1
|
Dai K, Wang Z, Gao B, Li L, Gu F, Tao X, You W, Wang Z. APE1 regulates mitochondrial DNA damage repair after experimental subarachnoid haemorrhage in vivo and in vitro. Stroke Vasc Neurol 2024; 9:230-242. [PMID: 37612054 PMCID: PMC11221324 DOI: 10.1136/svn-2023-002524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Subarachnoid haemorrhage (SAH) can result in a highly unfavourable prognosis. In recent years, the study of SAH has focused on early brain injury (EBI), which is a crucial progress that contributes to adverse prognosis. SAH can lead to various complications, including mitochondrial dysfunction and DNA damage. Apurinic/apyrimidinic endonuclease 1 (APE1) is an essential protein with multifaceted functionality integral to DNA repair and redox signalling. However, the role of APE1 in mitochondrial DNA damage repair after SAH is still unclear. METHODS Our study involved an in vivo endovascular perforation model in rats and an in vitro neuron oxyhaemoglobin intervention. Then, the effects of APE1 on mitochondrial DNA damage repair were analysed by western blot, immunofluorescence, quantitative real-time PCR, mitochondrial bioenergetics measurement and neurobehavioural experiments. RESULTS We found that the level of APE1 decreased while the mitochondria DNA damage and neuronal death increased in a rat model of SAH. Overexpression of APE1 improved short-term and long-term behavioural impairment in rats after SAH. In vitro, after primary neurons exposed to oxyhaemoglobin, APE1 expression significantly decreased along with increased mitochondrial DNA damage, a reduction in the subunit of respiratory chain complex levels and subsequent respiratory chain dysfunction. Overexpression of APE1 relieved energy metabolism disorders in the mitochondrial of neurons and reduced neuronal apoptosis. CONCLUSION In conclusion, APE1 is involved in EBI after SAH by affecting mitochondrial apoptosis via the mitochondrial respiratory chain. APE1 may potentially play a vital role in the EBI stage after SAH, making it a critical target for treatment.
Collapse
Affiliation(s)
- Kun Dai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Bixi Gao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Longyuan Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Feng Gu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Xinyu Tao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Wanchun You
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Almey A, Milner TA, Brake WG. Estrogen receptors observed at extranuclear neuronal sites and in glia in the nucleus accumbens core and shell of the female rat: Evidence for localization to catecholaminergic and GABAergic neurons. J Comp Neurol 2022; 530:2056-2072. [PMID: 35397175 PMCID: PMC9167786 DOI: 10.1002/cne.25320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 11/08/2022]
Abstract
Estrogens affect dopamine-dependent diseases/behavior and have rapid effects on dopamine release and receptor availability in the nucleus accumbens (NAc). Low levels of nuclear estrogen receptor (ER) α and ERβ are seen in the NAc, which cannot account for the rapid effects of estrogens in this region. G-protein coupled ER 1 (GPER1) is observed at low levels in the NAc shell, which also likely does not account for the array of estrogens' effects in this region. Prior studies demonstrated membrane-associated ERs in the dorsal striatum; these experiments extend those findings to the NAc core and shell. Single- and dual-immunolabeling electron microscopy determined whether ERα, ERβ, and GPER1 are at extranuclear sites in the NAc core and shell and whether ERα and GPER1 were localized to catecholaminergic or γ-aminobutyric acid-ergic (GABAergic) neurons. All three ERs are observed, almost exclusively, at extranuclear sites in the NAc, and similarly distributed in the core and shell. ERα, ERβ, and GPER1 are primarily in axons and axon terminals suggesting that estrogens affect transmission in the NAc via presynaptic mechanisms. About 10% of these receptors are found on glia. A small proportion of ERα and GPER1 are localized to catecholaminergic terminals, suggesting that binding at these ERs alters release of catecholamines, including dopamine. A larger proportion of ERα and GPER1 are localized to GABAergic dendrites and terminals, suggesting that estrogens alter GABAergic transmission to indirectly affect dopamine transmission in the NAc. Thus, the localization of ERs could account for the rapid effects of estrogen in the NAc.
Collapse
Affiliation(s)
- Anne Almey
- Department of Psychology, Centre for Studies in Behavioral Neurobiology (CSBN), Concordia University, Montreal, Canada
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA.,Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York City, New York, USA
| | - Wayne G Brake
- Department of Psychology, Centre for Studies in Behavioral Neurobiology (CSBN), Concordia University, Montreal, Canada
| |
Collapse
|
3
|
Brain Volume Loss, Astrocyte Reduction, and Inflammation in Anorexia Nervosa. ADVANCES IN NEUROBIOLOGY 2021; 26:283-313. [PMID: 34888839 DOI: 10.1007/978-3-030-77375-5_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Anorexia nervosa is the third most common chronic disease in adolescence and is characterized by low body weight, body image distortion, weight phobia, and severe somatic consequences. Among the latter, marked brain volume reduction has been linked to astrocyte cell count reduction of about 50% in gray and white matter, while neuronal and other glial cell counts remain normal. Exact underlying mechanisms remain elusive; however, first results point to important roles of the catabolic state and the very low gonadal steroid hormones in these patients. They also appear to involve inflammatory states of "hungry astrocytes" and interactions with the gut microbiota. Functional impairments could affect the role of astrocytes in supporting neurons metabolically, neurotransmitter reuptake, and synapse formation, among others. These could be implicated in reduced learning, mood alterations, and sleep disturbances often seen in patients with AN and help explain their rigidity and difficulties in relearning processes in psychotherapy during starvation.
Collapse
|
4
|
Reis de Assis D, Szabo A, Requena Osete J, Puppo F, O’Connell KS, A. Akkouh I, Hughes T, Frei E, A. Andreassen O, Djurovic S. Using iPSC Models to Understand the Role of Estrogen in Neuron-Glia Interactions in Schizophrenia and Bipolar Disorder. Cells 2021; 10:209. [PMID: 33494281 PMCID: PMC7909800 DOI: 10.3390/cells10020209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia (SCZ) and bipolar disorder (BIP) are severe mental disorders with a considerable disease burden worldwide due to early age of onset, chronicity, and lack of efficient treatments or prevention strategies. Whilst our current knowledge is that SCZ and BIP are highly heritable and share common pathophysiological mechanisms associated with cellular signaling, neurotransmission, energy metabolism, and neuroinflammation, the development of novel therapies has been hampered by the unavailability of appropriate models to identify novel targetable pathomechanisms. Recent data suggest that neuron-glia interactions are disturbed in SCZ and BIP, and are modulated by estrogen (E2). However, most of the knowledge we have so far on the neuromodulatory effects of E2 came from studies on animal models and human cell lines, and may not accurately reflect many processes occurring exclusively in the human brain. Thus, here we highlight the advantages of using induced pluripotent stem cell (iPSC) models to revisit studies of mechanisms underlying beneficial effects of E2 in human brain cells. A better understanding of these mechanisms opens the opportunity to identify putative targets of novel therapeutic agents for SCZ and BIP. In this review, we first summarize the literature on the molecular mechanisms involved in SCZ and BIP pathology and the beneficial effects of E2 on neuron-glia interactions. Then, we briefly present the most recent developments in the iPSC field, emphasizing the potential of using patient-derived iPSCs as more relevant models to study the effects of E2 on neuron-glia interactions.
Collapse
Affiliation(s)
- Denis Reis de Assis
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Attila Szabo
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Jordi Requena Osete
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Francesca Puppo
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin S. O’Connell
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
| | - Ibrahim A. Akkouh
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Timothy Hughes
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Evgeniia Frei
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Ole A. Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Division of Mental Health and Addiction, Oslo University Hospital, 0372 Oslo, Norway
| | - Srdjan Djurovic
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- NORMENT, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
5
|
Wyse AT, Siebert C, Bobermin LD, Dos Santos TM, Quincozes-Santos A. Changes in Inflammatory Response, Redox Status and Na +, K +-ATPase Activity in Primary Astrocyte Cultures from Female Wistar Rats Subject to Ovariectomy. Neurotox Res 2019; 37:445-454. [PMID: 31773642 DOI: 10.1007/s12640-019-00128-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 12/25/2022]
Abstract
Astrocytes are dynamic glial cells that maintain brain homeostasis, particularly metabolic functions, inflammatory response, and antioxidant defense. Since menopause may be associated with brain dysfunction, in the present study, we evaluated anti- and proinflammatory cytokine release in cortical and hippocampal astrocyte cultures obtained from adult female Wistar rats subjected to ovariectomy, a known experimental model of menopause. We also tested some parameters of metabolic functionality (Na+, K+-ATPase activity) and cellular redox status, such as antioxidant enzyme defenses (superoxide dismutase and catalase) and the intracellular production of reactive oxygen species in this experimental model. Female adult Wistar rats (180 days-age) were assigned to one of the following groups: sham (submitted to surgery without removal of the ovaries) and ovariectomy (submitted to surgery to removal of the ovaries). Thirty days after ovariectomy or sham surgery, we prepared astrocyte cultures from control and ovariectomy surgery animals. Ovariectomized rats presented an increase in pro-inflammatory cytokines (tumor necrosis factor α, interleukins 1β, 6, and 18) and a decrease in interleukin 10 release, an anti-inflammatory cytokine, in cortical and hippocampal astrocytes, when compared to those obtained from sham group (control). In addition, Na+,K+-ATPase activity decreased in hippocampal astrocytes, but not in cortical astrocyte cultures. In contrast, antioxidant enzymes did not alter in cortical astrocyte cultures, but increased in hippocampal astrocytes. In summary, our findings suggest that ovariectomy is able to induce an inflammatory response in vivo, which could be detected in in vitro astrocytes after approximately 4 weeks.
Collapse
Affiliation(s)
- Angela Ts Wyse
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil. .,Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil. .,Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| | - Cassiana Siebert
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Larissa D Bobermin
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Neurotoxicidade e Glioproteção, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tiago M Dos Santos
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Neurotoxicidade e Glioproteção, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
6
|
Gaignard P, Fréchou M, Liere P, Thérond P, Schumacher M, Slama A, Guennoun R. Sex differences in brain mitochondrial metabolism: influence of endogenous steroids and stroke. J Neuroendocrinol 2018. [PMID: 28650095 DOI: 10.1111/jne.12497] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Steroids are neuroprotective and a growing body of evidence indicates that mitochondria are a potential target of their effects. The mitochondria are the site of cellular energy synthesis, regulate oxidative stress and play a key role in cell death after brain injury and neurodegenerative diseases. After providing a summary of the literature on the general functions of mitochondria and the effects of sex steroid administrations on mitochondrial metabolism, we summarise and discuss our recent findings concerning sex differences in brain mitochondrial function under physiological and pathological conditions. To analyse the influence of endogenous sex steroids, the oxidative phosphorylation system, mitochondrial oxidative stress and brain steroid levels were compared between male and female mice, either intact or gonadectomised. The results obtained show that females have higher a mitochondrial respiration and lower oxidative stress compared to males and also that these differences were suppressed by ovariectomy but not orchidectomy. We have also shown that the decrease in brain mitochondrial respiration induced by ischaemia/reperfusion is different according to sex. In both sexes, treatment with progesterone reduced the ischaemia/reperfusion-induced mitochondrial alterations. Our findings indicate sex differences in brain mitochondrial function under physiological conditions, as well as after stroke, and identify mitochondria as a target of the neuroprotective properties of progesterone. Thus, it is necessary to investigate sex specificity in brain physiopathological mechanisms, especially when mitochondria impairment is involved.
Collapse
Affiliation(s)
- P Gaignard
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Kremlin-Bicêtre, France
- Biochemistry Laboratory, Bicêtre Hospital, Assistance-Publique Hôpitaux de Paris, Kremlin-Bicêtre, France
| | - M Fréchou
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Kremlin-Bicêtre, France
| | - P Liere
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Kremlin-Bicêtre, France
| | - P Thérond
- Biochemistry Laboratory, Bicêtre Hospital, Assistance-Publique Hôpitaux de Paris, Kremlin-Bicêtre, France
| | - M Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Kremlin-Bicêtre, France
| | - A Slama
- Biochemistry Laboratory, Bicêtre Hospital, Assistance-Publique Hôpitaux de Paris, Kremlin-Bicêtre, France
| | - R Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Kremlin-Bicêtre, France
| |
Collapse
|
7
|
Uchoa MF, Moser VA, Pike CJ. Interactions between inflammation, sex steroids, and Alzheimer's disease risk factors. Front Neuroendocrinol 2016; 43:60-82. [PMID: 27651175 PMCID: PMC5123957 DOI: 10.1016/j.yfrne.2016.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder for which there are no effective strategies to prevent or slow its progression. Because AD is multifactorial, recent research has focused on understanding interactions among the numerous risk factors and mechanisms underlying the disease. One mechanism through which several risk factors may be acting is inflammation. AD is characterized by chronic inflammation that is observed before clinical onset of dementia. Several genetic and environmental risk factors for AD increase inflammation, including apolipoprotein E4, obesity, and air pollution. Additionally, sex steroid hormones appear to contribute to AD risk, with age-related losses of estrogens in women and androgens in men associated with increased risk. Importantly, sex steroid hormones have anti-inflammatory actions and can interact with several other AD risk factors. This review examines the individual and interactive roles of inflammation and sex steroid hormones in AD, as well as their relationships with the AD risk factors apolipoprotein E4, obesity, and air pollution.
Collapse
Affiliation(s)
- Mariana F Uchoa
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - V Alexandra Moser
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Christian J Pike
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
8
|
TSPO PIGA Ligands Promote Neurosteroidogenesis and Human Astrocyte Well-Being. Int J Mol Sci 2016; 17:ijms17071028. [PMID: 27367681 PMCID: PMC4964404 DOI: 10.3390/ijms17071028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 01/05/2023] Open
Abstract
The steroidogenic 18 kDa translocator protein (TSPO) is an emerging, attractive therapeutic tool for several pathological conditions of the nervous system. Here, 13 high affinity TSPO ligands belonging to our previously described N,N-dialkyl-2-phenylindol-3-ylglyoxylamide (PIGA) class were evaluated for their potential ability to affect the cellular Oxidative Metabolism Activity/Proliferation index, which is used as a measure of astrocyte well-being. The most active PIGA ligands were also assessed for steroidogenic activity in terms of pregnenolone production, and the values were related to the metabolic index in rat and human models. The results showed a positive correlation between the increase in the Oxidative Metabolism Activity/Proliferation index and the pharmacologically induced stimulation of steroidogenesis. The specific involvement of steroid molecules in mediating the metabolic effects of the PIGA ligands was demonstrated using aminoglutethimide, a specific inhibitor of the first step of steroid biosynthesis. The most promising steroidogenic PIGA ligands were the 2-naphthyl derivatives that showed a long residence time to the target, in agreement with our previous data. In conclusion, TSPO ligand-induced neurosteroidogenesis was involved in astrocyte well-being.
Collapse
|
9
|
Almey A, Cannell E, Bertram K, Filardo E, Milner TA, Brake WG. Medial prefrontal cortical estradiol rapidly alters memory system bias in female rats: ultrastructural analysis reveals membrane-associated estrogen receptors as potential mediators. Endocrinology 2014; 155:4422-32. [PMID: 25211590 PMCID: PMC4197985 DOI: 10.1210/en.2014-1463] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High plasma levels of estradiol (E2) are associated with use of a place memory system over a response memory system. We examined whether infusing estradiol into the medial prefrontal cortex (mPFC) or anterior cingulate cortex (AC) could affect memory system bias in female rats. We also examined the ultrastructural distribution of estrogen receptor (ER)-α, ERβ, and G protein-coupled estrogen receptor 1 (GPER1) in the mPFC of female rats as a mechanism for the behavioral effects of E2 in the mPFC. Each rat was infused bilaterally with either E2 (0.13 μg) or vehicle into the mPFC or AC. The majority of E2 mPFC rats used place memory. In contrast, the majority of mPFC vehicle rats and AC E2 or vehicle rats used response memory. These data show that mPFC E2 rapidly biases females to use place memory. Electron microscopic analysis demonstrated that ERα, ERβ, and GPER1 are localized in the mPFC, almost exclusively at extranuclear sites. This is the first time that GPER1 has been localized to the mPFC of rats and the first time that ERα and ERβ have been described at extranuclear sites in the rat mPFC. The majority of receptors were observed on axons and axon terminals, suggesting that estrogens alter presynaptic transmission in the mPFC. This provides a mechanism via which ERs could rapidly alter transmission in the mPFC to alter PFC-dependent behaviors, such as memory system bias. The discrete nature of immunolabeling for these membrane-associated ERs may explain the discrepancy in previous light microscopy studies.
Collapse
|
10
|
Wang C, Jie C, Dai X. Possible roles of astrocytes in estrogen neuroprotection during cerebral ischemia. Rev Neurosci 2014; 25:255-68. [PMID: 24566361 DOI: 10.1515/revneuro-2013-0055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/29/2014] [Indexed: 01/08/2023]
Abstract
17β-Estradiol (E2), one of female sex hormones, has well-documented neuroprotective effects in a variety of clinical and experimental disorders of the central cerebral ischemia, including stroke and neurodegenerative diseases. The cellular mechanisms that underlie these protective effects of E2 are uncertain because a number of different cell types express estrogen receptors in the central nervous system. Astrocytes are the most abundant cells in the central nervous system and provide structural and nutritive support of neurons. They interact with neurons by cross-talk, both physiologically and pathologically. Proper astrocyte function is particularly important for neuronal survival under ischemic conditions. Dysfunction of astrocytes resulting from ischemia significantly influences the responses of other brain cells to injury. Recent studies demonstrate that estrogen receptors are expressed in astrocytes, indicating that E2 may exert multiple regulatory actions on astrocytes. Cerebral ischemia induced changes in the expression of estrogen receptors in astrocytes. In the present review, we summarize the data in support of possible roles for astrocytes in the mediation of neuroprotection by E2 against cerebral ischemia.
Collapse
|
11
|
Conley YP, Okonkwo DO, Deslouches S, Alexander S, Puccio AM, Beers SR, Ren D. Mitochondrial polymorphisms impact outcomes after severe traumatic brain injury. J Neurotrauma 2013; 31:34-41. [PMID: 23883111 DOI: 10.1089/neu.2013.2855] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Patient outcomes are variable following severe traumatic brain injury (TBI); however, the biological underpinnings explaining this variability are unclear. Mitochondrial dysfunction after TBI is well documented, particularly in animal studies. The aim of this study was to investigate the role of mitochondrial polymorphisms on mitochondrial function and patient outcomes out to 1 year after a severe TBI in a human adult population. The Human MitoChip V2.0 was used to evaluate mitochondrial variants in an initial set of n=136 subjects. SNPs found to be significantly associated with patient outcomes [Glasgow Outcome Scale (GOS), Neurobehavioral Rating Scale (NRS), Disability Rating Scale (DRS), in-hospital mortality, and hospital length of stay] or neurochemical level (lactate:pyruvate ratio from cerebrospinal fluid) were further evaluated in an expanded sample of n=336 subjects. A10398G was associated with DRS at 6 and 12 months (p=0.02) and a significant time by SNP interaction for DRS was found (p=0.0013). The A10398 allele was associated with greater disability over time. There was a T195C by sex interaction for GOS (p=0.03) with the T195 allele associated with poorer outcomes in females. This is consistent with our findings that the T195 allele was associated with mitochondrial dysfunction (p=0.01), but only in females. This is the first study associating mitochondrial DNA variation with both mitochondrial function and neurobehavioral outcomes after TBI in humans. Our findings indicate that mitochondrial DNA variation may impact patient outcomes after a TBI potentially by influencing mitochondrial function, and that sex of the patient may be important in evaluating these associations in future studies.
Collapse
Affiliation(s)
- Yvette P Conley
- 1 School of Nursing, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | | | | | | | | | | | |
Collapse
|
12
|
Johann S, Beyer C. Neuroprotection by gonadal steroid hormones in acute brain damage requires cooperation with astroglia and microglia. J Steroid Biochem Mol Biol 2013. [PMID: 23196064 DOI: 10.1016/j.jsbmb.2012.11.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The neuroactive steroids 17β-estradiol and progesterone control a broad spectrum of neural functions. Besides their roles in the regulation of classical neuroendocrine loops, they strongly influence motor and cognitive systems, behavior, and modulate brain performance at almost every level. Such a statement is underpinned by the widespread and lifelong expression pattern of all types of classical and non-classical estrogen and progesterone receptors in the CNS. The life-sustaining power of neurosteroids for tattered or seriously damaged neurons aroused interest in the scientific community in the past years to study their ability for therapeutic use under neuropathological challenges. Documented by excellent studies either performed in vitro or in adequate animal models mimicking acute toxic or chronic neurodegenerative brain disorders, both hormones revealed a high potency to protect neurons from damage and saved neural systems from collapse. Unfortunately, neurons, astroglia, microglia, and oligodendrocytes are comparably target cells for both steroid hormones. This hampers the precise assignment and understanding of neuroprotective cellular mechanisms activated by both steroids. In this article, we strive for a better comprehension of the mutual reaction between these steroid hormones and the two major glial cell types involved in the maintenance of brain homeostasis, astroglia and microglia, during acute traumatic brain injuries such as stroke and hypoxia. In particular, we attempt to summarize steroid-activated cellular signaling pathways and molecular responses in these cells and their contribution to dampening neuroinflammation and neural destruction. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Affiliation(s)
- Sonja Johann
- Institute of Neuroanatomy, RWTH Aachen University, D-52074 Aachen, Germany
| | | |
Collapse
|
13
|
Leclère R, Torregrosa-Muñumer R, Kireev R, García C, Vara E, Tresguerres JAF, Gredilla R. Effect of estrogens on base excision repair in brain and liver mitochondria of aged female rats. Biogerontology 2013; 14:383-94. [PMID: 23666345 DOI: 10.1007/s10522-013-9431-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
Abstract
Changes in the endocrine system have been suggested to act as signaling factors in the regulation of age-related events. Among the different hormones that have been linked to the aging process, estrogens have been widely investigated. They have been associated with inflammatory and oxidative processes and several investigations have established a relationship between the protective effects of estrogens and the mitochondrial function. Mitochondrial DNA is subjected to continuous oxidative attack by free radicals, and the base excision repair (BER) pathway is the main DNA repair route present in mitochondria. We have investigated the effect of estrogen levels on some of the key enzymes of BER in brain and liver mitochondria. In both tissues, depletion of estrogens led to an increased mitochondrial AP endonuclease (mtAPE1) activity, while restoration of estrogen levels by exogenous supplementation resulted in restitution of control APE1 activity only in liver. Moreover, in hepatic mitochondria, changes in estrogen levels affected the processing of oxidative lesions but not deaminations. Our results suggest that changes in mtAPE1 activity are related to specific translocation of the enzyme from the cytosol into the mitochondria probably due to oxidative stress changes as a consequence of changes in estrogen levels.
Collapse
Affiliation(s)
- R Leclère
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Almey A, Filardo EJ, Milner TA, Brake WG. Estrogen receptors are found in glia and at extranuclear neuronal sites in the dorsal striatum of female rats: evidence for cholinergic but not dopaminergic colocalization. Endocrinology 2012; 153:5373-83. [PMID: 22919059 PMCID: PMC3473205 DOI: 10.1210/en.2012-1458] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Estrogens rapidly affect dopamine (DA) neurotransmission in the dorsal striatum (dSTR) and DA-related diseases, such as Parkinson's disease and schizophrenia. How estrogens influence DA function remains unclear, in part, because the ultrastructural localization of estrogen receptors (ER) in the dSTR is not known. Light microscopic studies of the dSTR have suggested the presence of ER. This experiment used electron microscopy to determine whether these ER are at extranuclear sites in the dSTR, providing evidence for a mechanism through which estrogen could rapidly affect DA transmission. The dSTR was labeled with antibodies for ERα, ERβ, and G protein-coupled ER 1 (GPER-1) to confirm whether these ER were present in this brain area. After this, the dSTR was dual labeled with antibodies for ERα or GPER-1 and tyrosine hydroxylase or vesicular acetylcholine transporter to determine whether ER are localized to dopaminergic and/or cholinergic processes, respectively. Ultrastructural analysis revealed immunoreactivity (IR) for ERα, ERβ, and GPER-1 exclusively at extranuclear sites throughout the dSTR. ERα-, ERβ-, and GPER-1-IR are mostly frequently observed in axons and glial profiles but are also localized to other neuronal profiles. Dual labeling revealed that ERα- and GPER-1-IR is not associated with DA axons and terminals but is sometimes associated with cholinergic neurons. Because these receptors are exclusively extranuclear in the dSTR, binding at these receptors likely affects neurotransmission via nongenomic mechanisms.
Collapse
|
15
|
Arnold S. Cytochrome c oxidase and its role in neurodegeneration and neuroprotection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:305-39. [PMID: 22729864 DOI: 10.1007/978-1-4614-3573-0_13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A hallmark of neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, and stroke is a malfunction of mitochondria including cytochrome c oxidase (COX), the terminal enzyme complex of the respiratory chain. COX is ascribed a key role based on mainly two regulatory mechanisms. These are the expression of isoforms and the binding of specific allosteric factors to nucleus--encoded subunits. These characteristics represent a unique feature of COX compared with the other respiratory chain complexes. Additional regulatory mechanisms, such as posttranslational modification, substrate availability, and allosteric feedback inhibition by products of the COX reaction, control the enzyme activity in a complex way. In many tissues and cell types, COX represents the rate-limiting enzyme of the respiratory chain which further emphasizes the impact of the regulation of COX as a central site for regulating energy metabolism and oxidative stress. Two of the best-analyzed regulatory mechanisms of COX to date are the allosteric feedback inhibition of the enzyme by its indirect product ATP and the expression of COX subunit IV isoforms. This ATP feedback inhibition of COX requires the expression of COX isoform IV-1. At high ATP/ADP ratios, ADP is exchanged for ATP at the matrix side of COX IV-1 leading to an inhibition of COX activity, thus enabling COX to sense the energy level and to adjust ATP synthesis to energy demand. However, under hypoxic, toxic, and degenerative conditions, COX isoform IV-2 expression is up-regulated and exchanged for COX IV-1 in the enzyme complex. This COX IV isoform switch causes an abolition of the allosteric ATP feedback inhibition of COX and consequently the loss of sensing the energy level. Thus, COX activity is increased leading to higher levels of ATP in neural cells independently of the cellular energy level. Concomitantly, ROS production is increased. Thus, under pathological conditions, neural cells are provided with ATP to meet the energy demand, but at the expense of elevated oxidative stress. This mechanism explains the functional relevance of COX subunit IV isoform expression for cellular energy sensing, ATP production, and oxidative stress levels. This, in turn, affects neural cell function, signaling, and -survival. Thus, COX is a crucial factor in etiology, progression, and prevalence of numerous human neurodegenerative diseases and represents an important target for developing diagnostic and therapeutic tools against those diseases.
Collapse
Affiliation(s)
- Susanne Arnold
- Institute for Neuroanatomy, RWTH Aachen University, Wendlingweg 2, Aachen, Germany.
| |
Collapse
|
16
|
Arnold S, Victor MB, Beyer C. Estrogen and the regulation of mitochondrial structure and function in the brain. J Steroid Biochem Mol Biol 2012; 131:2-9. [PMID: 22326731 DOI: 10.1016/j.jsbmb.2012.01.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 09/20/2011] [Accepted: 01/20/2012] [Indexed: 12/20/2022]
Abstract
The mitochondrion is the unquestionable cellular compartment that actively preserves most of the cell functions, such as lipid metabolism, ion homeostasis, energy and ROS production, steroid biosynthesis, and control of apoptotic signaling. Thus, this cell organelle depicts a major drop-in centre for regulatory processes within a cell irrespective of the organ or tissue. However, brain tissue is unique in spite of everything due to its extremely high energy demand and sensitivity to oxidative stress. This makes brain cells, in particular neurons, considerably vulnerable against toxins and challenges that attack the mitochondrial structural organization and energetic performance. Estrogens are known to regulate a multitude of cellular functions in neural cells under physiological conditions but also play a protective role under neuropathological circumstances. In recent years, it became evident that estrogens affect distinct cellular processes by interfering with the bioenergetic mitochondrial compartment. According to the general view, estrogens indirectly regulate the mitochondrion through the control of genomic transcription of mitochondrial-located proteins and modulation of cytoplasmic signaling cascades that act upon mitochondrial physiology. More recent but still arguable data suggest that estrogens might directly signal to the mitochondrion either through classical steroid receptors or novel types of receptors/proteins associated with the mitochondrial compartment. This would allow estrogens to more rapidly modulate the function of a mitochondrion than hitherto discussed. Assuming that this novel perception of steroid action is correct, estrogen might influence the energetic control centre through long-lasting nuclear-associated processes and rapid mitochondria-intrinsic temporary mechanisms. In this article, we would like to particularly accentuate the novel conceptual approach of this duality comprising that estrogens govern the mitochondrial structural integrity and functional capacity by different cellular signaling routes. This article is part of a Special Issue entitled 'Neurosteroids'.
Collapse
Affiliation(s)
- Susanne Arnold
- Institute of Neuroanatomy, RWTH Aachen University,Aachen, Germany
| | | | | |
Collapse
|
17
|
Guo J, Duckles SP, Weiss JH, Li X, Krause DN. 17β-Estradiol prevents cell death and mitochondrial dysfunction by an estrogen receptor-dependent mechanism in astrocytes after oxygen-glucose deprivation/reperfusion. Free Radic Biol Med 2012; 52:2151-60. [PMID: 22554613 PMCID: PMC3377773 DOI: 10.1016/j.freeradbiomed.2012.03.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 03/07/2012] [Accepted: 03/08/2012] [Indexed: 11/16/2022]
Abstract
17β-Estradiol (E2) has been shown to protect against ischemic brain injury, yet its targets and the mechanisms are unclear. E2 may exert multiple regulatory actions on astrocytes that may greatly contribute to its ability to protect the brain. Mitochondria are recognized as playing central roles in the development of injury during ischemia. Increasing evidence indicates that mitochondrial mechanisms are critically involved in E2-mediated protection. In this study, the effects of E2 and the role of mitochondria were evaluated in primary cultures of astrocytes subjected to an ischemia-like condition of oxygen-glucose deprivation (OGD)/reperfusion. We showed that E2 treatment significantly protects against OGD/reperfusion-induced cell death as determined by cell viability, apoptosis, and lactate dehydrogenase leakage. The protective effects of E2 on astrocytic survival were blocked by an estrogen receptor (ER) antagonist (ICI-182,780) and were mimicked by an ER agonist selective for ERα (PPT), but not by an ER agonist selective for ERβ (DPN). OGD/reperfusion provoked mitochondrial dysfunction as manifested by an increase in cellular reactive oxygen species production, loss of mitochondrial membrane potential, and depletion of ATP. E2 pretreatment significantly inhibited OGD/reperfusion-induced mitochondrial dysfunction, and this effect was also blocked by ICI-182,780. Therefore, we conclude that E2 provides direct protection to astrocytes from ischemic injury by an ER-dependent mechanism, highlighting an important role for ERα. Estrogen protects against mitochondrial dysfunction at the early phase of ischemic injury. However, overall implications for protection against brain ischemia and its complex sequelae await further exploration.
Collapse
Affiliation(s)
- Jiabin Guo
- Department of Pharmacology (J.G., S.P.D., D.N.K), Department of Neurology (J.H.W.), School of Medicine, University of California, Irvine, CA 92697, USA
- State Key Laboratory of Natural Biomimetic Drugs, Department of Pharmacology, School of Basic Medicine, Peking University, Beijing 100191, China
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Sue P. Duckles
- Department of Pharmacology (J.G., S.P.D., D.N.K), Department of Neurology (J.H.W.), School of Medicine, University of California, Irvine, CA 92697, USA
| | - John H. Weiss
- Department of Pharmacology (J.G., S.P.D., D.N.K), Department of Neurology (J.H.W.), School of Medicine, University of California, Irvine, CA 92697, USA
| | - Xuejun Li
- State Key Laboratory of Natural Biomimetic Drugs, Department of Pharmacology, School of Basic Medicine, Peking University, Beijing 100191, China
| | - Diana N. Krause
- Department of Pharmacology (J.G., S.P.D., D.N.K), Department of Neurology (J.H.W.), School of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
18
|
Kipp M, Amor S, Krauth R, Beyer C. Multiple sclerosis: neuroprotective alliance of estrogen-progesterone and gender. Front Neuroendocrinol 2012; 33:1-16. [PMID: 22289667 DOI: 10.1016/j.yfrne.2012.01.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/19/2011] [Accepted: 01/04/2012] [Indexed: 12/19/2022]
Abstract
The potential of 17β-estradiol and progesterone as neuroprotective factors is well-recognized. Persuasive data comes from in vitro and animal models reflecting a wide range of CNS disorders. These studies have endeavored to translate findings into human therapies. Nonetheless, few human studies show promising results. Evidence for neuroprotection was obtained in multiple sclerosis (MS) patients. This chronic inflammatory and demyelinating disease shows a female-to-male gender prevalence and disturbances in sex steroid production. In MS-related animal models, steroids ameliorate symptoms and protect from demyelination and neuronal damage. Both hormones operate in dampening central and brain-intrinsic immune responses and regulating local growth factor supply, oligodendrocyte and astrocyte function. This complex modulation of cell physiology and system stabilization requires the gamut of steroid-dependent signaling pathways. The identification of molecular and cellular targets of sex steroids and the understanding of cell-cell interactions in the pathogenesis will offer promise of novel therapy strategies.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| | | | | | | |
Collapse
|
19
|
Sundar Boyalla S, Barbara Victor M, Roemgens A, Beyer C, Arnold S. Sex- and brain region-specific role of cytochrome c oxidase in 1-methyl-4-phenylpyridinium-mediated astrocyte vulnerability. J Neurosci Res 2011; 89:2068-82. [DOI: 10.1002/jnr.22669] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/16/2011] [Accepted: 03/28/2011] [Indexed: 11/09/2022]
|
20
|
Azcoitia I, Santos-Galindo M, Arevalo MA, Garcia-Segura LM. Role of astroglia in the neuroplastic and neuroprotective actions of estradiol. Eur J Neurosci 2010; 32:1995-2002. [DOI: 10.1111/j.1460-9568.2010.07516.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Actions of estrogens on glial cells: Implications for neuroprotection. Biochim Biophys Acta Gen Subj 2010; 1800:1106-12. [DOI: 10.1016/j.bbagen.2009.10.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/29/2009] [Accepted: 10/01/2009] [Indexed: 01/21/2023]
|
22
|
Misiak M, Beyer C, Arnold S. Gender-specific role of mitochondria in the vulnerability of 6-hydroxydopamine-treated mesencephalic neurons. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1178-88. [PMID: 20416276 DOI: 10.1016/j.bbabio.2010.04.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/31/2010] [Accepted: 04/13/2010] [Indexed: 02/05/2023]
Abstract
Many neurodegenerative diseases, such as Morbus Parkinson, exhibit a gender-dependency showing a higher incidence in men than women. Most of the neurodegenerative disorders involve either causally or consequently a dysfunction of mitochondria. Therefore, neuronal mitochondria may demonstrate a gender-specificity with respect to structural and functional characteristics of these organelles during toxic and degenerative processes. The application of 6-OHDA (6-hydroxydopamine) in vitro and in vivo represents a well-accepted experimental model of Parkinson's disease causing Parkinsonian symptoms. Besides the known effects of 6-OHDA on mitochondria and neuronal survivability, we aimed to demonstrate that the mitochondrial neurotoxin affects the morphology and survival of primary dopaminergic and non-dopaminergic neurons in the mesencephalon in a gender-specific manner by influencing the transcription of mitochondrial genes, ATP and reactive oxygen species production. Our data suggest that cell death in response to 6-OHDA is primarily caused due to increased oxidative stress which is more pronounced in male than in female mesencephalic neurons.
Collapse
Affiliation(s)
- Magdalena Misiak
- Institute for Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | | | | |
Collapse
|
23
|
Estrogen-receptor-mediated protection of cerebral endothelial cell viability and mitochondrial function after ischemic insult in vitro. J Cereb Blood Flow Metab 2010; 30:545-54. [PMID: 19861973 PMCID: PMC2831126 DOI: 10.1038/jcbfm.2009.226] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protective effects of estrogen against experimental stroke and neuronal ischemic insult are well-documented, but it is not known whether estrogen prevents ischemic injury to brain endothelium, a key component of the neurovascular unit. Increasing evidence indicates that estrogen exerts protective effects through mitochondrial mechanisms. We previously found 17beta-estradiol (E2) to improve mitochondrial efficiency and reduce mitochondrial superoxide in brain blood vessels and endothelial cells. Thus we hypothesized E2 will preserve mitochondrial function and protect brain endothelial cells against ischemic damage. To test this, an in vitro ischemic model, oxygen-glucose deprivation (OGD)/reperfusion, was applied to immortalized mouse brain endothelial cells (bEnd.3). OGD/reperfusion-induced cell death was prevented by long-term (24, 48 h), but not short-term (0.5, 12 h), pretreatment with 10 nmol/L E2. Protective effects of E2 on endothelial cell viability were mimicked by an estrogen-receptor (ER) agonist selective for ERalpha (PPT), but not by one selective for ERbeta (DPN). In addition, E2 significantly decreased mitochondrial superoxide and preserved mitochondrial membrane potential and ATP levels in early stages of OGD/reperfusion. All of the E2 effects were blocked by the ER antagonist, ICI-182,780. These findings indicate that E2 can preserve endothelial mitochondrial function and provide protection against ischemic injury through ER-mediated mechanisms.
Collapse
|
24
|
Effect of progesterone and its synthetic analogues on the activity of mitochondrial permeability transition pore in isolated rat liver mitochondria. Biochem Pharmacol 2009; 78:1060-8. [DOI: 10.1016/j.bcp.2009.05.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 05/19/2009] [Accepted: 05/19/2009] [Indexed: 11/20/2022]
|
25
|
Arnold S, Beyer C. Neuroprotection by estrogen in the brain: the mitochondrial compartment as presumed therapeutic target. J Neurochem 2009; 110:1-11. [DOI: 10.1111/j.1471-4159.2009.06133.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Kipp M, Beyer C. Impact of sex steroids on neuroinflammatory processes and experimental multiple sclerosis. Front Neuroendocrinol 2009; 30:188-200. [PMID: 19393685 DOI: 10.1016/j.yfrne.2009.04.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/01/2009] [Accepted: 04/14/2009] [Indexed: 12/18/2022]
Abstract
Synthetic and natural estrogens as well as progestins modulate neuronal development and activity. Neurons and glia are endowed with high-affinity steroid receptors. Besides regulating brain physiology, both steroids conciliate neuroprotection against toxicity and neurodegeneration. The majority of data derive from in vitro studies, although more recently, animal models have proven the efficaciousness of steroids as neuroprotective factors. Indications for a safeguarding role also emerge from first clinical trials. Gender-specific prevalence of degenerative disorders might be associated with the loss of hormonal activity or steroid malfunctions. Our studies and evidence from the literature support the view that steroids attenuate neuroinflammation by reducing the pro-inflammatory property of astrocytes. This effect appears variable depending on the brain region and toxic condition. Both hormones can individually mediate protection, but they are more effective in cooperation. A second research line, using an animal model for multiple sclerosis, provides evidence that steroids achieve remyelination after demyelination. The underlying cellular mechanisms involve interactions with astroglia, insulin-like growth factor-1 responses, and the recruitment of oligodendrocytes.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
27
|
Chen JQ, Cammarata PR, Baines CP, Yager JD. Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1540-70. [PMID: 19559056 DOI: 10.1016/j.bbamcr.2009.06.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 12/21/2022]
Abstract
There has been increasing evidence pointing to the mitochondrial respiratory chain (MRC) as a novel and important target for the actions of 17beta-estradiol (E(2)) and estrogen receptors (ER) in a number of cell types and tissues that have high demands for mitochondrial energy metabolism. This novel E(2)-mediated mitochondrial pathway involves the cooperation of both nuclear and mitochondrial ERalpha and ERbeta and their co-activators on the coordinate regulation of both nuclear DNA- and mitochondrial DNA-encoded genes for MRC proteins. In this paper, we have: 1) comprehensively reviewed studies that reveal a novel role of estrogens and ERs in the regulation of MRC biogenesis; 2) discussed their physiological, pathological and pharmacological implications in the control of cell proliferation and apoptosis in relation to estrogen-mediated carcinogenesis, anti-cancer drug resistance in human breast cancer cells, neuroprotection for Alzheimer's disease and Parkinson's disease in brain, cardiovascular protection in human heart and their beneficial effects in lens physiology related to cataract in the eye; and 3) pointed out new research directions to address the key questions in this important and newly emerging area. We also suggest a novel conceptual approach that will contribute to innovative regimens for the prevention or treatment of a wide variety of medical complications based on E(2)/ER-mediated MRC biogenesis pathway.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | |
Collapse
|