to the development of new therapies, we evaluated the literature for known and putative mediators of fibrosis in SI-NETs. In this review, we discuss the tumour microenvironment, growth factors and signalling pathways involved in the complex process of fibrosis development and tumour progression in SI-NETs, in order to elucidate potential new avenues for scientific research and therapies to improve the management of patients suffering from the complications of mesenteric fibrosis.
Collapse
Affiliation(s)
- Anela Blažević
- Department of Internal MedicineSector Endocrinology, ENETS Centre of Excellence, Erasmus University Medical Center (Erasmus MC) and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Johannes Hofland
- Department of Internal MedicineSector Endocrinology, ENETS Centre of Excellence, Erasmus University Medical Center (Erasmus MC) and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Leo J Hofland
- Department of Internal MedicineSector Endocrinology, ENETS Centre of Excellence, Erasmus University Medical Center (Erasmus MC) and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Richard A Feelders
- Department of Internal MedicineSector Endocrinology, ENETS Centre of Excellence, Erasmus University Medical Center (Erasmus MC) and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Wouter W de Herder
- Department of Internal MedicineSector Endocrinology, ENETS Centre of Excellence, Erasmus University Medical Center (Erasmus MC) and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| |
Collapse
|
11
|
Maxwell JE, Sherman SK, Howe JR. Translational Diagnostics and Therapeutics in Pancreatic Neuroendocrine Tumors. Clin Cancer Res 2018; 22:5022-5029. [PMID: 27742788 DOI: 10.1158/1078-0432.ccr-16-0435] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/22/2016] [Indexed: 12/28/2022]
Abstract
Pancreatic neuroendocrine tumors (PNET) are rare tumors, but have been increasing in incidence. Although typically thought of as indolent, more than half of patients present with metastatic disease. For many years, the only mutations commonly known in these tumors were those in the MEN1 gene. Recently, the genetics underlying PNETs have been further defined through exome sequencing. The most frequent alterations found in sporadic PNETs are in MEN1, DAXX/ATRX, and a variety of genes in the mTOR pathway. Confirmation of these mutations has prompted trials with a number of drugs active in these pathways, and two drugs were eventually approved in 2011-sunitinib and everolimus. New data additionally identify the MET and CD47 receptors as potential novel drug targets. Yet despite improvements in progression-free survival with sunitinib and everolimus, further studies defining when to use these agents and factors associated with limitations in their utility are needed. As more discoveries are made in the laboratory that elucidate additional molecular mechanisms important in the initiation and metastasis of PNETs, continued efforts to translate these discoveries into distinct new therapies will be needed to improve patient survival. Clin Cancer Res; 22(20); 5022-9. ©2016 AACR SEE ALL ARTICLES IN THIS CCR FOCUS SECTION, "ENDOCRINE CANCERS REVISING PARADIGMS".
Collapse
Affiliation(s)
- Jessica E Maxwell
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Scott K Sherman
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - James R Howe
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa.
| |
Collapse
|
12
|
Prognostic and predictive role of the PI3K-AKT-mTOR pathway in neuroendocrine neoplasms. Clin Transl Oncol 2017; 20:561-569. [PMID: 29124519 DOI: 10.1007/s12094-017-1758-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/30/2017] [Indexed: 12/20/2022]
Abstract
Neuroendocrine neoplasms (NENs) are considered a heterogeneous and rare entity. Its natural history is influenced by multiple clinicopathological characteristics, which guide the management of these patients. The development of molecular biology reveals that the PI3K-AKT-mTOR pathway plays a relevant role in tumorigenesis and progression of NENs. Mammalian target of rapamycin (mTOR) inhibitors, targeted agents that block this pathway, has improved outcomes in neuroendocrine tumors (NETs). Different therapeutic approaches, such as somatostatin analogs, chemotherapy, peptide receptor radionuclide therapy, and targeted agents, have shown benefits in the treatment of NETs. However, there are not any established prognostic or predictive biomarkers to select the best therapy option to individualize treatment. Although a relation between alterations in the PI3K-AKT-mTOR pathway and clinical outcomes has not been found, these anomalies are considered attractive biomarkers. Additional molecular analysis should be integrated in future clinical trials' design to identify potential predictive or prognostic biomarkers.
Collapse
|
13
|
Carrasco P, Zuazo-Gaztelu I, Casanovas O. Sprouting strategies and dead ends in anti-angiogenic targeting of NETs. J Mol Endocrinol 2017; 59:R77-R91. [PMID: 28469004 DOI: 10.1530/jme-17-0029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/03/2017] [Indexed: 01/13/2023]
Abstract
Neuroendocrine tumors (NETs) are a heterogeneous group of neoplasms that arise from cells of the neuroendocrine system. NETs are characterized by being highly vascularized tumors that produce large amounts of proangiogenic factors. Due to their complexity and heterogeneity, progress in the development of successful therapeutic approaches has been limited. For instance, standard chemotherapy-based therapies have proven to be poorly selective for tumor cells and toxic for normal tissues. Considering the urge to develop an efficient therapy to treat NET patients, vascular targeting has been proposed as a new approach to block tumor growth. This review provides an update of the mechanisms regulating different components of vessels and their contribution to tumor progression in order to develop new therapeutic drugs. Following the description of classical anti-angiogenic therapies that target VEGF pathway, new angiogenic targets such as PDGFs, EGFs, FGFs and semaphorins are further explored. Based on recent research in the field, the combination of therapies that target multiple and different components of vessel formation would be the best approach to specifically target NETs and inhibit tumor growth.
Collapse
Affiliation(s)
- Patricia Carrasco
- Tumor Angiogenesis GroupProCURE, Catalan Institute of Oncology - IDIBELL, Barcelona, Spain
| | - Iratxe Zuazo-Gaztelu
- Tumor Angiogenesis GroupProCURE, Catalan Institute of Oncology - IDIBELL, Barcelona, Spain
| | - Oriol Casanovas
- Tumor Angiogenesis GroupProCURE, Catalan Institute of Oncology - IDIBELL, Barcelona, Spain
| |
Collapse
|
14
|
Liu IH, Kunz PL. Biologics in gastrointestinal and pancreatic neuroendocrine tumors. J Gastrointest Oncol 2017; 8:457-465. [PMID: 28736633 PMCID: PMC5506272 DOI: 10.21037/jgo.2016.12.09] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/04/2016] [Indexed: 12/19/2022] Open
Abstract
The development of biologic agents has ushered in a new era of precision medicine, opening the door to new therapeutic options designed to intelligently target cancer cells and their promoting factors, while leaving normal cells relatively unharmed. Biologics for the treatment of neuroendocrine tumors (NETs) have followed in the footsteps of regimens targeting pathways upregulated in other cancers, including the vascular endothelial growth factor (VEGF) and the mammalian target of rapamycin (mTOR). Through a number of clinical trials, the mTOR inhibitor everolimus and the receptor tyrosine kinase (RTK) inhibitor sunitinib were recently approved for NETs. Other biologics such as the VEGF-A inhibitor bevacizumab have also demonstrated promising clinical activity in NETs. Interestingly, though trials have demonstrated the efficacy of everolimus and sunitinib in extending progression-free survival (PFS) in NETs, objective response rates (RR) are uniformly low, indicating that the primary effect of these drugs is maintenance of stable disease. Due to the relatively indolent nature of the more common, well-differentiated variety of NETs, stable disease is often a reasonable goal for NET patients. Well-differentiated NETs have been shown to be poor responders to cytotoxic chemotherapy, underlining the important role of biologics in treating and managing NETs and their hormonal symptoms. Ongoing and future trials are investigating a wide variety of biologic compounds in NETs, including other RTK inhibitors, mTOR pathway inhibitors, and immune checkpoint inhibitors. Within this review, we will discuss major trials leading up to the FDA approval of everolimus and sunitinib for NETs, as well as other promising biologics currently under investigation in NET clinical trials.
Collapse
Affiliation(s)
- Iris H Liu
- Stanford University School of Medicine, Stanford, CA, USA
| | - Pamela L Kunz
- Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
15
|
Berardi R, Torniai M, Pusceddu S, Spada F, Ibrahim T, Brizzi MP, Antonuzzo L, Ferolla P, Panzuto F, Silvestris N, Partelli S, Ferretti B, Freddari F, Gucciardino C, Testa E, Concas L, Murgioni S, Bongiovanni A, Zichi C, Riva N, Rinzivillo M, Brunetti O, Giustini L, Di Costanzo F, Delle Fave G, Fazio N, De Braud F, Falconi M, Cascinu S. Prognostic impact of the cumulative dose and dose intensity of everolimus in patients with pancreatic neuroendocrine tumors. Cancer Med 2017; 6:1493-1499. [PMID: 28547856 PMCID: PMC5504331 DOI: 10.1002/cam4.1028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/18/2016] [Accepted: 12/30/2016] [Indexed: 12/19/2022] Open
Abstract
The aim of this work is to assess if cumulative dose (CD) and dose intensity (DI) of everolimus may affect survival of advanced pancreatic neuroendocrine tumors (PNETs) patients. One hundred and sixteen patients (62 males and 54 females, median age 55 years) with advanced PNETs were treated with everolimus for ≥3 months. According to a Receiver operating characteristics (ROC) analysis, patients were stratified into two groups, with CD ≤ 3000 mg (Group A; n = 68) and CD > 3000 mg (Group B; n = 48). The response rate and toxicity were comparable in the two groups. However, patients in group A experienced more dose modifications than patients in group B. Median OS was 24 months in Group A while in Group B it was not reached (HR: 26.9; 95% CI: 11.0-76.7; P < 0.0001). Patients who maintained a DI higher than 9 mg/day experienced a significantly longer OS and experienced a trend to higher response rate. Overall, our study results showed that both CD and DI of everolimus play a prognostic role for patients with advanced PNETs treated with everolimus. This should prompt efforts to continue everolimus administration in responsive patients up to at least 3000 mg despite delays or temporary interruptions.
Collapse
Affiliation(s)
- Rossana Berardi
- Clinica di Oncologia Medica, Università Politecnica delle Marche, AOU Ospedali Riuniti di, Ancona, Italy
| | - Mariangela Torniai
- Clinica di Oncologia Medica, Università Politecnica delle Marche, AOU Ospedali Riuniti di, Ancona, Italy
| | - Sara Pusceddu
- Medicina Oncologica 1, ENETS Center of excellence, Fondazione IRCCS Istituto Tumori, Milano, Italy
| | - Francesca Spada
- Unità di Oncologia Medica Gastrointestinale e Tumori Neuroendocrini (Unit of Gastrointestinal Medical Oncology and Neuroendocrine Tumors), IEO Istituto Europeo di Oncologia, Milano, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | | | - Lorenzo Antonuzzo
- SC di Oncologia Medica, Azienda Opedaliero-Universitaria Careggi, Firenze, Italy.,Doctorate Course in Genetics, Oncology and Clinical Medicine, University of Siena, Siena, Italy
| | - Piero Ferolla
- Multidisciplinary NET Group, Umbria Regional Cancer Network, Perugia, Italy
| | - Francesco Panzuto
- Digestive and Liver Disease, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, National Cancer Institute Giovanni Paolo II, Bari, Italy
| | - Stefano Partelli
- Chirurgia del Pancreas, Università Politecnica delle Marche, AOU Ospedali Riuniti di, Ancona, Italy.,Chirurgia del Pancreas, Ospedale San Raffaele IRCCS, Università Vita e Salute, Milano, Italy
| | - Benedetta Ferretti
- Oncologia Medica, Ospedale di San Severino, San Severino Marche (MC), Italy
| | | | | | - Enrica Testa
- Oncologia Medica, Ospedale di Urbino, Urbino, Italy
| | - Laura Concas
- Medicina Oncologica 1, ENETS Center of excellence, Fondazione IRCCS Istituto Tumori, Milano, Italy
| | - Sabina Murgioni
- Unità di Oncologia Medica Gastrointestinale e Tumori Neuroendocrini (Unit of Gastrointestinal Medical Oncology and Neuroendocrine Tumors), IEO Istituto Europeo di Oncologia, Milano, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Clizia Zichi
- Oncologia Medica, A.O.U. San Luigi, Orbassano (TO), Italy
| | - Nada Riva
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Maria Rinzivillo
- Digestive and Liver Disease, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Oronzo Brunetti
- Medical Oncology Unit, National Cancer Institute Giovanni Paolo II, Bari, Italy
| | | | | | - Gianfranco Delle Fave
- Digestive and Liver Disease, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Nicola Fazio
- Unità di Oncologia Medica Gastrointestinale e Tumori Neuroendocrini (Unit of Gastrointestinal Medical Oncology and Neuroendocrine Tumors), IEO Istituto Europeo di Oncologia, Milano, Italy
| | - Filippo De Braud
- Medicina Oncologica 1, ENETS Center of excellence, Fondazione IRCCS Istituto Tumori, Milano, Italy
| | - Massimo Falconi
- Chirurgia del Pancreas, Università Politecnica delle Marche, AOU Ospedali Riuniti di, Ancona, Italy.,Chirurgia del Pancreas, Ospedale San Raffaele IRCCS, Università Vita e Salute, Milano, Italy
| | - Stefano Cascinu
- Clinica di Oncologia Medica, Università Politecnica delle Marche, AOU Ospedali Riuniti di, Ancona, Italy.,Oncologia Medica, Università di Modena e Reggio Emilia, Modena, Italy
| |
Collapse
|
16
|
Hague A, Robbins HL. Akt as a potential prognostic marker in neuroendocrine tumors: a possibility? INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2016. [DOI: 10.2217/ije-2016-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Angela Hague
- School of Oral & Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol, BS1 2LY, UK
| | - Helen L Robbins
- Department of Medicine, University Hospitals Coventry & Warwickshire, Clifford Bridge Road, Coventry, CV2 2DX, UK
| |
Collapse
|
17
|
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) constitute a heterogeneous group of tumours associated with variable clinical presentations, growth rates, and prognoses. To improve the management of GEP-NENs, the WHO developed a classification system that enables tumours to be graded based on markers of cell proliferation in biopsy specimens. Indeed, histopathology has been a mainstay in the diagnosis of GEP-NENs, and the WHO grading system facilitates therapeutic decision-making; however, considerable intratumoural heterogeneity, predominantly comprising regional variations in proliferation rates, complicates the evaluation of tumour biology. The use of molecular imaging modalities to delineate the most-aggressive cell populations is becoming more widespread. In addition, molecular profiling is increasingly undertaken in the clinical setting, and genomic studies have revealed a number of chromosomal alterations in GEP-NENs, although the 'drivers' of neoplastic development have not been identified. Thus, our molecular understanding of GEP-NENs remains insufficient to inform on patient prognosis or selection for treatments, and the WHO classification continues to form the basis for management of this disease. Nevertheless, our increasing understanding of the molecular genetics and biology of GEP-NENs has begun to expose flaws in the WHO classification. We describe the current understanding of the molecular characteristics of GEP-NENs, and discuss how advances in molecular profiling measurements, including assays of circulating mRNAs, are likely to influence the management of these tumours.
Collapse
|
18
|
Berardi R, Morgese F, Torniai M, Savini A, Partelli S, Rinaldi S, Caramanti M, Ferrini C, Falconi M, Cascinu S. Medical treatment for gastro-entero-pancreatic neuroendocrine tumours. World J Gastrointest Oncol 2016; 8:389-401. [PMID: 27096034 PMCID: PMC4824717 DOI: 10.4251/wjgo.v8.i4.389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 02/16/2016] [Indexed: 02/05/2023] Open
Abstract
Gastro-entero-pancreatic neuroendocrine neoplasms (GEP-NENs) represents a various family of rare tumours. Surgery is the first choice in GEP-NENs patients with localized disease whilst in the metastatic setting many other treatment options are available. Somatostatin analogues are indicated for symptoms control in functioning tumours. Furthermore they may be effective to inhibit tumour progression. GEP-NENs pathogenesis has been extensively studied in the last years therefore several driver mutations pathway genes have been identified as crucial factors in their tumourigenesis. GEP-NENs can over-express vascular endothelial growth factor (VEGF), basic-fibroblastic growth factor, transforming growth factor (TGF-α and -β), platelet derived growth factor (PDGF), insulin-like growth factor-1 (IGF-1) and their receptors PDGF receptor, IGF-1 receptor, epidermal growth factor receptor, VEGF receptor, and c-kit (stem cell factor receptor) that can be considered as potential targets. The availability of new targeted agents, such as everolimus and sunitinib that are effective in advanced and metastatic pancreatic neuroendocrine tumours, has provided new treatment opportunities. Many trials combing new drugs are ongoing.
Collapse
|
19
|
Weckman A, Rotondo F, Di Ieva A, Syro LV, Butz H, Cusimano MD, Kovacs K. Autophagy in endocrine tumors. Endocr Relat Cancer 2015; 22:R205-18. [PMID: 25947570 DOI: 10.1530/erc-15-0042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2015] [Indexed: 12/12/2022]
Abstract
Autophagy is an important intracellular process involving the degradation of cytoplasmic components. It is involved in both physiological and pathological conditions, including cancer. The role of autophagy in cancer is described as a 'double-edged sword,' a term that reflects its known participation in tumor suppression, tumor survival and tumor cell proliferation. Available research regarding autophagy in endocrine cancer supports this concept. Autophagy shows promise as a novel therapeutic target in different types of endocrine cancer, inhibiting or increasing treatment efficacy in a context- and cell-type-dependent manner. At present, however, there is very little research concerning autophagy in endocrine tumors. No research was reported connecting autophagy to some of the tumors of the endocrine glands such as the pancreas and ovary. This review aims to elucidate the roles of autophagy in different types of endocrine cancer and highlight the need for increased research in the field.
Collapse
Affiliation(s)
- Andrea Weckman
- Division of NeurosurgeryDepartment of SurgeryDivision of PathologyDepartment of Laboratory Medicine, St Michael's Hospital, 30 Bond Street, Toronto, Ontario, M5B 1W8 CanadaDepartment of NeurosurgeryHospital Pablo Tobon Uribe and Clínica Medellin, Medellin, Colombia
| | - Fabio Rotondo
- Division of NeurosurgeryDepartment of SurgeryDivision of PathologyDepartment of Laboratory Medicine, St Michael's Hospital, 30 Bond Street, Toronto, Ontario, M5B 1W8 CanadaDepartment of NeurosurgeryHospital Pablo Tobon Uribe and Clínica Medellin, Medellin, Colombia
| | - Antonio Di Ieva
- Division of NeurosurgeryDepartment of SurgeryDivision of PathologyDepartment of Laboratory Medicine, St Michael's Hospital, 30 Bond Street, Toronto, Ontario, M5B 1W8 CanadaDepartment of NeurosurgeryHospital Pablo Tobon Uribe and Clínica Medellin, Medellin, Colombia
| | - Luis V Syro
- Division of NeurosurgeryDepartment of SurgeryDivision of PathologyDepartment of Laboratory Medicine, St Michael's Hospital, 30 Bond Street, Toronto, Ontario, M5B 1W8 CanadaDepartment of NeurosurgeryHospital Pablo Tobon Uribe and Clínica Medellin, Medellin, Colombia
| | - Henriett Butz
- Division of NeurosurgeryDepartment of SurgeryDivision of PathologyDepartment of Laboratory Medicine, St Michael's Hospital, 30 Bond Street, Toronto, Ontario, M5B 1W8 CanadaDepartment of NeurosurgeryHospital Pablo Tobon Uribe and Clínica Medellin, Medellin, Colombia
| | - Michael D Cusimano
- Division of NeurosurgeryDepartment of SurgeryDivision of PathologyDepartment of Laboratory Medicine, St Michael's Hospital, 30 Bond Street, Toronto, Ontario, M5B 1W8 CanadaDepartment of NeurosurgeryHospital Pablo Tobon Uribe and Clínica Medellin, Medellin, Colombia
| | - Kalman Kovacs
- Division of NeurosurgeryDepartment of SurgeryDivision of PathologyDepartment of Laboratory Medicine, St Michael's Hospital, 30 Bond Street, Toronto, Ontario, M5B 1W8 CanadaDepartment of NeurosurgeryHospital Pablo Tobon Uribe and Clínica Medellin, Medellin, Colombia
| |
Collapse
|
20
|
Basuroy R, Sarker D, Quaglia A, Srirajaskanthan R, Ramage J. Personalized medicine for gastroenteropancreatic neuroendocrine tumors: a distant dream? INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2015. [DOI: 10.2217/ije.15.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuroendocrine tumors are heterogeneous cancers that can present with advanced disease. Treatment stratification is often based on limited characterization of tumor behavior from histological grade and imaging assessments. Personalized medicine strategies focus on tailoring therapy through characterization of cancer pathways and the development of biomarkers. This review article explores the current personalized medicine landscape in gastroenteropancreatic neuroendocrine tumors, from tissue and circulating biomarkers development through to tumor heterogeneity and reimbursement issues.
Collapse
Affiliation(s)
- Ron Basuroy
- ENETS Neuroendocrine Centre of Excellence, Institute of Liver studies, King's College Hospital, London, SE5 9RS, UK
| | - Debashis Sarker
- ENETS Neuroendocrine Centre of Excellence, Institute of Liver studies, King's College Hospital, London, SE5 9RS, UK
- Department of Research Oncology, Division of Cancer Studies, King's College London, Strand, WC2R 2LS, UK
| | - Alberto Quaglia
- ENETS Neuroendocrine Centre of Excellence, Institute of Liver studies, King's College Hospital, London, SE5 9RS, UK
- Histopathology Department, Institute of Liver Studies, King's College Hospital, London, SE5 9RS, UK
| | - Rajaventhan Srirajaskanthan
- ENETS Neuroendocrine Centre of Excellence, Institute of Liver studies, King's College Hospital, London, SE5 9RS, UK
- Gastroenterology Department, University Hospital Lewisham, London, SE13 6LH, UK
| | - John Ramage
- ENETS Neuroendocrine Centre of Excellence, Institute of Liver studies, King's College Hospital, London, SE5 9RS, UK
- Gastroenterology Department, Hampshire Hospitals NHS Trust, Hampshire, RG24 9NA, UK
| |
Collapse
|
21
|
Sei Y, Zhao X, Forbes J, Szymczak S, Li Q, Trivedi A, Voellinger M, Joy G, Feng J, Whatley M, Jones MS, Harper UL, Marx SJ, Venkatesan AM, Chandrasekharappa SC, Raffeld M, Quezado MM, Louie A, Chen CC, Lim RM, Agarwala R, Schäffer AA, Hughes MS, Bailey-Wilson JE, Wank SA. A Hereditary Form of Small Intestinal Carcinoid Associated With a Germline Mutation in Inositol Polyphosphate Multikinase. Gastroenterology 2015; 149:67-78. [PMID: 25865046 PMCID: PMC4858647 DOI: 10.1053/j.gastro.2015.04.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/26/2015] [Accepted: 04/02/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Small intestinal carcinoids are rare and difficult to diagnose and patients often present with advanced incurable disease. Although the disease occurs sporadically, there have been reports of family clusters. Hereditary small intestinal carcinoid has not been recognized and genetic factors have not been identified. We performed a genetic analysis of families with small intestinal carcinoids to establish a hereditary basis and find genes that might cause this cancer. METHODS We performed a prospective study of 33 families with at least 2 cases of small intestinal carcinoids. Affected members were characterized clinically and asymptomatic relatives were screened and underwent exploratory laparotomy for suspected tumors. Disease-associated mutations were sought using linkage analysis, whole-exome sequencing, and copy number analyses of germline and tumor DNA collected from members of a single large family. We assessed expression of mutant protein, protein activity, and regulation of apoptosis and senescence in lymphoblasts derived from the cases. RESULTS Familial and sporadic carcinoids are clinically indistinguishable except for the multiple synchronous primary tumors observed in most familial cases. Nearly 34% of asymptomatic relatives older than age 50 were found to have occult tumors; the tumors were cleared surgically from 87% of these individuals (20 of 23). Linkage analysis and whole-exome sequencing identified a germline 4-bp deletion in the gene inositol polyphosphate multikinase (IPMK), which truncates the protein. This mutation was detected in all 11 individuals with small intestinal carcinoids and in 17 of 35 family members whose carcinoid status was unknown. Mutant IPMK had reduced kinase activity and nuclear localization, compared with the full-length protein. This reduced activation of p53 and increased cell survival. CONCLUSIONS We found that small intestinal carcinoids can occur as an inherited autosomal-dominant disease. The familial form is characterized by multiple synchronous primary tumors, which might account for 22%-35% of cases previously considered sporadic. Relatives of patients with familial carcinoids should be screened to detect curable early stage disease. IPMK haploinsufficiency promotes carcinoid tumorigenesis.
Collapse
Affiliation(s)
- Yoshitatsu Sei
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Xilin Zhao
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Joanne Forbes
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Silke Szymczak
- Computational and Statistical Genomics Branch, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Qing Li
- Computational and Statistical Genomics Branch, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Apurva Trivedi
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Mark Voellinger
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Grishma Joy
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Jianying Feng
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Millie Whatley
- Nuclear Medicine Division, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - MaryPat Sussex Jones
- Genomics Core/Genome Technology Branch, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Ursula L. Harper
- Genomics Core/Genome Technology Branch, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Stephen J. Marx
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Aradhana M. Venkatesan
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Mark Raffeld
- Laboratory of Pathology, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Martha M. Quezado
- Laboratory of Pathology, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Adeline Louie
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Clara C. Chen
- Nuclear Medicine Division, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ramona M. Lim
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Richa Agarwala
- Information Engineering Branch, NCBI, NLM, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro A. Schäffer
- Computational Biology Branch, NCBI, NLM, National Institutes of Health, Bethesda, MD, USA
| | | | - Joan E. Bailey-Wilson
- Computational and Statistical Genomics Branch, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Stephen A. Wank
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA,To whom correspondence should be addressed: Stephen A. Wank, M.D., Address: DDB/NIDDK/NIH, 10/9C-101, Bethesda, MD 20892, , Phone: (301) 402-3704, Fax: (301) 480-7476
| |
Collapse
|
22
|
François RA, Maeng K, Nawab A, Kaye FJ, Hochwald SN, Zajac-Kaye M. Targeting Focal Adhesion Kinase and Resistance to mTOR Inhibition in Pancreatic Neuroendocrine Tumors. J Natl Cancer Inst 2015; 107:djv123. [PMID: 25971297 DOI: 10.1093/jnci/djv123] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/08/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Focal adhesion kinase (FAK) mediates survival of normal pancreatic islets through activation of AKT. Upon malignant transformation of islet cells into pancreatic neuroendocrine tumors (PanNETs), AKT is frequently overexpressed and mutations in the AKT/mTOR pathway are detected. Because mTOR inhibitors rarely induce PanNET tumor regression, partly because of feedback activation of AKT, novel combination strategies are needed to target FAK/AKT/mTOR signaling. METHODS We characterized the activation of FAK in PanNETs using immunohistochemistry and Western blot analysis and tested the FAK inhibitor PF-04554878 in human PanNET cells in vitro and in vivo (at least three mice per group). In addition, we evaluated the effect of combined FAK and mTOR inhibition on PanNET viability and apoptosis. All statistical tests were two-sided. RESULTS We found that FAK is overexpressed and hyperphosphorylated in human PanNETs and that PF-04554878 strongly inhibited FAK (Tyr397) autophosphorylation in a dose-dependent manner. We found that PF-04554878 inhibited cell proliferation and clonogenicity and induced apoptosis in PanNET cells. Moreover, oral administration of PF-04554878 statistically significantly reduced tumor growth in a patient-derived xenograft model of PanNET (P = .02) and in a human PanNET xenograft model of peritoneal carcinomatosis (P = .03). Importantly, PF-04554878 synergized with the mTOR inhibitor everolimus by preventing feedback AKT activation. CONCLUSIONS We demonstrate for the first time that FAK is overexpressed in PanNETs and that inhibition of FAK activity induces apoptosis and inhibits PanNET proliferation. We found that the novel FAK inhibitor PF-04554878 synergizes with everolimus, a US Food and Drug Administration-approved agent for PanNETs. Our findings warrant the clinical investigation of combined FAK and mTOR inhibition in PanNETs.
Collapse
Affiliation(s)
- Rony A François
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RAF, KM, AN, MZK); Department of Medicine, University of Florida College of Medicine, Gainesville, FL (FJK); Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY (SNH)
| | - Kyungah Maeng
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RAF, KM, AN, MZK); Department of Medicine, University of Florida College of Medicine, Gainesville, FL (FJK); Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY (SNH)
| | - Akbar Nawab
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RAF, KM, AN, MZK); Department of Medicine, University of Florida College of Medicine, Gainesville, FL (FJK); Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY (SNH)
| | - Frederic J Kaye
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RAF, KM, AN, MZK); Department of Medicine, University of Florida College of Medicine, Gainesville, FL (FJK); Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY (SNH)
| | - Steven N Hochwald
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RAF, KM, AN, MZK); Department of Medicine, University of Florida College of Medicine, Gainesville, FL (FJK); Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY (SNH)
| | - Maria Zajac-Kaye
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RAF, KM, AN, MZK); Department of Medicine, University of Florida College of Medicine, Gainesville, FL (FJK); Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY (SNH)
| |
Collapse
|
23
|
Capurso G, Archibugi L, Delle Fave G. Molecular pathogenesis and targeted therapy of sporadic pancreatic neuroendocrine tumors. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2015; 22:594-601. [PMID: 25619712 DOI: 10.1002/jhbp.210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 12/11/2014] [Indexed: 12/11/2022]
Abstract
Over the past few years, knowledge regarding the molecular pathology of sporadic pancreatic neuroendocrine tumors (PNETs) has increased substantially, and a number of targeted agents have been tested in clinical trials in this tumor type. For some of these agents there is a strong biological rationale. Among them, the mammalian target of rapamycin inhibitor Everolimus and the antiangiogenic agent Sunitinib have both been approved for the treatment of PNETs. However, there is lack of knowledge regarding biomarkers able to predict their efficacy, and mechanisms of resistance. Other angiogenesis inhibitors, such as Pazopanib, inhibitors of Src, Hedgehog or of PI3K might all be useful in association or sequence with approved agents. On the other hand, the clinical significance, and potential for treatment of the most common mutations occurring in sporadic PNETs, in the MEN-1 gene and in ATRX and DAXX, remains uncertain. The present paper reviews the main molecular changes occurring in PNETs and how they might be linked with treatment options.
Collapse
Affiliation(s)
- Gabriele Capurso
- Digestive and Liver Disease Unit, Faculty of Medicine and Psychology, Sapienza University of Rome at S. Andrea Hospital, Rome, Italy
| | - Livia Archibugi
- Digestive and Liver Disease Unit, Faculty of Medicine and Psychology, Sapienza University of Rome at S. Andrea Hospital, Rome, Italy
| | - Gianfranco Delle Fave
- Digestive and Liver Disease Unit, Faculty of Medicine and Psychology, Sapienza University of Rome at S. Andrea Hospital, Rome, Italy
| |
Collapse
|
24
|
Kidd M, Modlin IM, Bodei L, Drozdov I. Decoding the Molecular and Mutational Ambiguities of Gastroenteropancreatic Neuroendocrine Neoplasm Pathobiology. Cell Mol Gastroenterol Hepatol 2015; 1:131-153. [PMID: 28210673 PMCID: PMC5301133 DOI: 10.1016/j.jcmgh.2014.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/19/2014] [Indexed: 02/08/2023]
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN), considered a heterogeneous neoplasia, exhibit ill-defined pathobiology and protean symptomatology and are ubiquitous in location. They are difficult to diagnose, challenging to manage, and outcome depends on cell type, secretory product, histopathologic grading, and organ of origin. A morphologic and molecular genomic review of these lesions highlights tumor characteristics that can be used clinically, such as somatostatin-receptor expression, and confirms features that set them outside the standard neoplasia paradigm. Their unique pathobiology is useful for developing diagnostics using somatostatin-receptor targeted imaging or uptake of radiolabeled amino acids specific to secretory products or metabolism. Therapy has evolved via targeting of protein kinase B signaling or somatostatin receptors with drugs or isotopes (peptide-receptor radiotherapy). With DNA sequencing, rarely identified activating mutations confirm that tumor suppressor genes are relevant. Genomic approaches focusing on cancer-associated genes and signaling pathways likely will remain uninformative. Their uniquely dissimilar molecular profiles mean individual tumors are unlikely to be easily or uniformly targeted by therapeutics currently linked to standard cancer genetic paradigms. The prevalence of menin mutations in pancreatic NEN and P27KIP1 mutations in small intestinal NEN represents initial steps to identifying a regulatory commonality in GEP-NEN. Transcriptional profiling and network-based analyses may define the cellular toolkit. Multianalyte diagnostic tools facilitate more accurate molecular pathologic delineations of NEN for assessing prognosis and identifying strategies for individualized patient treatment. GEP-NEN remain unique, poorly understood entities, and insight into their pathobiology and molecular mechanisms of growth and metastasis will help identify the diagnostic and therapeutic weaknesses of this neoplasia.
Collapse
Key Words
- 5-HT, serotonin, 5-hydroxytryptamine
- Akt, protein kinase B
- BRAF, gene encoding serine/threonine-protein kinase B-Raf
- Blood
- CGH, comparative genomic hybridization
- CREB, cAMP response element-binding protein
- Carcinoid
- CgA, chromogranin A
- D cell, somatostatin
- DAG, diacylglycerol
- EC, enterochromaffin
- ECL, enterochromaffin-like
- EGFR, epidermal growth factor receptor
- ERK, extracellular-signal-regulated kinase
- G cell, gastrin
- GABA, γ-aminobutyric acid
- GEP-NEN, gastroenteropancreatic neuroendocrine neoplasms
- GPCR, G-protein coupled receptor
- Gastroenteropancreatic Neuroendocrine Neoplasms
- IGF-I, insulin-like growth factor-I
- ISG, immature secretory vesicles
- Ki-67
- LOH, loss of heterozygosity
- MAPK, mitogen-activated protein kinase
- MEN-1/MEN1, multiple endocrine neoplasia type 1
- MSI, microsatellite instability
- MTA, metastasis associated-1
- NEN, neuroendocrine neoplasms
- NFκB, nuclear factor κB
- PET, positron emission tomography
- PI3, phosphoinositide-3
- PI3K, phosphoinositide-3 kinase
- PKA, protein kinase A
- PKC, protein kinase C
- PTEN, phosphatase and tensin homolog deleted on chromosome 10
- Proliferation
- SD-208, 2-(5-chloro-2-fluorophenyl)-4-[(4-pyridyl)amino]p-teridine
- SNV, single-nucleotide variant
- SSA, somatostatin analog
- SST, somatostatin
- Somatostatin
- TGF, transforming growth factor
- TGN, trans-Golgi network
- TSC2, tuberous sclerosis complex 2 (tuberin)
- Transcriptome
- VMAT, vesicular monoamine transporters
- X/A-like cells, ghrelin
- cAMP, adenosine 3′,5′-cyclic monophosphate
- mTOR, mammalian target of rapamycin
- miR/miRNA, micro-RNA
Collapse
Affiliation(s)
| | - Irvin M. Modlin
- Correspondence Address correspondence to: Irvin M. Modlin, MD, PhD, The Gnostic Consortium, Wren Laboratories, 35 NE Industrial Road, Branford, Connecticut, 06405.
| | | | | |
Collapse
|
25
|
Robbins HL, Hague A. The PI3K/Akt Pathway in Tumors of Endocrine Tissues. Front Endocrinol (Lausanne) 2015; 6:188. [PMID: 26793165 PMCID: PMC4707207 DOI: 10.3389/fendo.2015.00188] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/07/2015] [Indexed: 12/29/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is a key driver in carcinogenesis. Defects in this pathway in human cancer syndromes such as Cowden's disease and Multiple Endocrine Neoplasia result in tumors of endocrine tissues, highlighting its importance in these cancer types. This review explores the growing evidence from multiple animal and in vitro models and from analysis of human tumors for the involvement of this pathway in the following: thyroid carcinoma subtypes, parathyroid carcinoma, pituitary tumors, adrenocortical carcinoma, phaeochromocytoma, neuroblastoma, and gastroenteropancreatic neuroendocrine tumors. While data are not always consistent, immunohistochemistry performed on human tumor tissue has been used alongside other techniques to demonstrate Akt overactivation. We review active Akt as a potential prognostic marker and the PI3K pathway as a therapeutic target in endocrine neoplasia.
Collapse
Affiliation(s)
- Helen Louise Robbins
- Department of General Surgery, University Hospital Coventry and Warwickshire, Coventry, UK
| | - Angela Hague
- School of Oral and Dental Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- *Correspondence: Angela Hague,
| |
Collapse
|
26
|
De Dosso S, Grande E, Barriuso J, Castellano D, Tabernero J, Capdevila J. The targeted therapy revolution in neuroendocrine tumors: in search of biomarkers for patient selection and response evaluation. Cancer Metastasis Rev 2014; 32:465-77. [PMID: 23589060 DOI: 10.1007/s10555-013-9421-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The molecular events of tumorigenesis in neuroendocrine tumors are poorly understood. Understanding of the molecular alterations will lead to the identification of molecular markers, providing new targets for therapeutics. The purpose of this review was to critically analyze the genetic abnormalities in neuroendocrine tumors, with the aim of identifying biomarkers that indicate a response to agents developed against these targets and to serve as an understanding for the combinations of different active compounds. Human epidermal growth factor receptor 1/2 (EGFR and HER2), vascular endothelial growth factor receptors, hepatocyte growth factor receptor (c-Met), platelet-derived growth factor receptor, insulin-like growth factor, phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin pathway, and heat shock proteins are all interesting candidate biomarkers with involvement in carcinogenesis and tumor evolution of several neoplasms, including neuroendocrine tumors. Some of them have already been evaluated both as targets and also as biomarkers in clinical trials conducted in advanced neuroendocrine tumor settings, and others should encourage further investigations into innovative therapeutic opportunities.
Collapse
Affiliation(s)
- Sara De Dosso
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
Meeker A, Heaphy C. Gastroenteropancreatic endocrine tumors. Mol Cell Endocrinol 2014; 386:101-20. [PMID: 23906538 DOI: 10.1016/j.mce.2013.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 02/06/2023]
Abstract
Gastroenteropancreatic endocrine tumors (GEP-NETs) are relatively uncommon; comprising approximately 0.5% of all human cancers. Although they often exhibit relatively indolent clinical courses, GEP-NETs have the potential for lethal progression. Due to their scarcity and various technical challenges, GEP-NETs have been understudied. As a consequence, we have few diagnostic, prognostic and predictive biomarkers for these tumors. Early detection and surgical removal is currently the only reliable curative treatment for GEP-NET patients; many of whom, unfortunately, present with advanced disease. Here, we review the genetics and epigenetics of GEP-NETs. The last few years have witnessed unprecedented technological advances in these fields, and their application to GEP-NETS has already led to important new information on the molecular abnormalities underlying them. As outlined here, we expect that "omics" studies will provide us with new diagnostic and prognostic biomarkers, inform the development of improved pre-clinical models, and identify novel therapeutic targets for GEP-NET patients.
Collapse
Affiliation(s)
- Alan Meeker
- The Johns Hopkins University School of Medicine, Department of Pathology, Bond Street Research Annex Bldg., Room B300, 411 North Caroline Street, Baltimore, MD 21231, United States.
| | - Christopher Heaphy
- The Johns Hopkins University School of Medicine, Department of Pathology, Bond Street Research Annex Bldg., Room B300, 411 North Caroline Street, Baltimore, MD 21231, United States
| |
Collapse
|
28
|
Valentino JD, Li J, Zaytseva YY, Mustain WC, Elliott VA, Kim JT, Harris JW, Campbell K, Weiss H, Wang C, Song J, Anthony L, Townsend CM, Evers BM. Cotargeting the PI3K and RAS pathways for the treatment of neuroendocrine tumors. Clin Cancer Res 2014; 20:1212-22. [PMID: 24443523 DOI: 10.1158/1078-0432.ccr-13-1897] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND The precise involvement of the PI3K/mTOR and RAS/MEK pathways in carcinoid tumors is not well defined. Therefore, the purpose of our study was to evaluate the role these pathways play in carcinoid cell proliferation, apoptosis, and secretion and to determine the effects of combined treatment on carcinoid tumor inhibition. METHODS The human neuroendocrine cell lines BON (pancreatic carcinoid), NCI-H727 (lung carcinoid), and QGP-1 (somatostatinoma) were treated with either the pan-PI3K inhibitor, BKM120, or the dual PI3K-mTOR inhibitor, BEZ235, alone or in combination with the MEK inhibitor, PD0325901; proliferation, apoptosis, and protein expression were assessed. Peptide secretion was evaluated in BON and QGP-1 cells. The antiproliferative effect of BEZ235, alone or combined with PD0325901, was then tested in vivo. RESULTS Both BKM120 and BEZ235 decreased proliferation and increased apoptosis; combination with PD0325901 significantly enhanced the antineoplastic effects of either treatment alone. In contrast, neurotensin peptide secretion was markedly stimulated with BKM120 treatment, but not BEZ235. The combination of BEZ235 + PD0325901 significantly inhibited the growth of BON xenografts without systemic toxicity. CONCLUSIONS Both BKM120 and BEZ235 effectively inhibited neuroendocrine tumor (NET) cell proliferation and stimulated apoptosis. However, inhibition of the PI3K pathway alone with BKM120 significantly stimulated neurotensin peptide secretion; this did not occur with the dual inhibition of both PI3K and mTOR using BEZ235 suggesting that this would be a more effective treatment regimen for NETs. Moreover, the combination of BEZ235 and the MEK inhibitor PD0325901 was a safe and more effective therapy in vivo compared with single agents alone.
Collapse
Affiliation(s)
- Joseph D Valentino
- Authors' Affiliations: Departments of Surgery, Internal Medicine, and Biostatistics; Markey Cancer Center, University of Kentucky, Lexington, Kentucky; and Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dual inhibition of PI3K and mTOR signaling pathways decreases human pancreatic neuroendocrine tumor metastatic progression. Pancreas 2014; 43:88-92. [PMID: 24263107 PMCID: PMC3864633 DOI: 10.1097/mpa.0b013e3182a44ab4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Patients with advanced pancreatic neuroendocrine tumors have limited therapeutic options. Everolimus (RAD001), an inhibitor of the mammalian target of rapamycin (mTOR) pathway, has been shown to increase progression-free survival, but not overall survival, indicating a need to identify additional therapeutic targets. Inhibition of mTOR complex 1 by RAD001 may induce upstream AKT upregulation. We hypothesized that dual inhibition of AKT along with mTOR will overcome the limited activity of RAD001 alone. METHODS The BON cell line has been used as a model to study pancreatic neuroendocrine tumor cell biology. Western blots and cell growth assays were performed with mTOR inhibitor RAD001 (50 nM), mitogen-activated protein kinase inhibitor PD0325901 (50 nM), PI3K (phosphatidylinositol 3-kinase) inhibitor LY294002 (25 μM), or vehicle control. Nude mice were treated daily for 6 weeks with RAD001 (oral gavage) and with LY29400 (subcutaneous) 1 week after intrasplenic injection of BON cells. RESULTS Cellular proliferation was most attenuated with the combination therapy of LY29400 and RAD001. Similarly, the volume of liver metastasis was lowest in the group treated with both LY29400 (100 mg/kg per week, subcutaneous) and RAD001 (2.5 mg/kg per day) compared with that in the vehicle group (P = 0.04). CONCLUSION The combination therapy of LY29400 and RAD001 decreased the cell growth in vitro and progression of liver metastasis in vivo compared with vehicle or with single-drug therapy.
Collapse
|
30
|
Zitzmann K, Ailer G, Vlotides G, Spoettl G, Maurer J, Göke B, Beuschlein F, Auernhammer CJ. Potent antitumor activity of the novel HSP90 inhibitors AUY922 and HSP990 in neuroendocrine carcinoid cells. Int J Oncol 2013; 43:1824-32. [PMID: 24100469 PMCID: PMC3834873 DOI: 10.3892/ijo.2013.2130] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/26/2013] [Indexed: 01/01/2023] Open
Abstract
The heat shock protein (HSP) 90 chaperone machine involved in numerous oncogenic signaling pathways is over-expressed in cancer cells and is currently being evaluated for anticancer therapy. Neuroendocrine tumors (NETs) of the gastroenteropancreatic (GEP) system comprise a heterogeneous group of tumors with increasing incidence and poor prognosis. Here, we report the antiproliferative effects of the HSP90 inhibitors AUY922 and HSP990 in neuroendocrine tumor cells. Treatment of human pancreatic BON1, bronchopulmonary NCI-H727 and midgut carcinoid GOT1 neuroendocrine tumor cells with increasing concentrations of AUY922 and HSP990 dose-dependently suppressed cell viability. Significant effects on neuroendocrine cell viability were observed with inhibitor concentrations as low as 5 nM. Inhibition of cell viability was associated with the induction of apoptosis as demonstrated by an increase in sub-G1 events and PARP cleavage. HSP90 inhibition was associated with decreased neuroendocrine ErbB and IGF-I receptor expression, decreased Erk and Akt phosphorylation and the induction of HSP70 expression. These findings provide evidence that targeted inhibition of upregulated HSP90 activity could be useful for the treatment of aggressive neuroendocrine tumors resistant to conventional therapy.
Collapse
Affiliation(s)
- Kathrin Zitzmann
- Department of Internal Medicine II Campus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, D‑81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang J, Francois R, Iyer R, Seshadri M, Zajac-Kaye M, Hochwald SN. Current understanding of the molecular biology of pancreatic neuroendocrine tumors. J Natl Cancer Inst 2013; 105:1005-17. [PMID: 23840053 PMCID: PMC6281020 DOI: 10.1093/jnci/djt135] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/05/2013] [Accepted: 04/06/2013] [Indexed: 12/11/2022] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs) are complicated and often deadly neoplasms. A recent increased understanding of their molecular biology has contributed to expanded treatment options. DNA sequencing of samples derived from patients with PanNETs and rare genetic syndromes such as multiple endocrine neoplasia type 1 (MEN1) and Von Hippel-Lindau (VHL) syndrome reveals the involvement of MEN1, DAXX/ATRX, and the mammalian target of rapamycin (mTOR) pathways in PanNET tumorigenesis. Gene knock-out/knock-in studies indicate that inactivation of factors including MEN1 and abnormal PI3K/mTOR signaling uncouples endocrine cell cycle progression from the control of environmental cues such as glucose, leading to islet cell overgrowth. In addition, accumulating evidence suggests that further impairment of endothelial-endocrine cell interactions contributes to tumor invasion and metastasis. Recent phase III clinical trials have shown that therapeutic interventions, such as sunitinib and everolimus, targeting those signal transduction pathways improve disease-free survival rates. Yet, cure in the setting of advanced disease remains elusive. Further advances in our understanding of the molecular mechanisms of PanNETs and improved preclinical models will assist in developing personalized therapy utilizing novel drugs to provide prolonged control or even cure the disease.
Collapse
Affiliation(s)
- Jianliang Zhang
- Affiliations of authors:Department of Surgical Oncology (JZ, SNH), Department of Medical Oncology (RI), and Department of Pharmacology and Therapeutics (MS), Roswell Park Cancer Institute, Buffalo, NY; Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RF, MZ-K)
| | - Rony Francois
- Affiliations of authors:Department of Surgical Oncology (JZ, SNH), Department of Medical Oncology (RI), and Department of Pharmacology and Therapeutics (MS), Roswell Park Cancer Institute, Buffalo, NY; Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RF, MZ-K)
| | - Renuka Iyer
- Affiliations of authors:Department of Surgical Oncology (JZ, SNH), Department of Medical Oncology (RI), and Department of Pharmacology and Therapeutics (MS), Roswell Park Cancer Institute, Buffalo, NY; Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RF, MZ-K)
| | - Mukund Seshadri
- Affiliations of authors:Department of Surgical Oncology (JZ, SNH), Department of Medical Oncology (RI), and Department of Pharmacology and Therapeutics (MS), Roswell Park Cancer Institute, Buffalo, NY; Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RF, MZ-K)
| | - Maria Zajac-Kaye
- Affiliations of authors:Department of Surgical Oncology (JZ, SNH), Department of Medical Oncology (RI), and Department of Pharmacology and Therapeutics (MS), Roswell Park Cancer Institute, Buffalo, NY; Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RF, MZ-K)
| | - Steven N. Hochwald
- Affiliations of authors:Department of Surgical Oncology (JZ, SNH), Department of Medical Oncology (RI), and Department of Pharmacology and Therapeutics (MS), Roswell Park Cancer Institute, Buffalo, NY; Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RF, MZ-K)
| |
Collapse
|
32
|
Di Florio A, Sancho V, Moreno P, Fave GD, Jensen RT. Gastrointestinal hormones stimulate growth of Foregut Neuroendocrine Tumors by transactivating the EGF receptor. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:573-82. [PMID: 23220008 PMCID: PMC3556220 DOI: 10.1016/j.bbamcr.2012.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 11/22/2012] [Accepted: 11/24/2012] [Indexed: 02/07/2023]
Abstract
Foregut neuroendocrine tumors [NETs] usually pursuit a benign course, but some show aggressive behavior. The treatment of patients with advanced NETs is marginally effective and new approaches are needed. In other tumors, transactivation of the EGF receptor (EGFR) by growth factors, gastrointestinal (GI) hormones and lipids can stimulate growth, which has led to new treatments. Recent studies show a direct correlation between NET malignancy and EGFR expression, EGFR inhibition decreases basal NET growth and an autocrine growth effect exerted by GI hormones, for some NETs. To determine if GI hormones can stimulate NET growth by inducing transactivation of EGFR, we examined the ability of EGF, TGFα and various GI hormones to stimulate growth of the human foregut carcinoid,BON, the somatostatinoma QGP-1 and the rat islet tumor,Rin-14B-cell lines. The EGFR tyrosine-kinase inhibitor, AG1478 strongly inhibited EGF and the GI hormones stimulated cell growth, both in BON and QGP-1 cells. In all the three neuroendocrine cell lines studied, we found EGF, TGFα and the other growth-stimulating GI hormones increased Tyr(1068) EGFR phosphorylation. In BON cells, both the GI hormones neurotensin and a bombesin analogue caused a time- and dose-dependent increase in EGFR phosphorylation, which was strongly inhibited by AG1478. Moreover, we found this stimulated phosphorylation was dependent on Src kinases, PKCs, matrix metalloproteinase activation and the generation of reactive oxygen species. These results raise the possibility that disruption of this signaling cascade by either EGFR inhibition alone or combined with receptor antagonists may be a novel therapeutic approach for treatment of foregut NETs/PETs.
Collapse
Affiliation(s)
- Alessia Di Florio
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Veronica Sancho
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Paola Moreno
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Gianfranco Delle Fave
- Digestive and Liver Disease Unit, II Medical School, University La Sapienza, S. Andrea Hospital, Via Di Grottarossa 00189, Rome, Italy
| | - Robert T. Jensen
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, USA
| |
Collapse
|
33
|
Cingarlini S, Bonomi M, Corbo V, Scarpa A, Tortora G. Profiling mTOR pathway in neuroendocrine tumors. Target Oncol 2012; 7:183-8. [PMID: 22890559 DOI: 10.1007/s11523-012-0226-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/25/2012] [Indexed: 12/11/2022]
Abstract
The serine/threonine kinase mammalian target of rapamycin (mTOR) plays a central role in regulating critical cellular processes such as growth, proliferation, and protein synthesis. The study of cancer predisposing syndromes within which neuroendocrine tumors (NETs) may arise has furnished clues on the involvement of mTOR pathway in sporadic diseases so far. Recent comprehensive analyses have definitely shown activation of mTOR pathway in both experimental and human sporadic NETs. Upstream regulators of mTOR (PTEN and TSC2) have been found mutated in sporadic pNETs. Activation of mTOR pathways in NETs is already demonstrated by expression profiles analysis that revealed downregulation of TSC2 gene and alterations of TSC2 and PTEN protein expression in the vast majority of well-differentiated tumors. Moreover, a global microRNA expression analysis revealed the overexpression, in highly aggressive tumors, of a microRNA (miR-21) that targets PTEN reducing its expression and therefore leading to mTOR activation as well. Overall, these clues have furnished the rationale for the use of mTOR inhibitors the treatment of pNETs. With the recent approval of Everolimus (mTOR-targeted drug) for the treatment of advanced pNETs, this paradigm has been effectively translated into the clinical setting. In this review, we discuss mTOR pathway involvement in NETs, the clinical evidence supporting the use of mTOR inhibitors in cancer treatment, and the current clinical issues that remain to be elucidated to improve patient management.
Collapse
Affiliation(s)
- S Cingarlini
- Section of Medical Oncology, Department of Medicine, Azienda Ospedaliera Universitaria Integrata (AOUI), Verona, Italy.
| | | | | | | | | |
Collapse
|
34
|
Abstract
The serine/threonine kinase mammalian target of rapamycin (mTOR) plays a central role in regulating critical cellular processes such as growth, proliferation, and protein synthesis. The study of cancer predisposing syndromes within which neuroendocrine tumors (NETs) may arise has furnished clues on the involvement of mTOR pathway in sporadic diseases so far. Recent comprehensive analyses have definitely shown activation of mTOR pathway in both experimental and human sporadic NETs. Upstream regulators of mTOR (PTEN and TSC2) have been found mutated in sporadic pNETs. Activation of mTOR pathways in NETs is already demonstrated by expression profiles analysis that revealed downregulation of TSC2 gene and alterations of TSC2 and PTEN protein expression in the vast majority of well-differentiated tumors. Moreover, a global microRNA expression analysis revealed the overexpression, in highly aggressive tumors, of a microRNA (miR-21) that targets PTEN reducing its expression and therefore leading to mTOR activation as well. Overall, these clues have furnished the rationale for the use of mTOR inhibitors the treatment of pNETs. With the recent approval of Everolimus (mTOR-targeted drug) for the treatment of advanced pNETs, this paradigm has been effectively translated into the clinical setting. In this review, we discuss mTOR pathway involvement in NETs, the clinical evidence supporting the use of mTOR inhibitors in cancer treatment, and the current clinical issues that remain to be elucidated to improve patient management.
Collapse
|
35
|
Abstract
Pancreatic neuroendocrine tumors are rare and the majority of patients present in the advanced stage. Over the past few decades, treatment for patients with metastatic well- or moderately differentiated pancreatic neuroendocrine tumors have not significantly impeded tumor progression nor improved survival. However, recent mapping of intracellular signaling pathways promoting tumor proliferation, growth, and angiogenesis has presented mammalian target of rapamycin (mTOR) as a potential target within the phosphatidylinositol 3-kinase-Akt pathway. With the development of the new-generation mTOR inhibitor everolimus, a series of clinical trials over the last 5 years have demonstrated significant benefit in delaying tumor progression. This review focuses on the mechanism of mTOR inhibition and traces the development of clinical evidence for the use of mTOR inhibitors in well- to moderately differentiated advanced pancreatic neuroendocrine tumors.
Collapse
|
36
|
Zitzmann K, Vlotides G, Brand S, Lahm H, Spöttl G, Göke B, Auernhammer CJ. Perifosine-mediated Akt inhibition in neuroendocrine tumor cells: role of specific Akt isoforms. Endocr Relat Cancer 2012; 19:423-34. [PMID: 22499437 DOI: 10.1530/erc-12-0074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The majority of neuroendocrine tumors (NETs) of the gastroenteropancreatic system show aberrant Akt activity. Several inhibitors of the phosphoinositide 3-kinase (PI(3)K)-Akt-mTOR signaling pathway are currently being evaluated in clinical phase II and III studies for the treatment of NETs with promising results. However, the molecular mechanisms and particularly the role of different Akt isoforms in NET signaling are not fully understood. In this study, we examine the effect of Akt inhibition on NET cells of heterogeneous origin. We show that the Akt inhibitor perifosine effectively inhibits Akt phosphorylation and cell viability in human pancreatic (BON1), bronchus (NCI-H727), and midgut (GOT1) NET cells. Perifosine treatment suppressed the phosphorylation of Akt downstream targets such as GSK3α/β, MDM2, and p70S6K and induced apoptosis. To further investigate the role of individual Akt isoforms for NET cell function, we specifically blocked Akt1, Akt2, and Akt3 via siRNA transfection. In contrast to Akt2 knockdown, knockdown of Akt isoforms 1 and 3 decreased phosphorylation levels of GSK3α/β, MDM2, and p70S6K and suppressed NET cell viability and colony-forming capacity. The inhibitory effect of simultaneous downregulation of Akt1 and Akt3 on tumor cell viability was significantly stronger than that caused by downregulation of all Akt isoforms, suggesting a particular role for Akt1 and Akt3 in NET signaling. Akt3 siRNA-induced apoptosis while all three isoform-specific siRNAs impaired BON1 cell invasion. Together, our data demonstrate potent antitumor effects of the pan-Akt inhibitor perifosine on NET cells in vitro and suggest that selective targeting of Akt1 and/or Akt3 might improve the therapeutic potential of Akt inhibition in NET disease.
Collapse
Affiliation(s)
- Kathrin Zitzmann
- Department of Internal Medicine II, University-Hospital Munich-Grosshadern, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Karpathakis A, Caplin M, Thirlwell C. Hitting the target: where do molecularly targeted therapies fit in the treatment scheduling of neuroendocrine tumours? Endocr Relat Cancer 2012; 19:R73-92. [PMID: 22474226 DOI: 10.1530/erc-12-0050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neuroendocrine tumours (NETs) are a rare and heterogeneous group of tumours whose incidence is increasing and their prevalence is now greater than that of any other upper gastrointestinal tumour. Diagnosis can be challenging, and up to 25% of patients present with metastatic disease. Following the recent FDA approval of two new molecularly targeted therapies for the treatment of advanced pancreatic NETs (pNETs), the first in 25 years, we review all systemic therapies and suggest where these newer targeted therapies fit in the treatment schedule for these challenging tumours. Clinical trial data relating to the routine use of sunitinib and everolimus in low-intermediate-grade pNETs are summarised alongside newer molecularly targeted agents undergoing clinical assessment in NETs. We particularly focus on the challenge of optimal scheduling of molecularly targeted treatments around existing systemic and localised treatment such as chemotherapy or radiotargeted therapy. We also discuss application of current evidence to subgroups of patients who have not so far been directly addressed such as those with poorer performance status or patients receiving radical surgery who may benefit from adjuvant treatment.
Collapse
Affiliation(s)
- Anna Karpathakis
- University College London Cancer Institute, Paul O'Gorman Building, Huntley Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
38
|
Bago-Horvath Z, Sieghart W, Grusch M, Lackner A, Hayden H, Pirker C, Komina O, Węsierska-Gądek J, Haitel A, Filipits M, Berger W, Schmid K. Synergistic effects of erlotinib and everolimus on bronchial carcinoids and large-cell neuroendocrine carcinomas with activated EGFR/AKT/mTOR pathway. Neuroendocrinology 2012; 96:228-37. [PMID: 22378048 DOI: 10.1159/000337257] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/14/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (mTOR) are crucial targets in cancer therapy. Combined inhibition of both targets yielded synergistic effects in vitro and in vivo in several cancer entities. However, the impact of EGFR and mTOR expression and combined inhibition in neuroendocrine lung tumors other than small-cell lung cancer remains unclear. MATERIAL AND METHODS Expression and activation of EGFR/AKT/mTOR pathway constituents were investigated in typical and atypical bronchial carcinoid (AC) tumors and large-cell neuroendocrine lung carcinomas (LCNEC) by immunohistochemistry in 110 tumor samples, and correlated with clinicopathological parameters and patient survival. Cytotoxicity of mTOR inhibitor everolimus and EGFR inhibitor erlotinib alone and in combination was assessed using growth inhibition assay in NCI-H720 AC and SHP-77 LCNEC cells. Cell cycle phase distribution was determined by FACS. Apoptosis-associated activation of caspase-3/7 was measured by Caspase-Glo® assay. Activity status of EGFR and mTOR pathway components was analyzed by immunoblotting. RESULTS Activation of the EGFR/AKT/mTOR axis could be demonstrated in all entities and was significantly increased in higher grade tumors. Neoadjuvant chemotherapy correlated significantly with p-AKT expression and p-ERK loss. Erlotinib combined with everolimus exerted synergistic combination effects in AC and LCNEC cells by induction of apoptosis, while cell cycle phase distribution remained unaffected. These effects could be explained by synergistic downregulation of phospho-mTOR, phospho-p70S6 kinase and phospho-AKT expression by everolimus and erlotinib. CONCLUSIONS Our study indicates that EGFR and mTOR are clinically important targets in bronchial neuroendocrine tumors, and further in vivo and clinical exploration of combined inhibition is warranted.
Collapse
|
39
|
Abstract
Endocrine tumours derived from the small intestine, ileal carcinoids, produce and secrete the hormones tachykinins and serotonin, which induces the specific symptoms related to the tumour. Because of their low proliferation rate, they are often discovered at late stages when metastases have occurred. The biology that characterizes these tumours differs in many ways from what is generally recognized for other malignancies. In this overview, the current knowledge on the development and progression of ileal carcinoids is described.
Collapse
Affiliation(s)
- Janet L Cunningham
- Department of Medical Sciences, Section of Endocrine Oncology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
40
|
Nolan-Stevaux O, Truitt MC, Pahler JC, Olson P, Guinto C, Lee DC, Hanahan D. Differential contribution to neuroendocrine tumorigenesis of parallel egfr signaling in cancer cells and pericytes. Genes Cancer 2011; 1:125-41. [PMID: 20975924 PMCID: PMC2958675 DOI: 10.1177/1947601909358722] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Factors associated with tumor sensitivity to epidermal growth factor receptor (EGFR) inhibitors in the context of wild-type EGFR remain elusive. This study investigates the mechanistic basis of responsiveness to EGFR inhibitors in the RIP1-Tag2 (RT2) mouse model of pancreatic neuroendocrine tumorigenesis (PNET). Upon treatment of RT2 mice with EGFR inhibitors, PNET tumors harboring wild-type, nonamplified alleles of Egfr grow at a markedly reduced rate and display a significant increase in tumor cell apoptosis, as well as reduced neovascularization. The authors identify Tgf-α and Hb-egf as key limiting mediators of separable pathological functions of Egfr in neuroendocrine tumor progression: Tgf-α mutant tumors present with an elevated apoptotic index, whereas Hb-egf mutant lesions exhibit decreased angiogenic switching and neovascularization. This study not only associates Tgf-α and Hb-egf expression with wild-type Egfr oncogenicity but also ascribes the proangiogenic activity of Egfr in this tumor model to a novel mesenchymal Hb-egf/Egfr signaling axis, whereby endothelial and pericyte-derived Hb-egf activates Egfr specifically in tumor-associated perivascular cells, leading to increased pericyte coverage of the tumor endothelium and enhanced angiogenesis.
Collapse
Affiliation(s)
- Olivier Nolan-Stevaux
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Yim KL. Role of biological targeted therapies in gastroenteropancreatic neuroendocrine tumours. Endocrine 2011; 40:181-6. [PMID: 21870172 DOI: 10.1007/s12020-011-9513-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 07/23/2011] [Indexed: 02/07/2023]
Abstract
Approximately two-thirds of neuroendocrine tumours (NET) occur in the gastrointestinal tract and over 60% present with metastases. With greater insight into molecular pathways involved in tumour progression, opportunities are presented for the use of targeted therapies in NET. Although a wide array of targeted agents has been investigated, only a handful has emerged as forerunners from recent clinical trials. This literature review focuses on the use of anti-angiogenic monoclonal antibody bevacizumab, as well as small molecule inhibitors sunitinib and everolimus.
Collapse
Affiliation(s)
- Kein-Leong Yim
- Gastrointestinal Cancer and Lymphoma Research Unit, The Royal Marsden NHS Foundation Trust, London, Surrey, SM2 5PT, UK.
| |
Collapse
|
42
|
Alì G, Boldrini L, Capodanno A, Pelliccioni S, Servadio A, Crisman G, Picchi A, Davini F, Mussi A, Fontanini G. Expression of p-AKT and p-mTOR in a large series of bronchopulmonary neuroendocrine tumors. Exp Ther Med 2011; 2:787-792. [PMID: 22977576 DOI: 10.3892/etm.2011.291] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/16/2011] [Indexed: 12/23/2022] Open
Abstract
Bronchopulmonary neuroendocrine tumors (BP-NETs) are separated into four subgroups: typical carcinoid tumor (TC), atypical carcinoid tumor (AC), large-cell neuroendocrine carcinoma (LCNEC) and small-cell lung carcinoma (SCLC). The signaling pathway involving AKT/mammalian target of rapamycin (mTOR) is crucial to the regulation of cell growth, proliferation and survival, and is frequently activated in human cancers. Consequently, mTOR is considered an attractive target for anticancer agents. The present study aimed to evaluate the expression of phosphorylated AKT and mTOR in a series of BP-NETs, and to analyze the correlations with clinicopathological parameters. p-AKT and p-mTOR levels were determined by immunohistochemistry in a series of 210 BP-NETs, including 85 SCLCs, 17 LCNECs, 26 ACs, 75 TCs and 7 tumorlets. Higher p-AKT and p-mTOR expression levels were identified in the majority of tumorlets and carcinoids in comparison to the LCNECs (P=0.0001) and SCLCs (P=0.0002). Furthermore, a significant association was observed between p-mTOR expression and tumor size (T) in SCLCs (P=0.04) and LCNECs (P=0.03): T3-T4 tumors exhibited significantly lower p-mTOR expression compared to T1-T2 tumors. In conclusion, most of the BP-NETs examined in this study expressed p-AKT and p-mTOR, suggesting that the AKT/mTOR pathway plays an important role in these tumors. Additionally, our results confirm that low- to intermediate-grade tumors are more closely associated to each other than to high-grade tumors, despite sharing common classification and a common origin from neuroendocrine cells. These findings improve our knowledge of the biological characterization of these tumors and indicate new therapeutic opportunities for the treatment of BP-NETs.
Collapse
Affiliation(s)
- Greta Alì
- Departments of Surgery, Division of Pathological Anatomy, and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fazio N, Cinieri S, Lorizzo K, Squadroni M, Orlando L, Spada F, Maiello E, Bodei L, Paganelli G, Delle Fave G, de Braud F. Biological targeted therapies in patients with advanced enteropancreatic neuroendocrine carcinomas. Cancer Treat Rev 2011; 36 Suppl 3:S87-94. [PMID: 21129617 DOI: 10.1016/s0305-7372(10)70026-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Enteropancreatic (EP) neuroendocrine carcinomas (NECs) represent relatively rare and heterogeneous malignancies. They are the most common group among neuroendocrine tumors (NETs). In most cases they are advanced at diagnosis and slow-growing, therefore conditioning a better prognosis compared with non neuroendocrine carcinomas from the same sites. No standard medical therapy exists, except for somatostatin analogs in functioning tumors, and octreotide LAR in functioning or non functioning well differentiated NECs from small bowel. Several systemic therapeutic options exist, including chemotherapy, somatostatin analog, interferon, peptide receptor radionuclide therapy (PRRT), and molecular targeted drugs. Among them some therapies have specific biological tumor targets and can be defined as "biological targeted therapies". This review focuses on the status of EP NECs targeted therapies in the light of recent advances. Somatostatin receptors (SSTRs) are the first therapeutic target detected in EP NECs. Through them SS analogs and PRRT act, producing symptomatic, biochemical, and, to a lesser extent, antiproliferative effects. New SS analogs, covering a higher number of SSTR subtypes, were developed, including pasireotide (SOM230), which controls 25% of carcinoid syndromes resistant to full dose octreotide LAR. Chimeric analogs, which bind SSTR2/SSTR5 and dopamine-2 receptor subtype (D2), are in preclinical phase of development. Among the numerous molecular targeted agents investigated in NETs, mTOR inhibitors and VEGF/VEGFR/PDGFR inhibitors are in most advanced clinical phase of investigation. In particular, everolimus, sunitinib, and bevacizumab are all studied in phase III trials. Both everolimus and sunitinib produced significant survival benefit versus placebo in advanced progressing well-differentiated pancreatic NECs. Sunitinib data have been presented at the last ASCO in June 2010, and everolimus data will be presented at next ESMO in September 2010.
Collapse
Affiliation(s)
- Nicola Fazio
- European Institute of Oncology, IEO NET Study Group, Via Ripamonti 435, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Although neuroendocrine tumors are rare, the more common types such as gastrointestinal and pancreatic carcinoids, medullary thyroid cancers, and small cell lung cancers have been studied in detail during the last few years. Data published thus far indicate that multiple signaling pathways are involved in these cancers. Recent focus has been on developing novel therapeutics by targeting specific signaling pathways. This article details several of the signaling mechanisms that have been discovered to play a role in the development and progression of neuroendocrine tumors. The therapeutic options developed to address the various pathways, including their specific mechanisms of actions, are also discussed.
Collapse
Affiliation(s)
- Barbara Zarebczan
- Endocrine Surgery Research Laboratories, Department of Surgery, University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
| | | |
Collapse
|
45
|
Iida S, Miki Y, Ono K, Akahira JI, Suzuki T, Ishida K, Watanabe M, Sasano H. Novel classification based on immunohistochemistry combined with hierarchical clustering analysis in non-functioning neuroendocrine tumor patients. Cancer Sci 2010; 101:2278-85. [PMID: 20682006 PMCID: PMC11159394 DOI: 10.1111/j.1349-7006.2010.01657.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Somatostatin analogues ameliorated many symptoms caused by neuroendocrine tumors (NET), but their antitumor activities are limited especially in non-functioning cases. An overactivation of signaling pathways under receptor tyrosine-kinase (RTK) has been recently demonstrated in some NET patients, but its details have remained largely unknown. Therefore, in this study, we immunolocalized therapeutic factors and evaluated the data to study the clinical significance of the molecules in non-functioning Japanese gastrointestinal NET. Fifty-two NET cases were available for examination in this study and expression of somatostatin receptor (sstr) 1, 2A, 2B, 3 and 5, activated form of mammalian target of rapamycin (mTOR), eukaryotic initiation factor 4-binding protein 1 (4EBP1), ribosomal protein s6 (S6), extracellular signal-regulated kinase (ERK) and insulin-like growth factor 1 receptor (IGF-1R) was evaluated using immunohistochemistry. We then studied the correlation among the immunohistochemical results of the individual cases using hierarchical clustering analysis. Results of clustering analysis demonstrated that NET cases were basically classified into Cluster I and II. Cluster I was associated with higher expression of sstr1, 2B and 3 and Cluster II was characterized by an activation of the PI3K/Akt pathway and IGF-1R and higher proliferative status. Cluster II was further classified into Cluster IIa and IIb. Cluster IIa was associated with higher expression of sstr1 and 5 and higher proliferative status and Cluster IIb was characterized by ERK activation. Hierarchical clustering analysis of immunoreactivity of the therapeutic factors can classify NET cases into three distinctive groups and the medical treatment may be determined according to this novel classification method for non-functioning NET patients.
Collapse
Affiliation(s)
- Shinya Iida
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Zitzmann K, Rüden JV, Brand S, Göke B, Lichtl J, Spöttl G, Auernhammer CJ. Compensatory activation of Akt in response to mTOR and Raf inhibitors - a rationale for dual-targeted therapy approaches in neuroendocrine tumor disease. Cancer Lett 2010; 295:100-9. [PMID: 20356670 DOI: 10.1016/j.canlet.2010.02.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/17/2010] [Accepted: 02/19/2010] [Indexed: 02/06/2023]
Abstract
Several studies have established a link between aberrant PI(3)K-Akt-mTOR- and Ras-Raf-MEK-Erk1/2 signaling and neuroendocrine tumor disease. In this study, we comparatively investigate the antitumor potential of novel small-molecule inhibitors targeting mTOR (RAD001), mTOR/PI(3)K (NVP-BEZ235) and Raf (Raf265) on human NET cell lines of heterogeneous origin. All inhibitors induced potent antitumor effects which involved the induction of apoptosis and G0/G1 arrest. However, the dual mTOR/PI(3)K inhibitor NVP-BEZ235 was more efficient compared to the single mTOR inhibitor RAD001. Consistently, NVP-BEZ235 prevented the negative feedback activation of Akt as observed after treatment with RAD001. Raf265 inhibited Erk1/2 phosphorylation but strongly induced Akt phosphorylation and VEGF secretion, suggesting the existence of a compensatory feedback loop on PI3K-Akt signaling. Finally, combined treatment with RAD001 or NVP-BEZ235 and Raf265 was more efficient than single treatment with either kinase inhibitor. Together, our data provide a rationale for dual targeting of PI(3)K-Akt-mTOR- and Ras-Raf-MEK-Erk1/2 signaling in NET disease.
Collapse
Affiliation(s)
- Kathrin Zitzmann
- Department of Internal Medicine II, University-Hospital Munich-Grosshadern, University of Munich, Marchioninistr.15, 81377 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Srirajaskanthan R, Caplin ME, Waugh MG, Watkins J, Meyer T, Hsuan JJ, Beaumont NJ. Identification of Mac-2-binding protein as a putative marker of neuroendocrine tumors from the analysis of cell line secretomes. Mol Cell Proteomics 2009; 9:656-66. [PMID: 20019050 DOI: 10.1074/mcp.m900401-mcp200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuroendocrine tumors (NETs) can arise from a variety of organs. They can vary widely in clinical behavior; consequently, optimizing their treatment plan can be problematic. NETs display diverse tumor biology; however, most secrete peptides such as chromogranin A into the circulation, consistent with their neuroendocrine origin. In this study, we sought to identify other potential markers for NETs by analyzing the secreted proteomes of three neuroendocrine cell lines. BON-1, NCI-H727, and SHP-77 cells were grown in serum-free media, and the secreted proteins were separated by SDS-PAGE and identified by LC-MS/MS. We identified 205 proteins of which 61 were secreted by two or more of the cell lines and 19 were secreted by all three lines. Mac-2-binding protein (Mac-2BP) was found to be secreted by all three cell lines, and this was confirmed by Western blotting. Immunohistochemical analysis found 29 of 33 NET cases from different primary sites to be positive for Mac-2BP. Serum Mac-2BP was significantly elevated in NET patients compared with healthy controls (p < 0.001). This study demonstrated that analysis of the secreted proteomes of neuroendocrine cell lines can identify potential biomarkers for NET. Initial assessment showed that serum Mac-2BP is significantly elevated in patients with NET and is expressed by the majority of NET tissues.
Collapse
|
48
|
Capdevila J, Salazar R. Molecular targeted therapies in the treatment of gastroenteropancreatic neuroendocrine tumors. Target Oncol 2009; 4:287-96. [DOI: 10.1007/s11523-009-0128-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 10/19/2009] [Indexed: 02/06/2023]
|
49
|
Capurso G, Fazio N, Festa S, Panzuto F, De Braud F, Delle Fave G. Molecular target therapy for gastroenteropancreatic endocrine tumours: Biological rationale and clinical perspectives. Crit Rev Oncol Hematol 2009; 72:110-24. [DOI: 10.1016/j.critrevonc.2009.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 01/13/2009] [Accepted: 01/28/2009] [Indexed: 02/08/2023] Open
|
50
|
Pitt SC, Chen H, Kunnimalaiyaan M. Inhibition of phosphatidylinositol 3-kinase/Akt signaling suppresses tumor cell proliferation and neuroendocrine marker expression in GI carcinoid tumors. Ann Surg Oncol 2009; 16:2936-42. [PMID: 19588205 DOI: 10.1245/s10434-009-0591-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 06/11/2009] [Accepted: 06/11/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND Overactivation of PI3K/Akt signaling facilitates tumor proliferation in several cancers. We have shown that various signal transduction pathways promote tumorigenesis in carcinoid tumors, which exhibit endogenously high levels of active, phosphorylated Akt. Therefore, we hypothesized that inhibition of the PI3K/Akt pathway would suppress carcinoid tumor cell growth and neuroendocrine (NE) marker production. METHODS Human carcinoid BON cells were treated in vitro with LY294002, a PI3-kinase inhibitor, or transfected with Akt1 siRNA. Tumor cell proliferation was measured by MTT for 6 days. The effect of LY294002 or Akt1 siRNA treatment was assessed by Western analysis. We examined the levels of phosphorylated Akt, total Akt, Akt1, and the NE markers human achaete-scute homolog1 (ASCL1) and chromogranin A (CgA). RESULTS Treatment of BON cells with LY294002 reduced tumor cell proliferation (76%) in a dose-dependent manner. Growth also decreased in Akt1 siRNA transfected cells (26%). Levels of active, phosphorylated Akt and the NE tumor markers, ASCL1 and CgA, were diminished with both LY294002 and Akt1 siRNA treatments proportional to the degree of Akt inhibition. Total Akt, Akt2, and Akt3 levels were unaffected by these experiments. CONCLUSIONS These data indicate that PI3K/Akt signaling performs a critical role in human carcinoid tumor cell survival and NE hormone generation. Furthermore, the development of novel therapeutics targeting Akt1 or components of the PI3K/Akt pathway may enhance the management of carcinoid disease.
Collapse
Affiliation(s)
- Susan C Pitt
- Endocrine Surgery Research Laboratory, Department of Surgery, University of Wisconsin, Madison, WI, USA
| | | | | |
Collapse
|